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Abstract – The Finite Element (FE) method could be able to address the stress analysis 

of bonded joints. Nevertheless, analyses based on FE models are mainly computationally 

cost expensive and it would be profitable to develop simplified approaches, enabling 

extensive parametric studies. Firstly, a 1D-bar and 1D-beam simplified models for the 

bonded joint stress analysis, assuming a linear elastic adhesive material, are presented. 

These models derive from an approach, inspired by the finite element (FE) method using 

a formulation based on a 4-node macro-element, which is able to simulate an entire 

bonded overlap. Moreover, a linear shear stress variation in the adherend thickness is 

included in the formulation. Secondly, a numerical procedure is then presented to 

introduce into both models an elasto-plastic adhesive material behavior, while keeping 

the previous linear elastic formulation. Finally, assuming an elastic perfectly plastic 

adhesive material behavior, the results produced by simplified models are compared with  

the results predicted by FE using  1D-bar, plane stress and 3D models. Good agreements 

are shown. 

 

keywords: bonded joint, single-lap shear, non-linear material adhesive, Finite Element 

method, analytical formulation, macro-element 

 

NOMENCLATURE AND UNITS 

 

Aj extensional stiffness (N) of the adherend j 

Bj extensional and bending coupling stiffness (N.mm) of the adherend j 

Dj bending stiffness (N.mm2) of the adherend j 

Ej Young’s modulus (MPa) of the adherend j 

E Young’s modulus (MPa) of in the adhesive 

F vector of forces 

G Coulomb’s modulus (MPa) of the adhesive 

Gj Coulomb’s modulus (MPa) of the adherend j 

K stiffness matrix 
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KBBa stiffness matrix of the Bonded-Bars element 

KBBe stiffness matrix of the Bonded-Beams element 

L length (mm) of the overlap  

Mj moment (N.mm) in the adherend j around the z direction 

Nj force (N) in the adherend j in the x direction 

Q nodal normal force (N) applied to the node  in the x direction ( = i,j,k,l) 

R nodal shear force (N) applied to the node  in the y direction ( = i,j,k,l) 

S nodal bending moment (N.mm) applied to the node  around the z direction ( = 

i,j,k,l) 

S adhesive peel stress (MPa) 

T adhesive shear stress (MPa) 

U vector of displacements  

Vj shear force (N) in the adherend j in the y direction 

b width (mm) of the adherends (lateral pitch between two rows of fasteners) 

e thickness (mm) of the adhesive  

ej thickness (mm) of the adherend j  

f force (N) applied to the joint in the x direction 

lj length (mm) of the beam outside the overlap of the adherend j 

n number of macro-elements 

uj displacement (mm) of the adherend j in the x direction 

ua displacement (mm) of the node a in the x direction (a = i,j,k,l) 

wj displacement (mm) of the adherend j in the y direction 

wa displacement (mm) of the node a in the y direction (a = i,j,k,l) 

 length (mm) of a macro-element 

j angular displacement (rad) of the adherend j around the z direction 

a angular displacement (rad) of the node a around the z direction (a = i,j,k,l) 

(x,y,z) direct orthonormal base 
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1. INTRODUCTION  

 

1.1. Context 

 

In the frame of the structural component design, bonding can be considered as a suitable 

assembly method or an attractive complement to conventional methods such as bolting 

or riveting. Bonding offers the possibility of joining without damaging various materials, 

like plastics or metals, as well as allowing for various combinations of materials. This first 

advantage is reinforced by a large choice of adhesive families and by the possibility to 

formulate adhesives, designed to best meet the joint specifications, while optimizing the 

structure. Bonding allows mainly for mass benefits with regard to other mechanical 

fastening methods, since the materials volume required is reduced to sustain static or 

fatigue loads. The Finite Element (FE) method could be able to address the stress 

analysis of bonded joints. Nevertheless, analyses based on FE models are mainly 

computationally cost expensive and it would be profitable to develop simplified 

approaches, enabling extensive parametric studies. The study, presented in this paper, 

takes place in this context. As highlighted in several literature surveys [1-3], a large 

number of simplified approaches for the stress analysis of bonded joints exist in the open 

literature. 

 

1.2. Objective 

 

The objective of this paper is to present a simplified approach for the stress analysis of 

bonded joints, taking into account an elasto-plastic adhesive material behavior. This topic 

was already addressed by several authors (e.g.: [4-11]), leading to the presentation of 

semi-analytical solutions. Indeed, in order to enlarge the application field of models, the 

number of simplifying hypotheses has to be restricted. The resolution of the complete set 

of governing equations, derived from the restricted hypotheses, requires then the 

development of dedicated procedures, even under the assumption of linear elastic 
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material behaviors. In this paper, a restricted number of simplifying hypotheses is 

similarly under consideration, so that closed-form solutions are not provided. However, 

an original procedure allowing for the resolution is presented. The simplified approach, 

presented in this paper, consists then in an iterative resolution scheme, using a simplified 

linear elastic method for the stress analysis of bonded joints. The simplified linear elastic 

method is based on the analytical formulation of a 4-node macro-element, in the frame 

of both 1D-bar and 1D-beam analyses. It is then exemplified on the single-lap bonded 

joint configuration (see Fig. 1 and Tab. 1). 

 

1.3. Overview of the simplified linear elastic method 

 

The simplified linear elastic method, originally presented in [12, 13], is inspired by the FE 

method and allows for the resolution of the set of governing differential equations. The 

displacements and forces in the adherends, as well as the adhesive stresses are then 

computed. The method consists in meshing the structure in elements. A full bonded 

overlap is meshed by a unique 4-node macro-element, which is specially formulated. This 

macro-element is called bonded-bars (BBa) or bonded-beams (BBe), depending on the 

1D analysis frame. According to the classical FE rules, the stiffness matrix of the 

structure – termed K – is assembled and the selected boundary conditions are applied. 

The minimization of the total potential energy leads to find the vector of nodal 

displacements U such F=KU, where F is the vector of nodal forces. This approach based 

on macro-elements takes advantage of the flexibility of FE method. Indeed, by employing 

a macro-element as an elementary brick, it offers the possibility to simulate complex 

structures involving single-lap bonded joints [14]. Only simple manipulations on the 

stiffness matrix of the structure are required. An approach for the simulation of hybrid 

(bolted/bonded) joints can consist in employing macro-elements for the bonded parts 

and springs for the fasteners [12, 13]. Finally, various mechanical or thermal loadings 

could be taken into account, through the vector of nodal forces. 
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1.4. Overview of the paper 

 

The mechanical and geometrical parameters are free; in particular, unbalanced 

configurations can be addressed. In the 1D-bar (1D-beam) frame, the adherends are 

simulated as linear elastic bars (as laminated linear elastic Euler-Bernoulli beams), while 

the adhesive layer simulation consists in continuously distributed linear or non-linear 

shear springs (in continuously distributed linear or non-linear shear and peeling springs). 

The adhesive layer thickness is assumed constant along the overlap. 

BBa and BBe elements were previously developed [12, 13, 15]. Nevertheless, they do 

not take into account the shear stress in the adherends. The first part of the paper is 

then dedicated to the detailed presentation of the formulation of 1D-bar and 1D-beam 

macro-elements, including a linear variation of shear stress in the adherends, according 

to the approach of Tsai et al. [16]. Elements of validation are presented, by showing that 

under the same hypotheses as the Tsai et al. model, the same results are obtained. 

Secondly, the introduction of an iterative resolution scheme is presented, to take into 

account an elasto-plastic adhesive material behavior. The projection algorithm with 

elastic matrix is employed for the numerical resolution. Thirdly, a 1D-bar FE model, 

involving bar elements and shear springs, is developed as a numerical image of the 

simplified 1D-bar model. Besides, a plane stress (PS) and 3D FE models are developed to 

assess the performances of the simplified 1D-beam model. 

 

2. LINEAR ELASTIC 1D-BAR AND 1D-BEAM MODELS 

 

2.1. 1D-Bar model 

 

2.1.1. Formulation of the BBa element 

 

2.1.1.1 – Hypotheses. The model is based on the following hypotheses: (i) the 

thickness of the adhesive layer is constant along the overlap, (ii) the adherends are 
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linear elastic materials simulated as bars, (iii) the adhesive layer is simulated by an 

infinite number of linear elastic shear springs linking both adherends, and possibly (iv) 

the adherend shear stress varies linearly with the adherend thickness.  

 

2.1.1.2. Governing Equations. The local equilibrium of both adherends (see Fig. 2) and 

the linear elastic material behaviors provide the following set of governing equations: 
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
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





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                                                 (1) 

where e is the adhesive thickness, e1 (e2) the thickness of the adherend 1 (2), b the 

width, G the adhesive shear modulus, E1 (E2) the Young’s modulus of the adherend 1 (2), 

N1 (N2) the normal force in the adherend 1 (2) and T is the adhesive shear stress. The 

displacements u1(x) (u2(x)) are the normal displacements of points located at the 

abscissa x on the neutral line of adherend 1 (2) before deformation (see Fig. 3). 

 

2.2.1.3. Stiffness matrix of the BBa element. The system of equations (1) leads to the 

following system of linear differential equations: 
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The system of equations (2) is solved as: 
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where c1, c2, c3 and c4 are integration constants.  

 

The boundary conditions at both extremities of the BBa element, in terms of 

displacements, lead to expressions for the integration constants, as functions of nodal 

displacements ui, uj, uk and ul (see Fig. 3): 
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where  is the length of the BBa element. 

 

The linear elastic behavior of adherends allows then for the expression of adherend 

normal forces as a function of nodal displacements, through the integration constants 

(equation (1.1) and equation (3)): 
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In the same way, the adhesive shear stress is then computed with equation (1.3) as: 
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The nodal forces Qi, Qj, Qk, Ql, which represent the action of nodes i, j, k, l respectively 

on the BBa element (see Fig. 3), can be expressed as functions of nodal displacements 

(equation (5)): 
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The stiffness matrix of the BBa element is defined by: 
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where: 
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Finally, the stiffness matrix of the BBa element, named KBBa, can be written as:    

        

(10) 
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2.1.1.4. Considering the shear stress in the adherends. Following [16], a linear 

distribution of the shear stress, named T1 (T2), in the thickness of the adherend 1 (2) is 

assumed: 
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where y1 and y2 are local y-axis, as defined in Fig. 1.  

 

The shear deformation, named 1 (2), in the adherend 1 (2) is then given by: 
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where G1 (G2) is the shear modulus of the adherend 1 (2). 

 

The integration of equation (12) allows for the expression of the normal displacements of 

adherends, as functions of x and yj:  
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The normal forces in the adherends are then deduced: 
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But, by noticing that the average value of the normal displacement on the adherend 

thickness is given by: 
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the normal forces in the adherends and the adhesive shear stress can be written as: 
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Finally, to take into account a linear variation of the shear stress in the adherends, the 

resolution consists in substituting G by G and uj by ju , in the formulation, which does 

not consider any shear stress in the adherends. 

  

2.1.2. Assembly and validation on the exemplified single-lap joint. The single-lap 

bonded joint is meshed as following: (i) the overlap is meshed which 1 BBa element, (ii) 

each adherend outside the overlap is meshed with 1 bar element. This mesh leads to a 

total number of 6 nodes (see Fig. 4). 
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The stiffness matrix of the single-lap joint is then assembled, according to the classical 

FE rules, through the stiffness matrices of each element. The stiffness matrix for the bar 

element, named Kbar, is: 

 

2,1j,
11

11

l

beE
K

j

jj
bar 












                                        (17) 

where l1 (l2) is the length of the bar outside the overlap of the adherend 1 (2). 

 

Following the classical FE rules, the boundary conditions are then applied to the single-

lap bonded joint, which is clamped at one extremity and free to move at the other one, 

where a force f=10 N is applied (see Fig. 4). A total number of degrees of freedom (DoF) 

equal to 5 is then involved. The resolution consists then in inverting a 5x5 linear system. 

The adhesive stress distribution predicted by [16] is compared to the model predictions 

for the single-lap bonded joint defined in Fig. 1 and Tab. 1. The superimposition of curves 

shown in Fig. 5, allows for the conclusion that the same hypotheses lead to the same 

results. 

 

2.2. 1D-beam model 

 

2.2.1. Formulation of the BBe element 

 

2.2.1.1. Hypotheses. The model is based on the following hypotheses: (i) the 

thickness of the adhesive layer is constant along the overlap, (ii) the adherends are 

simulated by linear elastic Euler-Bernoulli laminated beams, (iii) the adhesive layer is 

simulated by an infinite number of elastic shear and transverse springs linking both 

adherends, and possibly (iv), the adherend shear stress varies linearly with the adherend 

thickness. 
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2.2.1.2. Governing equations. The local equilibrium of both adherends (see Fig. 6) 

leads to the following system of six equations:   
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                                    (18) 

where S is the adhesive peeling stress, V1 (V2) the shear force in the adherend 1 (2) and 

M1 (M2) the bending moment in the adherend 1 (2). 

                                                                                         

This local equilibrium is the one derived and employed by Goland and Reissner [17] in 

their classical theory. Furthermore, considering a possible extensional and bending 

coupling stiffness in the adherends, the constitutive equations are expressed as:  
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                                  (19) 

with Aj the extensional stiffness, Bj the coupling stiffness, and Dj the bending stiffness.  

 

It is assumed that j=Aj
2-BjDj is not equal to zero. The adhesive is considered as linear 

elastic and is simulated by an infinite number of shear and transverse normal springs. 

The adhesive shear stress and the adhesive peeling stress are then expressed by: 
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where E is the Young’s modulus of the adhesive, w1 (w2) the deflection of the adherend 1 

(2)  and 1 (2) the bending angle of the adherend 1 (2). 

 

2.2.1.3. Stiffness Matrix of the BBe element.  

 

System of differential equations in terms of adhesive stresses. The equation (19) is 

written as: 
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By combining equations (18), (20), (21), the following linear differential equation 

system, in terms of adhesive stresses, is obtained: 
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where: 
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The system of differential equations (22) can be uncoupled by differentiation and linear 

combination as:  
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This system is solved and the adhesive shear and peeling stresses are thus written as 

(see Appendix A): 
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                                 (25) 

 

There are then 13 integration constants. However, by introducing these previous 

expressions of adhesive stresses in equation (22), the integration constants of the 

adhesive peeling stress appear linked to those of adhesive shear stress as: 
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Finally, 7 independent integration constants are remaining: K1 to K7. 

 

 

Nodal displacements and forces. The determination of the stiffness matrix of BBe 

element requires the determination of nodal displacements and forces (see Fig. 7). 

Following the resolution scheme in [18], the idea is to express the displacements and the 

forces in the adherends, as a function of the stress adhesives and of their derivatives. 

The computation is fully detailed in Appendix B. It is shown that a total number of 12 

integration constants is finally involved: K1 to K7, J1 to J3 and J5 to J6. The displacements 

in the adherends are then expressed as:  
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The nodal displacements are then the values in x=0 and x= of equation (27). The 

constitutive equations (19) allow for the computation of normal and shear forces and of 

bending moments in both adherends: 
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The nodal forces are then the values in x=0 and x= of equation (28). 

     

Stiffness matrix. The coefficients of the stiffness matrix of the BBe element are 

obtained by differentiating each nodal force by each nodal displacement: 
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                                   (29) 

where Q (R) is the nodal normal (shear) forces and S are the nodal bending moments. 

 

The 12 nodal displacements (u,  = 1:12) and the 12 nodal forces (Q,  = 1:12) are 

expressed as functions of the 12 independent integration constants (C,  = 1:12). The 

nodal forces depend linearly on integration constants, as well as the nodal displacements. 

Thus, the integration constants depend linearly on the nodal displacements (equation 

(30)), enabling the determination of 144 coefficients of KBB (equation (31)): 
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The coefficients of KBB are thus obtained through: 
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Practically, C(0…0,u=1,0…0) is automatically generated by looping on the 12 canonical 

vectors of displacement, through the following inversion C(0…0,u=1,0…0)]=M-

1(0…0,u=1,0…0). 

 

2.2.1.4. Considering the shear stress in the adherends. This section describes how to 

consider the shear effects in the adherends by simply adapting a finite number of 

previous parameters. The approach is based on the assumption of a linear variation of 

shear stresses in the adherends, according to Tsai et al. theory [16]. From equations 

(11), the shear strain 1 for the upper adherend and 2 for the lower one are expressed 

as: 
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The integration of normal displacements with respect dyj provides: 
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Taking into account the previous shape of normal displacements, the constitutive 

equations of adherends (19) become: 
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with: 
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where hpi the y-coordinates of the pj
th layer, and Qj

pi the reduced rigidity matrix of the pth 

ply of adherends j.   

 

As detailed in Appendix C, the modification of the shape of the constitutive equations of 

adherends results in modification of suitable constants only. 

 

2.3.2. Assembly and validation on the exemplified single-lap joint. The single-lap 

bonded joint is meshed as following: (i) the overlap is meshed which 1 BBe element, (ii) 

each adherend outside the overlap is meshed with 1 bar element. This mesh leads to a 

total number of 6 nodes (see Fig. 8). 

The stiffness matrix of the single-lap joint is then assembled, according to the classical 

FE rules, from the stiffness matrix of each element. The stiffness matrix of a beam 

element, named Kbeam, is written (according to [15]): 
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Following the classical FE rules, the boundary conditions are then applied to the single-

lap bonded joint, which is simply supported at both extremities, fixed according to the x-

axis at one extremity and free at the other one, where a force f=10 N is applied (see Fig. 

8). A total number of DoF equal to 15 is then involved. The resolution consists then in 

inverting a 15x15 linear system. 

The adhesive stress distribution predicted by [16] is compared to the present model 

predictions for the single-lap bonded joint defined in Fig. 1 and Tab. 1. In order to 

perform a comparison on exactly the same hypotheses, the length outside the overlap is 

computed according to the Goland and Reissner theory [17], resulting in a same bending 

moment at both overlap ends (for a beam approach) under the applied force (li=91 mm). 

Moreover, the factors C’j are set to zero. The superimposition of curves shown in Fig. 9 

allows for the conclusion that the same hypotheses lead to the same results. 

 

3. ASSUMING AN ELASTO-PLASTIC ADHESIVE MATERIAL 

 

3.1. Numerical approach 

 

In this section, the adhesive, employed in the bonded area, is assumed to have an 

elasto-plastic behavior. To take into account this non-linear behavior, an iterative 
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procedure [19] is implemented, starting from the previous linear elastic formulation. This 

iterative procedure is illustrated in Fig. 10, for a stress step resulting in a current elastic 

stress state characterized by an equivalent stress superior to the yield stress. This 

current elastic stress state is obtained through the linear computation F=KU, 

representing the first step of the procedure. The second step corresponds to the 

projection of the equivalent stress to the elastic stress state on the yield function, 

allowing for the computation for a first residue R, relevant to the difference between the 

elastic stress state and the projected stress state. In this paper, this second step is 

presented assuming an elastic perfectly plastic behavior. The third step consists in 

imposing to the structure the residue, such R=KU. This procedure is repeated, while the 

norm of the residue is higher than a prescribed threshold. The residues have thus to be 

computed. Hereafter, the equivalent stress chosen for the 1D-bar model is the shear 

stress (maximal stress criterion), while for the 1D-beam model, the criterion is the Von 

Mises equivalent stress.  

 

3.2. Example of application for structures: single-lap joint, in-plane loading 

 

3.2.1. Equilibrium of the structure. For both 1D-bar and 1D-beam models, the 

equilibrium of the structure is such that at any abscissa along the overlap the sum of 

normal and shear forces in the adherends is constant:  
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                                (39) 

 

For both 1D-bar and 1D-beam models, the local equilibrium of adherends, according to 

the x-axis and y-axis, allows for a relationship between the normal and shear forces in 

the adherends and the adhesive shear and peeling stresses: 
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In particular, the area under the shear stress distribution along the overlap (named S0) 

multiplied by the overlap width is equal to the applied force:  
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This last equilibrium requirement is used in the iterative procedure to ensure its 

convergence. 

 

3.2.2. Determination of the nodal residue.  

 

3.2.2.1. Case with a mesh with n-macro-elements. The bonded overlap is regularly 

meshed in n macro-elements, such n=L (see Fig. 11). A total number of 2n+2 nodes is 

involved. 

 

For 1D-bar case. The elastic shear stress on the kth node is computed through the 

nodal displacements and is quoted Te(k). The projected stress on the yield function is 

named Tp(k). The difference between these two stresses is named T(k): 

 

       kTkTkT,3n2;2k pe  
                            (42) 

 

Along the elastic zones, this difference is equal to zero. Moreover, this difference is the 

same for both nodes located at the same abscissa: 
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        (43) 

 

Before the application of the prescribed displacements, the relevant components of the 

residue vector to normal nodal forces are such: 
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For 1D-beam case. The elastic shear and peeling stresses on the kth node are 

computed through the nodal displacements and are named Te(k) and Se(k), respectively. 

The projected shear and peeling stresses on the yield function are named Tp(k) and 

Sp(k), respectively. As for the 1D-bar case, the difference between the elastic peeling 

stress and the projected peeling stress is such: 

 

             kSkS1p2kSp2kSpŜ,1n;1p,3n2;2k pe  
   (45) 

 

Before the application of the prescribed displacements, the relevant components of the 

residue vector to normal nodal forces are given in equation (44), whereas those relevant 

to the shear nodal forces are such: 
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3.2.2.2. Case with a mesh with one macro-element. The bonded overlap is meshed 

with one macro-element only, which implies a total number of six nodes (see Fig. 5). 
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For the 1D-bar case. The elastic shear stress is computed at any abscissa x with 

equation (6) and is named Te(x). The projected stress on the yield function is named 

Tp(x). The difference between these two stresses is named T(x). The residue is obtained 

after summation of T(x) for any abscissa such T(x)≠0. More precisely, if the elastic 

zone is included between x1 and x2 (see Fig. 12), before the application of the prescribed 

displacements, the components of the residue vector are: 
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For the 1D-beam case. The elastic shear stress and peeling stresses are computed at 

any abscissa x with equation (25) and are named Te(x) and Se(x), respectively. The 

projected shear and peeling stresses on the yield function are named Tp(x) and Sp(x). 

The difference between the elastic and projected shear and peeling stresses are named 

T(x) and S(x). The relevant components of residue vector to normal nodal forces are 

the same as that given in equation (47). In the same way, before the application of the 

prescribed displacements, the relevant components of residue vector to shear nodal 

forces are such: 
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3.2.3. Projected stresses. In the 1D-bar model, only one adhesive stress component is 

involved. The projected stress depends only on the yield function following the maximal 

stress criterion. In the 1D-beam model, the peeling stress and the shear stress are 

considered, allowing the computation of the Von Mises equivalent stress, named e, 

which is chosen as yield criterion: 
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The equivalent projected stress, named p, is computed as a function of Tp and Sp as: 
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When the yield criterion is exceeded, the equivalent stress is expressed as: 
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e QST3                               (51) 

where Q characterizes the exceeding of yield criterion. 

 

The equation (51) can be rearranged as: 
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leading to: 
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Finally, the projected stresses are written as functions of the elastic stresses and yield 

criterion excess: 
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3.2.4. Solution procedure. The solution procedure is summarized hereafter. 

 

A.  Linear elastic computation 

A.1 the stiffness matrix of the structure is computed (see section 2) 

A.2 initialization of variables: 

 fR=f 

 R=F, such tF=(0 … 0 f) 

A.3 computation of U=K-1R, after applying the boundary conditions in displacement 

A.4 computation of adhesive elastic stresses for any abscissa of overlap (see section 2) 

A.5 computation of adhesive equivalent stress e 

A.6 computation of S0 (see section 3.2.1) 

 

B.  Yielding test 

if e is inferior to the adhesive yield stress then end 
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else computation of Q as the difference of the adhesive equivalent stress and the 

adhesive yield stress 

 

C.  Plastic loop 

C.1 projection of adhesive stresses on the yield function (see section 3.2.3) 

C.2 computation of the difference between the adhesive elastic stresses and the 

adhesive projected stress (see section 3.2.2) 

C.3 update of R (see section 3.2.2) 

C.4 if norm(R)<threshold_2 then go to D else go to A.3  

 

D. Global equilibrium 

if abs(S0-f)> threshold_2 then fR=fR-(S0-f) and go to A.3 

else end 

 

4. COMPARISON WITH FINITE ELEMENT PREDICTIONS  

 

4.1. Overview 

 

In order to assess and to validate both models based on a simplified approach, FE models 

are developed using SAMCEF FE code v14-1. For validation purposes, a 1D-bar FE model 

is compared to the current 1D-bar model, without considering any shear deformations in 

the adherends. For assessment, a PS and a 3D FE model are compared with the current 

1D-beam model, including a linear variation of the shear stress in the adherends. The 

joint is clamped at one end and free to move at the other end in the longitudinal direction 

only, where the load is applied. A force per unit of width unit of 10 N.mm-1 is applied. 

The geometry of the single lap joint is that introduced in Fig. 1 and Tab. 1. For the 3D FE 

model, the width of structure is taken equal to 1 mm. The adherends are assumed to be 

linear elastic and the material characteristics are given in Tab. 1. The adhesive is 

considered as elastic perfectly plastic. The adhesive elastic parameters are given in Tab. 
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1. In the 1D-bar analysis, the adhesive remains in its elastic domain if the shear stress is 

inferior to 0.55 MPa. For all the others analyses, the Von Mises yield criterion is employed 

with a yield stress of 1.6 MPa. The FE computations are geometrically linear. 100 macro-

elements are employed in the models based on the simplified approaches. It is indicated 

(not discussed here) that a mesh with 1 macro-element lead to almost the same results 

for all the cases tested. For the PS and 3D FE models, the stresses are measured along 

the middle line of the adhesive layer and in the symmetry plane for the 3D FE model. 

Indeed, in contrast to refined PS or 3D FE models [20], the models based on the 

simplified approach are not able to capture the edge effects at the interfaces with the 

adherends or at the free edges. 

 

4.2. Description of FE models 

 

4.2.1. 1D-bar FE model. The adherends are simulated by beam elements (SAMCEF 

type T022). The adhesive layer is simulated by bush elements, which connect the beam 

elements involved along the overlap. To simulate the 1D-bar model, the displacements 

according to the y-axis and the z-axis are fixed. In order for the bush elements to work 

in shear only, all the stiffnesses are set to unity except that for the shear mode. The 

latter is computed according to [21]. A preliminary study (not presented in this paper) 

showed that a number of 100 bush elements regularly distributed along the overlap 

allows for accurate results at restricted computational time cost. In the adherends, 204 

beam elements are set. Moreover, the unbalanced configuration such that e2=2e1=4.8 

mm is under consideration.  

 

4.2.2. PS FE model. The adherends and the adhesive are simulated by quadrangular 

elements (SAMCEF type T015) under plane stress conditions. The elements chosen have 

linear interpolation functions and four internal modes. The normal integration scheme is 

chosen. As the adhesive stresses significantly vary at the overlap edges, the mesh is thus 

refined in this area though a progressive mesh. The smallest element in the adhesive 
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layer is then located at both overlap ends and has an aspect ratio equal to 1. A nominal 

number of four elements in the adhesive layer is chosen (see section 4.2.3), leading to a 

minimal size of 0.1 mm*0.1 mm. Furthermore, a transition ratio equal to one is set at 

the interface with the adhesive and a progressive mesh is adopted in the adherends. 

 

4.2.3. 3D FE model. The adherends and the adhesive are simulated by 3D brick 

elements (SAMCEF type T008). The elements chosen have linear interpolation functions 

and 9 internal modes (8 nodes and 24 degrees of freedom). The normal integration 

scheme is chosen. The mesh of the 3D-model consists in an extrusion in the width 

direction of the PS FE model mesh. Symmetry conditions are applied in an external 

plane, the normal of which is the direction of extrusion. The stresses are measured along 

the middle line of the adhesive layer and on the symmetry plane.  

The maximum value of adhesive shear and peeling stresses depends on the mesh 

density. As the objective of this comparison of PS and 3D FE predictions is to assess the 

relevance of the 1D-beam model, the dependency of shear and peeling peaks on the 

mesh density has to be addressed. The study consists then in measuring the maximum 

values of the adhesive shear and peeling stresses as a function of the number of 

elements in the adhesive layer thickness. The number of elements in the adhesive layer 

varies, while keeping the aspect ratio of the smallest element in the adhesive layer 

(located at both overlap ends) equal to 1. It is shown that the shear (peeling) peak 

increases (decreases) with the increasing number of elements in the adhesive layer (see 

Fig. 13). However, this increasing or decreasing tendency significantly slows down with 

the increasing number of elements. Tab. 2 shows changes to the adhesive shear and 

peeling peaks for varying numbers of elements, relative to those for 32 elements. It can 

be observed that these relative differences are quite low, except for the peeling peak for 

the case with 2 elements. It could be thought that the hypothesis of an elastic perfectly 

plastic adhesive material behavior allows for the saturation of the adhesive peak 

stresses, contributing to low variations. In order to understand the elevated difference on 

the peak stress for the case with 2 elements, the shear and peeling peak adhesive stress 
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on the upper (or lower) external line of the adhesive layer is measured while the number 

of elements varies. These peaks on the adhesive upper (or lower) line are located at 

overlap ends, as for the adhesive middle line.  As shown in Fig. 14, whereas the increase 

of the number of elements in the adhesive layer decreases the relative difference to the 

middle line on the shear peak, this relative difference increases significantly. The 

influence of the edge effect on the adhesive stress at the middle line seems thus to be 

reduced by refining the mesh in the adhesive thickness. Finally, it is considered that 

almost steady values for shear and adhesive peaks can be obtained, when the side 

height of the smallest element in the adhesive layer is inferior to 0.1 mm (i.e.: four 

elements in an adhesive thickness of 0.4 mm).  

 

4.3. Comparison of results 

 

4.3.1. 1D-bar present model vs. 1D-bar FE model. Firstly, it is indicated (not 

presented here) that, when the adhesive is supposed linear elastic, the 1D-bar present 

model (without any shear in the adherends) and 1D-bar FE model provide exactly the 

same adhesive shear stress distribution along the overlap. Considering the elasto-plastic 

behavior of the adhesive, the 1D-bar present model (without any shear in the adherends) 

and 1D-bar FE model provide exactly the same adhesive shear stress distribution along 

the overlap, for the balanced and unbalanced configuration, as shown in Fig. 15 and Fig. 

16, respectively. 

 

4.3.2. 1D-beam present model vs. PS and 3D FE models. The 1D-beam present model 

with a linear shear stress in the adherends is compared to the PS and 3D FE models, in 

case of a balanced configuration for example. The distribution of the adhesive shear, 

peeling and Von Mises stresses along the overlap are provided in Fig. 17, Fig. 18 and Fig. 

19. Although the stress tensor component number is restricted to two in the 1D-beam 

present model, a good agreement is shown.  
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4.3.3. Evolution of adhesive stress distribution with the applied load. In order to 

illustrate the effect of plasticity of the adhesive stress distribution, the adhesive shear, 

peeling and Von Mises stress distribution obtained with the 1D-beam present model are 

provided in Fig. 20, Fig. 21 and Fig. 22 respectively, at two intermediate applied loads (5 

N.mm-1 and 7 N.mm-1). The structure chosen is the unbalanced configuration such that 

e2=2e1=4.8 mm. The adhesive layer is meshed with four elements in its thickness 

(leading to a side length of 0.1 mm for the smallest element). Furthermore, the stress 

distributions at an applied load of 10 N.mm-1 are compared to those predicted by the 3D 

FE models, resulting in a good agreement. Moreover, it appears that the adhesive stress 

peak saturation is balanced by the increase of the minimal adhesive stress level reached 

along the overlap. 

 

4.4. Assessment of the relevance of the model 

In order to assess the relevance of the present 1D-beam model, unbalanced 

configurations such that e2=2e1=4.8 mm with isotropic adherends are under 

consideration. The study described in this section consists of measuring the relative 

differences between the 3D FE model predictions and the 1D-beam model predictions, in 

terms of adhesive shear and peeling stresses, when: (i) the adherend stiffness varies, (ii) 

the adhesive thickness varies. Concerning the influence of the adherend stiffness, the 

variation of the adherend stiffness is achieved by fixing the Young’s modulus of the 

adherend 1 at its value in Tab. 1 (E1=72 GPa), while the Young’s modulus of the 

adherend 2 is varying such E2=(0.5, 1, 2, 3)*E1. In the 3D FE model, the adhesive layer 

is meshed with four elements in its thickness (leading to a side length of 0.1 mm for the 

smallest element). As shown in Tab. 3, the 1D-beam model provides adhesive shear and 

peeling peaks very closed to those predicted by the 3D FE model, with relative 

differences inferior to 10%. Moreover, in term of stress distribution along the overlap, a 

good correlation is obtained, as shown in Fig. 23 to Fig. 25 for the case E2/E1=3. In 

particular, the overstress for abscissas close to zero, due to the unbalance of the joint, is 

correctly retrieved. Concerning the influence of the adhesive thickness, five adhesive 
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layer thicknesses are chosen: 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm and 0.5 mm. In the 3D 

FE model, the number of elements in the adhesive thickness is taken such that the side 

length of the smallest element is equal to 0.5 mm (e.g.: 8 elements in an adhesive 

thickness of 0.4mm). As shown in Tab. 4, the 1D-beam model provides adhesive shear 

and peeling peaks very close to the ones predicted by the 3D FE model (see Fig. 20 to 

Fig. 22, for the case e=0.4 mm), with relative differences inferior to 10%, except for the 

peeling peak for an adhesive thickness of 0.1 mm. However, when the adhesive 

thickness is equal to 0.1 mm, it is meshed with only 2 elements, resulting in a significant 

influence of edge effects on the peeling stress at overlap ends when measured in the 

adhesive middle line (see section 4.2.3).  

Finally, the computation times required for the FE models of section 4.2.3, when the 

number of elements in the adhesive thickness varies, are expressed as functions of the 

computation time recorded for the 1D-beam model (equal to 1.3 s). All the computations 

are performed on the same computer (HP Z800). Tab. 5 shows that the less refined 

mesh is consuming 49 times more of computation time than the 1D-beam model.  

Nevertheless, it is underlined that the 3D FE models allows for a more refined stress 

analysis than the simplified approaches. 

 

5. CONCLUSION 

 

A 1D-bar and 1D-beam simplified approach for the stress analysis of bonded joints 

involving an elasto-plastic adhesive is presented and illustrated for the single-lap joint 

configuration. The example of the single-lap bonded joint configuration should not be 

seen as a restriction, since various single-lap geometries could be simulated through 

simple manipulations of the structure stiffness matrix. The simplified approach, relying 

on the simplifying hypotheses provided in section 2.1.1.1 and section 2.2.1.1, is based 

on the formulation of a 4-node macro-element able to simulate a full bonded overlap. 

Firstly, 1D-bar and 1D-beam macro-elements are formulated assuming a linear elastic 

adhesive behavior and taking into account a linear variation of the shear stress in the 
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adherends. It is shown that the same hypotheses lead to the same results when the 

adhesive stress distributions along the overlap are compared with the reference ones. 

Secondly, an iterative procedure, employing the linear elastic computation of the 

stiffness matrix, is presented to take into account an elasto-plastic adhesive behavior. 

Assuming a yield function (elastic perfectly plastic behavior) and a yield criterion, the 

residue vector is computed through the projection of the current stress state, up to 

reaching equilibrium for a prescribed tolerance. Finally, the results provided by the 

models based on the simplified approach are compared to those of 1D-bar, PS and 3D FE 

models, assuming an elastic perfectly plastic adhesive behavior. A good agreement is 

shown. 
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APPENDIX A 

 

This appendix details the resolution of the differential in equation (24). The characteristic 

polynomial expression is: 
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To determine these roots, the Cardan’s method is employed. Then, equation (A.1) is 

modified as: 
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where: 
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and the determinant is: 
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By defining: 
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û





                                                                       (A.5) 

 

The roots of the reduced equation are written as: 
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Consequently, the roots of the characteristic equation (A.1) are given by: 
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Finally, the adhesive stresses have to be determined as: 
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APPENDIX B 

 

Determination of nodal displacements and forces. 

 

With the equations (18) and (19), it is possible to express the derivatives of the 

longitudinal and transverse displacements as a function of the adhesive stresses and its 

derivatives: 
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where: 
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To obtain the expressions of displacements in the adherends, equations (B.1) have to be 

integrated. Before integrating equation (B.1), the differential equations (19) are written 

as: 
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and introduced in equations (B.1) The displacements in the adherends are then 

expressed as: 

 

    (B.4) 
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Fourteen new integration constants are involved. However, following the resolution 

scheme in [18], the total number of integration constants can be reduced to twelve. 

Firstly, the second equation of system (18) gives: 
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Hence: 
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In the same way, by considering the adherend 2, it becomes: 
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Secondly, the difference between the transverse displacements of both adherends 

provides: 
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According to the definition of the peeling stress, it becomes: 
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The difference of the longitudinal displacement provides: 
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where P(x) is a quadratic polynomial, all coefficients of which have to be equal to zero: 
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The displacements in the adherends are then expressed under the shape of equations 

(27), with:  

            











































































































7

2

2

1

1
21

21

3

0

3241

6
4

3241

5
3

3241

120220
6

3241

320420
6

3241

110210
5

3241

310410
5

3241

120220
2

3241

320420
2

3241

110210
1

3241

310410
1

6)(3

11

~
~

;

~
~

;
~

;
~

;
~

;
~

K

A

B

A

B
ee

AA
b

J

kkkkkkkk

kkkk

kBkA

kkkk

kBkA

kkkk

kBkA

kkkk

kBkA

kkkk

kDkC

kkkk

kDkC

kkkk

kDkC

kkkk

kDkC















                         (B.14) 

  

The constitutive equations (19) allow for the computation of normal and shear forces and 

of bending moments in both adherends, under the shape of equations (28) with: 
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APPENDIX C 

 

Modification in the BBe element, induced by a linear shear stress in the adherends. 
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The equations (21) are modified as: 
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The expression of the adhesive shear stress then becomes: 
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Moreover, the system of differential equations in terms of adhesives stresses (equation 

22) becomes: 
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with: 
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Then, the expressions of constants of equation (B.2) are modified together with the 

expressions of displacements in equation (27) accordingly: 

 

 

 

 

 


















































2
2

2222

2

2
201

2

2222
222

2
20

2
1

1111

1

1
101

1

1111
111

1
10

2
2

2222

2

2
201

2

2222
222

2
20

2
1

1111

1

1
101

1

1111
111

1
10

k
CBCDbB

D;k
CBCD

D2Be
2

b
C

k
CBCDbB

D;k
CBCD

D2Be
2

b
C

k
CACBbA

B;k
CACB

AeB2
2

b
A

k
CACBbA

B;k
CACB

AeB2
2

b
A









       (C.5) 

 

Finally, the last equations to modify are the constants expressing the forces and 

moments in adherends in equations (B.15): 
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FIGURES 

 

Figure 1. Idealization of a single-lap bonded joint with beam and bonded-beams 

elements, for example. The dotted lined corresponds to the neutral axis. Geometrical and 

mechanical parameters. 

 

 

Figure 2. Free body diagram of elements of the overlap. 
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Figure 3. Displacements and forces on a BBa element. 

 

 

Figure 4. Bonded assembly and boundary conditions. 

 

 

Figure 5. Comparison of the adhesive shear stress distribution along the overlap 

between the present 1D-bar model with the analysis provided by Tsai and al. [16]. 
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 Figure 6. Free body diagrams of infinitesimal adherend elements of the overlap. 

 

 

Figure 7. Displacements and forces on a BBe element. 

 

 

Figure 8. Bonded assembly and boundary conditions. 
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Figure 9. Comparison of the adhesive shear stress distribution along the overlap 

between the 1D-beam present model and the analysis provided by Tsai and al. [16]. 

 

 

Figure 10. Principle scheme of the resolution algorithm for the elasto-plastic problem.  
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Figure 11. Numbering of the nodes on the single lap joint meshed. 

 

 

Figure 12. Plastic zone lengths. 
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a.  

b.  

 

Figure 13. Shear (a.) and peeling (b.) peaks on the adhesive middle line as a function of 

the number of elements in the adhesive thickness. 
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a.  

 

b.  

Figure 14. Shear (a.) and peeling (b.) peaks on the adhesive upper (or lower) line 

compared to the shear (a.) and peeling (b.) peak on the adhesive center line, as a 

function of the number of elements in the adhesive thickness. 
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Figure 15. Comparison of the adhesive shear stress distribution along the overlap 

between the 1D-bar present model and 1D-bar FE models, on an balanced structure. 

 

 

Figure 16. Comparison of the adhesive shear stress distribution along the overlap 

between the 1D-bar present model and 1D-bar FE models, on an unbalanced structure. 
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Figure 17. Comparison of the adhesive shear stress distribution along the overlap 

between the 1D-beam present and PS and 3D FE models, on a balanced structure.   

 

 

Figure 18. Comparison of the adhesive peeling stress distribution along the overlap 

between the 1D-beam present model and PS and 3D FE models, on a balanced structure. 
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Figure 19. Comparison of the adhesive Von Mises stress distribution along the overlap 

between the 1D-beam present model and PS and 3D FE models, on a balanced structure. 

 

Figure 20. Comparison of the adhesive shear stress distribution along the overlap 

between the 1D-beam present model and PS and 3D FE models, on an unbalanced 

structure. The distributions at various intermediated applied forces are shown. 
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Figure 21. Comparison of the adhesive peeling stress distribution along the overlap 

between the 1D-beam present model and PS and 3D FE models, on an unbalanced 

structure. The distributions at various intermediated applied forces are shown. 
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Figure 22. Comparison of the adhesive Von Mises stress distribution along the overlap 

between the 1D-beam present model and PS and 3D FE models, on an unbalanced 

structure. The distributions at various intermediated applied forces are shown. 

 

 

Figure 23. Comparison of the adhesive shear stress distribution along the overlap 

between the 1D-beam present model and 3D FE models, on an unbalanced structure.  
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Figure 24. Comparison of the adhesive peeling stress distribution along the overlap 

between the 1D-beam present model and 3D FE models, on an unbalanced structure.  

 

 

Figure 25. Comparison of the adhesive Von Mises stress distribution along the overlap 

between the 1D-beam present model and 3D FE models, on an unbalanced structure.  
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LIST OF TABLE CAPTIONS 

 

Table 1. Geometrical and mechanical parameters of the nominal single-lap joint under 

consideration. 

Table 2. Relative difference to the case with 32 elements, when the number of elements 

in the adhesive thickness varies. 

Table 3. Relative difference to the FE predictions, when the adherend stiffness varies 

Table 4. Relative difference to the FE predictions, when the adhesive stiffness varies.  

Table 5. Comparisons of computation times between the 3D FE models and the 1D-

beam model (1.3 s). 
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b 

(mm) 

e 

(mm) 

e1=e2 

(mm) 

L 

(mm) 

l1=l2 

(mm) 

E 

(MPa) 

E1=E2 

(MPa) 

 1=2 

1 0.4 2.4 30 151.5 2208 72000 0.38 0.33 

Table 1. Geometrical and mechanical parameters of the nominal single-lap joint under 

consideration. 

 

 relative difference to the case with 32 elements 

number of elements shear stress peak peeling stress peak 

2 -3.94% 25.8% 

4 -1.16% 2.80% 

8 -0.559% -1.83% 

16 -0.361% 0.372% 

Table 2. Relative difference to the case with 32 elements, when the number of elements 

in the adhesive thickness varies.  

 

 relative difference to the 3D FE model predictions 

E1/E2 shear stress peak peeling stress peak 

0.5 0.642% -4.93% 

1 -2.57% -1.46% 

2 -3.53% 7.41% 

3 -1.83% 5.00% 

Table 3. Relative difference to the FE predictions, when the adherend stiffness varies.  
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 relative difference to the 3D FE model predictions 

adhesive thickness shear stress peak peeling stress peak 

0.1 mm 0.336% -18.7% 

0.2 mm 1.25% -8.25% 

0.3 mm 0.224% 1.56% 

0.4 mm -2.25% 3.16% 

0.5 mm -0.520% 4.61% 

Table 4. Relative difference to the FE predictions, when the adhesive stiffness varies.  

 

 
number of elements in the adhesive thickness 

3D FE models 2 4 8 16 32 

computation time in s 6.40E+01 4.30E+02 3.90E+03 7.42E+04 3.08E+05 

number of times higher than for  
1D-beam model 

49 331 2996 57099 237231 

Table 5. Comparisons of computation times between the 3D FE models and the 1D-

beam model (1.3 s). 

 

 

 

 

 


