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INTRODUCTION

It has been established that the water cycle in mountain areas is likely to be

impacted by climate change and by local pressure from humans, and if so, the

same impacts will apply to the cycles of inorganic contaminants that are

intrinsically associated with human activities. The current export and future of

inorganic contaminants is related to future changes in hydrology as well as to

geochemical processes directed by natural processes and mankind currently at

work on mountain watersheds.

Mountains are not only impacted by enhanced deposition of inorganic

contaminants but many of them are also the place of past and present mining

activities that have increased the level of available contaminants in soils,

sediments, and watersheds. Despite environmental improvements such as

protocols of the “Clean Air Act,” or prohibition of the use of leaded petrol in

most countries of the world, pollution from potentially harmful trace elements

(PHTEs), such as trace metals, is still an environmental problem. In particular,

the energy demand in emerging countries such as China is inducing higher

emissions of trace metals due to coal power plants. Other activities, such as the

dysfunctional recycling of household electronics or the use of PHTE in

nanotechnologies, also induce PHTE environmental emissions. Biogeochem-

ical cycles of metals are still highly disturbed by humans. This has an impact,

not only on ecosystem health and human health, but also unexpected effects in

the dispersal of these metals. For example, Cziczo et al. (2009) showed that

aerosols enriched in anthropogenic lead were better nucleation nuclei than

aerosols containing no lead.

The critical zone is defined as the outer Earth’s skin, from the treetops

down to the maximal extent of groundwater (Brantley et al., 2007). The

mountain critical zone has specificities including first its high topographic

variability. Other particularities (Table 3.1), such a short vegetation growing

season or a high snow cover have an impact in mountainous areas, not only on

the water cycle but also on the fate of the PHTEs.

WHY GOING INTO THE FIELD TO INVESTIGATE
MOUNTAINS

If remote sensing or real-time monitoring tools have been rising sharply for

several years and allow for a nearly continuous observation of basic watershed

parameters, the study in the field of the atmosphereesoil interface (deposition)

and further export of PHTEs in the mountain critical zone is still needed to

feed the models and improve spatial and temporal predictions of contaminant

availability. This is especially true in remote areas of major research centers

and in hard-to-reach areas such as mountains. These are crucial because they

are extremely sensitive to environmental change zones: they are anthropically

limited, with a short growing season and low warmth. These areas are also
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subject to specific atmospheric mechanisms compared to the temperate plains.

They induce higher atmospheric deposition, but it is more difficult to quantify

because few are localized in easily accessible areas (Lovett, 1994; Weathers

et al., 2000). The ecological functions and services of these areas are as

important as freshwater reserves, as carbon stocks, or by their biological di-

versity. Up to now, remote sensing and real-time monitoring tools are limited

due to the harsh climatic conditions in high mountain areas. The winter season

TABLE 3.1 Main Characteristics of the Mountain Temperate Critical Zone

for Potentially Harmful Trace Elements (PHTE)

Mountain

Critical Zone Features Impacts on the Ecogeochemistry

Atmosphere Orographic phenomena Higher atmospheric deposition than
expected

Weather High seasonality Snow deposition, snowmelt, heavy
storm rains, and spring floods

Geology Potential complexity of
the geological features,
discrete
mineralizations, “young
terranes”

Potential microscale natural sources of
PHTE for the watershed, erodible mining
wastes from abandoned ancient mines
and potential mines in the future

Topography High variability, large
slopes

Increasing the risk of extreme
hydrogeochemical events

Soils Young soils, thin and
fragile soils, presence of
potential deep histosoils

Easily erodible, presence of organic
matter

Vegetation Specific mountain-
boreal vegetation

Highly impacted by climate variability
(“frontier ecosystem”)

Forests A mix between human
and natural
management e
presence of invasive
species (spruces)

Soil acidification and impoverishment in
limited-resource soils

Grasslands Grasslands: altitude
dependent

Impacted by mining and pastoralism

Headwater
catchments

Large incisions, snow
dependent, highly
seasonal

Erosion and transport of PHTE with
suspended matter

Aquatic
mountain
ecology

High-altitude “white”
lakes in the past

Introduction of invasive species,
modification of the biogeochemical
cycles of PHTEs



is quite often less monitored due the unstable climatic conditions, with ice,

fog, and snow making a hard life for scientific instruments. Shadow areas due

to the topography are limiting remote sensing, and also wireless signal

transmission.

A need thus exists to go in the field (Fig. 3.1) to verify the validity of online

measurements if there are some, or to complete lower altitude measurements

by highest points of measurements.

POTENTIALLY HARMFUL TRACE ELEMENTS

At present, anthropogenic fluxes of up to 62 chemical elements surpass their

corresponding natural fluxes, i.e., the contribution of human activities to the

atmospheric cycles of these elements far exceeds that of natural contributions

(Sen and Peucker-Ehrenbrink, 2012). Among these elements many are

considered as PHTEs, which hold limited to no known biological function,

such as lead (Pb), arsenic (As), antimony (Sb), or mercury (Hg). Combined,

the concentration of these elements constitutes less than 0.1% of the Earth’s

crust. Several studies have clearly shown that the contamination of PHTEs is

widespread and that PHTEs can be found even in remote areas that are far

distant from contamination sources. For instance, Rosman et al. (1997) showed

that Pb contamination, as recorded in Greenland ice cores, can be dated as far

back as 500 BC, which is further supported by numerous studies on lake-

sediment cores (Cooke and Bindler, 2015). Even in such a remote area as

the Arctic, contamination of Pb and Sb has been shown to occur as far back as

FIGURE 3.1 Photo of a winter field trip in the Bassies area, Central Pyrenees, France to

investigate trace metal deposition in snow.
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Roman times (Gabrielli and Vallelonga, 2015 and references therein). The

occurrence and distribution of PHTEs on both geographical and temporal

scales are thus widespread, and mountain areas are no exception.

Sources

Natural Sources

PHTEs are naturally present at low concentrations in rocks and in bedrock, and

as a result of physical and chemical weathering, they are thus also naturally

present in soil and surface waters. Various natural processes therefore enable

their dispersal throughout the environment (Colbeck, 2008; Nriagu et al.,

1988; Pacyna and Pacyna, 2001), and from a global point of view the

following sources can be distinguished:

l Terrigenous or lithogenic sources: dispersal from wind erosion of rocks

and soils (i.e., >20% of natural derived Cu, Ni, Pb, Sb, and Zn in the

environment).

l Volcanic sources: dispersal through volcanic activities discharging

emission of a significant amount of PHTEs (i.e., w20% of As, Cd, Cr, Cu,

Hg, Ni, Pb, and Sb) up to the stratosphere.

l Sea spray: dispersal through suspending marine water droplets that

contributes to about 10% of total PHTEs emissions.

l Biogenic sources: biomass fires driven either by natural or anthropogenic

processes acts as point sources of PHTEs.

Anthropogenic Sources

Anthropogenic sources of PHTEs are mainly due to high-temperature

combustion activities resulting in volatilization of trace elements or their

release in the form of very fine aerosols (<mm). In the case of erosion or dust

emission, without any underlying high-temperature process, emissions tend to

be much more localized (i.e., mining activities). Broadly speaking, the

activities can be categorized into the following different sources/activities

(De Traubenberg et al., 2013; Pacyna and Pacyna, 2001):

l Energy production by combustion: the dominating anthropogenic source of

PHTEs emission, entailing burning of wood, coal, and oil (As, Cd, Cu, Hg,

Ni, Pb, Sb, Se, V, and Zn),

l The metallurgical industry: emission of dust near the extraction and point

of exploitation, high-temperature processing of ores emit aerosols rich in

trace elements (Cd, Cu, Ni, Pb, V, and Zn). The proportion of individual

elements emitted in the aerosols depends on the type of ore processed.

l Other industrial processes: high-temperature processing and

manufacturing (As, Cr, Cu, Ni, Pb, and Zn)

l Transport: road traffic (Cd, Cu, Fe, Ni, Pb, and Zn), erosion of brake pads

(Cu, and Sb), erosion of train rails (Cu)
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l Waste treatment: incineration of household waste (As, Cr, Cu, Ni, Pb, Sb,

Se, V, and Zn)

The responsibility of humans regarding the dispersion of aerosols and

PHTEs by anthropogenic activities is undeniable, but mankind also holds a

strong responsibility in the intensification of natural dispersal processes. For

example, the burning of biomass, i.e., forest fires, have been naturally

occurring as a part of plant development and ecological renewal for more than

400 million years, yet these fires are now mainly driven and controlled by

humans (Andreae and Rosenfeld, 2008). Similarly, desertification of semiarid

lands and the intensification of agriculture on bare soil also helps to accelerate

the natural suspension of dust (Rauch and Pacyna, 2009) and thus also the

dispersal of PHTEs.

Transport

The atmospheric boundary layer is located between 0 and 1e2 km altitude

above ground level (Fig. 3.2). Below the boundary layer, contaminant transport

is dominated by vertical transport and PHTEs bound to fine particles are

subjected to turbulence transport. PHTEs could accumulate in this boundary

layer if not washed out by rainfall. They could also be transported in the free

troposphere where lateral transport is more dominant. Aerosols and related

inorganic contaminants can therefore be transported long distances.

The atmosphere thus has a significant role in the dispersion of PHTEs in

the environment, whether they occur in particulate form (solid or liquid

aerosols), or as gas (e.g., certain forms of Hg). Because long-distance transport

is borderless, contaminants can be transported thousands of kilometers before

being deposited, sometimes reaching the most remote areas of the globe

(Gabrielli and Vallelonga, 2015; Lee et al., 2008b). The transport of particles,

and the distance they may travel, depends not only on their size but also on

their reactivity.

The reactivity and particle size determine the residence time (s) of the

compounds in the atmosphere and can be divided into:

l Compounds and chemical speciation with a short residence time

(s < 100 s). These are commonly the most reactive form of chemical

speciation, which tend to deposit fairly quickly after suspension in the air

masses. As these particles do not remain airborne for long, deposition

therefore occurs in close proximity to the source of emission.

l Compounds and chemical speciation with a mean residence time

(100 s < s < 1 year). If hemispherical mixing occurs, these compounds

may remain suspended in the air on a timescale of months. This is, for

example, the case for very fine aerosols for which sedimentation is not

possible, or chemicals of highly reactive speciation (e.g., gaseous oxidized

Hg; Holmes et al., 2010).
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l Compounds and chemical speciation with a long residence time

(s > 1 year). In this case, the interhemispheric mixing becomes possible,

as in, for example, the case of gaseous elemental Hg (Holmes et al., 2010),

which can thus remain in the atmosphere on a timescale of years.

Deposition

The transport and circulation of PHTEs in the atmosphere, and thus the

concentration, can be reduced by deposition which varies depending on

weather parameters. Atmospheric deposition that controls the deposited metals

onto the ground occurs in the form of:

l Dry deposition: aerosols and particle fallout in the absence of precipitation

(e.g., rain and snow).

l Wet deposition: aerosols and particle fallout driven by precipitation events,

either as dissolved in the aqueous phase or in particulate form, physically

brought to the ground by the wet precipitation (e.g., rain and snow).

(A) (B)

(C) (D)

(E) (F)

FIGURE 3.2 Schematic representation of different modes of wet precipitation causing differ-

ences in precipitation amount and mechanisms of scavenging in mountain areas. Orographic

enhancement (A), with “feeder-seeder” effect (B), as well as thermic (C) and forced (DeF)

convection leading to rainstorms, are represented.
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l Occult deposition: aerosols and particles are dissolved in aquatic solution

with dew and/or mist, i.e., aerosols are present in the water droplets when

they are intercepted by a barrier (commonly vegetation).

Dry Deposition

Dry deposition is the process whereby particles are removed from the atmo-

sphere over time due to gravity, and where deposition onto surfaces occurs

without involving precipitation (snow, rain, or mist spray; Lovett and

Kinsman, 1990; Ruijrok et al., 1995). It essentially depends on the particle

size, the concentration, and the reactivity between the deposited particle and

the impacted surface (Lindberg et al., 1982). It is considered that the particles

with a size of >0.8 mm can easily settle, whereas those with a

diameter <0.08 mm tend to track the movement of air masses, and therefore be

transported over long distances. The particles of intermediate size (i.e.,

0.08e0.8 mm) thus have a behavior influenced by the two deposition processes

(Ruijrok et al., 1995). However, due to changes in physiochemical parameters

that occur at the interface of the troposphere and the atmospheric boundary

layer, the particles with a size between 0.1 and 1 mm do not easily breach this

layer and thus have a tendency to remain in suspension (Weathers et al., 2000).

PHTEs are mainly transported in the form of fine particles (Colbeck, 2008)

or, in certain cases, as coarse particles originating from desert or local dust

sources, and thus not commonly deposited in the form of dry particulates as

wet deposition is the dominating process of removal from atmospheric air

masses. The exception to this is mercury in its elemental gaseous form (Hg,

gaseous elemental mercury) which may correspond to 50% of the deposit onto

continental surfaces (Holmes et al., 2010).

Wet Deposition

As opposed to dry deposition, wet deposition is entirely connected to, and

controlled by, wet precipitation events (i.e., rain, snow, and hail). Due to their

size, which limits their suspension in the air masses and therefore their

atmospheric residence time, the majority of aerosols are primarily deposited

through wet deposition. However, fine size particles and aerosols that

normally would be deposited through dry deposition can also be effectively

leached and/or washed out of the atmosphere during wet precipitation events

(Montoya-Mayor et al., 2013), and thereby reducing their atmospheric

concentration. Such leaching can be divided in two separate phenomena

(Bourcier, 2009; Engelmann, 1965; Ishikawa et al., 1995), which include the

following:

l Scavenging in the cloud (within cloud scavenging and/or rainout) where

condensation forms around one or more aerosols that serve as a core

(nucleation).
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l Scavenging below the cloud (below cloud scavenging and/or washout)

where particles in the air column below the cloud are incorporated into

droplets due to impaction.

These two phenomena may occur either separately or together, as a

function of the concentration of aerosol in and under the cloud at the time of

precipitation.

The striking topographical changes that occur in mountains interact with

precipitation processes, often resulting in precipitation events, thus leading to a

higher degree of wet deposition rather than dry. Roe (2005) described the

phenomena specific to these environments with pronounced reliefs, which may

cause peculiarities in precipitation patterns, as “orographic enhancement” (or

orographic increase).

However, the phenomenon of orographic increase can be more complex

locally and result in inhomogeneous deposition on a local level. Examples of

precipitation phenomena in Fig. 3.2 show the process that may lead to

differences in precipitation patterns in mountain areas. The topography can

cause the formation of an orographic cloud as pressure decreases when rising

air masses are gaining altitude. The formation of an orographic cloud by rising

air masses can lead to the following two phenomena (Fig. 3.2):

l Droplets are formed around a condensation nuclei until they reach a level

of saturation and precipitate (Fig. 3.2A).

l The orographic cloud droplets are impacted by rainwater from a higher

altitude cloud (Fig. 3.2B). This is the “feeder-seeder” effect, which

enhances below cloud scavenging and/or washout under the orographic

cloud.

In both cases, the deposition will be more intense at altitude than in the

adjacent valley.

Other phenomena, although less frequent, can also occur. During calm

weather conditions, air masses heated by the sun can rise up the mountain-

sides from the valley by means of convection and cause localized thunder-

storms and rain (Fig. 3.2C). During these events, the cloud is located as in

Fig. 3.2A but it is a high-altitude cloud that can wash out several atmospheric

layers at the same time. In the case of side convection alone, the stormy cloud

can be on the same side (Fig. 3.2D). In the case of winds being lower on the

opposite slope, either due to a cold air front (Fig. 3.2E) or due to topographic

circumvention (Fig. 3.2F), the cloud could form on the opposite slope as

well. More details on orographic processes and modeling are given in Roe

(2005).

In these different cases of enhanced deposition, aerosols and the fallout

of bound PHTEs are increased locally. Some examples of this, with, PHTE

or
210Pb (a natural radionuclide tracer of aerosol), are discussed in the

following text.



On the scale of several mountain ranges in France (Alps, Puy-de-Dôme,

Corsica), a relationship exists between annual rainfall, altitude, and the amount

of fine aerosols that are washed out and deposited. The results obtained by Le

Roux et al. (2008) show that the amount of 210Pb (proxy of fine particles)

stored in mountain soils increases with altitude and annual rainfall. By using a

mass-balance approach, they conclude that 50% of 210Pb is derived due to the

leaching from low atmospheric layers, or as occult deposition of aerosols.

Measures of bioaccumulated PHTEs in moss show a clear increase with

altitude for Pb, Zn, and Cd bioaccumulation along several altitudinal transects

in the Alps (Zechmeister, 1995).

Precipitation models predict an increase of 0.4e0.9 mm/m year based on

an annual precipitation of 1000 mm (Lovett and Kinsman, 1990; Ollinger

et al., 1993). This would lead to a contaminant deposition proportionate to

precipitation. However, this is not the case. Examples in Fowler et al. (1998)

show that for a 30% increase in rainfall, increased aerosol deposition may be

as high as 150% (based on inventories of 210Pb) within an 800 m difference in

altitude, which is well above forecasts. The work of Le Roux et al. (2008)

highlights the scavenging of aerosols from low atmospheric layers, which

potentially could have a higher concentration of aerosols, as an explanation of

the observed phenomenon.

In cases where significant sources of PHTEs emissions are local (e.g.,

occurring only on one side of the mountain) and weather conditions are stable,

aerosols can accumulate at the top of the upper level of the atmospheric

boundary layer. If the boundary layer is located below the highest levels of the

surrounding mountains, the deposition of aerosols and contaminants will not

be more intense at higher altitude, due to scavenging from the lower layers of

the atmosphere. This is a common occurrence in, for example, California

(Munger et al., 1983).

Deposition by Cloud or Fog Interception: Occult Deposition

Another deposition, such as cloud or fog interception, is generally called

occult deposition because of the difficulties in the ability to accurately measure

it using classical instruments such as rain gauges. This type of deposition is

intermediate between the dry and the wet deposition. As wet deposition,

aerosols are integrated into water droplets, and as dry deposition, the main

mechanisms of deposition are driven by turbulent transport, impaction onto

surfaces, and sedimentation due to gravity (Lovett and Kinsman, 1990). Cloud

or fog interception falls within both of these categories. For instance, studies in

different ecosystems of the world have shown the importance of such depo-

sition by cloud or fog interception (Lovett, 1994), where concentrations of ions

in rainwater deposited in mountains (Weathers et al., 1988) are one to two

degrees of magnitude greater than the ion concentration in rainwater deposited

in the forest (Lindberg et al., 1982).
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PHTEs Deposition and Accumulation Along Altitudinal
Gradients

Artificial Radionuclides

Artificial radionuclides, for example 137Cs, plutonium isotopes, or 241Am, are

specific contaminants as they are radioactive and emitters of alpha, beta, and

gamma particles that all could affect biological processes (Fig. 3.3). Artificial

radionuclides are produced by various human activities, including the

following:

l Locally around nuclear reactors and nuclear waste-treatment plants,

l Broadly in the past by the nuclear weapon tests (NWT) and the fallout of a

Soviet satellite,

l Point sources in the form of accidents in nuclear plants.

Among the radionuclides that are important from an environmental point of

view, 137Cs is the one that has a very similar behavior to many inorganic

contaminants: It is associated with aerosols in the atmosphere and its greater

fallout in mountain areas is due to similar air mechanisms as inorganic con-

taminants. Because of the low amount of potential anthropogenic sources,
137Cs behavior at the atmosphereesoil interface in mountains is easier to

interpret than other PHTEs. 137Cs has also a long half-life (30 years) that

makes its impact measurable several years after its deposition.

It has been shown that for NWT and Chernobyl-derived 137Cs, this

radionuclide is enhanced by different atmospheric processes:

FIGURE 3.3 Bubble chart showing the relationship between 137Cs total soil inventories and

annual precipitations in Savoie (empty red circles (gray in print versions)), in Montagne Noire (full

blue circles (dark gray in print versions)) with altitude as a third parameter corresponding to the

diameter of the bubble. Data from Le Roux, G., Duffa, C., Vray, F., Renaud, P., 2010. Deposition of

artificial radionuclides from atmospheric Nuclear Weapon Tests estimated by soil inventories in

French areas low-impacted by Chernobyl. Journal of Environmental Radioactivity 101, 211e218.

http://dx.doi.org/10.1016/j.jenvrad.2009.10.010.
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1. A larger probability that radionuclides transported by air mass will be

washed out by rain during orographic events,

2. Orographic deposition is enhanced by processes such as the feeder-seeder

effect or fog interception (Le Roux et al., 2010; Fig. 3.4),

3. Enhanced in the watershed by retention in different mountain substrates

such as wetlands or forest soils (Pourcelot et al., 2003). Similar conclusions

can also be drawn for americium and plutonium isotopes that were trans-

ported in the atmosphere.

The accident at Fukushima Daiichi Nuclear Power Plant (FDNPP), Japan,

released micron-sized, radioactive particles to the atmosphere. These

particles contain different artificial radionuclides including 137Cs. Hososhima

and Kaneyasu (2015) showed that enhanced radioactive deposition in the

Nikko Mountain National Park, connected to the nuclear plant accident at

FDNPP, is related to the altitude and that it is surely also caused by

orographic-deposition phenomena. A similar deposition pattern, connected to

altitude, has also been shown in the United States. For example, an enhanced

transfer of 137Cs and 90Sr from NWT to fish (i.e., trout) at high-altitude

(>2500 m) Colorado sites compared to low-altitude sites was shown by

Whicker et al. (1972). Persistency of 137Cs can be relatively high as

demonstrated by a long-term study of a Norwegian mountain arctic lake

(Brittain and Gjerseth, 2010).

PHTEs and Altitudinal Dependency

The different orographic deposition processes can enhance long-range trans-

ported contaminant deposition in mountains as previously seen for artificial

radionuclides or as evidenced using 210Pb inventories in altitudinal gradients

(Fowler et al., 1998; Le Roux et al., 2008). Zechmeister (1995) showed that

PHTE concentrations (Pb, Cd, and Zn) in lichens in the Alps are correlated

1

2

3
4

FIGURE 3.4 Typical Pb loading on mountainous environment that occurs in Western European

and Mediterranean mountains. (1) Antiquity, (2) Middle Ages, (3) Industrial Revolutions, and (4)

use of leaded gasoline and ban of its use in the 1990s.
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with altitude. Based on a similar approach using mosses, Gerdol and Bragazza

(2006) found a different pattern with higher concentrations at mid-altitude that

could be related to higher occult deposition. Altitudinal dependency of PHTE

inventories in soils is not obligatorily found in snow precipitations (Bacardit

and Camarero, 2010; Yeo and Langley-Turnbaugh, 2010). This can reflect the

influence of other parameters (air mass origin, vegetation interception, etc.) on

short-time deposition over long-term orographic phenomenon. This empha-

sizes the need of long-term studies of precipitation along altitudinal transects

to reconcile results from soils and mosses with results from orographic

precipitations and occult deposition. Orographic phenomenon, such as the

feeder-seeder effect or occult deposition, could enhance PHTE deposition,

stock and release in mountain soils, wetlands, and sediments due to higher

scavenging of aerosols-carrying anthropogenic PHTEs. It has been suggested

that additionally to vegetation interception and enhanced orographic aerosol

deposition, PHTE altitudinal soil accumulation (Ag, Cd, Pb, and Sb) could

also be due to cold trapping on the higher Tibetan plateau (Bing et al., 2016).

Mercury is one of the most investigated PHTEs, but a fraction of Hg is

present in a gaseous form in the atmosphere making this PHTE different from

metals and metalloids such as Pb or Sb. It has been largely investigated in

Arctic areas, and the mercury biogeochemical cycle in the Arctic shares

some similarities with the Hg cycle in mountain areas. Hg soil accumulation

increases with the elevation (and decreasing temperature) in mountainous

areas (Zhang et al., 2013) due to cold trapping of gaseous mercury. Another

driver of terrestrial retention of Hg includes airevegetation gas exchanges

(Demers et al., 2013; Enrico et al., 2016). These drivers are interrelated and

could be difficult to distinguish, especially in an elevation gradient followed

by a vegetation change (Blackwell and Driscoll, 2015).

LEGACY POLLUTION IN MOUNTAIN ENVIRONMENTS

Although we largely associate impacts from anthropogenic activities on the

surrounding environment with the industrial era and its advancements in tech-

nology, the emission and spread of pollutants has a millennial-scale history in

many parts of the globe, characteristically leaving a lasting imprint on the

environment. Pollution from preindustrial times caused by mining activities

such as ore exploitation and processing, when there were few if any environ-

mental controls, could be substantial (Brännvall et al., 1999; Cortizas et al.,

2002; Monna et al., 2004). As mining also entailed widespread land use that

included forest disturbance and agriculture, the small-scale but generally

widespread mining activities thus amounted to a geographically large-scale

impact on the landscape (Bindler et al., 2012; Jouffroy-Bapicot et al., 2007;

Monna et al., 2004). It is especially the case in mountain areas where geological

features made metallic ores easily available for preindustrial miners.
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Environmental Archives: Example of Pb Pollution

Cores derived from natural archives, such as ice cores, lake-sediment cores, and

peat cores, allow us to study the aspects of past environmental conditions, such as

the net accumulation of elements, deposition, and atmospheric cycling, on time-

scalesmuch longer than the information available from contemporarymonitoring

programs orwritten records. Themagnitude of historical PHTEdeposition, and its

changes over time, can therefore be reconstructed using such natural archives.

An example of this is the reconstruction of Pb pollution and its global

dimension through history. Initially shown by the groundbreaking work of

Clair Patterson et al. (Murozumi et al., 1969; Settle and Patterson, 1980;

Shirahata et al., 1980), then further refined by Jerome Nriagu (1996), the

pollution legacy of Pb has now been reproduced in numerous publications on a

world wide scale using both ice and snow records (Gabrielli and Vallelonga,

2015; Hong et al., 1994; Rosman et al., 1997), lake-sediment records (Abbott

and Wolfe, 2003; Cooke and Bindler, 2015; Lee et al., 2008a; Renberg et al.,

1994), and peat records (Aaby and Jacobsen, 1978; Bao et al., 2015; De

Vleeschouwer et al., 2010 and references therein; Jensen, 1997; Lee and Tallis,

1973; Shotyk et al., 1998; Weiss et al., 1999).

Studies of trace metal pollution using natural archives have not only

reconstructed contamination history but, more importantly, also have been able

to shown that preindustrial pollution and its impact on the environment on a

local-scale commonly surpasses the impact of contemporary pollution (Forel

et al., 2010; Le Roux et al., 2005; Monna et al., 2004; Weiss et al., 1999).

Specifically, reconstructed contamination records obtained in mountain areas,

linked to nearby ancient metallurgical activities, show that the preindustrial

contribution could exceed that of the last 200 years, especially for Pb and Sb

(Camarero et al., 1998; Forel et al., 2010; Le Roux et al., 2005).

Fig. 3.4 shows the general chronological pattern of past Pb loads in

Western/Southern Europe. This pattern is highly variable, and especially so in

mountain areas, due to local activities such as mining or metallurgical

workshops; yet it is commonly found in environmental records from, for

example, the Pyrenees and the Alps. On other continents, the PHTE load in the

past is less investigated (Marx et al., 2016); however, some chronologies of

pollution patterns that follow the developments of large civilizations can also

be found. Some examples of this are the increasing pollution in the Andes

during the Incas period (Cooke and Bindler, 2015; De Vleeschouwer et al.,

2014) or in Central China during the early Han dynasty (Lee et al., 2008a) or

Southern China during the Yuan period(Hillman et al., 2015).

Reconstructions of Other Trace Elements

Publication records show that in terms of pollution reconstructions, Pb is by far

the most well-documented trace element, much ado to the assumption of Pb

being relatively stable (Shotyk et al., 1997) and thus yielding a well-preserved
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signal stored in natural archives (Catalan, 2015; Catalan et al., 2013; Hansson

et al., 2015; Shotyk and Le Roux, 2005). However, Pb is not the only trace

element that has been successfully reconstructed using environmental archives.

For example, other studies using peat and lakes as archives have shown the

pollution record of As, Cu, Cr, Hg, Ni, Sb, and Zn (Catalan, 2015; Hansson

et al., 2015 and references therein). Yet a comprehensive reconstruction of trace

elements other than Pb can still be considered restricted, based on the limited

geographical coverage. The majority of studies on pollution history have

focused on European sites, and even fewer on mountainous areas. A need for

further investigations of PHTEs on both spatial and temporal scale, and in

mountain areas specifically, still resides (Catalan and Rondón, 2016).

ECOLOGICAL IMPACT OF PHTES IN THE MOUNTAIN
ENVIRONMENT

Release of Inorganic Pollutants Into the Mountain Watersheds

One key aspect of mountains is the presence of buffer zones that include

organic soils, forests, and wetlands (Bacardit et al., 2012; Gandois et al.,

2010; González et al., 2006; Fig. 3.5). Not only do these buffer zones retain

and store contaminants, but their alteration or destruction can lead to

profound disturbances in the biogeochemical functioning of the mountain

critical zone. As identified by Gurung et al. (2012), the current global change

research in mountains focus mainly on studying climate change and its

impact on mountain ecosystems. Yet, there is an urgent need to understand

additional drivers (such as local human activities like mining or hydroelec-

tricity) and disentangle their cascading impacts on, and disturbances of,

mountain ecosystems. Gurung et al. also stated that to detect such impacts

and attribute them to specific drivers of change, suitable indicators need to be

identified. Long-term monitoring is therefore necessary both to understand

which drivers are concretely involved and to quantify the associated conse-

quences on biogeochemical processes in the mountain critical zone. Few

critical zone observatories (CZO) in Northern America and Europe are

located in mountain environments (i.e., Southern Sierra CZO in Unites States

and Strengbach-Vosges Mountains in France) and even fewer are actively

monitoring and investigating ecogeochemical processes in mountain water-

sheds. This is despite the fact that many studies have demonstrated a mining

PHTE legacy in remote areas and their resulting current impact on the

environment (Bindler et al., 2012; Camizuli et al., 2014; Mariet et al., 2016;

Monna et al., 2011). Additionally, mountain areas can be geologically

enriched in PHTEs (i.e., As; González et al., 2006; Zaharescu et al., 2009),

and these PHTEs can be remobilized and released in the watershed due to

environmental modifications such as melting of glaciers or dehydration of

wetlands.
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Potential Impacts

Because of higher concentrations in a localized area, it has been shown that

former and present mining mountain areas have a clear impact on the transfer

and effect of PHTEs in mountain-living organisms (Camizuli et al., 2014;

Mariet et al., 2016; Qu et al., 2010). A key impact is that PHTE bioavail-

ability is enhanced in high mountain areas where the chemical buffering

capacity is limited, such as in clear soft water lakes (Köck and Hofer, 1998).

Altitudinal ecological impact of enhanced deposition of PHTE is less clear

since not only trace metal accumulation drives their transfer to the living

organisms. Blais et al. (2006) observed an increase of Hg in fish with altitude

in the Pyrenees as well as some organic contaminants. This is similar to a

pattern that was observed for Pb in chamois from the Tatras mountains by

Janiga (2008). On the other hand, no clear evidence exists of a gradient

impact of Hg transfer in amphibians from the Sierra Nevada. Also no evi-

dence occurs of hot spots of mercury concentrations in tadpoles in the Sierra

Nevada due to the transportation of atmospheric Hg from the nearby San

Joachim valley (Bradford et al., 2012).

FIGURE 3.5 Atmosphereesoilewater in mountain ecosystems: the mountain critical zone.

Clocks indicate environmental archives but also potential reservoir compartments for anthropo-

genic potentially harmful trace element (PHTE). The arrows with dots indicate that different PHTE

will have different chemical fates, depending on their time and manner of deposition. The inset

shows an example of PHTE deposition (accumulation intensity) in soil with deposition enhanced

by canopy edge interception and orographic deposition (blue (light gray in print versions)) but also

local activities such as mining (gray). Microtopography plays also a role in PHTE accumulation by

concentrating snow in winter. A key compartment not discussed in this chapter is caves that are

highly sensitive to environmental changes and that are frequently present in mountainous

environments.
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Although the ecological impacts and effects of PHTEs on biota could

constitute an entire chapter of its own, we believe that a brief summary

example for one PHTE: Hg is still beneficial with specific references to

mountain areas and therefore it is included below. We would like to remark

however, that this summary is not conclusive, and we therefore encourage

readers to turn to the literature listed below, and references therein for further

information on the matter. For Cd and Pb, the readers are encouraged to

consult Köck and Hofer (1998).

As mentioned previously, many PHTEs hold few to no biological

functions and are often considered highly toxic. This applies not only to

humans but to other biota as well. In the case of, for instance Hg, many

studies have focused on the connection between Hg contamination in food

webs and the potential effect on fish (Gantner et al., 2009; Mason et al., 2000;

Tsui et al., 2014, 2012). Unlike mammals and birds, that can to some extent

excrete Hg and thus reduce the internal concentration of Hg through either

digestion or shedding of hair, fur, or feathers, fish have no clear possibility to

reduce their internal concentration of Hg. Instead, the Hg is bioaccumulated

within the individual thus leading to a biomagnification up the food chain

(Mason et al., 1996; Power et al., 2002). Some of the effects as seen by an

increased concentration of PHTEs in fish are: reproductive difficulties such a

reduced sperm mobility (Dietrich et al., 2010) or maternal transfer from

female to egg (Hammerschmidt et al., 1999; Hammerschmidt and

Sandheinrich, 2005; Sackett et al., 2013), reduced growth length (Simoneau

et al., 2005), impairment in the feeding behavior (Fjeld et al., 1998), and

histological changes in livers and kidneys (Rhea et al., 2013) to name a few.

Sanches-Galan et al. (1998) even showed that increased concentrations of

metals (e.g., Hg) could lead to a higher abundance of micronuclei in fish

blood, that is a mutation on the cellular level where the cell division is not

functioning properly and an “extra” micronuclei is formed within the blood

cell (Blais et al., 2006).

CONCLUSION AND FUTURE OUTLOOK

Despite several decades of research on PHTEs in mountains, many questions

remains due to the complexity of mountainous areas. PHTE dispersion has

varied in its form through time and in the past it was dominated by local

human activities but it has been influenced by long-range transportation of

pollution from urban and industrial centers. Additionally to legacy pollution,

mountain environments are still impacted by PHTE atmospheric deposition.

Higher inputs in the environment could be expected in the future for some

PHTE such as Hg emitted by coal combustion. New forms and pathways of

PHTE dispersion can also be expected because of the use of nanomaterials and

emerging trace elements. The quote written by Weathers et al. (2000) is thus

still relevant: “Our results suggest that consideration of variation in deposition
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across such landscape features as forest edges and gaps, elevation, aspect, and

vegetation type should be considered in future modeling efforts. In areas with

a long mining history, the pollution legacy should also be considered.”

Environmental changes, including climate change (Janiga, 2008), are likely

to produce unexpected cascading impacts between PHTE biogeochemical

cycles and mountainous ecosystems (including water quality). It is therefore

urgent to further investigate the feedbacks between metals and impaired

functioning of the mountain critical zone.
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