
  
 
 
 
 
 
 
 
 

 
 
 

 

To link to this article: DOI:10.1016/j.eswa.2016.10.010 

 https://doi.org/10.1016/j.eswa.2016.10.010  

 

 

 
 

 

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/  
Eprints ID: 17667 
 

To cite this version: 
 
Kamsu-Foguem, Bernard and Traore, Boukaye Boubacar and Tangara, 
Fana Data mining techniques on satellite images for discovery of risk 
areas. (2017) Expert Systems with Applications, vol. 72. pp. 443-456. 
ISSN 0957-4174 

Open Archive Toulouse Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

 

Any correspondence concerning this service should be sent to the repository 
administrator: staff-oatao@listes-diff.inp-toulouse.fr 
 



Data mining techniques on satellite images for discovery of risk areas 

Boukaye Boubacar Traore a.b, Bernard Kamsu-Foguem a.*, Fana Tangara b

a Université de Toulouse, Ecole Nationale d'ingénieurs de Tarbes (ENIT), Laboratoire de Génie de Production (LGP), EA 1905, 47 Avenue d'Azereix, BP 1629, 
65016 Tarbes Cedex, France 
b Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Faculté des Sciences et Techniques (FST), Centre de Calcul, de Modélisation 
et de Simulation, Colline de Badalabougou, ancien Lycée Bada/a B.P. E 28 11 - FAST 223 Bamako, Mali 

A B S T R A C T 

Keywords: 
Data mining 
Discretization 
Remote sensing 
Risk identification 
Knowledge 

The high rates of choiera epidemic mortality in Jess developed countries is a challenge for health fa- 
cilities to which it is necessary to equip itself with the epidemiological surveillance. To strengthen the 
capacity of epidemiological surveillance, this paper focuses on remote sensing satellite data processing 
using data mining methods to discover risk areas of the epidemic disease by connecting the environ- 
ment, climate and health. These satellite data are combined with field data collected during the same 
set of periods in order to explain and deduct the causes of the epidemic evolution from one period to 
another in relation to the environment. The existing technical (algorithms) for processing satellite im- 
ages are mature and efficient, so the challenge today is to provide the most suitable means allowing 
the best interpretation of obtained results. For that, we focus on supervised classification algorithm to 
process a set of satellite images from the same area but on different periods. A nove! research method- 
ology (describing pre-treatment, data mining, and post-treatment) is proposed to ensure suitable means 
for transforming data, generating information and extracting knowledge. This methodology consists of six 
phases: (1.A) Acquisition of information from the field about epidemic, (1.B) Satellite data acquisition, (2) 
Selection and transformation of data (Data derived from images), (3) Remote sensing measurements, (4) 
Discretization of data, (5) Data treatment, and (6) lnterpretation of results. The main contributions of the 
paper are: to establish the nature of links between the environment and the epidemic, and to highlight 
those risky environments when the public awareness of the problem and the prevention policies are 
absolutely necessary for mitigation of the propagation and emergence of the epidemic. This will allow 
national govemments, local authorities and the public health officiais to effective management according 
to risk areas. The case study concems the knowledge discovery in databases related to risk areas of the 
choiera epidemic in Mopti region, Mali (West Africa). The results generate from data mining association 
mies indicate that the level of the Niger River in the wintering periods and some societal factors have an 
impact on the variation of choiera epidemic rate in Mopti town. More the river level is high, at 66% the 
rate of contamination is high. 

1. Introduction

Choiera remains a major public health problem in developing 
countries. More than fifty countries in the world suffer choiera 
outbreaks with an  average  of  200,000  cases  and  lethality  rate 
of 4% (Piarroux,  2002 ). There  is  no  effective  vaccine  included 
in the WHO vaccination programs (Fournier, 1996). Mali located 
in the heart of West Africa  is  no exception  to  the  rule. Noting 
that the geographical factor plays a major raie in this epidemic, 
because in 78% of cases people were the bathing takes place in the 
lakes, streams or rivers according to a study by Dao et al. (2009), 
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particularly in wintering periods. lndeed, ail outbreak areas are 
located along the Niger River crosses Mali on its length South to 
the North. The progression of the epidemic has occurred in the 
flow direction of the West River Country to the North. 

The infectious diseases are gaining more ground  every  year 
thus increasing the risk of epidemics. They have  in  common 
small organisms, often arthropods (virus, mosquitoes, flies, ticks, 
lice or fleas), which are called vectors because they transmit the 
infectious agent  from  one  host  to another. The distribution  area 
of these vectors is progressively expanding,  with climate change 
opening up some  possibilities  for  the  reappearance  of  disease 
in previously protected populations. Sometimes new vulnerable 
regions are thus seriously affected. 

To overcome the limitations of traditional techniques to fight 
against  epidemics,  it is necessary  to  enjoy  the benefits  of space 



technology in the fight and the stalking of infectious diseases. The 
potential advantages of the space technology are numerous: 

• Economies: satellites caver a large area without long travel of 
the field teams.

• Security: the satellites cover dangerous or inaccessible areas,
• Dynamics: decryption of the spatiotemporal dynamics of

diseases,
• Monitoring: provision of risk maps and epidemiological

surveillance platform  for better monitoring and anticipation of 
epidemics.

Epidemiology  turns  to  space  using  remote  sensing  satellite 
technology   through   Tele-epidemiology.   Tele-epidemiology   as- 
sociates  satellite  observation  data  (geographical,  climatological, 
environmental, land use, etc.) with data sets from multidisciplinary 
areas (health  data, temperature  or  humidity,  socioeconomic  data, 
biological readings, etc.) (Marechal, Ribeiro, Lafaye, & Guell, 2008). 
That allows ta analyse the mechanisms of emergence, propagation 
and transmission of epidemic diseases, firstly, by investigating the 
tripartite relationships Climate-Environment-Health, and secondly, 
by  updating  the  links  that  exist  between  the  epidemic  diseases 
and the environment in which they develop, using remote sensing 
satellite technology (Lacaux, Tourre, Vignolles, Ndione, & Lafaye, 
2007). 

Statistical and  non-statistical  products  have  been  developed 
to facilitate the work of epidemiologists: quantification of  the 
cases of disease. identification of the factors characteristic of the 
affected areas, identification of the high risk areas, development of 
forecasting models, management of prevention programmes, etc. 
Remote sensing has a rising significance in the current information 
and communication society. 

The purpose of this work is ta demonstrate  the link between 
the geographical factor of the Niger River and the spread of the 
choiera epidemic in affected communities  using  satellite  images 
and field data processed by data mining techniques.  Thus  this 
work contributes ta strengthening epidemiological surveillance 
policy that focuses on a particular area of Mali and generally in the 
countries concerned about the production of images representing 
maps of risk areas of epidemics. 

The processing of remote sensing of satellite data by data 
mining techniques presents a major challenge in the health sector, 
especially in epidemiology. Data mining is a process for automatic 
information discovery in large databases (Tan, Steinbach, & Kumar, 
2005). Data mining technique allow ta extract previously un- 
known patterns that can generate interesting knowledge (Fayyad, 
Piatetsky-Shapiro, & Smyth, 1996), such as risk areas (through risk 
maps) from huge databases  of  satellite  images.  These  patterns 
can be seen as a kind of summary of the input data, and will be 
used in further analysis to predict other cases, for instance expand 
the production of risk maps of epidemic  on the whole national 
territory. 

The three main phases of data mining are pre-treatment, treat- 
ment, and post-treatment.  Most  of  the  work  of data  mining  lies 
in the post and pre-processing data: 80% post and pre-processing 
data, and 20% data mining techniques (application of algorithms) 
(Qin, Zhang, Zhu, Zhang, & Zhang, 2009; Zhang, Chengqi, & Qiang, 
2003). Most data mining algorithms do not know  how ta handle 
numerical data but rather categorical data. Ta solve this problem, 
it is necessary ta discretize numerical data. The discretization , is 
the process ta convert numerical values into categorical values and 
it is positioned in the pre-processing data phase. The discretiza- 
tion is one of the current problems of data mining because it has 
much more impact on the results and therefore easily leads ta 
misinterpretations. 

The structure of the rest of the paper is as follow. We present 
theoretical  background   in  Section  2,  with  an  additional  litera- 

ture review in Section 3. Our navel methodology and techniques 
adopted are presented in Section 4. Section 5 presents experimen- 
tal results and Section 6 gives some discussions and finally Section 
7 provides concluding remarks. 

2. Theoretical  background

Remote sensing is a method ta observe the earth surface or the 
atmosphere from space using satellite systems recording images 
which can be interpreted ta yield useful information. Remote sens- 
ing supports the mapping of various territories (terrestrial, marine 
and coastal ecosystems) and it has many applications in mapping 
land use and caver, agriculture, soils mapping, military observa- 
tion, deforestation, urban growth, etc. Satellite remote sensing 
imagery provides an effective way ta collect critical information. 
Nowadays, the challenge is ta  develop technical  solutions based 
on remote sensing satellite data ta identify, predict and study risk 
areas that can benefit ta ail sectors particularly the health sector. 

There are many satellites  positioned  around  the globe:  some 
are geostationary above a region,  and  some are orbiting  around 
the Earth, but ail  are sending a non-stop stream of data ta the 
surface. There is a considerable growth of stored data in databases 
that hide important knowledge and deserves ta find  and  use  in 
order ta help decision-makers (Alatrista-Salas  et  al.,  2015).  ln 
this article, we present an approach ta determine risk areas of 
epidemic crisis using data mining techniques (search for patterns 
or regularities ) in satellite data. 

Satellite data consists of data of Earth or other planets collected 
by satellites. We focus on satellite data on earth from the Landsat 
program that is the longest running enterprise for acquisition of 
satellite imagery of Earth and because their  images are free and 
of good quality. On july 23, 1972, the Earth Resources Technology 
Satellite was  launched. This was eventually renamed ta Landsat. 
The most recent,  Landsat 8, was launched on February 11, 2013 
(Short. 1982). The instruments on the Landsat  satellites have 
acquired millions of images and can be viewed through the United 
States Geological Survey (USGS: Earth Explorer, Landsat Look 
Viewer and GloVis) website. Data mining techniques are applied 
ta data base made up of satellite data for the identification and 
study of epidemic risk areas. 

The data mining process usually consists of three phases  or 
steps: (1) pre-processing or data preparation; (2) modelling and 
validation; and (3) post-processing or deployment (Compieta, Di 
Martino, Bertolotto, Ferrucci, & Kechadi, 2007). During the first 
phase, the data may need some cleaning and transformation 
according ta some constraints imposed by some tools, algorithms, 
or users. One has ta make sure that the data are free of noise and 
some transformations are needed for visualizing very large data 
sets. The second phase consists of choosing or building a model 
that better reflects the application behaviour. In other words, once 
a model is chosen or developed, it should be evaluated in terms 
of its efficiency and accuracy of its predictive results. Finally, the 
third step consists of using the model, evaluated and validated in 
the second phase, ta effectively study the application behaviour. 
Usually, the model output requires some "post-processing" in 
order ta exploit it. 

In this work, we focus on advanced databases such as satellite 
images databases which can be constituted by the three most 
common types of satellite images: Visible imagery, Infrared im- 
agery, and Water vapor imagery (Fugazzi & Spokane NWS, 2008). 
Therefore, it is a question ta produce risk maps and spread of epi- 
demics, for that we propose a methodology which combines data 
on health systems and data from the processing of satellite im- 
ages. This proposed methodology is focused on the discretization 
phase, supervised classification and finally good interpretations by 
associating field data. 
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3. State of the art

Satellite remote  sensing in epidemiology  (Tele-epidemiology )
is an interesting perspective in the mapping and modelling of 
epidemic and epidemic risk factors (Nnadi, Nimzing, Mark, & 
Onyedibe, 2011 ). We use remote sensing data, to understand 
choiera epidemic and its factors namely water resources and field 
data to discover the risk areas of choiera epidemic. Often epidemic 
study areas are larger than a single satellite scene or may be 
discontinuous, particularly in flooding or tornado hazard events. 
Liu and Hodgson (2016) proposed a spatial optimization model to 
solve the large area satellite image acquisition  planning problem 
in the context of hazard emergency response. 

From critical review of research literature (Mabaso & Ndlovu, 
2012 ), one of actual challenge about epidemics diseases in general, 
was the development of operational early warning systems taking 
into account the impacts of climate-driven threats. Therefore, many 
applications were developed, Kansakar and Hossain (2016) pre- 
sented a general review of applications based on remote sensing 
image through many themes such as land cover, land use mapping, 
carbon biomass assessment, food security, disaster management, 
water resources, ocean  management  and  health  and  air  quality. 
Io use an abundance of environmental data for human health , Liu 
et al. (2015) developed the Epidemiological Applications of Spatial 
Technologies (EASTWeb) for mosquito-borne diseases (e.g. Malaria, 
Rift Valley fever) based on data like  temperature, precipitation, 
spectral indices, and evapotranspiration .  This  application  does 
not process really satellite images but it is more focused on field 
data. 

In the purpose to contrai, prevent and eradication the arthro- 
pod  vectors,  depending  on  environmental   factors,  Jamison   et 
al. (2015) use multidisciplinary research incorporating climate, 
geographic information systems, remote sensing, and ecology. The 
tripartite relationships Environment-Climate-health are central  to 
the mapping of risk areas  of  epidemic.  Ecological  factors  with 
Rift Valley were associated to produce Rift Valley fever (RVF) risk 
map in Kenya (Mosomtai et al., 2016)  based on remote sensing 
data. The main ecological variables are: Wet soit fluxes measured , 
Normalized Difference Vegetation Index (NOVI) and Evapoîran- 
spiration (ET). The map generated seems more to a Geographic 
Information System (GIS) application with a superposition of 
layers: the individual maps of three most significant variables are 
produced separately, and the final risk mapping result are derived 
from amalgamating these maps. Another GIS application was de- 
veloped from the strong climate-fascioliasis outbreaks relationship. 
Halimi, Farajzadeh, Delavari, and Arbabi (2015) produce risk map 
of fascioliasis outbreaks in Iran using Ollerenshaw's fascioliasis risk 
index integrating a GIS. They find four fascioliasis outbreak risk 
classes. This study focuses on the relationships between climate 
factor and fascioliasis epidemic, but do not take into account 
satelli te remote sensing image process. 

In the same domain of télé-epidemiology, Xu et al. (2014) es- 
tablish the impact of temperature on childhood pneumonia in 
Brisbane, Australia by using remote sensing data combined to data 
from emergency department visits (EDVs). Certainly, it may  be 
easy to use the quasi-Poisson generali zed linear model combined 
with a distributed lag non-linear model, but rather suitable for 
discrete variables, there is a need to have a dependent variable 
with a Poisson distribution and it is difficult to check the almost 
systematic dispersion problem (Takahashi & Kurosawa, 2016 ). 

Io predict choiera epidemics in the Bengal Delta region using 
satellite remote sensing, Jutta, Akanda, and Islam  (2012)  studied 
the variability on space-time of chlorophyll. The bacterium Vibrio 
choiera cannot be measured from space directly. The choiera factor 
maintained  is the  Chlorophyll,  which  is estimated  from  satellite 

images by measuring the pigment part (chlorophyll) ex1stmg in 
plankton. This approach is limited because the observation of 
pigment part in ail plankton does not mean at 100% the presence 
of chlorophyll. It should be specified the period and how many 
percent the chlorophyll is involved in ail cases of choiera epidemic 
in region. It would be interesting to integrate field data to improve 
the precision and accuracy risk areas of arthropod epidemic. What 
is certain is that Choiera is an acute diarrhoeal  infection caused 
by ingestion of water or food contaminated with the bacterium 
Vibrio cholerae. In the most countries contaminated, Choiera is a 
seasonal epidemic usually during the rainy season, which  is the 
case of Mopti (Mali) . 

The accessibility of the massive quantity of health data (un- 
structured and multi-structured data) presents considerable 
opportunities and challenges for the real-time tracking of diseases, 
predicting disease outbreaks, and detecting pathogens  and causes 
of emergence (Asokan & Asokan, 2015). Health human resources 
have much to gain and a great deal to understand from the 
deployment of geospatial analysis and exploitation of generally 
obtainable  spatial  data  sources  for  epidemiological  modelling 
and sustainable health monitoring system (Malone John, Yang, 
Leonardo, & Zhou, 2010 ). There  is a strong need of new means 
for interdisciplinary data analysis, modelling and selection for 
multidimensional, complex settings and this may facilitate inno- 
vative insights and responses to complex environmental problems 
(Lausch, Schmidt, & Tischendorf, 2015). Earth observation data 
value addition process for intelligent geo-information products 
implies four phases: (i) Earth observation  data  acquisition,  (ii ) 
data processing (geo-information data mining and products), (iii) 
knowledge transformation for specific application, (iv) decision 
support and policy formulation. 

The developed methodologies can contribute to the processing 
of land mapping over large areas, with data mining of remotely 
sensed imagery (Vieira et al., 2012 ). In order to improve the pre- 
diction accuracy of identification of landslide-related factors using 
a geographic information system, data mining models can be used 
in conjunction with other models  (e.g. artificial  neural  network 
and Fuzzy  logic) (Song et al., 2012). In such circumstances, the 
data mining techniques can be engaged  to  examine  topographie 
and vegetative features for the verifi cation of landslides implied by 
specific climatic conditions (e.g. heavy rainfall) on the regions of a 
country (Tsai, Lai, Chen, & Lin, 2013). Regardless of the technique 
employed, there are some open research issues in spatial data 
mining techniques such as validity testing, the selection of relevant 
characteristics, interpretation of models, and treatment of multi- 
dimensional data (Arentze, 2009 ). Furthermore, various theories 
(e.g. Probability theory, Dempster-Shafer theory, Possibility theory 
and Rough set theory) can be employed for dealing with uncer- 
tainties (e.g. vague/ambiguous or imprecise/inaccurate/incomplete 
information) in spatial data analysis and geographic information 
systems (Tavana, Liu, Elmore, Petry, & Bourgeois, 2016). Partic- 
ularly, the extraction of complex models from multiresolution 
remote sensing images has to be enhanced by considering hier- 
archical strategies (e.g. involving segmentation and clustering) to 
facilitate the possible discovery of more complex patterns  with a 
higher semantic level (Kurtz, Passat, Gançarski, & Puissant, 2012 ). 

We are focusing on the pre-treatment, and one of  the  chal- 
lenges of pre-treatment is the discretization of the input data 
(Pitarch et al., 2015). Bad achievement of this step necessarily  
impacts the final results. Misunderstanding or misuse of the 
discretization in pre-treatment has the potential to interfere with 
data mining and post-treatment. Our  discretization approach oc- 
curs on spatial data specifically on satellite images. After a better 
process of discretization on satellit e images, we apply data mining 
algorithms to data base made up of satellite images. 
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Fig. 1. Process to discover risk areas of epidemic. 

4. Methodology and approaches adopted

The methodology consists of six phases as described by the 
figure below ( Fig. 1): the first phase starts with Acquisition of 
information from the field about epidemic and satellite data acqui- 
sition, the second phase concerns the selection and transformation 
of the useful data, the third phase describes remote sensing mea- 
surements (e.g. the Normalized Difference Vegetation Index (NOVI ), 
a function measuring the reflectance of the planet in both red and 
near-infrared bands) and the collection of the number of confirmed 
cases from the field, the fourth phase concerns the preparation of 
ail data by discretization  techniques to making them available for 
the fifth phase concerning data treatment with data mining algo- 
rithms and finally the sixth phase is related  to the interpretation 
of the results obtained by producing epidemic risk maps. 

4.1. A acquisition of information [rom the field about epidemic 

The acquisition of field information is done through the health 
facilities and field specialists. 

There are two major types of information. 

• Number of confirmed cases (Epidemiological data of the field ):
it is question to get the number of confirmed cases stored in
databases from one location to another and from one period to
another from health structures (health data). These data allow 
seeing the evolution of the epidemic in different places and at
different times.

• The characteristics of the epidemic: epidemiological diseases
such as the epidemic of Ebola virus disease, Malaria, Choiera,
Lyme disease ... they ail have  their  special  characteristics
but they have in common certain transmission vectors. The
vector is the agent carrying viruses and bacteria from a given
epidemic risk source to infect the population: birds, animais,
ticks, mosquitoes, flies, worms.... . So, it needs  to  determine 
the links between vectors and supportive environments for the 
emergence of these vectors; these environments are constantly 
expanding due to climate change, harmful  human  activities 
(e.g. inappropriate land use practices ). The target sensitive 
environments (water, vegetation , etc.) include some potential 
risk areas that will be detected by satellites. 

It is important to analyze the emergence, propagation, and 
transmission of infectious diseases and establish the relations that 
exist between the infectious diseases and the environment, ail us- 
ing space technology. Next step is the acquisition of satellite data. 

4.1. B satellite data acquisition 

There are many satellites positioned around  the globe:  some 
are geostationary  above  a  region,  and  some are  orbiting  around 

Fig. 2. LANDSAT 8 Satell ite Sensor (15 m). 

the Earth, but ail are sending  a  non-stop stream of data to the 
surface: Landsat (Fig. 2), SPOT. Ikonos, ASTER, AVIRIS, AVHRR, 
Quickbird, RadarSat, TMS, DTED or WorldView 

The images of some satellites are free, this is the case of 
Landsat (Fig. 2), which have the advantage of being available free 
of charge by the United States Geological Survey (USGS). Once 
downloaded to the USGS website  http://earthexplorer.usgs. gov/, 
the images are provided in the form of several tiff files, each file 
describes one band. Landsat 7 images have 8 channels or bands, 
Landsat 8 have 11 (Wulder et al., 2012). Each band is composed 
of two attributes: the first one describes the division name's 
abbreviation of the infrared band and  the second  one represents 
the wavelength (Table 1). 

This information related to bands helps us make a better choice 
to select the useful bands to the calculation of remote sensing 
indices. Subsequently, we describe the selection process and data 
transformation. 

4.2. Selection and transformation of data (data derived from images) 

The purpose of this step is to identify and select relevant and 
important data involved in the research of environmental factors 
conducive to the epidemic. To make the selection of useful bands, 
it is necessary to have: 

• information on the origin and types of environments conducive
to the emergence and spread of the epidemic. This information
is provided by specialists.

• satellite data of the study field.

From the viewpoint of rangeland management, the aim of a 
remote sensing method is to extract information that is directly 
related to a management question or to create other data layers 
that are co-related to what you are eventually interested in. Sorne 
approaches have been proposed  to analyze and make information 

6. lnterpretation
of results 

[  Acquisition of information from the field 

l



Table 1 
OLI and TIRS spectral bands (LANDSAT 8) Thermal lnfraRed (TIR). 

Band Wavelength 

Band 1-Coastal aerosol 0.43-0.45 
Band 2-Blue 0.45-0.51 
Band 3-Green 0.53-0.59 
Band 4-Red 0.64-0.67 
Band 5-Near Infrared (NIR) 0.85-0.88 
Band 6-SWIR 1 1.57-1.65 
Band 7-SWIR 2 2.11-2.29 
Band 8-Panchromatic 0.50-0.68 
Band 9-Cirrus 136-1.38 
Band 10-Thermal lnfrared (TIRS) 1 10.60-11.19 
Band 11-Thermal lnfrared (TIRS) 2 11.50-12.51 

Useful for mapping 

coastal and aerosol studies 
Bathymetric mapping, distinguishing soi! from vegetation and deciduous from coniferous vegetation 
Emphasizes peak vegetation, which is useful for assessing plant vigor 
Discriminates vegetation slopes 
Emphasizes biomass content and shorelines 
Discriminates moisture content of soi! and vegetation; penetrates thin clouds 
Improved moisture content of soi! and vegetation and thin cloud penetration 
15 meter resolution, sharper image definition 
Improved detection of cirrus cloud contamination 
100 meter resolution. thermal mapping and estimated soi! moisture 
100 meter resolution, Improved thermal mapping and estimated soi! moisture 

Table 2 
Definition of spectral indexes. Bands are designated in the formulas as R (Red), B (Blues), G (Green), NIR (Near-lnfrared ), and RE (Red-Edge). 

Index Name Citation Formula 

NOVI Normalized Difference Vegetation Index {Tucker, 1979) {NIR - R)/(NIR + R) 
NGRDI Normalized Green Red Difference Index (Tucker, 1979) (G-R)/( G + R) 
GNDVI  
SR 
SAVI 

Green Normalized Difference Vegetation Index 
Simple Ratio 
Soi! Adjusted Vegetation Index (L = 0.5) 

{Mages et al.. 2004) 
{Tucker & Sellers, 1986) 
(Huete, 1988) 

{NIR -G)/{ NIR + G) 
NIR/R 
[{N IR -R)/(NIR + R + L)]{ l + L) 

EVI Enhanced Vegetation Index (Huete et al., 2002 ) 2.S{NIR-R)/(NIR + 6'R- 7.S'B + 1)
TV!  Triangular Vegetation  Index (Broge & Leblanc, 2000) 0.5[ 120(N!R-G)-200{R-G)] 
VAR!  Visible Atmospherically Resistant Index (Gitelson, Kaufman, Stark, & Rundquist. 2002) (G -R)/(G+R-B) 
NDREI Norma!ized Difference Red Edge Index (Gitelson & Merzlyak,1994) (RE-R)(RE + R) 

using satellite images such as Vegetation Indices, Spatial Prediction 
Techniques (Hengl, Heuvelink, & Stein, 2004), Thermal Remote 
Sensing Products (Tahakata et al., 2009), Biophysical Parameter 
Estimates, Classification Techniques (Alrababah et al., 2006) ... (the 
most known is Vegetation Indices) (Anderson,  Hanson,  &  Haas, 
1993). 

Severa!indices have been developed specifically for the analysis 
of remote sensing data but in literature, the vegetation indices are 
the most used. Based on information provided by experts in the 
field, the choice of the indices is made and thereafter, followed by 
the selection data involved in the calculations of these indices. 

These vegetation indices use the principle of differentiation 
between areas of vegetation with their sub-zones (e.g. forest and 
arid zones) and water zones (e.g.  Jake, river, and pond). ln the 
literature, different vegetation indices (Vis) have been developed 
(Table 2, Prabhakara, Hively, & McCarty, 2015): Rouse, Haas, Schell, 
and Oeering (1994) proposed the Normalized Oifference Vegeta- 
tion Index ( NOVI)  to estimate vigour  of plants,  Huete presented 
a Soil-Adjusted Vegetation Index (SAY!) and, Roujean and Breon 
developed a  Renormalized  Difference  Vegetation  Index  (ROVI). 
A Triangular Vegetation Index (TV!) was presented by Broge & 
Leblanc, the Three-band Gradient Difference Vegetation Index 
(TGOVI) was established by Tan et al. (2005 ) Normalized Oiffer- 
ence Pond Index ( NOPI) and the Normali zed Oifference Turbidity 
Index (NOT!) are presented by Lacaux et al. (2007) and Bicout, 
Vautrin, Vignolles, and Sabatier (2015). 

Among  vegetation  indices  approach,  the  NOVI  is  widely  used 
( Hobbs, 1995; Anderson et al., 1993). NOVI is constructed  from of 
the Red (R) and Near Infrared (NIR) and highlights the difference 
between the red  visible  band  and  the  near  infrared  visible  band 
by using the standard equation: [(NIR - RED)/(NIR + RED)] (Tucker, 
1979). This index is sensitive to the  strength  and  quantity  of 
vegetation and the values range from -1 to + 1. Negative values 
correspond to surfaces other than vegetation zones such  as  snow, 
water or clouds for which  the  reflectance  in  the  red  is  greater 
than the  near infrared. For bare soi!, the reflectance is roughly  the 
same magnitude in the Red and Near Infrared, the NOVI values are 
close to  O. Vegetation zones have positive NOVI values generally 
between  0.1  and  O.7. The  values  beyond  O.7 correspond  to  dense 

vegetation. When a time series of images is observed for the same 
area, we can deduce the stress state of vegetation for different 
values of NOVI: in wintering or during droughts, values will be 
lower than in summer or in times of rainy seasons. 

To calculate NOVI from Landsat image, for example, you 
combine the first three bands; you get a conventional  optical 
image (RGB) and after join the band of near infrared. The NOVI 
calculation generated an image file or layer, and this could be 
realized through some software image processing programs (e.g., 
ENVI, IDRISI, Matlab, R, EROAS Imagine) or Geographic Information 
System (GIS) programs that can manipulate  raster  calculations 
(e.g., ESRI ArcGIS, GRASS). 

4.3. Remote sensing measurements 

Having opted for a remote  sensing measurement  (e.g. NOVI), 
we get the corresponding images to remote sensing measurements. 
There is a need to extract the corresponding attribute tables from 
composite data. For this, there are several methods  (Gonzalez  et 
al., 2015) including the use of satellite image processing software 
(e.g. Envi software). 

The attribute table of each remote sensing data are continuous 
values, for each band values are between 0 and 65,535. However, 
the majority of data mining algorithms have difficulty in process- 
ing continuous values.  Therefore,  the  continuous  attributes  must 
be divided into intervals to accommodate the decision rules. The 
attribute data of the satellite images and the evolving  of  epi- 
demic databases on the field must be prepared by discretization 
techniques for the next  step. 

4.4. Discretization of data 

In this step, data is transformed or consolidated into forms 
appropriate for data mining process. We have two types of data to 
discretize: epidemical databases of a number of confirmed cases 
from Health structures and remote  sensing measurements data 
(e.g. NOVI image file or layer). When an image is created through 
remotely sensed data, it needs to go through some form of valida- 
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Fig. 3. The outcome of discretization on a sample (Xie et al.. 2016). 

tion procedure using observational and or sampling techniques to 
increase the confidence in the final image. 

a pixel with feature vector w belongs to class i, is given by: 

Discretization  is  the  process  of  converting  numerical  values P( . ) = P(wli)P(w) 

into categorical values: the continuous attributes must be divided 
into multiple intervals to adapt to the data  mining algorithm. To 
discretize remote sensing measurements data, the discretization 
algorithm based on information entropy proposed by Xie et al. 
(2016) is adopted. They define three steps to discretize sensing 
remote data: (i) Making a Decision table, (ii) Breakpoint and equiv- 

l 
1w P(w) (1) 

where P(wli ) is the likelihood function, P(i) is the a priori informa- 
tion, i.e., the probability  that class i occurs in the study area and 
P(w) is the probability that w is observed, which can be written 
as: 

M 

alence class, (iii) finally run the discretization algorithm (KNN) and 
implemented  in Matlab software.  Discretisation algorithm  allows 

P(w) = _L P(wl i)P(i) 
i=l 

(2) 

subdividing each band into several intervals (sections) (Fig. 3). It is 
important to resize images obtained with the Nearest Neighbour 
resampling method. This is the ideal technique  if the new image 
must undergo a classification since it then consists of the original 
pixel brightness and the simple rearranged in a position to give 
correct image geometry (Richards, 1999). The process assigns a 
value to each corrected pixel from the nearest uncorrected pixel. 
The gains of nearest neighbour include simplicity and the ability 
to preserve original values in the unaltered scene. 

After obtaining discretized data, next step consists in estab- 
Iishing the correlation between the discretized data from remote 
sensing images and epidemical database of a number of confirmed 
cases to discovered risk areas of epidemics. 

4.5. Data treatment 

The method of data treatment is supervised classification . Clas- 
sification models predict categorical class labels. The classification 
is one of the main tasks of data mining which is an inductive, 
iterative and interactive process to discover in large databases of 
valid data models, new, useful and understandable (Han, Kamber, 
& Pei, 2011 ). 

The data for classification are divided into two sets: a data set 
for training sites and a data set for test sites to consolidate the 
pattern found. We will use this pattern for classifying new areas 
into two classes: epidemic risk or not an epidemic risk. Supervised 
classification methods are used to generate a map with each pixel 
assigned to epidemic risk class or not epidemic risk class based on 
its multispectral composition. The classes are determined based on 

where  M  is  the  number  of  classes. P(w)  is  often  treated  as  a 

normalisation  constant to ensure  L: P(ilw)  sums to  1. Pixel x is
i=l 

assigned to class i by the rule: 

x E i if  P(ilw) > P(jlw) for  ail j =!= i (3) 

ML often assumes that the distribution of the data within a given 
class i obeys a multivariate Gaussian distribution . It is then conve- 
nient to define the log likelihood (or discriminant function): 

gi(w) = lnP(il w) = - (w - µ-;)1ci-1(w - µ;) 

-N In (2:n:) - 
1 

1n (IC;I) (4) 

Since log is a monotonie function, Eq. (3) is equivalent to: 

x E i if  g;(w) > gj(w) for  ail j =!= i (5) 

Each pixel is assigned to the class with the highest likelihood 
or labelled  as unclassified  if the probability values are all below 
a threshold set by the user. The general procedures in ML are as 
follows: 

1. The  number  of  land  caver  types  within  the  study  area  is
determined.

2. The training pixels for each  of  the  desired  classes  are  cho- 
sen using  land cover information for the study area. For this 
purpose, the jeffries-Matusita UM) distance can be used to
measure class separability of the chosen training pixels. For 
normally distributed classes, the JM separability measure  for
two classes, Jii, is defined as follows:

the spectral composition of training sites defined by the user. In 
this work, Digital image classification and analysis was performed 
using Envi image processing software. 

]ij = J2c1 -e-et )

where a is the Bhattacharyya distance and is given by:

(6) 

Description of the classification algorithm used: Maximum 
Likelihood (Abkar, Shariji, & Mulder, 2000) (Richards, 1999) 
(Ahmad & Quegan, 2012) 

We used the most common supervised classification  method 
used with remote sensing image data Maximum likelihood clas- 
sification based on general approach Bayes classification, which 
states that a posteriori distribution P(ilw), i.e., the probability that 

a (µ,-µ,)' [ (c,;c1l'(µ, -µ,) + ln ( ) (7)

Jii ranges from 0 to 2.0, where Ju > 1.9 indicates good sepa-
rability of classes, moderate separability for 1.0:::: Ju :::: 1.9 and
poor separability for Ju  < 1.0 
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Fig. 4. Study area: Mopti region (Mopti department in red band). 

3. The training pixels are then used  to estimate the mean vector
and covariance matrix of each class.

4. Finally, every pixel in the image is classified  into one of the
desired land cover types or labelled as unknown.

ln ML classification, each class is enclosed in a region in mul-
tispectral space where its discriminant function is larger than that 
of ail other classes. These class regions are separated by decision 
boundaries, where, the decision boundary between class i and j 
occurs when: 

(NHD) of Mali. The epidemiological disease considered is choiera 
and Mopti is the most affected region in Mali according to the 
epidemiologic data of NHD. 

5.1.1. The characteristics of the epidemic: choiera 
Choiera is a contagious epidemic enteric-bome infection caused 

by the bacterium Vibrio choiera, or Comma bacillus discovered by 
Pacini in 1854 and rediscovered by Robert Koch in 1884 (Harris, 
LaRocque, Qadri, Ryan, & Calderwood, 2012). Strictly limited to 
the  human  species,  it  is characterized  by  sudden  and  abundant 

g;(w) = gj(w) 

For multivariate normal distributions, this becomes: 

(-(w - µ,i)1c;-'(w - µ,;) - ln (2rr) - ln (ICd)) - 

(8) diarrhoea (gastroenteritis) leading to severe dehydrations. Surveil- 
lance and prompt reporting allow for containing choiera epidemics 
rapidly (WHO, 2008). 

Factors  of  propagation  of  the  choiera  epidemic  (Dao  et  al., 
2009): 

(-(w -µ,if Cj 1 (w -/Li) - ln (2rr) - ln (lcil)) = 0 (9)

which can be written as: 

-(w - µ,;)tc;-1(w - µ,;) - ln (IC;I) + (w - µ,i)tCj 1(w- /Li )

-ln (Ici1) = o (10) 

This is a quadratic function in N dimensions. Hence, if we con- 
sider only two classes, the decision boundaries are conic sections 
(i.e. parabolas, circles, ellipses or hyperbolas). 

4.6. Interpretation of results 

Finally, the last step is to interpret maps epidemic risk which 
must be made available to health structures or to the proper 
authorities to better use. 

After processing remote sensing data by the supervised classi- 
fication method, we can obtain detailed accuracy by class on the 
generated maps. These measurements of accuracy give the success 
rate in percentage of the applied classification. Indeed, it is a set of 
maps from different periods (monthly or annual data) that are pro- 
duced. During the same period of considered satellite images, the 
field data (in tabular form) of collected various cases of contami- 
nation of the epidemic (monthly or annual data) are also available. 

From the results provided by classification and the field data, it 
can be useful to make a comparative analysis allowing to: 

• Better explain the observed trends from field indicators,
• Specify the  nature  of  the  link  between  the  environment  and

the epidemic,
• Clarify the impact of environmental changes on the epidemic.

5. Case study: choiera epidemic in mopti (Mali)

The case study is the region of Mopti in Mali (Fig. 4), on the
basis of indications  provided  by the National  Health Directorate 

• 78% of contamination cases was bathing in rivers,
• The most affected regions (Mopti, Segou, and I<oulikoro) are

located along the Niger River and constitute the core (starting
point) of epidemics of choiera in the last three decades,

• The most favourable period in Mali is the rainy season Uune,
july, August).

Finally, the geographical (environment) factor retained in the
circle of Mopti is the Niger River. It is a question to determine 
the impact of the Niger River on the choiera epidemic during the 
rainy season. 

5.1.2. Satellite data acquisition 
Study Area: 

From 1995 to 2004, Mopti region was the only one to be 
affected by ail the choiera epidemics in Mali, located on the Niger 
River (Dao et al., 2009). The study area  concems  Mopti  town, 
7262 km2 of the area. Mopti is located in fair Mid Mali , so it is a 
culminating point between North and South, with  a  population 
over than 368 512 people (INSAT, 2009) made up of several ethnie 
groups around the Niger River to carry on activities trade, trans- 
port, fisheries, livestock and agriculture. The Niger River crosses 
the region and is joined  by  the  Bani, an  important  tributary,  at 
the city of Mopti. We focus on Mopti town with Path = 197 and 
Row = 50 or Lat = 14.5 and Long = 4.3 (Fig. 5). 

Satellite data: 

We opted for the Landsat archive satellite images of the study 
area, and they are available for download on http://glovis.usgs.gov/ 
or http://earthexplorer.usgs.gov/ . lt is able to download images 
covering 30m2 , after specifying the criteria:  address/Place  (Path 
and Row) and date. 

Although, the Landsat program cycle is 16 days in the  same 
locality  (scenes)  some  twenty  images  are  produced  each  year 
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Fig. 5. Satellite image of Mopti (Path = 197 and Row = 50). 

Fig. 6. NDVI file. 

by scene (Fu & Weng, 2016). However, in our research, we took 
into account the domain  expert  knowledge  who  stipulates  that 
the rainy season is the conducive  period to the choiera epidemic 
particularly in july and August. Therefore. we used one satellite 
image per year while respecting the indicated periods. 

5.2. Selection and transformation of data 

After the download satellite data, the bands selected to display 
images are SWIR2 (Band 7) Band, NIR (Band 5) and BLUE (Band 2) 
with Stretch (0.5% Clip) and Gamma (0.8). It can be applied some 
corrections on satellite images  such as atmospheric  rectifications 
for better images processing. 

5.3.1. Remote sensing measurements 
At this step, we generate the NOVI file because NOVI is the 

best index to make the difference between vegetation and  water 
area (Fig. 6) by using the NOVI formula (NIR - R)/(NIR+R) (Tucker, 
1979). 

5.3.2. Number of confirmed cases 
The Table 3 below describes the confirmed cases from Health 

Ministry structures (Dao et al., 2009 ). During the decade "1995- 
2004", choiera has hit ail regions of  Mali with variations across 
regions and years (Table 3 and Fig. 7). Indeed, the regions of Mopti 
(3412 cases) and Segou (1500 cases) were involved in almost ail of 
the 2004-1995 choiera epidemics with a lull in 2002 in Segou (no 
case). 

Kayes and Sikasso regions experienced fewer choiera outbreaks 
between 1995 and 2004. During this period, Kayes region experi- 
enced a single outbreak with 3497 cases and Sikasso region two 
outbreaks with 50 cases. 

Finally, the case study concerns Mopti region, because it is the 
most affected region of the choiera epidemic in Mali from 1995 to 
2004. 

5.4. Discretization of data 

Prior to the images classification  into two groups  (risk  areas 
and  not risk areas), it is necessary  to prepare  satellite images by 
a discretization technique and after resize data with the Nearest 
Neighbour resampling method  (Richards,  1999)  that  are  applied 
to images obtained (Software : Matlab, Envi). For our study, the 
Mopti town is considered, which means that ail satellite  images 
processed (described in Table 4) have the same Map Coordinates: 

Upper Left Coordinate: 
Lat: 14 31 52.16 
Lon: -4 14 2.64 
Lower Right Coordinate: 
Lat: 14 28 38.42 
Lon: -4 10 41.67 

5.5. Data treatment: classification 

The Table 5 gives different results after supervised classification 
(Maximum Likelihood) (Abkar et al., 2000). 

5.6. Interpretation of results 

We present the results (Table 6, Fig. 8) from classification 
process step and make them available by a codification system 
(discretization ) (Tables 7 and 8) for data mining technique that 
allows good interpretation  (Table 9). 

Given a database (Table 8), the problem is to generate ail 
association rules that  have  support  and  confidence  greater  than 
the user-specified minimum support (called minsup)  and  mini- 
mum confidence (called minconf) respectively. An association rule 
X==>Y is an observed regularities induced a form of implicative 
relationship between two sets  of  items  (i.e.  binary  attributes)  X 
and Y such that X and Y are disjoint, and that X is unordered and 
Y is unordered. The support of a rule X==>Y (i.e. the frequency 
in the database) is the number of sets of items (i.e. itemsets) that 
contains XuY divided by the number of itemsets in the database. 
The confidence of a rule (i.e. the number of times a rule has been 
found to be true) is the number of itemsets that contains XuY, 
divided by the number of itemsets that contains X. 

Many algorithms exist for discovering association rules (Kamsu- 
Foguem, Rigal, & Mauget, 2013), the best known being the Apriori 
algorithm. Unlike the other algorithms, Apriori finds ail association 
rules between frequent itemsets by adding to large sets, and 
pruning small sets (Luna, Cano, Sakalauskas, & Ventura,  2016). 
This is consistent with our objective to extract ail possible types 
of rules for later evaluation of the results by the user. 

For the general problem of mining the association  rules,  m 
items  potentially  lead  to  2 m  frequent  itemsets.  To  address  this 
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Table 3 
Distribution of choiera casesin Malifrom 1995 to 2004 by region. (From 1997 to 2000, no cases of choierain Mali.) 

Regions Number of confirmed cases Total 

% Confirmed Cases f Year 
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Fig.7. Distribution of choiera cases in Mali from 1995 to 2004 by region. 

problem, the Apriori algorithm uses an estimation procedure in 
order to determine  the itemsets that should be measured at each 
iteration. Thus, an itemset X of length k is frequent if and only if  
every subset of X, having length k - 1, is also frequent; i.e., if an 
itemset of size k is a frequent itemset, then ail the itemsets below 
(k -1) size must also be frequent itemsets. This consideration 
permits a significant reduction of the  search  space,  and  allows 
rule discovery in a computationally reasonable time (Potes Ruiz, 
Kamsu Foguem, & Grabat, 2014). 

Let k-itemset be an itemset having k items, Lk be a set of large 
kitemsets and Ck a set of candidate k-itemsets. The Apriori algo- 
rithm is summarized in (Fig. 9). As described in (Agrawal & Srikant, 
1994), the first iteration of the algorithm counts item occurrences 
to determine the large 1- itemsets. During the following iterations, 
the large itemsets Lk-J found in the (k - 1) th iteration are used to 
generate the candidate itemsets Ck, using the Apriori-gen function 
(Fig. 9), which includes two phases taking as argument Lk-l : union 
and pruning. In the union phase, ail k-itemsets candidates are 
generated. Then,  in  the  pruning  phase, ail  candidates  generated 
in  the  union  phase  with  some  non-frequent  (k -1) - itemset 
are removed. Nevertheless, because of its popularity and good 
performance, we have  chosen the classical Apriori algorithm for 
extracting association rules in our application example. 

The Association rules generated from Apriori Association Rules 
Algorithm (Agrawal & Srikant, 1994) of SPMF software (Fournier- 
Viger et al., 2014) are presented in Table 9. According to the results 
produced by processing satellite image and comparing them to the 

field data, we can conclude that the level of the Niger River has an 
impact on the variation of choiera epidemic rate in Mopti town. 

More the river level is high, at 66% the rate of contamination 
is high, and more the confirmed cases is low, then the risk area 
is also low with a full confidence. More the confirmed cases are 
high then the risk area is also high with a full confidence. The 
underlying interpretation is the societal  factors that occur during 
the wintering period: throw garbage and faeces in Niger River 
causes bacterium Vibrio, the use (drinking and bathing)  of  this 
water can cause the choiera epidemic. 

Mopti, crowded city, is located  right  in the heart  of  Mali,  it 
is a culminating point between North and South, made up of 
several ethnie groups around the Niger River to carry on several 
activities: trade, transport, fisheries, livestock and agriculture. This 
implies to continue the awareness and education of the riverside 
communities and improve their living conditions to avoid the use 
of contaminated water and food. 

The satellite remote  sensing in  choiera  epidemic  in  Mopti  is 
an interesting  perspective  to  understand  choiera  epidemic  and 
its propagation factors namely dynamic changes occurring in the 
Niger River, combining to field data to discover the risk areas of 
choiera. 

6. Discussions

The high rates of choiera epidemic mortality in Mali in general
and particularly Mopti is a challenge for health facilities to which 
it is necessary to equip itself with the epidemic surveillance tech- 

1995 1996 2001 2002 2003 2004 

Kayes 0 3497 (63.1%) 0 0 0 0 3497 (28.7%) 
Koulikoro 57 (2.5%) 33 (0.6%) 0 0 99 (6.9%) 1 (0.0%) 190 (1.6%) 
Sikasso 0 0 0 0 45 (3.1%) 5 (0.2%) 50 (0.4%) 
Segou 166 (7.4%) 453 (8.2%) 16 (23.5%) 0 645 (44.9%) 220 (7.7%) 1500 (12.3%) 
Mopti 987 (43.8%) 735 (13.3%) 52 (76.5) 16 (100%) 597 (41.5%) 1025 (35.8%) 3412 (28%) 
Tombouctou 776 (34.4%) 616 (11.1%) 0 0 36 (2.5%) 1258 (44%) 2686 (22.1%) 
Gao 234 (10.4%) 205 (3.7%) 0 0 0 351 (12.3%) 790 (6.5%) 
Bamako' 34 (1.5%) 2 (0.1%) 0 0 15 (1%) 0 51 (0.4%) 
Total 2254 (100%) 5541 (100%) 68 (100%) 16 (100%) 1437 (100%) 2860 (100%) 12,176 (100%) 

• District. 



Table 4 
Satellite images processed. 

Landsat 4 Present 

NO  IMAGES 
AVAJLABLE IN 

LANDSAT ARCHIVES 
AT THIS AREA 

FROM 
1995/08/05-1998/02/18 

****** 

date: 2001/07/28 
Landsat 7 SLC-on (1999-2003) 

date: 2002/07/31 
Landsat 7 SLC-on (1999-2003) 

date: 2003/08/19 
Landsat 7 SLC-off (2003->) 

date: 2004/08/21 
Landsat 7 SLC-off (2003->) 

Table 5 
Results after classification. 

Date: 1995/08/05 
Ground Truth (Percent) 
R.isk areas (Red): 17.24% 
Not risk areas (Green): 82.76  % 

NO IMAGE AVAILABLE  
INLANDSAT ARCHIVES 

AT THIS AREA 
FROM 

1995/08/05-1998/02/18 

****** 

Date: 2001/07/28 
Ground Truth (Percent) 
R.isk areas (Red): 16.75% 
Not risk areas (Green): 83.25 % 

date: 2002/07/31 
Ground Truth (Percent) 
R.isk areas (Red): 14.73% 
Not risk areas (Green): 85.27% 

date: 2003/08/19 
Ground Truth (Percent) 
R.isk areas (Red): 19.69% 
Not risk areas (Green): 80.31 % 

date: 2004/08/21 
Ground Truth (Percent) 
R.isk areas (Red): 23.93% 
Not risk areas (Green): 76.07% 



Table 7 

Table 6 
Data base. 

Years Confirmed cases Risk areas (%'100) 

1995 987 1724 
2001 52 1675 
2002 16 1473 
2003 597 1969 
2004 1025 2393 

Codification system. 

Confirmed cases Risk areas 

Code Interval Description Code Interval Description 

[0-350) Low 11 [09%-16%) Low 
2 [351-700) Medium 22 [17%-24%) High 
3 [701-1050] High 

Table 8 
Database codified .  

Confirmed cases Risk areas (%'100) 

Input: Database D 

Fig. 8. Data Base corresponding graph. 

3 22 
11 

1 11 
2 22 
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niques. Among the epidemic surveillance techniques, we process 
satellite data to prevent and facilitate the management of an 
epidemic crisis by earth observations. Earth observation is the 
gathering of information about planet  Earth's  physical,  chemical 
and biological systems via remote sensing technologies supple- 
mented by earth surveying techniques, encompassing the collec- 
tion, analysis and presentation of data (Unninayar & Olsen, 2015). 
There is the need to minimize negative  impacts  of  epidemics 
along with the opportunities generated by earth observation (via 
satellite data) to improve social and economic well-being. 

In the same logic to discovery risk areas, (Kazansky, Wood, and 
Sutherlun (2016) studied the current and potential role of satellite 
remote sensing in the campaign against malaria. The purpose is to 
establish the malaria risk map to facilitate the management to the 
government and public health. The proposed methodology is based 
on indicators from satellites and other sources, allowing establish 
which regions are most likely to be at risk of malaria. The main 
inconvenient of this method is that it is difficult (impossible) to 
implement a system to predicting risk areas without  integrating 
data mining techniques to predict effective and efficient risk areas 
with rates accuracy. 

In  the  purpose  to  provide  the  best  interpretation,  Punia, 
joshi, and Porwal (2011) identified 13 classes by a decision tree 
classification, for the free seasons, to explored the potential of 
multi-temporal IRS P6 (Resourcesat) Advanced Wide Field Sensor 
(AWiFS) data of land use land caver for Delhi, India. The main dif- 
ference is that they do not consider field data from domain expert 
knowledge to validate the process in the presented methodology. 

Hudak and Brockett (2004) use unstandardized Principal Com- 
ponents Transformation  (PCT)  to  reconstruct  the fire  history  of 

Table 9 
Interpretation of the results obtained. 

Association rules generated lnterpretation 

l) L1 = {large 1-itemsets};

2) for (k = 2; Lk -l * 0; k++) do begin 
3) ek = apriori-gen (Lk_1); Il New candidates 
4) forall transactions t E D do begin 
5) et = subset (ek , t); Il Candidates contained in t 
6) for ail candidates c E et do 
7) c.count++; 
8) end 
9) Lk = {c E edc. count    minsup} 
10) end
11) Answer = Uk Lk ;

apriori-gen (Lk-1) 

12) forall itemsets c E ek do begin
13) forall (k-1)-subsets s of c do begin 
14) if (s fi. Lk _ 1) then 
15) delete c from ek 
16) endfor 
17) endfor

Fig. 9. The Apriori algorithm. 

a semi-arid savannah landscape in  southern  Africa.  They  also 
use a supervised classification to process Lansat satellite data to 
differentiated burned and unburned areas. However, the only uses 
of satellite images are not sufficient for best accuracy, efficiency, 
objectivity, and consistency because fire severity maps are more 
dependent on strong field validation (White, Ryan, Key, & Running, 
1996) than maps of fire existence or not. 

The approach proposed by Pitarch et al. (2015) combines a 
satellite image processing and field data  for looking for patterns 
and mapping of agricultural lands in order to improve food se- 
curity early warning systems (Vintrou et al., 2012). However, this 
approach has limitations in its discretization  phase and  because 
the chosen discretization intervals were too  large to capture 
texture temporal variations and moreover recommended finer 
discretization  of  these  intervals. The advantage  of  our  approach 

1=> 11 #SUP: 2 #CONF: 1 
22 => 3 #SUP: 2 #CONF: 0,66667 
3 => 22 #SUP: 2 #CONF: 1 

I f confirmed cases is low ([0-350)) Then risk area is also low ([09%-16%)) with a full confidence (100%) 
If the risk area is high ([17%-24%)) Then  confirmed  cases is high ([701-1050)) with a good confidence (66%) 
If confirmed cases is high ([701-1050)) Then risk area is also high ((17%-24%)) with a full confidence (100%) 

.'

Distribution of choiera cases comparoo to 
risk areas 

1995 2001 2002 2003 2004 

• Confi'med cases • Risk area (%"100)



compared to those in Bicout et al. (2015) is that we treat several 
satellite images of the same study area combined with field data 
collected over the same periods and this is what allows us to have 
a better  interpretation. 

Cont:iu and Groza (2016) proposed a hybrid system for crop 
classification from satellite images through a vote-based  method 
for conflict resolution in ensemble learning. We have the same 
advantage by associate the domain expert knowledge with mies 
extracting from data bases to increase the classification accuracy. 
We consider that the existing methods for processing satellite 
images are mature and efficient, so the challenge today is to 
provide the most  suitable means  allowing the best  interpretation 
of obtained results. For that, we focus on supervised classification 
algorithm (Maximum Likelihood) to process a set of satellite 
images from the same area but on different periods. Maximum 
Likelihood algorithm is the most common supervised classification 
method used with remote sensing image data (Richards,  1999), 
based on the probability that a pixel belongs to a particular class. 
However, there are other image classification methods with certain 
characteristics. The Minimum Distance algorithm is also attractive 
but it does not use covariance data. Another variant of Minimum 
Distance is the Mahalanobis distance, the difference is the use of 
the covariance matrix. The parallelepiped algorithm method is a 
simple classifier for machine-learning tasks, however there can be 
significant gaps between the parallelepipeds; pixels in those re- 
gions will not be classified. A deep learning for image classification 
based on neural networks have become new revolution in artificial 
intelligence and relevant for several domains: the audible or visual 
signal analysis, facial recognition, disaster recognition, voice recog- 
nition, computer vision, automated language processing (Hinton, 
Osindero, & Teh, 2006). Deep learning is a set of algorithms which 
aims to mode! high-level abstractions in data by  using  a  deep 
graph with multiple processing layers (Schmidhuber, 2015). Deep 
learning classification seems more suited to  pattern  recognition, 
but they do not seem capable of logical  reasoning (Guo  et al., 
2016; Haohan & Bhiksha, 2015). The latest developments in deep 
learning have shown promise for modelling static data, such as 
computer vision, applying them to complex temporal data (e.g. the 
risk areas of the images) is gaining increasing attention (Langkvist, 
Karlsson, & Loutfi , 2014). 

Therefore, one of the biggest contributions of the proposed 
technique is to allow the best interpretation of obtained results 
taking into account field data. This study also demonstrated that 
the Niger River has impact on the evolution of the choiera epi- 
demic in Mopti region, ail through the techniques of remote sens- 
ing from space for more precisely processing of satellite images. 

7. Conclusion and related works

Humanity will always be faced with epidemics and the emer- 
gence of new diseases. Global monitoring and efforts to address 
potential disruptions effects of infectious diseases whose emer- 
gence with multifactorial aspects are challenging. For monitoring 
of infectious diseases, the use of remote sensing is very beneficial 
in the tele-epidemiology that consists to collect data in the field 
and satellite data to face and prevent infection disease related to 
the environment discoverable by satellites. 

We focus on the use of data mining technique to discover 
risk or not risk areas of epidemic crisis from satellite images. For 
our analysis, we used supervised classification method to process 
a set of satellite images from the same area but on different 
periods. A nove!method of six phases (describing pre-treatment, 
data mining, and post-treatment) is described to ensure suitable 
means for transforming data, generating information and extract- 
ing knowledge. The proposed method was successfully evaluated 

with the implementation  in Mopti region, Mali (West Africa),  to 
discover choiera epidemic. 

The main contributions of  the  paper  are:  discretization  in 
the pre-processing phase improving the quality of  the obtained 
results, establishment of the  Iink  between  the  environment  and 
the epidemic, and identification of most risky areas for the prop- 
agation and emergence of the epidemic. This will allow national 
governments, local authorities and the public health officiais to 
effective management according to risk areas. 

As discuss research limitations, it would be desirable to have 
only good quality images, but from 2003 to 2004, only Landsat 
7 ETM+SLC-off (2003-present) supplied images of Landsat pro- 
gram. On May 31, 2003, Sean Line Corrector (SLC) in the ETM+ 
instrument failed, causing stripes on the images (2003/08/19 and 
2004/08/21 ) hence its name SLC-off (Wulder et al., 2012). The 
stripes (zigzag) have Jess impact on the results. The green stripes 
above the River classified Not risk areas (green) are false positives 
and should therefore be classified into Risk areas (Red), thus the 
relative growth in percentage of risk areas providing a reasonable 
argumentation and justifies the outcomes. ln a medium-term 
perspective, there is a need to improve the processing of satellite 
images namely the images with Jess quality to achieve the desired 
results. ln this work, we use the same data format to collect 
images from satellite systems. Therefore, as future research, we in- 
tend to take into account images from different satellites in future 
works. Processing satellite images from heterogeneou s sources is 
also a considerable challenge for the scientific communities. 
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