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Adaptive response surface method supporting finite element
calculations: an application to power electronic module
reliability assessment

Carmen Martin1
& Alexandre Micol2 & François Pérès1

Abstract In this paper a method is proposed, introducing an

adaptive response surface allowing, on the one hand, to min-

imize the number of calls to finite element codes for the as-

sessment of the parameters of the response surface and, on the

other hand, to refine the solution around the design point by

iterating through the procedure. This method is implemented

in a parallel environment to optimize the calculation time with

respect of the architecture of a computational cluster.

Keywords Reliability analysis . Finite element modelling .

Response surfaces .Designof experiments . Power electronics

1 Introduction

Finite element modelling is commonly used for the as-

sessment of the reliability of power electronic modules.

In recent years, the power of computers has allowed sim-

ulating the whole module, taking into account nonlinear

aspects of the materials of which it is made. Analytical

solutions exist for each individual physical process in-

volved in the fatigue of a module, requiring independent

calculations and data exchange between models. The fi-

nite element method can be a solution to these issues of

process coupling through spatial discretization and reso-

lution of the variational formulation. It is thus possible to

troubleshoot electrothermomechanical problems of elec-

tronic (Akay et al. 2003; Micol 2007) power modules by

a single call to a finite element code. A judicious choice of

algorithms, of spatial and temporal discretization accuracy, and

of the quality of data must be made to find a sufficiently repre-

sentative (Suhir 2013; Pérès et al. 2002; Pérés et al. 1999) solu-

tion to the problem within an acceptable computing time. This

time for calculation is of particular importance when considering

the coupling with reliability methods that require a significant

number of FE code calls to solve the problem. The use of regres-

sion functions to limit the number of requests to the finite element

code allows reducing the calculation time. After having briefly

recalled in the first part the cornerstone of reliability analysis

in the field of mechanics, we introduce here the coupling

between reliability and the finite element method based

on the use of simple or adaptive response surfaces (Haukaas

2003a; Vallon 2003) and the design of experiments used in their

generation . A case study related to power electronic modules,

more particularly, IGBT transistors (Insulated Gate Bipolar

Transistor), is presented to illustrate these developments.

2 Structural reliability

Predictive structural reliability aims at calculating the proba-

bility of failure of a component. A representation or model is

used to assess this failure for a given failure mode. The model

represents the real mechanical structure as a system with an

input, a state and an output (Fig. 1).

For the analysis to be performed, the following parameters

have to be defined (Lemaire 2001):
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& Ai: mechanical system input, a function of t, generally

referring to the load and actions on the system,

& Ki (t): mechanical system data split into two categories: Ki
f

(data imposed by the specification) and Ki
p (data at the

disposal of the designer). They correspond to the geomet-

ric features, materials and boundary conditions.

& Ri (t): variables related to the capacity of the system to

support the load, including the resistance, permissible dis-

placement, and number of cycles before failure.

The structural model allows the simulation of the require-

ments (load) corresponding to the output of the model, noted

Li If F(…) is the operator of the mechanical model, one can

write

F t;Ai;K
f
i ;K

p
i ;Li

� �

¼ 0 ð1Þ

The limit state function allows the assessment of the system

robustness by the verification of the inequality

G Si tð Þ;Ri tð Þð Þ≥0; ∀t ∈ 0;T½ � ð2Þ

where [0, T] is the required life expectancy or reference period

for which the system is studied. In general, the Load Strength

Interference model is selected for its simplicity, where func-

tion g(…), representing the scenario of failure, is given by the

inequality

Si tð Þ≤Ri tð Þ; ∀t ∈ 0; T½ � ð3Þ

The system is in the safety region when the calculated load

(mechanical model output) remains below its resistance

capacity.

Uncertainties need to be taken into account for credible

predictions of response of complex systems. Such uncer-

tainties should include uncertainties in the system parameters

and those arising due to the modelling of a complex system.

The sources of the uncertainties considered in this work are

parametric uncertainty - e.g., uncertainty in geometric param-

eters (friction coefficient, strength of the materials involved,

…).

Given {X}, a random vector made of random variables xi
introducing parametric uncertainty into the mechanical model,

functionG(xi), defined by Eqs. (2) and (3), represents the state

limit surface when G, vanishes as x goes to 0. G(xi) < 0,

defines the domain of failure, and G(xi) > 0 characterizes the

safety region. The probability of system failure is thus defined

by

P f ¼

Z

g Xf gð Þ≤0

f Xf g xf gð Þdx1…dxn ð4Þ

where f{X}({x}) is the probability density of vector {X}.

3 Reliability methods and finite element analysis

It is relatively easy to implement methods of reliability

when the failure function G is formally set or known. In

many cases, however, the function of failure is not explic-

it. For realistic structures, the response is calculated by

using a numerical procedure such as finite element anal-

ysis (FEA) (Jensen et al. 2015). In this case, the derivatives

are not readily available, and each evaluation of the function of

implicit failure requires a significant computation time. The

FORM/SORM (First Order Reliability Method / Second Order

Reliability Method) or Monte Carlo methods turn out to be

inefficient because of the calculation time required to estimate

the function of failure for a relatively large number of points.

Within this context, response surface methods can be used to

carry out reliability analysis (Micol et al. 2011; Chang et al.

2015; Ben Hassen et al. 2013a; Ben Hassen et al. 2013b) with

implicit failure functions.

3.1 Limit surface direct assessment method

3.1.1 Response surface method

The method of the response surface approach leads to the

construction of an algebraic expression η:ℝn
→ℝ, most often

a polynomial, that is able to approximate the function of fail-

ureH(u) orG(x) through its assessment of at different points in

the region followed by a regression over these points

(Roussouly et al. 2013; Gayton et al. 2003). This method

can be inadequate, though, for a completely unknown failure

function. The expression of the function of failure obtained

from regression analysis is also valid only in the range of the

selected random variable values, and extrapolating beyond

this interval may be incorrect.

The first step consists, therefore, of selecting a finite

number of experimental points from which the value of

the function of failure will be evaluated. The most com-

mon approach is to take r experimental points by varying

the random variable values across several standard devia-

tions xi=Ti
− 1(±h), where Ti represents the transformation

of the xi variables from the real space to the Gaussian

non-correlated space (Alibrandi 2014).

Fig. 1 Resistance load model (Lemaire 2001)



Consider the regression model, linear or not, following

observations

H r ¼ H r ukð Þ ¼ η uk ; θð Þ þ εr;Euk εkð Þ ¼ 0; r ¼ 1;…;N ð5Þ

where the vectorU= 〈u1,…,un〉 and η is an unknown function

with θ= 〈p0,…,pm〉 representing the true values of the param-

eters of the model. The estimation of the parameters θ (char-

acterizing the approximated parameters) requires N observa-

tions of η(r)~Hr, r=1,…,N. Measurement errors εk are as-

sumed to be independent. Given that the regression model

should simulate a mechanical model, εk(εa,εe) includes two

types of error. Approximation errors εa are errors between

the true mechanical model and its approximation by the se-

lected response surface. This error is deterministic and sys-

tematic. Experimentation errors εe represent the zero mean

Gaussian error characterizing the dispersion encountered

through the various assessments of H under the same condi-

tions. This error does not appear in the regression of an FE

model given that each calculation corresponds to a single

result.

However, non-linear FE calculations are flawed by an error

of integration, which is not random in time but in space. For

the case of drawing observations without replacement for the

construction of the numerical design of experiments, it is pos-

sible to consider the integration error as an experimental error

and assume a zero mean.

For the estimation of parameters θ, two methods can be

used based on the linearity of function η compared to the

parameters to be obtained. η varies linearly with the parame-

ters of the model and can be expressed as

η ukð Þ ¼ p0 þ
X

m

j¼1

p jψ j ukð Þ ð6Þ

where ψj(uk) represents the regression variables, that is, any

linear or non-linear combination of the different components

of the input vector U. The various observations can then be

expressed as

η rð Þ ¼ η u
rð Þ
k ; θ

� �

¼ p0 þ
X

m

j¼1

p jψ j

�

u
rð Þ
k

� �

ð7Þ

or also

η!¼ Γθ ð8Þ

with

& η!¼ η 1ð Þ;…; η Nð Þ a vector of N observations of H, that is

to say, the exact achievements of the function of failure at

the experimentation points calculated in the first step of

the method for the input vectors U(r), r=1,…,N

& Γ the experiment matrix of dimensions N×(m+1) com-

posed of columns Γi= (1,ψ1(uk
(i)),…,ψm(uk

(i)))

The minimum number of points required for the construc-

tion of the response of the approximation surface is then

Nmin= (m+1). In this case, the experiment matrix is square,

and obtaining its coefficients can be performed through an

inversion of the experiment matrix. The existence of errors

in the output of the mechanical model recommends taking a

larger number of points and applying a least squares method.

The θ estimator is then defined by the minimization of the

error function

Η θð Þ ¼ η−Γθkk 2 ð9Þ

and, from the definition of the pseudoinverse,

θ ¼ ΓTΓ
� �−1

ΓTη ð10Þ

If the function η is not linear with respect to the parameters,

an iterative solution of non-linear regression should be con-

sidered. Nevertheless, in some cases, the assumption of the

parameter non-linearity can be relaxed by not expressing H

with respect to ψj(uk) but as a function of logψj(uk).

3.1.2 Concept of adaptive response surface

As it has just been shown, the principle of the response surface

method is based on the definition of a limit state function to

avoid the call to a finite element code. However, several prob-

lems may arise in this type of resolution, mainly related to (i)

the quality of the response surface and (ii) the effectiveness in

terms of computing time. In this work, we will address these

shortcomings and will introduce a breakthrough by

implementing the concept of the adaptive response surface.

It will be discussed in particular how the different calls to the

FE code can be optimized to obtain the results of a reliability

calculation. The best strategy for the calculation in the context

of non-linear thermo-mechanical fatigue analysis might be to

use direct methods, based on the calculation of gradients and

Hessians, (Kanchanomai et al. 2002; Van Driel et al. 2003)

which seem suitable for performing reliability optimization.

These methods appear to be inappropriate, though, when the

solution of the FE calculation is vitiated by an error and leads to

erroneous gradients. In this respect, the response surface ap-

pears to be the best solution to obtain, for all observations, an

average behaviour of the FE output and easy calculation of the

gradients. The coupling procedure between the mechanical

model and the reliability algorithm is shown in Fig. 2.

In the context of parallel computing, the concept of the

adaptive response surface that we developed (Micol et al.

2008) enables us to take full advantage of the opportunities



of reliability calculation on amachine cluster. The correspond-

ing algorithm is given in Table 1.

A predetermined type of response surface is first selected as

the most efficient one to approximate the output of the calcu-

lation. The quality of the response surface requires, then, to

minimize the error between the response surface and the real

FE evaluation.

The observations to be performed through a design of ex-

periments are planned to maximize the information to be

brought. This planning is often based on the minimization of

the predictive variance associated with the model for a given

experimental variance with the lowest number of experiments.

Within the context of numerical simulation, this can be par-

tially omitted because the number of observations influences

only the computing time.

Performing the experiments can be achieved in three dif-

ferent ways:

1. Creating a mesh on the experiment region and evaluating

the output of the mechanical model for each node. Several

types of mesh can be defined according to the type of

design of experiments (full factorial, Fisher, Box-

Behnken, Taguchi…). These methods have the advantage

of scanning the entire domain, but there will be then reg-

ular areas not explored by the draw method, and the be-

haviour of the output will remain unknown.

2. Using the Monte Carlo method to avoid the problem of

having completely ignored areas for a sufficient number

of draws. In return, some areas may be overestimated by

the potential presence of a cluster of relatively close

points. Some points then lose their informative quality,

while other areas are still underexplored. It is possible to

avoid this by analysing theHmatrix, which depends only

on the planning and may be calculated before the obser-

vations. The concept of a leverage point regression then

provides information on the observations having an im-

portant influence. The values of the trace ofH must be as

close as possible. If a value Hii does not match the others

for the ith observation, its input values may be

reconsidered.

3. Perform a Latin hypercube sampling for which a

discretization of the domain is carried out and a single

observation is made on the hyper-surface containing the

observation. Zou (Zou et al. 2002) furthermore, per-

formed a random draw in the possible subdomain of the

assessment.

For the non-linear case, a linearization of the experiment

matrix is made around the vector of parameters θ:

Γ ¼
∂η u; pð Þ

∂p1
;…;

∂η u; pð Þ

∂pn

� �

This linearization can be properly achieved only with

prior knowledge of the p parameters. Consequently, the

different iterations aiming at identifying the design point

use the previous response surface parameters to assess

the experiment matrix. The first iteration then uses the

vector θ to start the optimization process. Special atten-

tion must then be given to the starting value identifica-

tion. Insofar as possible, a first linear evaluation can be

Fig. 2 Coupling between

reliability algorithm and finite

element calculation



performed by setting the function parameters to values

that would allow the response surface to be calculated

from Eq. (7). The returned values are then used in a first

non-linear identification for the calculation of the exper-

iment matrix. A uniform design of experiment (Jin,

2004) is used based on several optimization criteria such

as

– maximization of the distance d between the points de-

fined by,

d u ið Þ; u jð Þ
� �

¼
X

n

k¼1

u
ið Þ
k ;−u

jð Þ
k

�

�

�

�

�

�

t

" #1=
t

; t ¼ 1 ou 2

– maximization of the Shannon entropy by maximizing the

determinant of the covariance matrix related to the exper-

iment matrix,

– minimization of anomaly Da(u), defined as the difference

between the empirical distribution function of the design

of experiment Fn(t) and the distribution function of the

uniform law F(t) on the whole domain defined by plane

D
n

Dp uð Þ ¼

Z

D
n

Fn tð Þ;−F tð Þj jpdt

	 
1=p

Most planning algorithms are based on exchange algo-

rithms because this type of approach is generally

Table 1 Adaptive response surface algorithm



associated with experimental design of experiments, for

which the variables are often discrete. Nothing prevents

the analyst from restricting this type of variable input into

this type of algorithm because the FE code uses continu-

ous values (truncated) as inputs. We can therefore use an

optimization algorithm to achieve continuous and bound-

ed input observation planning. The proposed method is

then expressed by the optimization problem

ℒ u;λð Þ ¼ −minu ið Þ;u jð Þ∀i; j d u ið Þ; u jð Þ
� �� �

þ λ0 Hmax−Tr H−I
N

mþ 1

� �	 


þ
X

i
λi umax− u ið Þ

�

�

�

�

h i

ð11Þ

where

– minu ið Þ;u jð Þ∀i; j d u ið Þ; u jð Þ
� �� �

is the function maximizing the

distance between points,

– Hmax−Tr H−I N
mþ1

� �

is the constraint preventing lever

points from appearing. The Hmax value is then to be set

as the maximum tolerated with respect to the sum of the

differences between the Hii values and the N
mþ1

mean,

– umax− ‖u
(i)
‖ is a constraint related to the norm of each

observation to confine them in a circle of radius umax.

The optimization challenge lies in the discontinuity of

the performance function. Indeed, the minimum distance

between a given point and the others is linear over the

displacement of this point in the domain. On the other

hand, when maximizing this distance, it has to be noted

that a point deviating from its nearest point inevitably

becomes closer to another. Therefore, at the location

where the minimum distance shifts to another point, a

discontinuity in function minu ið Þ;u jð Þ∀i; j d u ið Þ; u jð Þ
� �� �

ap-

pears. This problem is then solved by processing an al-

gorithm, not using the performance function gradients.

Optimization is therefore carried out using the algorithm

COBYLA (Constrained Optimization BY Linear

Approximations (Powell 1994)), which performs a line-

arization of the gradients in a region of confidence.

Following a uniform drawing of the design of experi-

ment points, the algorithm optimizes the localization of

the different points of the plane one after another by

assessing, at each step of the optimization, (i) the distance

to the nearest other point in the plane, (ii) the experiment

matrix Γ to calculate the matrix H and (iii) the distance

from the origin. When the first item is optimized, the

second is moved to satisfy Eq. (11), and so on:

→

x

x

x

u
1ð Þ
1 ⋯ ⋯ u

1ð Þ
k

⋮ ⋱ ⋮

⋮ ⋱ ⋮

u
nð Þ
1 ⋯ ⋯ u

nð Þ
k

2

6

6

4

3

7

7

5

⇒Γ ¼

ψ1 u 1ð Þ
� �

⋯ 1

⋮ ⋱ ⋮

ψ1 u Nð Þ
� �

⋯ 1

2

6

4

3

7

5
ð12Þ

x

→

x

x

u
1ð Þ
1 ⋯ ⋯ u

1ð Þ
k

⋮ ⋱ ⋮

⋮ ⋱ ⋮

u
nð Þ
1 ⋯ ⋯ u

nð Þ
k

2

6

6

4

3

7

7

5

⇒Γ ¼

ψ1 u 1ð Þ
� �

⋯ 1

⋮ ⋱ ⋮

ψ1 u Nð Þ
� �

⋯ 1

2

6

4

3

7

5
ð13Þ

The algorithm makes several runs on the set of points until

the stabilization of their coordinates. To illustrate this method,

Fig. 3 shows the case where a full design of experiment would

be used for the planning of observations with two basic vari-

ables for the regression of a complete quadratic function (in-

cluding interactions). It appears clear that some points of the

design of experiment will then have a great influence on the

estimation of the parameters.

After optimization, Fig. 4 gives the location of the different

points within, displayed in blue, the perimeter of the consid-

ered domain. Two values of Hmax were used to measure its

influence. For a low Hmax, there is no lever point in the iden-

tification of the parameters. On the other hand, if the constraint

onHmax is released, the maximization of the distance between

the points is predominant. This allows, then, playing on the

constraint of the lever points based on the a priori knowledge

of the behaviour of the output to be represented by the re-

sponse surface. Indeed, if the type of response surface is

known, the constraint of Hmax can be hardened with the risk

of having unexplored areas. On the other hand, without any

information, it will be better to let the algorithm place points

across the domain, even if it means more observations because

the Q2 quality index will inevitably fall.

The planning method of the different basic variables for

observations of the design of experiment is first based on a

Monte Carlo uniform sampling. The draw will therefore be

restricted to a limited domain that the designer will have to set

with the aim of including the design point. For a large number

of variables, the idea of the location of this point quickly

becomes intangible, and the method should be able to move

in the domainDn. After a sufficient number of observations to

make null the number of degrees of freedom of the regression

model, a first assessment of the predictive Q2 quality index

can be made. As long as this index does not reach the value

expected, the realization of new experiments is necessary. In a

parallel computing environment, the number of additional ob-

servations is equal to the number of available processors. One

can thus control the convergence of Q2 for each calculation

time step. A calculation time step corresponds to the time

necessary for the FE calculation to end but, in the case of

parallel computing, a calculation time step corresponds to as

many observations as processors. The number of FE



calculations required to achieve a good response surface is

then controlled by the available computing power.

Once the index is acceptable (that is Q2 is close to 1) the

evaluation of the parameters of the regression model may be

performed together with a first optimization, although impre-

cise, of the design point. A new regression iteration is then

carried out around the design point. The draw is based on the

Monte Carlo method with normal distribution whose standard

deviation diminishes over the iterations.

The aim is to focus on the assessment of points around the

assumed design point. The points of the previous plane within

the vicinity of the design point are reused and supplemented

byMonte Carlo draws to achieve a sufficient number of points

to perform a regression calculation and obtain a correct Q2.

The same concept of adding a number of observations equal to

the number of processors is adopted in the subsequent itera-

tions. There are consequently two loops to, on the one hand,

reach a good prediction of the regression model and, on the

other hand, to move and scale the response surface around the

design point.

There are many benefits of using this approach:

– The method is extensible: If a design of experiment does

not permit the achievement of a correct Q2, additional

observations are necessary. The algorithm is therefore

able to add points in the design of experiment without

creating any lever point. The already simulated points

are then reused and taken into account in the evaluation

of matrix H, and only the last points are optimized ac-

cording to the problem (Eq. (11)). Figure 5a shows the

addition of 14 experiments when initially 35 experiments

had been carried out and properly optimized. Adding ex-

periments, randomly drawn in the plane, redistributes the

different values of the diagonal of H. Figure 5b,

representing the different values of the diagonal ofH after

optimization, shows the aptitude of the algorithm to prop-

erly incorporate the additional experiments.

– Constraints can be of various types. A constraint in the

distance to the origin has been built here to restrict the

domain (due to the nature of a failure probability that

diminishes when moving away from the centre).

However, relational constraints between different vari-

ables can also be introduced to take related physics into

account. Thus, inequalities modelling mechanical incon-

sistencies between variables can be considered by

transforming them within a normed space and adding

them to the optimization problem (Eq. (11)).

– Control of the quality of the model by optimization of the

points of the design of experiment (Eq. (11)) is based on

the use of a quality index. On the other hand, the iteration

(a) Constraint on lever points high dispersion (b) Constraint on lever points low dispersion

Fig. 4 Design of experiment optimization

Fig. 3 Full plane pattern and lever point representation



of the construction of a reduced and focused design of

experiments allows the representation of the limit state

function by a polynomial quadratic function. Limiting

the validity of the response surface around the design

point reduces the complexity of the real limit state

function.

– Parallelization of the optimization code. For the design of

experiment planning, the algorithm processes the various

points one by one to place them in the right spot within

the domain. The code can then be parallelized so that each

node of the computational cluster handles a particular

point by sending its coordinates to the other nodes at each

iteration. The optimization of a point is thus performed

through the knowledge of the entire design of experiment

in real time.

→

→

→

x

u
1ð Þ
1 ⋯ ⋯ u

1ð Þ
k

⋮ ⋱ ⋮

⋮ ⋱ ⋮

u
nð Þ
1 ⋯ ⋯ u

nð Þ
k

2

6

6

4

3

7

7

5

⇒Γ ¼

ψ1 u 1ð Þ
� �

⋯ 1

⋮ ⋱ ⋮

ψ1 u Nð Þ
� �

⋯ 1

2

6

4

3

7

5

ð14Þ

– The method is generic in the sense that a quadratic polyno-

mial function can be sufficient in most cases to approach the

limit state function. The iteration of the regression around

the design point procedure and the resulting curvature in this

reduced domain allows the substitution of a function of a

complex non-linear nature with a quadratic function.

4 Parallelization

As introduced previously, the development of numerical

methods is focused on the distribution of tasks to be per-

formed on machine clusters. A few methods stated above

can harness the power of parallelization to make it

proportional to the number of machines involved. All methods

built on regression, neural learning or Monte Carlo simulation

require repeating the same loop of FE calculations several

times with independent inputs. The computational load can

then be stacked and distributed on different processors.

Some input data for the FE calculation can be conditioned

by previous calls (this would be the case if a regression had

to be performed every time a machine changed a value and the

next draw was made around the new design point). For the

optimization algorithms used for the gradient calculation of

each random variable, parallelization allows calculating the

finite differences of each variable at the same time. On the

other hand, the algorithm is unable to move forward until all

gradient calculations are finished.

Figure 6 shows the loads of the various nodes in a cluster in

the case of a traditional FORM calculation and those through

the use of the response surface method. To obtain the design

point with the iHLRF improved algorithm (Lind and Hasofer

(1974), Rackwitz and Fiessler (1978)), the gradients of the

limit state function are evaluated by finite differences which

requires, for n random variables, (n+1) calculations. The time

step of the iHLRF algorithm is performed by the Armijo rule,

which consists in reducing by half the step if the limit state

function is not smaller at point u nþ 1 than at point u. In a

parallel environment, the different time steps are evaluated at

the same time, and the one that minimizes the merit function is

chosen as the new time step.

FORM/SORM approximation methods are then penalized if

– the machine park is not homogeneous (some machines

are faster than others) or the FE calculation time of the

limit state function differs (a different value for a random

variable can lead to a different number of iterations).

Some nodes in the cluster then wait until the end of all

the calculations to proceed to the finite difference assess-

ment of the gradients.

– the number of CPUs exceeds the number of random var-

iables. This poses no problem in the time step evaluation

(a) Random draw oof additional exxperiments  (b) Optimizatioon of additionaal experiments. 

Fig. 5 Addition of points in the

design of experiment



because all processors are solicited. For the gradient cal-

culation, however, some nodes will remain unoccupied.

The response surface method does not suffer from these draw-

backs because once a calculation is finished, another starts. The

load is then 100 % of that possible for the cluster. On the other

hand, the response surface method will be less accurate than the

direct algorithm due to the approximation made by the response

surface. The two methods can be combined in the case of a

strongly nonlinear limit state function by first using the response

surface to approximately locate the design point and then

switching on direct resolution to refine the solution.

5 Case study

To illustrate the proposed response surface method and dem-

onstrate its capabilities, two examples are here presented,

using an explicit limit state function in the first one and a call

to the FE code in the second one.

5.1 Context

The system studied is based on modules, elements of a railway

traction system ensuring a function of power switches. Several

technologies based on diodes, transistors and thyristors are

available for power modules depending on the power and desired

frequency range. The IGBT (insulated gate bipolar transistor)

(Ciappa 1997; Jayant Baliga 2015; Liu et al. 2011; Pedersen et

al. 2015) studied here is a closing and opening controllable tran-

sistor ). It combines the advantages of the MOS transistor, being

quick and easy to control, and of the bipolar transistor, able to

support high voltage levels but also to lower the voltage in the

presence of high currents.We focus, in this study, on the design of

new power module structures developed in our laboratories and

based on flip-chip microelectronic technologies (Fig. 7). We call

such devices “NT modules”. The principle is to assemble two

substrates to form a ‘switch’ in a sandwich structure (Fig. 8)

and replace “wire-bonding” connections with “bump” type

connections.

The “bump” connection is made up of three elements: two tin-

brazed solders on both sides of a nickel-plated copper insert. This

connection ensures three functions (Micol et al. 2009;Darveaux&

Banerji1992;Wangetal.2001).Thefirst ismechanicalbecausethe

integrity of the structure is obtained by these connections, both

substratesbeingmaintainedbythe“bumps”.Thesecondisthermal,

with better dissipation of heat, which can occur through both sides

of thesubstrate.The third is electrical, as thepower isbrought to the

component through these connections (Lhommeau et al. 2007;

Nelhiebel et al. 2013; Castellazzi and Ciappa 2008; Van der

Broeck et al. 2015; Deshpande & Subbarayan 2000; Feller et al.

2008).

Parallelization for iHLRF algorithm. Node loads for iHLRF algorithm and RSM

Fig. 6 Organization of the calculations for resolution in a parallel environment



5.2 Method implementation

Example 1 - The first case addresses the assessment of a brazing

solder (Fig. 9) using the fatigue analytical model of Engelmaier.

The aim here is to highlight the relevance of the quality indexes

R2;R2 and Q2 and the use of the iteration loop of the response

surface procedure.

The strain calculation within the solder can be analytically

expressed as (Engelmaier, 1991)

Δγ ¼ C
Ld

hs
ΔαΔT

where C is an empirical correction factor, Ld the half-

component dimension, hs the thickness of the solder, and ∆a

and ∆T the Coefficient of Thermal Expansion (CTE) and tem-

perature difference between the component and the substrate,

respectively. The energy dissipated within the solder is then

calculated by

ΔW ¼ Δγτ

with τ the shear constraint within the solder (Lau et al. 1997).

The law of fatigue of Engelmaier assesses the number of

cycles before failure through the following equation (Syed,

2004):

N f ¼ 0:0015ΔWaccð Þ−1

The variables for this example are presented in (Table 2).

The limit state function characterizes the failure for com-

ponents not reaching a given number of cycles F f target
:

G xð Þ ¼ 0:0015 C
Ld

hs
ΔαΔT

� �

:τ

� �−1

−N f target

< 0 in the failure domain

The assessment of the number of cycles before failure for

the mean values of random variables results in a number of

cyclesNf=2469. A resolution of the problem of reliability was

made on this analytical model by using the FORM method,

leading to a reliability index of β=3.42(Pf=0.00031). This

calculation was followed by a Monte Carlo resolution method

with an important draw around the design point estimated by

the FORM method. The result corresponds to a value for the

probability of failure of Pf=0.00027, corresponding to a reli-

ability index β=3.46.

The real function of failure is here non-linearwith respect to

the parameters. Suppose this function is unknown and comes

from an output of a FE calculation. Without any information

on the form of the response, one can decide to approximate it

by a quadratic response surface, which represents 15 variables

to identify. Three methods for obtaining the design of experi-

ment are used here: (i) the traditional method of establishing a

grid on the domain (4 variables ×5 levels/variables=20 exper-

iments), (ii) for the same number of points, a random draw of

observations following a uniform distribution, and (iii) an

Fig. 8 Basic switch components

Fig. 9 Simplified structure of component

Fig. 7 Prototype of elementary switch and associated circuit diagram



optimized design of experiment. The evaluation of the limit

state function is obtained by adding a Gaussian random vari-

able N(0,200).

Figure 10a and b show the reliability index distribution

for the cases where the points of the design of experiment

form a grid on ±3 standard deviations and where the

Table 2 Variables of the SMC component reliability

Variables C Ld hs ∆α ∆T τ
N f cible

Type Gaussian Fixed Gaussian Fixed Gaussian Fixed Gaussian

Mean 0.5 3 0.1 5.10−6 180 20 1000

Standard deviation 0.5 – 0.01 – 30 – 200

w

y

 based on an o

w based on a g

y of  for on

optimized des

grid 

ne run 

sign of experimment 

D

m

Density of 

(e) Draw

(a) Dra

(c) Densit (d) 

(b) Rando

(f) Draw wit

m draw 

for one run 

th loop 

Fig. 10 -β and R2 density values

with respect to the method of
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distribution is randomly drawn, respectively. Figure 10c

and d show the distributions of regression indices R2 and

R2 for the random design of experiments. With extremely

good values for both indices, it becomes clear that they

cannot be used to assess the quality of the response sur-

face. There are observed, first, a large variability of index

β and, second a mean deviating strongly from the real

value. Optimizing the design of experiments does not

bring much improvement at this level. On the other hand,

the value Q2 (varying between −∞ to 0) is very poor for

these designs of experiments, which justifies the use of

additional experiments for the evaluation of the response

surface parameters.
Two new designs of experiments (random and optimized)

are then performed, in which a sufficient number of experi-

ments is added to achieve an indicator Q2>0.90. One can

observe that the reliability index dispersion falls, and its mean

μβ=3.23 approaches the real value. A repetition of the proce-

dure is made for the characterization of the response surface

around the approximated design point.

The result for the density of the reliability index β is

represented in Fig. 10f. One can observe a degradation of

the quality index Q2 for the same number of observations,

a mean μβ=2.7 that deviates from the real value, and a

dispersion σβ higher than for the first iteration. This is

because around the design point, the influence of the noise

on the limit state function is more important. The design of

experiments with closer points then loses it quality.

Consequently, the iteration of the response surface is not

always necessary. A new rule is defined in the algorithm

that ends the process when a loss of quality in the response

surface is observed.

Fig. 11 Response surface for the first iteration

Fig. 12 Response surface for the second iteration



Example 2 – Consider, now, as an input to the model, two

basic random variables for the reliability assessment: the coeffi-

cient of expansion and the power term of the behaviour law. Both

variables are assumed to follow a log-normal distribution:

x1 ¼ CTESn=Ag
¼ ℒN 2:10−5; 1:10−6

� �

, x2=n=ℒN(11,0.2).

The interest of this case lies in the fact that the actual

behaviour of the output of the mechanical model is strong-

ly conditioned by the exponential behaviour of variable n.

Quadratic response surfaces cannot, then, find a faithful

formulation over the entire domain (Fig. 10). Iterating the

regression allows approaching the solution and accurately

assessing the design point. At the end, the experimental

points are properly approached by the quadratic form,

and the exponential behaviour is not valid anymore

(Fig. 11). Q2 reaches, then, the value of 0.98. The sensitiv-

ity analysis and a SORM calculation works with good ac-

curacy because, in both cases, they are estimated from the

location of the design point together with the surrounding

points.

The case presented in this paper presents a strong non-

linearity in the number of cycles before failure. This is

most likely wrong, given that the regression is only valid

in the design point neighbourhood (Figs. 11 and 12). The

direct FORM, SORM and response surface methods will

struggle to take it into account; only the Monte Carlo ap-

proach will be able to highlight it. The time savings cannot

be compared because, even in a parallel context, the tradi-

tional FORM method requires 24 iterations, or 48 calcula-

tion time units (gradients being evaluated at the same time

and the evaluation of the timestep for the iHLRF algorithm

being also parallelized). The response surface method re-

quires 4 units on a 10-node cluster (20 calls to obtain an

acceptable Q2 coefficient and 2 iterations x 10 calls around

the design point). For a number of important variables,

with differentiation by a centred finite difference or in

higher-level optimization algorithms, the direct FORM

method can still be interesting because the load of the clus-

ter is then better optimized when calculating gradients.

The index of reliability and the design point in physical

space represented in Table 3 for both methods are almost

identical. This demonstrates the ability of the algorithm to find

the right design point and properly assess the sensitivities by

iterating the calculation loop.

6 Conclusion

Assessing structural reliability in today’s industry is widely

supported by finite element techniques. The reliability calcu-

lations requiring many calls to the FE code, techniques should

be implemented to reduce the computation time which may

otherwise be prohibitive. Methods based on the use of re-

sponse surfaces have been introduced in this purpose. The

paper presents a method for obtaining a response surface guar-

anteed by quality indexes in the case of the assessment of an

uncertain limit state surface. It relies on a numerical design of

experiment capable of optimizing the number of call to the

code on the basis of a required quality level. The

parallelization of the algorithm of response surface has been

investigated in order to reduce the computing time. An illus-

tration of the principles of use of adaptive response surfaces

has been proposed on elements of a railway traction system

ensuring a function of power switches.

The innovative nature of this work lies in the coupling

between the reliability methods and a finite element code for

the presentation of a new concept of the so-called adaptive

response surface. With the aim of reducing the number of

assessment of the limit state function requiring calls to FE

code, this method relies on indices of the regression quality

in a parallel computing environment. It also allows the refine-

ment of the solution around the design point by iterating the

procedure. The prospects for continuation of the work under-

taken include analysis of the finite element model to evaluate

the accuracy and sensitivity with respect to the mesh, to the

law of behaviour as well as to the error on the law integration.

In a practical framework, the developments will be conducted

for the analysis of power electronics modules in order to study

the electric, thermal and mechanical reliability of the modules

for which new internal or external uncertainty variables main-

ly associated with the fabrication process, will have to be

identified and quantified.
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