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a b s t r a c t

Kinetics is essential for chemical reactor modelling, in particular to reduce the inherent

risks of extrapolation going along with scaling-up. Pharmaceutical industries are especially

concerned. However, when chemical systems are very complex, development of good mod-

els may lead to prohibitively expensive and time consuming experiments. The aim of this

paper is to describe an efficient experimental design strategy for discrimination of stoichio-

kinetic models. The proposed methodology is based on model-based experimental design

(optimal design), which uses information already acquired onmodels to determine the best

conditions to implement a new experiment with the highest discrimination potential. The

combination with microreactor technology is also proposed in this work. The whole proce-

dure for model discrimination is firstly described in detail and then, applied to a numerical

study case, consisting of a chemical synthesis carried out in amicroreactor. The discrimina-

tionprocedure efficiently leads to thedeterminationof the single adequatemodel among the

various potentialmodels proposed before the implementation of the designed experiments.

It is verified that the procedure does not depend on the set of preliminary experiments and

is time-saving when compared to a classical factorial plan.

1. Introduction

The Research & Development process in the pharmaceutical industry

follows a long and complex course. First, key molecules responding

to target needs are selected. Then, preclinical development comes:

studies on toxicity, pharmacodynamics, pharmacokinetics and con-

trol of molecule formulation and production feasibility. Following this,

clinical trials are conducted. From Phase I to Phase III, key molecule

efficiency, side effects and behavior in the body are investigated on

humans, starting from typically 20–100 volunteers for Phase I, then

∗ Corresponding author.

100–500 for Phase II and 1000–5000 for Phase III. The drug is finally

submitted to regulatory agencies for evaluation and registration before

commercialization. Chemical development and drug production follow

each development step and must meet the requirements for the drug

by scaling upmanufacturing. The complexity of phenomena (chemical

reactions, hydrodynamics, heat and mass transfers) limits the amount

by which laboratory production methods may be extrapolated, con-

sequently the scaling-up can lead to the unexpected degradation of

product quality and formation of by-products.

The development of kinetic models, and more generally of phe-

nomenological models, is a way to ensure reliability in extrapolation

and process modelling. However, the complexity of reaction systems

E-mail addresses: leovv74@gmail.com (L. Violet), michel.cabassud@ensiacet.fr (M. Cabassud). 



Nomenclature

�i Vector of experimental conditions of the ith
experiment

t Vector of time of each sample of the ith exper-
iment

ym Vector of model responses

yexp Vector of measured experimental variables

rss Residual sum of squares

�2 Chi-square statistical distribution

� Standard deviation on an experimental mea-

surement

6 Covariance Matrix of standard deviations on

experimental measurement

� Vector of parameters of a model, k when it is
kinetic parameters

M A model structure

M(�) A model with a parameter set �

�GM Gauss–Markov criterion

MF Fisher information Matrix

8 Parameter estimation error covariance matrix

� Model prediction error covariance matrix

dy/d� Matrix of sensibility of model response y

involved, coupled with the fact that the number of species that can

be followed up by analytical methods can be limited, generally means

that several potential stoichio-kinetic models may be proposed. As a

consequence, the experimental efforts (and the associated costs) to dis-

criminate among the different stoichio-kinetic models and to correctly

identify kinetics model parameters can be prohibitive, particularly in

pharmaceutical chemistry.

In addition, the search and the selection for several potential

stoichio-kinetic models, for example proposing various side reactions

(i.e. different stoichiometric schemes), or includingmass or heat trans-

fer properties, is of crucial interest, since this could reduce the risks

during the project development by giving tools to forecast eventual

misfires. For example, a highly toxic by-product molecule can be in

negligible quantity at lab-scale, but can appear to be predominant at

semi-industrial one. In this case, the toxicological assessment will lead

to stop the project, but in a downstream step,meaning after substantial

investments. To avoid such configurations, amethodology based on the

comparison of different stoichio-kinetic models should be absolutely

implemented as it offers the advantage to check at the different stages

of development which side effect could appear, and then to propose

different associated models. In this way, the production of a toxic by-

product can be anticipated at earlier stage of development. To reach

this objective, the use of advanced experimental tools and strategies is

required to rationalize experimental data collection.

Experimental design strategies are interesting tools to face this

challenge. They propose mathematical tools to find the best experi-

ments to discriminate between several stoichio-kinetic models, thus

reducing the experimental efforts and the risks during the project.

Simultaneously, microstructured reactors become an alternative to

classical batch reactors for kinetic data acquisition. The combination

of experimental design strategywithmicrofluidic tools thus opens new

perspectives in chemical reaction characterization. This is the answer

proposed in this work, to face the challenges described above.

The advantages of microfluidic tools are reported in numerous

works (Hartman and Jensen, 2009; Hessel, 2009; Jähnisch et al., 2004;

Sinton, 2014). The low handled volumes guarantee economy of prod-

ucts, particularly critical for advanced pharmaceutical molecules, and

a higher safety than in batch systems. The perfect control of the oper-

ating conditions (mixing, heat and mass transfer) is also a key point

for kinetic studies. Indeed, unexpected phenomena (hot spots, side

reactions) are limited, and the experimental window is enlarged to

operating conditions inaccessible for batch reactors (short residence

time, high concentration). Reliability and repeatability of experiments

are also improved. Besides, flow chemistry and potential on-line analy-

sis enable a partial automation of experimental procedure and a quick

screening of operating conditions.

Experimental design is the second component of the strategy pro-

posed in this work. The main feature of all the design procedures

developed for stoechio-kinetic models, and generally for nonlinear

models, is an optimization problem. The optimal design, also named

model-based design, is based on criteria using information already

acquired on the models. The nature of the criterion used depends

on the experimental goal. The two main kinds of optimal design are

devoted either to accurate estimation of model parameters or tomodel

discrimination. The approach of model-based experimental design

has been successfully applied in literature for some applications in

heterogeneous catalysis in tubular reactors: hydrogenation of isooc-

tane and oxidation of o-xylene (Froment, 1975), dehydrogenation of

1-butene (Dumez et al., 1977), synthesis of methanol from gas (Buzzi-

Ferraris and Forzati, 1984; Schwaab et al., 2008, 2006), and oxidation

of methanol (Galvanin et al., 2015). Other applications have been pre-

sented in bioengineering: in fermentation (Galvanin et al., 2007; Strigul

et al., 2009; Ternbach et al., 2005), in enzymatic catalysis and in phar-

macokinetics (Dette et al., 2005; Donckels et al., 2009; Galvanin et al.,

2013; López-Fidalgo et al., 2008; Tommasi, 2009). Finally, a little number

of applications have been published in fine chemistry: they concern

the works of Atkinson et al. (1998) on reversible esterification, of

Issanchou et al. (2003, 2005) on the alkaline synthesis of n-amylacetate

in liquid–liquid batch reactors, and of Mathieu et al. (2013) on the iod-

ination of tyrosine on a multi-reactor experimental test. Both types

of optimal design have been developed separately, since Box and Lucas

(1959) for parameter estimation andHunter and Reiner (1965) formodel

discrimination, or jointly since Hill et al. (1968), developing hybrid cri-

teria or multiobjective optimization.

As its predecessors, the global objective of this work is to high-

light the potential of optimal experimental design for comparison and

selection of stoichio-kinetic models from a reduced number of ade-

quate experiments. However, a particular attention will be here paid

to some underestimated aspects of the construction of models. Firstly,

the fact that the number ofmeasurable species in a reactional system is

limited stays a usual issue in industrial applications and has some con-

sequences. The control of the identifiability of model parameters and

of the discernibility of the competitive models becomes then essential

and yet, these two structural properties of models are rarely evaluated

in most of the works. This lack of information also limits the insight

into the system that the experimenter can have, thus implying that

the use of numeric tools becomes appreciated. For these reasons, the

presentedmethodology will take into account the issues of discernibil-

ity and identifiability before focusing on the discrimination of various

competitive stoichio-kinetics models, cases commonly encountered in

fine chemistry. The other novelty of the optimal design proposed in this

paper is to identify the experimental windows where the potential for

model comparison is the best, and this before to emphasize on model

parameter determination precisely.

All these points will be illustrated with a specific numerical study

case, which will be described in Section 2. Then, the experimental

design strategy for model discrimination will be introduced in Section

3. The last section (Section 4) will discuss the results obtained from

the strategy applied on the study case; it will be also verified that the

procedure does not depend on the set of preliminary experiments and

is time-saving when compared to a classical factorial plan.

2. Study case

2.1. Description of the problem

To illustrate purposes, a study case classically encountered

in fine chemistry is chosen. It consists of an organic synthesis

involving awell-characterizedmain reaction and an unknown

by-product reaction which leads to an unidentified impurity.



Main reac�on

By-product forma�on

Model A Model B Model C Model D

Fig. 1 – Different reaction mechanisms proposed for the

production of the species 3 and the formation of a

by-product 4i (i = a, b, c, d).

Depending on experimental conditions, a significant amount

of impurity can be produced or not.

Let’s assume that after somepreliminary experiments, four

propositions are postulated to explain and describe how this

impurity can be produced. They are shown in Fig. 1 where

species 1 and 2 are the reagents, 3 is the target molecule, and

4i (i=a, b, c, d) are the possible by-products.
Thesemodels are classical stoichio-kineticmodels for reac-

tions taking place in homogeneous phase: model A suggests a
competitive reaction to form 4a. For model B and model C, a
consecutive competitive reaction takes place, with a different

stoichiometry for the twomodels. Finally,model D corresponds
to a reversible consecutive dissociation of the target product

3. The challenge is here that species 4i will be considered as

unmeasurable.

The aim of the methodology presented below will be to

determine, in an efficient way, which model is the true one.

2.2. Establishment of the set of equations

The first step in the optimal experimental design procedure

consists in establishing the set of equations characteristic of

the systemunder test, which is based onmass balances inside

the microreactor coupled with the stoichio-kinetics laws. For

that, the following assumptions are made:

– The microreactor behaves as a purely isothermal plug-flow

reactor. The input reagents are perfectly mixed. Then, the

concentration and yield profiles are directly determined

from intrinsic kinetics (they are only dependent on resi-

dence time, or microreactor length).

– Only the concentrations of the species 1, 2 and 3 are mea-

sured and will be thus considered in the optimal design

procedure as the experimental responses. The fact that the

impurities4iarenotmeasuredadds clearly adifficulty, but it

reproduces a classical configuration infine chemistry indus-

try.

– For any case, the reaction rates are expressed from Eq. (1):

ri = exp
(

�i +
Ei

T

)

×

reagents
∏

k

[Ck]
nk,i

with�i = exp
(

k0
i

)

, Ei =
Eai

R

(1)

Where �i and Ei are the kinetic parameters of the reaction

i which correspond to the reparametrized frequency factor
(k0

i
) and activation energy (Eai) from the Arrhenius law, Ck

the molar concentration of a reagent k and nk,i its associated

kinetic order for the reaction i, taken as the stoichiometric
coefficient of the reagent k for the reaction i. T is the medium
temperature and R the ideal gas constant.

Table 1 – Experimental domain.

Temperature (K) Residence time (s) [2]0/[1]0

340–450 20–1000 0.2–5

Based on these assumptions, the following mass balances

can be written, enabling to describe the variation of the

concentration [Ck] of each chemical component k along the
microreactor:

d [Ck]

dz
× 〈uz〉 =

d [Ck]

dt
=

∑reactions

i
�k,i × ri (2)

Where z is the axial position along the microreactor, t the res-
idence time in the microreactor, uz the mean flow velocity

along the axial direction z, and ri the rates of the reactions

involving the species k with a stoichiometric coefficient vk,i.

2.3. Generation of the experimental data and

operating domain

In this paper, the “experimental” data are numerically gen-

erated with a predetermined stoichio-kinetic model. Model A,
which is a strictly competitivemodel, has been chosen for this

task. Let us note that this implies that the experimental design

strategy implemented is supposed to lead to the elimination

of the three other models (models, B, C and D). A random error,

following a normal law with zero mean and a given standard

deviation s, has been then added to generate the experimental

errors observed on experimental measurements.

In this study, it will be considered that the experimen-

tal parameters that are modified for the experimental data

procedure are residence time (t), temperature (T) and ini-
tial stoichiometric ratio of the species 1 and 2 ([2]0/[1]0). The

ranges considered are reported in Table 1. The measured

experimental variables will be the output concentrations of

the species 1, 2 and 3, and it will be assumed that no infor-

mation is available on the by-product produced during the

synthesis.

3. Experimental design strategy

3.1. Description of the overall process

The aim of the optimal experimental design strategy is to find

the best stoichio-kineticmodel among severalmodels in com-

petition, while optimizing the number and the quality of the

experiments used. The process that has been implemented to

achieve this goal is composed of successive steps depicted in

Fig. 2.

Fromthepreliminary experiments (stepA1), somestoichio-

kineticmodels canbeproposed (stepA2). Then theparameters

of all models are identified (step B) and the model accuracy

compared (stepC). If several models remain valid, the experi-

mental design step (step D) generates the best experiment to

discriminate the remaining models. Once this experiment is

performed (step E), the iterative process (B-C-D-E-B-. . .) contin-

ues until only one model allows fitting all the experiments, or

if no new experiment allows model discrimination anymore.

Each step will be now described in detail.

3.1.1. Steps A1 and A2—the preliminary steps
The first step consists of carrying out several preliminary

experiments. They give information on the system and thus



Fig. 2 – Sequential procedure of experimental design for

model discrimination.

enable different statements to bemade, related for example to

the experimental parameters influencing the reactions, or to

the variation of the species concentrations. Depending on the

complexity of the chemical system, several stoichio-kinetic

models can then be proposed. Once the models are selected,

their properties should be verified in terms of identifiabil-

ity and discernibility, and this before making any additional

experiments. This procedure is detailed in Section 3.2. Finally,

the preliminary experiments can be used to make a first iden-

tification of the model parameters.

3.1.2. Step B—model parameter identification
The iterative process starts with this step. The process for

estimating the kinetic model parameters (�i and Ei) is imple-

mented after each new experiment. The parameters are

determined byminimizing a classical sumof square estimator

called the Gauss–Markov estimator 8GM, given in Eq. (3).

�GM (�) =

[

ym (�, �, t)− yexp (�, t)
] [

ym (�, �, t)− yexp (�, t)
]T

�(�, t)2

Where ym and yexp represent the model and experimental
responses respectively (i.e. the concentrations [Ck]), � the

kinetic model parameters, � the experimental variables, and t
the residence time. �(�,t) is the standarddeviation of the exper-
imental response; even if the expression � strictly depends

on each sample, it will be considered as a constant. The use

of � reduces the influence of noisy data and normalizes data

dimensions (necessary if, for example, temperature and con-

centration are both experimental responses).

3.1.3. Step C—model discrimination
The Gauss–Markov residual, namely the minimized value of

�GM once the parameters are identified, can be directly used

to evaluatemodel adequacy. Indeed, assuming that the exper-

imental errors follow a zero mean normal distribution, the

Gauss–Markov residual is a sample of the�2 distributionwith a

degree of freedom corresponding to the total number of sam-

ples minus the number of model parameters (Dumez et al.,

1977). So the �2 statistic distribution can be used to evalu-

ate the adequacy of each model, comparing the residual sum

of squares with the �2 sample value. A model is considered

inadequate if its residual rss (Residual Sum of Squares) is sig-

nificantly higher to its associated �2 value.

3.1.4. Step D—experimental design
Once the inadequate models are removed, new experiments

are required to be able to discriminate between themodels still

in competition. The basic idea of optimal designmethodology

is to use the information already acquired about the mod-

els, to look for the experimental conditions where the model

responses are the most different between each model. In this

way, some of the remaining models will possibly not fit with

experimental data anymore. In practice, amathematical crite-

rion � is used to comparemodel responses. Hunter and Reiner

(1965) proposed the simplest criterion shown in Eq. (4).

�m1,m2 (�, t) = [ym1 (�, t)− ym2 (�, t)] [ym1 (�, t)− ym2 (�, t)]T (4)

Where ym1 and ym2 are the responses of two different models,
m1 and m2, to discriminate.

However, many extended criteria have been developed

since, to take into account specific experimental or math-

ematical considerations like experimental error or model

prediction error (Hunter andReiner, 1965; Atkinson et al., 1975;

Buzzi-Ferraris and Forzati, 1983; Schwaab et al., 2006, 2008;

Donckels et al., 2009). More details are given in Section 3.3.

3.1.5. Step E—implementation of the new experiment and
iteration
The experiment proposed by the experimental design

methodology is then carried out. After, the iterative process

starts again, including the steps of model parameter iden-

tification and model evaluation. In this way, it is expected

that thanks to the new experiment, some models could be

removed. Finally, the procedure continues until just onemodel

still fits with experimental data or until it is not possible to

discriminate between the remaining models.

This sequential aspect of optimal design strategy offers

interesting possibilities. Indeed, if after some iterations, it

appears that the set of proposedmodels is not satisfying,mod-

ified or newmodels can be added to the initial base of models.

This constitutes a powerful toolwhich enables to use the infor-

mation acquired after each new experiment to propose into

the selection procedure more accurate models if needed.

3.2. Identifiability and discernibility properties of

models

The validation of these mathematical properties is an essen-

tial step before implementing any experimental design

strategy, as it can become critical, particularly when the num-

ber of measured species is limited compared to the total

number of species involved (this is a common situation for

industrial applications as it is often difficult to get quantitative

analysis data for all components).

This validation consists in checking that kinetic param-

eters of all the proposed models are identifiable and then

that all the models are discernable. These two properties are

defined below.

Definition 1. Given a model structureM (.) and the associated

space of parameters2, themodelM (�) with � ∈ 2will be iden-

tifiable only if the proposition (5) is valid (Walter and Pronzato,

1994)

∀ (�, �′) ∈ 22 M (�) = M (�′)⇒ � = �′ (5)



Definition 2. Given twomodel structuresM1 (.) andM2 (.), and

their associated space of parameter 21 and 22 respectively,

the models M1 (�) and M2 (�′) with � ∈ 21, and �′ ∈ 22, will be

discernable only if the proposition (6) is valid (Ollivier, 1990)

∀u ∈ 21∀�′ ∈ 22 M1 (�) /= M2 (�′) (6)

In other words, a non-identifiable model could provide the

same response with several (even an infinity) sets of param-

eters, and two non-discernable models will give the same

response and could not be differentiable.

Several methods have been developed to verify identifi-

ability and discernibility. The most used methods are the

linearization method (Grewal and Glover, 1976), the similarity

transformation method (Vajda and Rabitz, 1989) and the Tay-

lor series development method (Pohjanpalo, 1978). A detailed

description of all these latter is also given byOllivier (1990) and

by Walter and Pronzato (1993). In this work, the Taylor series

approach is used because of its simplicity. Themodel response

can be then represented with a Taylor series expansion in a

time interval [0, tT] as following in Eq. (7).

ym (t, �) =

∞
∑

n=0

an (�)

n!
(t)n (7)

With:

an (�) =
dn [ym (t = 0, �)]

dtn
(8)

Where an (�) are the Taylor coefficients: the evaluation of the

nth derivative of the model response with time, at zero time
and for the set of model parameters �.

Now, a sufficient condition to prove the identifiability of a

model M (�) is to demonstrate the proposition (9):

∀ (�, �′) ∈ 22 an (�) = an (�′)⇒ � = �′, forn = 0,1,2, . . ., nmax

(9)

Where nmax is generally a low integer to keep low calculation

needs.

In a similar way, the sufficient condition to show the

discernibility between two models M1 (�) and M2 (�′) is the

demonstration of proposition (10):

∀� ∈ 21∄u′ ∈ 22 an,1 (�) = an,2 (�′)⇒ � = �′,

forn = 0,1,2, . . ., nmax
(10)

Once the structure properties of all themodels are checked,

the kinetic parameters can be identified. Themodel adequacy

can be then evaluated, the models selected, and the step

of optimal experimental design implemented to find a new

experiment if necessary.

3.3. Criteria for optimal design strategy

3.3.1. Criteria
The first design criterion has been proposed by Hunter and

Reiner (1965) for two model discrimination. It is based on a

comparison of the model responses with a quadratic criterion

(Eq. (4)) which is maximized depending on the experimental

variables (residence or sampling time mostly). This enables

the residence timewhere the twomodels have themost diver-

gent response to be found. So if one of the models follows

the experimental response at this residence time, the other

cannot, and is thus rejected.

This design criterion has been modified and improved by

several other research groups afterwards. Hunter and Reiner

(1965) have themselves modified the latter criterion by taking

into account the experimental error (Eq. (11)).

�m1,m2 (�, t) =
[ym1 (�, t)− ym2 (�, t)] [ym1 (�, t)− ym2 (�, t)]T

�(�, t)2
(11)

The advantage of this criterion is to avoid proposing exper-

imental conditions for which the experimental errors are too

important. For that, it uses the variance of the experimental

error �2.

The next criterion has been proposed by Buzzi-Ferraris and

Forzati (1983):

�m1,m2 (�, t) =
[ym1 (�, t)− ym2 (�, t)] [ym1 (�, t)− ym2 (�, t)]T

(2˙ (�, t)+ ˝m1 (�, t)+ ˝m2 (�, t))
(12)

Where � represents a covariance matrix on model prediction

errors, and6 the covariancematrix on experimental response

errors. It is common to consider 6 as a diagonal matrix of the

�i
2 of each experimental response i.
This criterion includes the uncertainty on model predic-

tion, which is estimated using 6 and the model prediction

error covariance matrix �i for each model i. Details on esti-

mation of � are given later in this section. The idea of this

criterion is to remove regions of the experimental domain in

which the model predictions are too poor to enable discrimi-

nation of the two models.

Schwaab et al. (2008) and Donckels et al. (2009) simulta-

neously proposed to modify the Buzzi-Ferraris criterion. The

approach consists in including the expected model prediction

covariance matrix � associated to the new experiment (that

is predicted with the actual estimation of the model parame-

ters), before the experiment is performed. The experimental

responses and the associatedmatrix� are “anticipated” using

information already acquired onmodels, explaining thus why

it has been called the “anticipatory approach” by Schwaab

et al. (2008) and Donckels et al. (2009). These authors have

shown that using the predicted values of themodel prediction

uncertainty, the number of experiments necessary to discrim-

inate between the models can be reduced and the resulting

experiments often enable a better estimation ofmodel param-

eters at the same time (Alberton et al., 2011).

All the latter criteria have been developed to compare two

models. When more than two models are in competition,

the classical method consists in calculating a global criterion,

function of the pairwise criteria. For that, Buzzi-Ferraris and

Forzati (1990), Schwaab et al. (2006) and Donckels (2009) have

proposed three strategies: (i) to calculate and maximize the

average or the sum of all the pairwise criteria, that was firstly

proposed by (Dumez et al., 1977), (ii) to maximize the highest

pairwise criteria, (iii) to maximize the smallest of the pairwise

criteria. In the present study, the criterion in Eq. (13) will be

chosen: the designed experiment performed will be then the

one associated to the highest pairwise criterion. By this way, it

is almost sure that at least one model will be eliminated after

the experiment, or in other words, the designed experiments

that cannot discriminate any models are eventually avoided.

˚G (�, t) =max
i,j

[

�i,j (�, t)
]

(13)



3.3.2. Comparison of the different criteria
In this work, the Buzzi-Ferraris criterion (Eq. (6)) will be

used because, as shown by Donckels (2012), this is the

most conservative of the four approaches. In other words,

it always succeeds to find the best model. To demonstrate

that, Donckels (2012) have applied 150 times the discrimina-

tion procedure, with 5 different series of initial experiments,

repeated 30 times each and for all the criteria. The succeed of

the strategy was 100% for Buzzi-Ferraris criterion, 89% for the

anticipatory one, 85% for the modified Hunter & Reiner one

and 97% for the original Hunter & Reiner one.

3.3.3. Calculation of parameter estimation error
covariance matrix 8, and model prediction error covariance
matrix �

There are different methods to calculate the parameter esti-

mation error covariance matrix 8. The Monte-Carlo methods

are the first well-knownmethods. The idea is to use themodel

parameters evaluated from experimental data to generate a

sufficient amount of synthetic data. Gaussian noise is added,

which is close to the real experimental error variance. Then, all

these data enable the estimation of the mean and covariance

of the model response. The Jackknife and Bootstrap meth-

ods are the most common Monte-Carlo methods (Efron, 1981;

DiCiccio and Romano, 1988).

Another way to estimate 8 is by its statistical estimation.

The last works on experimental design applied to non-linear

models have used this method for the estimation of 8 (Buzzi-

Ferraris and Forzati, 1983; Sedrati et al., 1999; Issanchou et al.,

2003; Schwaab et al., 2008; Donckels et al., 2009). Themore effi-

cient an estimator is, the smaller itsmatrix8will be. But there

is a lower limit to the8 value, characterized by theCramer-Rao

inequality: 8 ≥ MF(�∗)−1 where MF is called the Fisher Infor-

mation Matrix. This inequality asymptotically tends to be an

equality if the estimator is efficient and without bias (like the

Gauss–Markov estimator which is used in this work). While it

is very difficult to estimate 8, MF remains easier to calculate

with some hypothesis detailed by Issanchou (2002). Then, MF

is used as an approximation of8. The general definition ofMF

is:

MF = E

{

[

∂

∂�
ln fy (y|�)

][

∂

∂�
ln fy (y|�)

]T
}

(14)

Where fy (y|�) is the density function of the model response y,
with � fixed, and E the mathematical expectation.
For nonlinear models with a Gaussian noise, MF can be

calculated following Eq. (15) (Donckels et al., 2009):

MF =

experiments,

samples
∑ dym

d�
6−1 dym

d�

T

(15)

Where dym/d� is the sensitivity of the model to its parame-

ters. This equation is also an approximation of the hessian of

the Gauss–Markov estimator, thus increasing the interest of

the use of this estimator for parameter identification. Indeed,

numerical tools for hessian calculation can be used in a first

approximation.

In this work, the statistical method is preferred because

Monte-Carlo methods need a very large amount of calcu-

lation while MF is easy to calculate. Moreover, using the

Gauss–Markov estimator, a good approximation of 8 is

ensured withMF .

The Buzzi-Ferraris and the anticipatory criteria require the

knowledge of the model prediction error covariance matrix �.

Thematrix� (�∗, t∗) of one new experimentwith experimental

conditions �∗ and at time t∗t∗ is given by Donckels et al. (2009):

˝ (�∗, t∗) =
dym (�

∗, t∗)

d�
× MF

−1 ×
dym (�

∗, t∗)

d�

T

(16)

Where MF is the Fisher Information Matrix calculated from

all the existing experiments and dym/d� (�∗, t∗) the model sen-

sibility matrix at (�∗, t∗) If there are many samples tk
∗ in one

experiment, the model prediction error covariance matrix �m

used for the Buzzi-Ferraris criterion becomes (Donckels et al.,

2009):

˝m (�
∗, t∗) =

samples
∑

k

dym (�
∗, tk

∗)

d�
× MF

−1 ×
dym (�

∗, tk
∗)

d�

T

(17)

Where t* is the vector of residence times tk
∗ of the new exper-

iment.

For the anticipatory approach of Schwaab et al. (2008) and

Donckels et al. (2009), the MF expression is modified as MF
∗:

MF
∗ = MF (�E)+ MF (�E+1) (18)

Where MF (�E) is the common Fisher Information Matrix and

MF (�E+1) the Fisher Information Matrix of experiment E+1,
but calculated with model parameters identified from exper-

iments 1 to E. MF (�E+1) represents the expected information

content of the new experiment E+1.
Another family of criteria has been developed (Box and

Hill, 1967; Reilly, 1974) and used (Sedrati et al., 1999) Without

going into details, these methods are based on information

theory and the notion of “entropy”, and proposed a Bayesian

approach. However, various research groups (Dumez et al.,

1977; Atkinson, 1978) have shown that there is no real system-

atic difference between experimental plans designedwith Box

and Hill’s criterion or with Hunter and Reiner’s one. Besides,

several drawbacks of the “entropy” approach have been

highlighted in details in Buzzi-Ferraris and Forzati, (1983),

Buzzi-Ferraris and Manenti (2009) and Froment and Mezaki

(1970). As a consequence, the criteria derived from Hunter

and Reiner’s approach remainmore interesting because of the

complexity of the entropy approach.

3.4. Numerical methods

As kinetic laws and associated reactor models are generally

strongly nonlinear, parameter identification and design cri-

terion optimization require adapted optimization algorithms.

For the first parameter identification, an evolutionary algo-

rithm (Ardia et al., 2011) is used as the robustness of this

family of algorithm tends to limit the problems associated

with parameter initialization. Then, for parameter identifica-

tion following thenewexperiments, the Levenberg–Marquardt

method is used (Marquardt, 1963; More, 1978). Indeed, the

parameters are known and their values do not change sig-

nificantly with new experimental data, so a more efficient but

less robust optimization algorithm is more appropriate. For

the optimization of Buzzi-Ferraris criterion, the evolutionary

algorithm is also used.



Table 2 – Experimental conditions for the initial
generated “experiments”.

Experiment Tempera-

ture (K)

Residence

time (s)

[2]0/[1]0 [3]0
(mol L−1)

1 340 510 1.1 0.5

2 340 1000 1.1 0.5

3 395 20 1.1 0.5

4 395 510 1.1 0.5

Reactor models also generally induce the resolution of dif-

ferential equations systems. For that, an integrated package

of the software R, solving ordinary differential equations, is
used (Petzold, 1983). The software proposes many classes of

solving methods included in a program which automatically

chooses the best method depending on the system of differ-

ential equations.

4. Results and discussion

The methodology proposed in Section 3.1 is now applied on

the study case presented in Section 2.

Four preliminary experiments are carried out (Table 2),

enabling a first estimation of the kinetics parameters for

eachmodel. The estimated parameters are the Arrhenius-like

parameters proposed in Eq. (1), namely ki and Ei. Fig. 3 presents

the profiles of concentration for species 2 and 3, obtained

for each model. The generated “experimental” data are also

reported in the figure.

Firstly, it is important to note that, even if species 3 is a

product, its initial concentration is not set at zero. This is due

to the fact that the parameter identification of model D needs
[3]0 non equal to zero. It comes from kinetic parameters of the

reverse reaction, giving 3 with 4d, that cannot be estimated

without this condition. This shows that the issues related to

parameter identification andmodel discrimination can lead to

operate in experimental conditions uncommon for synthesis

applications (for example with a non-null initial concentra-

tion of the main product). For illustration purpose, the test

of model D identifiability is detailed in annexes. Identifiability
of the other models as discernibility between models are not

problematic and consequently not detailed in the paper.

As experiments 1 and 2 and experiments 3 and 4 only differ

by the residence time (see Table 2), the concentration values

of the different species are plotted on the same graph. From

Fig. 3, it can be observed that model A and model D give simi-
lar profiles, both close to the “experimental” concentrations

obtained from the preliminary experiments, whereas model
B and model C do not fit at all. The challenge of the design
methodology is then to find which new experiments are able

to discriminate between model A and model D. For illustration
purposes, all the models are kept for the first designed exper-

iment, even if it is already clear that model B and model C are
not adequate.

Fig. 4 illustrates the effect of each designed “experiment”

on the adequacy of each model. As the adequacy test is based

on the comparison between the Gauss–Markov residual rss

and the �2 distribution, the ratio between the two is repre-

sented on the figure. The 5th experiment corresponds to the

first designed “experiment”. The inadequacy of model B and
model C is shown again. All the models are taken into account
and therefore the discriminatory criterion (Buzzi-Ferraris one)

leads to the elimination of the worst model, according to Eq.

(7). Thus, this experiment heightens discriminatory poten-

Table 3 – “Experimental” conditions of the new
designed experiments.

Experiment Tempera-

ture (K)

Residence

time (s)

[2]0/[1]0 [3]0
(mol L−1)

5 395.6 1000 2 0.5

6 395.1 193 0.2 0.5

7 395 172 0.2 0.5

tial of the bad models (B and C). This is exactly what is
shown in Fig. 4 with the increase of rss/x2 of model B and
model C and stagnation of rss/�2 of model D, for experiment
n◦5 (first designed “experiment”). Once model B and model C
are eliminated by the discrimination process, the designed

“experiments” n◦6 and n◦7 enable the elimination of model D
and thus the validation ofmodel A, the true one in this case as
it has been considered for “experimental” data generation.

The experimental conditions associated with the new

“experiments” are reported in Table 3. It can be observed

that the reaction temperature remains almost the same, thus

meaning that temperature is not a key experimental parame-

ter to discriminate between models.

Experiment n◦5 (the first designed one) is found by the

methodology for its potential to discriminate betweenmodel B
and model C. It corresponds to the maximal residence time
(1000 s) and maximal stoichiometric ratio. The relevancy of

such a result is easy to demonstrate. As the limiting reagent

is 1, when it is completely consumed (in other words, for a

long residence time), some of the species 2 remains. Then if

the species 1 participates in the side reaction as described

by model A, all the reactions will stop, whereas if 1 does

not participate as described by model B or model C, then the
side reaction will continue. In other words, the two kinds

of models cannot give the same response to this experi-

ment; that is why it should be decisive. For model D, the
equilibrium of the side reaction is compatible with the two

behaviors.

As reported in Table 3, experiments n◦6 and n◦7 are close

in terms of operating conditions and completely different

from the experiment n◦5: the residence time is short and the

stoichiometric ratio is at the minimum, with the species 1

in excess. These conditions are defined by the design pro-

cedure to discriminate between model A and model D, as the
other models (B and C) have already been removed. Fig. 5

shows that the concentration of 3 is the determining response

for the discrimination. Concerning the result of 193 s for the

optimal residence time, the initialization value for the res-

idence time implemented in the algorithm is set at 20 s to

give priority to the shortest times, now the difference in

model responses on concentration of 3 is constant after 193 s

(Fig. 5(b)). Thus the discrimination criterion stays constant

within residence time from this value, and the algorithm

keeps this value for the optimum residence time. Concern-

ing the choice of the optimal stoichiometric ratio, for model
A, the species 3 is not consumed, so for a very low stoichio-

metric ratio, the profile corresponds to an increase of the

concentration of 3, stopped by the disappearance of 2. For

model D, the low initial concentration of 2 significantly reduces

the influence of the main reaction on the global kinetics; the

main reaction cannot initiate the production of 3, as formodel
A; the reversible reactions lead the production/consumption
of 3.

These findings show that the methodology leads to effi-

ciently discriminate the different models and to choose the



Fig. 3 – Concentration profiles of species 2 and 3 calculated for each model and “experimental” data. As “experiments” 1

and 2 just differ in residence time, the same profiles are used ((a) and (c)). As “experiments” 3 and 4 just differ in residence

time, the same profiles are used ((b) and (d)).

more adequate one, while implementing a reduced number

of relevant experiments.

In order to verify that the set of initial experiments does

not influence the results of the discrimination process, the

strategy has been repeated with other sets of preliminary

experiments (Table 4).

The results obtained are globally similar for all trials.Model
B and model C are rejected after 4 “experiments” and model D
after 5–7 “experiments”. When the four models are included

in the procedure, a high stoichiometric ratio is always pro-

posed by the strategy. When only model A and model D are

still in competition, theminimal stoichiometric ratio is always

proposed. On the contrary, for the residence time and the tem-

perature, the results are not so distinct. It appears that there

are two interesting domains for residence time (20–150 s and

1000 s), and a temperature always high but varying for each

“experiment”.

These findings clearly demonstrate that the efficiency of

the experimental design strategy (i.e. both in terms of model

discrimination and number of required experiments) is not

much influenced by the preliminary data acquisition.

At last, the potential of the optimal design strategy imple-

mented in terms of time saving will be illustrated. For that,

let’s assume that the experimenter will define “experiments”

following a logical plan as a factorial plan. Note that there

is theoretically no real interest in using such plan for experi-

mental design with nonlinearmodels; since it is optimized for

the choice of experiments to model phenomena throw linear

and polynomial models .The objective is here to show what

happens for model discrimination if experiments are imple-

mented regularly on the experimental range without taking



Fig. 4 – Adequacy test based on �2 distribution (see Section

3.1). An adequate model has test value under 1 which

tends to decrease. 1st validity test is made after the 4 first

“experiments”.

into account information on models. The sets of factorial

designs proposed correspond to series of experiments at 3 lev-

els for each experimental variable (the maximum, minimum

and average value on the range, see Table 1). For comparison

purpose, five sets of factorial plans have been tested, each

one being modified to have the same initial experiments that

the five sets of designed experiments of the previous section.

Then, the next experiments follow rigorously a factorial plan.

These plans are presented in Appendix B. Each plan is com-

posed of 27 (33) experiments. Even if each one leads to the

selection of model A over the other, more than 4 times more
experiments are needed compared to the optimal designed

experiments.

For purposes of comparison with the optimal design pro-

cedure, after each experiment of the factorial plan, the model

parameters of all the models are estimated, and the adequacy

test is done. Fig. 6 shows the evolution of the adequacy test

for model D, the most difficult model to eliminate, for the first
half of the sets of factorial plans. Most of the sets cannot

lead to the elimination of model D after 13 experiments, being
twice more than for optimal design. Just one set of experi-

Fig. 6 – Validity test of model D, based on �2 distribution (Cf.

Section 3.1), after each experiment, for the first half of each

set of factorial plan. A valid model has test value under 1

and tending to decrease. 1st validity test is made after the 4

first experiments.

ments, which makes an exception, needs 6 experiments as

for designed experiments. This is due to the sequencing of

this set which gives by chance the relevant experiments, i.e.

the ones close to the designed experiments, at the begin-

ning of the set. This comparison with factorial plan confirms

that experimental design strategy enables to discriminate var-

ious stoichio-kinetics models while reducing experimental

efforts.

5. Conclusion

The combination of model-based experimental design strat-

egy with the use of microfluidic tools appears clearly as a

promising answer to the specific needs of fine chemistry

and pharmaceutical industries, namely: (i) to obtain strong

and reliable stoichio-kinetic models for rapid scaling-up and

reduction of extrapolation deviation and associated risks, (ii)
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Fig. 5 – Concentration profiles of species 2 and 3 calculated for each model and in the conditions of the “experiment” n◦7.



Table 4 – Different sets of preliminary “experiment” to begin the discrimination procedure.

Set Exp. Temperature (K) Residence time (s) [1]0/[2]0 [3]0 (mol L−1)

2 1 340 20 1.1 0.5

2 395 20 1.1 0.5

3 450 20 1.1 0.5

4 340 510 1.1 0.5

3 1 340 20 1.1 0.5

2 395 20 1.1 0.5

3 450 20 1.1 0.5

4 340 510 1.1 0.5

4 1 395 20 1.1 0.5

2 340 20 1.1 0.5

3 340 1000 1.1 0.5

4 450 20 1.1 0.5

5 1 340 20 1.1 0.5

2 395 20 1.1 0.5

3 450 20 1.1 0.5

Table 5 – Experimental conditions of the new designed “experiments” for each set of preliminary experiments. *
indicates that “experiments” are chosen for discrimination between models A, B, C and D, ** for model A and model D only.

Set Exp. Temperature (K) Residence time (s) [1]0/[2]0 [3]0 (mol L−1)

2 5* 387.5 1000 2 0.5

6** 416 20 0.2 0.5

7** 450 1000 0.2 0.5

3 5* 450 20 2 0.5

6* 393.9 20.1 2 0.5

4 5** 442 20 0.2 0.5

6** 412 20 0.2 0.5

5 4* 362 1000 2 0.5

5** 450 150 0.2 0.5

without requiring prohibitive experimental efforts, (iii) tak-

ing in account the fact that only a limited number of species

are analytically measured (unidentified products, analytical

method complexity), (iv) reduced consumption of chemicals

and enlargement of the experimental window in terms of

operating conditions. Indeed, model-based design enable to

select the most relevant experimental sets for model discrim-

ination, which are not instinctive for a chemist, because often

far from the optimal conditions regarding the chemical yield

or conversion.

The objective of this work was to highlight the interest

of model-based experimental design strategy for stoichio-

kinetic models discrimination. For that, a numerical study

case was considered, consisting in a reactional system clas-

sically encountered in pharmaceutical industries, involving

an impurity which is not measured; various models could

be thus initially postulated to describe how this impurity is

produced. The strategy implemented allowed to check the

issues about structural properties of models due to the lack

of measurement information, and to consequently adjust the

experimental conditions to assure the correct estimation of

model parameters. Then, based on the use of advanced cri-

teria, the strategy lead to an efficient selection of the most

accurate model with a reduced number of experiments, while

determining at the same time the parameters of the kinetics

laws thatmay be directly integrated in the reactor engineering

step for scale up operations.

In the future, the efficiency of the present strategy will

be demonstrated with experimental study cases for which

assumingmonophasic plug-flowmicroreactors remains valid.

In a second time, the strategy will be extended to more com-

plex cases, especially those involving coupled phenomena like

heat or mass transfers.

Appendix A. identifiability test of Model D

The rigorous test of identifiability of Model D with the Taylor
seriesmethod is shown below; the system (A.1) represents the

exact formulation of Model D.















































































































d [1]

dt
=
d [2]

dt
= −k1 [1] [2]

d [3]

dt
= +k1 [1] [2]− k2 [3]+ k3 [4]

d [4]

dt
= +k2 [3]− k3 [4]

[1]0 /= 0; [2]0 /= 0

[3]0 = c

[4]0 = 0

ym = ([1] , [2] , [3])

ki = exp
(

�i +
Ei

T

)

(A.1)

The identification test will be executed considering tem-

perature kinetic parameters ki for simplicity matters. Indeed,



once the ki are identifiable, it is trivial to demonstrate that

experiments at two different temperatures enable to identify

the �i and Ei of the reparametrized Arrhenius law (Eq. (A.2))

from the ki

ki = exp
(

�i +
Ei

T

)

(A.2)

Initially the initial concentrations of the species 3 is con-

sidered set at zero. In this case, and if we do not consider the

temperature influence, the system (A.3) represents the an coef-

ficients of the Taylor series associated toModel Dwith n=0,1,2.
It is clear than it is impossible to identify k3 since the param-
eter does not appear in the system. Consequently Model D is
not identifiable in these conditions.
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a1 (k) =

















d [1]

dt
(t = 0)

d [2]

dt
(t = 0)

d [3]

dt
(t = 0)

















=











−k1 × [1]0[2]0

−k1 × [1]0[2]0

+k1 × [1]0[2]0











a2 (k) =



















d2 [1]

dt2
(t = 0)

d2 [2]

dt2
(t = 0)

d2 [3]

dt2
(t = 0)



















=











k1
2

× ([1]0 + [2]0) [1]0[2]0

k1
2

× ([1]0 + [2]0) [1]0[2]0

−k1
2

× ([1]0 + [2]0) [1]0[2]0 − k1k2 × [1]0[2]0











(A.3)

Now to solve the identifiability problem, Model D has to be
modified. Three choices are available:

– Reject the model. This solution is nevertheless damaging if

the model well fit with experimental data

– Add a new model response, thus meaning that the species

4 should be measured.

– Change the initial conditions on one of the species 3 or 4,

making it non zero.

In this paper, as the measurement of 4 will be kept impos-

sible, only a change of the initial concentration of the species

3 will be proposed. It is why [3]0 has been set at 0.5mol L−1.

Now if [3]0 /= 0, the system (A.4) represents the an coef-

ficients of the Taylor series associated to Model D with n=1,2
(n=0 is useless):































































































































a1 (k) =















d [1]

dt
(t = 0)

d [2]

dt
(t = 0)

d [3]

dt
(t = 0)
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−k1 × [1]0[2]0

−k1 × [1]0[2]0

+k1 × [1]0[2]0 − k2 × [3]0









a2 (k) =















d2 [1]

dt2
(t = 0)

d2 [2]

dt2
(t = 0)

d2 [3]

dt2
(t = 0)















=















k1
2

× ([1]0 + [2]0) [1]0[2]0

k1
2

× ([1]0 + [2]0) [1]0[2]0

−k1
2

× ([1]0 + [2]0) [1]0[2]0 + k2
2[3]0 − k1k2

×[1]0[2]0 + k2k3 × [3]0















(A.4)

Then, considering two sets of parameters k, and p from 2,

the proposition (9) can be demonstrated in Eq. (A.5):

{

a1 (k) = a1 (p)

a2 (k) = a2 (p)

⇒



























−k1 × [1]0[2]0 = −p1 × [1]0[2]0

+k1 × [1]0[2]0 − k2 × [3]0 = +p1 × [1]0[2]0 − p2 × [3]0

k1
2

× ([1]0 + [2]0) [1]0[2]0 = p12 × ([1]0 + [2]0) [1]0[2]0

−k1
2

× ([1]0 + [2]0) [1]0[2]0 + k2
2[3]0 − k1k2 × [1]0[2]0 + k2k3 × [3]0

= p21 × ([1]0 + [2]0) [1]0[2]0 + p22[3]0 − p1p2 × [1]0[2]0 + p2p3 × [3]0

⇒







k1 = p1

k2 = p2

k3 = p3
(A.5)

Finally with [3]0 /= 0, Model D becomes identifiable with

kinetic parameters ki, this is why it is set at 0.5mol L
−1.



Appendix B. Factorial plans

(1): Temperature (K)

(2): residence time (s)

(3): initial molar ratio [2]0/[1]0

Exp Set 1 Set 2 Set 3 Set 4 Set 5

(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

1 340 20 1.1 510 340 1.1 395 20 0.2 340 1.1 510 340 20 1.1

2 395 20 1.1 1000 340 1.1 340 20 2 395 1.1 510 395 20 1.1

3 450 20 1.1 20 395 1.1 340 1000 0.2 450 1.1 510 450 20 1.1

4 340 510 1.1 510 395 1.1 450 20 0.2 340 0.2 510 340 510 1.1

5 395 510 1.1 1000 395 1.1 450 1000 2 395 0.2 510 395 510 1.1

6 450 510 1.1 20 450 1.1 450 510 1.1 450 0.2 510 450 510 1.1

7 340 1000 1.1 510 450 1.1 340 1000 1.1 340 2 510 340 1000 1.1

8 395 1000 1.1 1000 450 1.1 395 1000 1.1 395 2 510 395 1000 1.1

9 450 1000 1.1 20 340 0.2 450 1000 1.1 450 2 510 450 1000 1.1

10 340 20 0.2 510 340 0.2 340 20 0.2 340 1.1 20 340 20 0.2

11 395 20 0.2 1000 340 0.2 340 20 1.1 395 1.1 20 395 20 0.2

12 450 20 0.2 20 395 0.2 340 510 1.1 450 1.1 20 450 20 0.2

13 340 510 0.2 510 395 0.2 340 510 0.2 340 0.2 20 340 510 0.2

14 395 510 0.2 1000 395 0.2 395 510 0.2 395 0.2 20 395 510 0.2

15 450 510 0.2 20 450 0.2 450 510 0.2 450 0.2 20 450 510 0.2

16 340 1000 0.2 510 450 0.2 450 20 1.1 340 2 20 340 1000 0.2

17 395 1000 0.2 1000 450 0.2 395 1000 0.2 395 2 20 395 1000 0.2

18 450 1000 0.2 20 340 2 450 1000 0.2 450 2 20 450 1000 0.2

19 340 20 2 510 340 2 395 20 1.1 340 1.1 1000 340 20 2

20 395 20 2 1000 340 2 395 20 2 395 1.1 1000 395 20 2

21 450 20 2 20 395 2 450 20 2 450 1.1 1000 450 20 2

22 340 510 2 510 395 2 340 510 2 340 0.2 1000 340 510 2

23 395 510 2 1000 395 2 395 510 2 395 0.2 1000 395 510 2

24 450 510 2 20 450 2 450 510 2 450 0.2 1000 450 510 2

25 340 1000 2 510 450 2 340 1000 2 340 2 1000 340 1000 2

26 395 1000 2 1000 450 2 395 1000 2 395 2 1000 395 1000 2

27 450 1000 2 20 340 1.1 395 510 1.1 450 2 1000 450 1000 2
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