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On Lower Bounds for Nonstandard
Deterministic Estimation

Nabil Kbayer, Jérôme Galy, Eric Chaumette, François Vincent, Alexandre Renaux, and Pascal Larzabal

Abstract—We consider deterministic parameter estimation and
the situation where the probability density function (p.d.f.) pa-
rameterized by unknown deterministic parameters results from
the marginalization of a joint p.d.f. depending on random vari-
ables as well. Unfortunately, in the general case, this marginaliza-
tion is mathematically intractable, which prevents from using the
known standard deterministic lower bounds (LBs) on the mean
squared error (MSE). Actually the general case can be tackled
by embedding the initial observation space in a hybrid one where
any standard LB can be transformed into a modified one fitted
to nonstandard deterministic estimation, at the expense of tight-
ness however. Furthermore, these modified LBs (MLBs) appears
to include the submatrix of hybrid LBs which is an LB for the
deterministic parameters. Moreover, since in the nonstandard esti-
mation, maximum likelihood estimators (MLEs) can be no longer
derived, suboptimal nonstandard MLEs (NSMLEs) are proposed
as being a substitute. We show that any standard LB on the MSE
of MLEs has a nonstandard version lower bounding the MSE of
NSMLEs. We provide an analysis of the relative performance of the
NSMLEs, as well as a comparison with the MLBs for a large class
of estimation problems. Last, the general approach introduced is
exemplified, among other things, with a new look at the well-known
Gaussian complex observation models.

Index Terms—Deterministic parameter estimation, estimation
error lower bound, maximum likelihood estimation.

I. INTRODUCTION

A S INTRODUCED in [1, p. 53], a model of the general
deterministic estimation problem has the following four

components: 1) a parameter space Θd , 2) an observation space
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N. Kbayer is with the Tésa/Isae-Supaéro, University of Toulouse, Toulouse
31500, France (e-mail: nabil.kbayer@isae.fr).

J. Galy is with the Laboratoire d’Informatique, de Robotique et de Mi-
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X , 3) a probabilistic mapping from parameter vector space Θd to
observation space X , that is the probability law that governs the
effect of a parameter vector value θ1 on the observation x and, 4)
an estimation rule, that is the mapping of the observation space
X into vector parameter estimates ̂θ (x). Actually, in many esti-
mation problems [1]–[4], the probabilistic mapping results from
a two steps probabilistic mechanism involving an additional ran-
dom vector θr , θr ∈ Θr ⊂ RPr , that is i) θ → θr ∼ p (θr ;θ),
ii) (θ,θr ) → x ∼ p (x|θr ;θ), and leading to a compound prob-
ability distribution:

p (x,θr ;θ) = p (x|θr ;θ) p (θr ;θ) , (1a)

p (x;θ) =
∫

Θ r

p (x,θr ;θ) dθr , (1b)

where p (x|θr ;θ) is the conditional probability density function
(p.d.f.) of x given θr , and p (θr ;θ) is the prior p.d.f., parame-
terized by θ. Therefore, deterministic estimation problems can
be divided into two subsets: the subset of “standard” determin-
istic estimation problems for which a closed-form expression
of p (x;θ) is available, and the subset of “non-standard” deter-
ministic estimation problems for which only an integral form of
p (x;θ) (1b) is available.

In any estimation problem, having explicit expressions for
lower bounds on estimators performance is desired, since it can
give insight on the inherent limitations of the problem, as well
as being a reference to the optimality of the various estimators.
For a long time, the open literature on deterministic lower bounds
(LBs) on the mean squared error (MSE) has remained focused on
standard estimation [5]–[21]. One noteworthy point is that all the
LBs introduced in standard estimation derive, directly [22]–[24]
or indirectly [18], [25], from the seminal work of Barankin [11],
who established the general form of the greatest lower bound on
any sth absolute central moment (s > 1) of a uniformly unbiased
estimator with respect to p (x;θ), generalizing the earlier works
of Fisher [5], Frechet [6], Darmois [7], Cramér [8], Rao [9] and
Battacharayya [10]. It is likely that the first LBs derived in the
non-standard case appeared in [2], [3] and [4], to characterize
three estimation problems which differ from one another mainly
in the status of the additional random vector θr . In [2], authors
derived a LB for estimators of θ uniformly unbiased for all values
of θr , that is uniformly unbiased with respect to p (x|θr ;θ). In
such a setting, θr is treated as a nuisance parameter vector, i.e.,
it is not a parameter vector of interest, but the estimate of the in-
teresting parameter vector θ is nevertheless dependent on it. The
LB obtained, aka the Miller and Chang bound (MCB), can be re-
garded as the first LB on the MLE of θ deriving from p (x|θr ;θ)

1Throughout the present paper, scalars, vectors and matrices are represented,
respectively, by italic (as in a orA), bold lowercase (as in a) and bold uppercase
(as in A) characters.



in place of p (x;θ), hereinafter referred to as a non-standard MLE
(NSMLE) of θ. In [3], both θ and θr are parameter vectors of in-
terest and the LB derived is the first hybrid LB (HLB), that is a LB
for a hybrid parameter vector consisting of a mixture of determin-
istic and random parameters. In [4], θr is an unwanted parameter
vector introduced by a two steps probabilistic mechanism (1a-
1b) which estimation is not of interest, and the LB derived is
the first LB in non-standard estimation for unbiased estimates
in the Barankin sense, hereinafter referred to as a modified LB
(MLB). Specifically, [2], [3] and [4] introduced three variants
of the standard deterministic Cramér-Rao bound (CRB) [5]–[9]
suitable for non-standard estimation, namely the MCB, the hybrid
CRB (HCRB) and the modified CRB (MCRB).2 Later on, Reuven
and Messer [29] put forward the so-called hybrid Barankin bound
(HBB), that is a Barankin-type LB on the MSE of a hybrid pa-
rameter vector. It is noteworthy that the deterministic part3 of the
HBB provides a LB on the deterministic parameters able to han-
dle the MSE threshold phenomena [17], [19], [20], [22]–[24], and
that one limiting form yields the HCRB [3]. This seminal work fit-
ted to the hybrid estimation framework has naturally contributed
to disseminate the concept of a framework where the random
variables (θr ) marginalized out (1b) are regarded as unknown
nuisance random parameters to be estimated. This is unambigu-
ously recalled in abstracts and introductions of subsequent papers
dealing with non-standard estimation such as [30]–[42].

As a first contribution sketchily disclosed in [43], a unified
framework for the derivation of LBs on the MSE for unbiased
estimates in non-standard estimation is more fully developed.
The proposed framework exploits the fact that the MSE is the
square of a norm defined on the vector space of square inte-
grable functions ̂θ (x) and, therefore, all known standard LBs
on the MSE can be formulated as the solution of a norm mini-
mization problem under linear constraints [20], [23], [25], [44].
This formulation of LBs not only provides a straightforward un-
derstanding of the hypotheses associated with the different LBs
[20], [23], [44] (briefly overviewed in Section II), but also al-
lows to obtain a unique formulation of each LB in terms of a
unique set of linear constraints. Interestingly enough, the “norm
minimization” approach simply exploits the general form of the
marginalization formula (1b), that is p (x;θ) is simply the re-
sult of marginalizing over the intermediate random variables θr ,
without any reference to extraneous or nuisance random param-
eters. As an immediate consequence, which goes beyond mere
semantic features, θr is neither required nor expected to be es-
timated when searching for LBs for unbiased estimates of θ in
non-standard estimation. Indeed, the proposed rationale brings to
light that the lack of a closed-form for the marginal p.d.f. p (x;θ)
simply compels to embed the initial norm minimization prob-
lem on observation space X into the same norm minimization
problem but on X × Θr , leading to the derivation of LBs for
unbiased estimator ̂θ (x,θr ) of θ in place of unbiased estimators
̂θ (x) of θ. This embedding mechanism allows to show that any
LB derived in standard estimation has an analog form fitted to
non-standard estimation obtained by substituting p (x, θr ;θ) for
p (x; θ) in the LB definition (see Section III), encompassing the

2For the sake of completeness: i) CRBs for synchronization parameter es-
timation derived earlier in [26], [27] are in fact MCRBs, ii) [28] introduced
earlier a tighter version of the MCRB [28, (20)] but with sufficient conditions
[28, (21)] unnecessary restrictive.

3In the following, the deterministic part of a HLB denotes the HLB’s sub-
matrix which is a LB on the MSE of the determinisitic parameter vector.

historical LBs such as the MCRB [4], [30] or the modified Bhat-
tacharyya bound (MBaB) [34]. Therefore, it seems appropriate
to keep on referring to these LBs for non-standard estimation as
modified LBs (MLBs) as proposed initially in [4].

Further more, the proposed framework naturally allows to ob-
tain tighter MLBs (see SubSection III-B1 and III-B2) by adding
constraints compatible with unbiasedeness, in order to restrict
the class of viable estimators ̂θ (x,θr ) and therefore to increase
the minimum norm obtained. It is exemplified with two gen-
eral subsets of additional constraints. The first subset yields the
deterministic part of the class of HLBs based on linear trans-
formation on the centered likelihood-ratio (CLR) function [45],
which includes the HCRB [3], [30], [35], the HBB [29] and
their combination via a compression matrix (the CCLRB) [45].
The second subset, combined with the first one, yields the de-
terministic part of an even more general class of HLBs obtained
from linear transformation of a mixture of the McAulay-Seidman
bound (MSB) and Bayesian lower bounds of the Weiss-Weinstein
family, including the so-called hybrid McAulay-Seidman-Weiss-
Weinstein bound (HMSSWB) [46]. It is noteworthy that the pro-
posed unified framework allows to reformulate all known LBs
on the MSE for unbiased estimates in non-standard estimation as
a MLBs without any regularity condition on the (nuisance) ran-
dom vector estimates, since θr is neither required nor expected
to be estimated. Furthermore, the proposed framework naturally
incorporates possible tightness comparison between two MLBs.
Indeed, if the subset of linear constraints associated with a MLB
is included into the subset of linear constraints associated with
another MLB, then the latter one is tighter. Thus, the proposed
unified framework is a useful tool to look for the best possible
trade-off between tightness, regularity conditions and computa-
tional cost, in the choice of a MLB for a given non-standard es-
timation problem. Last, the proposed framework not only proves
straightforwardly the looseness of any MLB (including therefore
the deterministic part of any HLB) in comparison with the stan-
dard LB, but also provides a very general “closeness condition”
on p (x, θr ;θ) in order to obtain a MLB equal to the standard LB
(see SubSection III-C1).

Since in non-standard estimation, maximum likelihood esti-
mators (MLEs) can be no longer derived, “non-standard” MLEs
(NSMLEs), i.e. joint MLEs of θ and θr w.r.t. p (x|θr ;θ), are pro-
posed as being a substitute. The idea underlying this proposal is
that the closed-form of p (x|θr ;θ) is known in many estimation
problems [47] and therefore the NSMLEs take advantage not only
of asymptotic optimality and unbiasedeness w.r.t. p (x|θr ;θ) of
MLEs, but also of the extensive open literature on MLE closed-
form expressions or approximations [47]. These key features
clearly make the “non-standard” maximum likelihood estima-
tion more attractive than joint maximum a posteriori-maximum
likelihood estimation (JMAPMLE), known to be biased and in-
consistent in general [48], or than the Expectation-Maximization
algorithm [49], impractical to implement in many non-standard
problems of interest. Furthermore, as exemplified in [2], they are
applications where the property of an estimator unbiased for all
values of the random parameter θr is desirable, even if a closed-
form expression of p (x;θ) is available. Last, as mentioned in
[50, p. 6, 12], it appears that the NSMLEs are also the asymptotic
forms of JMAPMLEs for a class of hybrid estimation problems
when the number of independent observations tends to infinity
[51]. To the best of our knowledge, NSMLEs have not received
full attention so far, whereas they may be the only sensible es-
timators available in many estimation problems Therefore, as a



second contribution we introduce a detailed study of the asymp-
totic properties of NSMLEs (see Section IV). Firstly, we show
that NSMLEs are asymptotically (when the number of indepen-
dent observations tends to infinity) suboptimal and that any stan-
dard LB on the MSE of MLEs has a non-standard version lower
bounding the MSE of NSMLEs. Secondly, we exhibit a large
class of estimation problems for which a comparison between
non-standard LBs and modified LBs is possible.

Last, the general approach introduced is exemplified with ex-
isting application examples and a new look at the well known
Gaussian complex observation models (see Section V-B). The
results introduced in the following are also of interest if a closed-
form of p (x;θ) does exist but the resulting expression is in-
tractable to derive LBs and/or MLEs. For the sake of simplicity,
unless otherwise stated, we will focus on the estimation of a sin-
gle unknown real deterministic parameter θ, although the results
are easily extended to the estimation of multiple functions of
multiple parameters [23], [24] (see Sections III-A1 and V-B for
examples).

A. Notations and Assumptions

In the following, the n-th row and m-th column element of
the matrix A will be denoted by An,m or (A)n,m . The n-th co-
ordinate of the column vector a will be denoted by an or (a)n .
The scalar/matrix/vector transpose, conjugate and transpose con-
jugate are respectively indicated by the superscripts T , ∗ and H .
[A,B] denotes the matrix resulting from the horizontal concate-
nation of matrices A and B.

(

aT ,bT
)

denotes the row vector
resulting from the horizontal concatenation of row vectors aT
and bT . IM is the identity matrix of order M . 1M is a M -
dimensional vector with all components equal to one. If A is
a square matrix, |A| denotes its determinant. For two matrices
A and B, A � B means that A−B is positive semi-definite
(Löwner ordering). Furthermore, unless otherwise stated:

� x denotes a M -dimensional complex random observation
vector belonging to the observation space X ⊂ CM , θ de-
notes a real deterministic parameter belonging to the param-
eter space Θd ⊂ R, and θr denotes a Pr -dimensional real
random vector belonging to a subset Θr of RPr .

� p (x; θ), p (x, θr ; θ), p (x|θr ; θ), p (θr ; θ) and p (θr |x; θ)
denote, respectively, the marginal p.d.f. of x, the joint p.d.f.
of x and θr , the likelihood function of θr , the prior p.d.f. of
θr and the posterior p.d.f. of θr , parameterized by θ.

� SX , SX ,Θ r
, SX|θr , SΘ r

and SΘ r |x denote, respectively,
the support of p (x; θ), p (x,θr ; θ), p (x|θr ; θ), p (θr ; θ)
and p (θr |x; θ), i.e., SX = {x ∈ CM |p(x; θ) > 0},
SX ,Θ r

=
{

(x,θr ) ∈ CM × RPr |p (x,θr ; θ) > 0
}

, SX|θr
=

{

x ∈ CM |p (x|θr ; θ) > 0
}

, SΘ r
= {θr ∈ RPr |p(θr ;

θ) > 0}, and SΘ r |x = {θr ∈ RPr |p (θr |x; θ) > 0}.4
� Ex;θ [g (x)], Eθr ;θ [g (θr )] and Ex,θr ;θ [g (x,θr )] denote,

respectively, the statistical expectation of the vector of func-
tions g () with respect tox, toθr , tox andθr , parameterized
by θ, and satisfy:

Ex,θr ;θ [g (x,θr )] = Ex;θ
[

Eθr |x;θ [g (x,θr )]
]

= Eθr ;θ
[

Ex|θr ;θ [g (x,θr )]
]

. (2)

4The Barankin approach [11] (see Section II) and its extensions to non-
standard estimation (see Sections III and IV) require that all the supports be
independent of θ.

� L2(SX ), L2(SX ,Θ r
) and L2(SX|θr ) denote, respectively,

the real Euclidean space of square integrable real-valued
functions w.r.t. p (x; θ), p (x,θr ; θ) and p (x|θr ; θ),

� 1A (θr ) denote the indicator function of subset A of RPr .

II. AN OVERVIEW OF LOWER BOUNDS FOR

STANDARD ESTIMATION

A. On Lower Bounds and Norm Minimization

In the search for a LB on the MSE of unbiased estimators, two
fundamental properties of the problem at hand, introduced by
Barankin [11], must be noticed. The first property is that the MSE
of a particular estimator ̂θ0 ∈ L2 (SX ) of θ0 , i.e., ̂θ0 � ̂θ0 (x),
where θ0 is a selected value of the parameter θ, is the square of
a norm ‖ ‖2

θ associated with a particular scalar product 〈 | 〉θ :

MSEθ0

[

̂θ0
]

=
∥

∥

∥

̂θ0 (x) − θ0
∥

∥

∥

2

θ0
, (3a)

〈g (x) | h (x)〉θ = Ex;θ [g (x)h (x)] . (3b)

This property allows the use of two equivalent fundamental re-
sults: the generalization of the Cauchy-Schwartz inequality to
Gram matrices (generally referred to as the “covariance inequal-
ity” [21], [22]) and the minimization of a norm under linear
constraints [20], [23], [25], [44]. Nevertheless, we shall prefer
the “norm minimization” form as its use:

� provides a straightforward understanding of the hypotheses
associated with the different LBs on the MSE expressed as
a set of linear constraints,

� allows to resort to the same rationale for the derivation of
LBs whatever the observation space considered,

� allows to easily reveal LBs inequalities and tightness con-
ditions without the complex derivations (based on the use
of the covariance inequality) introduced by previous works
[29], [30], [52].

The second property is that an unbiased estimator ̂θ0 ∈ L2 (SX )
of θ0 should be uniformly unbiased:

∀θ ∈ Θd : Ex;θ

[

̂θ0 (x)
]

=
∫

SX

̂θ0 (x) p (x; θ) dx = θ. (4a)

If SX , i.e., the support of p (x; θ), does not depend on θ, then (4a)
can be recasted as:

∀θ ∈ Θd : Ex;θ0

[(

̂θ0 (x) − θ0
)

υθ0 (x; θ)
]

= θ − θ0 , (4b)

where υθ0 (x; θ) = p (x; θ) /p
(

x; θ0
)

denotes the Likelihood
Ratio (LR). As a consequence, the locally-best (at θ0 ) unbiased
estimator inL2 (SX ) is the solution of a norm minimization under
linear constraints:

min
̂θ0 ∈L2 (SX )

{

∥

∥

∥

̂θ0 (x) − θ0
∥

∥

∥

2

θ0

}

under

〈

̂θ0 (x) − θ0 | υθ0 (x; θ)
〉

θ0
= θ − θ0 ,∀θ ∈ Θd . (5)

Unfortunately, as recalled hereinafter, if Θd contains a non empty
interval of R, then the norm minimization problem (5) leads to
an integral equation (9a) with no analytical solution in general.
Therefore, since the seminal work of Barankin [11], many studies
quoted in [22]–[24], [53] have been dedicated to the derivation
of “computable” LBs approximating the MSE of the locally-best



unbiased estimator, which defines the Barankin bound (BB). All
these approximations derive from sets of discrete or integral linear
transform of the “Barankin” constraint (4b) and can be easily
obtained (see next Section) using the following well known norm
minimization lemma [54]. Let U be an Euclidean vector space on
the field of real numbers R which has a scalar product 〈 | 〉. Let
(c1 , . . . , cK ) be a family of K linearly independent vectors of
U and v ∈ RK . The problem of the minimization of ‖u‖2 under
the K linear constraints 〈u | ck 〉 = vk , k ∈ [1,K] then has the
solution:

min
{

‖u‖2
}

= ‖uopt‖2 = vT G−1v, (6)

uopt =
K
∑

k=1

αkck , α = G−1v,Gk ′,k = 〈ck | ck ′ 〉 .

B. Lower Bounds via Linear Transformations of the
McAulay-Seidman Bound

The McAulay-Seidman bound (MSB) is the BB approximation
obtained from a discretization of the Barankin unbiasedness con-
straint (4b). Let θN =

(

θ1 , . . . , θN
)T ∈ ΘN

d be a vector ofN se-
lected values of the parameter θ (aka test points), υθ0

(

x;θN
)

=
(

υθ0

(

x; θ1
)

, . . . , υθ0

(

x; θN
))T

be the vector of LRs associated

to θN , ξ (θ) = θ − θ0 and ξ
(

θN
)

=
(

ξ
(

θ1
)

, . . . , ξ
(

θN
))T

.

Then, any unbiased estimator ̂θ0 ∈ L2 (SX ) verifying (4b) must
comply with the following subset of N linear constraints:

Ex;θ0

[(

̂θ0 (x) − θ0
)

υθ0

(

x;θN
)

]

= ξ
(

θN
)

, (7a)

yielding, via the norm minimization lemma (6), the MSB [17]:

MSEθ0

[

̂θ0
]

≥ ξ (θN )T
R−1
υθ 0
ξ
(

θN
)

,

(

Rυθ 0

)

n,m
= Ex;θ0 [υθ0 (x; θm ) υθ0 (x; θn )] , (7b)

which is a generalization of the Hammersley-Chapman-Robbins
bound (HaCRB) previously introduced in [12] and [13] for 2 test
points (N = 2). Obviously, any given set of K (K ≤ N) linear
transformations of (7a):

Ex;θ0

[(

̂θ0 (x) − θ0
)

HT
Kυθ0

(

x;θN
)

]

= HT
K ξ

(

θN
)

,

HK = [h1 , . . . ,hK ] ,hk ∈ RN , 1 ≤ k ≤ K, (8a)

where HK has a full rank, provides, via the norm minimization
lemma (6), another LB on the MSE:

MSEθ0

[

̂θ0
]

≥ ξ (θN )T
R†

HK
ξ
(

θN
)

,

R†
HK

= HK

(

HT
KRυθ 0 HK

)−1
HT
K . (8b)

It is worth noting that, for a given vector of test points θN , the
LB (8b) reaches its maximum if, and only if, the matrix HK

is invertible (K = N) [17], [55, Lemma 3], which represents a
bijective transformation of the set of constraints associated with
the MSB ( 7a). Thus:

MSEθ0

[

̂θ0
]

≥ ξ (θN )T
R−1
υθ 0
ξ
(

θN
)

≥ ξ (θN )T
R†

HK
ξ
(

θN
)

.

The BB [11, Theorem 4] is obtained by taking the supremum of
(8b) over all the existing degrees of freedom

(

N,θN ,K,HK

)

.
All known LBs on the MSE deriving from the BB can be
obtained with appropriate instantiations of (8b), that is with
appropriate linear transformations of the MSB5 (7b). For ex-
ample, under mild regularity conditions on p (x; θ), the CRB is
the limiting form of the HaCRB, that is the MSB where N = 2,

θ2 =
(

θ0 , θ0 + dθ
)T

and dθ → 0 [11]–[13], [17], [55]. More
generally, appropriate linear transformations of the MSB (8a–8b)
for finite values of N and K lead to the Fraser-Gutman bound
(FGB ) [14], the Bhattacharyya bound (BaB) [10], the McAulay-
Hofstetter bound (MHB), the Glave bound (GlB) [20], and the
Abel bound (AbB) [22]. Furthermore, the class of LBs introduced
lately in [24] can also be obtained as linear transformations of
the MSB (8a–8b) in the limiting case where N,K → ∞. It suf-
fices to define each hk as a vector of samples of a parametric
function h (τ, θ), τ ∈ Λ ⊂ R, integrable over Θd , ∀τ ∈ Λ, i.e.,
hTk =

(

h
(

τk , θ
1
)

, . . . , h
(

τk , θ
N
))

, 1 ≤ k ≤ K. In such a set-
ting, one obtains the integral form of (8b) (see [25, Section 2] for
details) released in [24, (34–36)]:

MSEθ0

[

̂θ0
]

≥ TTBh
θ0 =

∫

Λ
Γhθ0 (τ)βhθ0 (τ) dτ, (9a)

where Γhθ0 (τ) =
∫

Θd
h (τ, θ)

(

θ − θ0
)

dθ , and βhθ0 (τ) is the
solution of the following integral equation:

Γhθ0 (τ ′) =
∫

Λ
Kh
θ0 (τ ′, τ)βhθ0 (τ) dτ, (9b)

Kh
θ0 (τ, τ ′) =

∫∫

Θ2
d

h (τ, θ)Rυθ 0 (θ, θ′)h (τ ′, θ′) dθdθ′, (9c)

Rυθ 0 (θ, θ′) = Ex;θ0

[

p (x; θ)
p (x; θ0)

p (x; θ′)
p (x; θ0)

]

. (9d)

Note that if h (τ, θ) = δ (τ − θ) (limiting case of HN = IN
where N = K → ∞) then Kh

θ0 (τ, τ ′) = Rυθ 0 (τ, τ ′) and (9a)
becomes the expression of the BB [23, (10)], [44, (6–7)]. As
mentioned above, in most practical cases, it is impossible to find
an analytical solution of (9b) to obtain an explicit form of the
TTBh

θ0 (9a), which somewhat limits its interest. Nevertheless,
as highlighted in [24], this formalism allows to use discrete or
integral linear transforms of the LR, possibly non-invertible, pos-
sibly optimized for a set of p.d.f. (such as the Fourier transform)
in order to get a tight approximation of the BB.

III. MODIFIED LOWER BOUNDS FOR

NON-STANDARD ESTIMATION

In the previous Section II-B, we have pointed out that in stan-
dard estimation, the computability of the MSB (7b) is the cor-
nerstone to generate the class of LBs on the MSE of uniformly
unbiased estimate deriving from Barankin’s work [11]. Therefore
it seems sensible to check whether or not the MSB is computable
in non-standard estimation.

5Since there is a one-to-one correspondence between a LB and a set of linear
constraints, in the following, a linear transformation of a given LB actually
refers to the LB obtained from a linear transformation of the corresponding set
of linear constraints.



A. A New Look at Modified Lower Bounds

If SX ,Θ r
, i.e., the support of p (x,θr ; θ), is independent of θ ,

then:

Ex,θr ;θ [g (x, θr )] = Ex,θr ;θ0 [g (x,θr ) υθ0 (x,θr ; θ)] ,

υθ0 (x,θr ; θ) = p (x,θr ; θ) /p
(

x,θr ; θ0) . (10)

Therefore, for any unbiased estimator ̂θ0 ∈ L2 (SX ), (7a) can be
reformulated as, ∀n ∈ [1, N ]:

θn − θ0 = Ex;θ0

[(

̂θ0 (x) − θ0
)

υθ0 (x; θn )
]

= Ex;θn
[

̂θ0 (x) − θ0
]

= Ex,θr ;θn
[

̂θ0 (x) − θ0
]

= Ex,θr ;θ0

[(

̂θ0 (x) − θ0
)

υθ0 (x,θr ; θn )
]

,

that is in vector form:

ξ
(

θN
)

= Ex;θ0

[(

̂θ0 (x) − θ0
)

υθ0

(

x;θN
)

]

= Ex,θr ;θ0

[(

̂θ0 (x) − θ0
)

υθ0

(

x,θr ;θN
)

]

, (11)

where
(

υθ0

(

x,θr ; θ1
)

, . . . , υθ0

(

x,θr ; θN
))

= υTθ0 (x,θr ;
θN ). Additionally, since ̂θ0 ∈ L2 (SX ), then:

Ex;θ0

[

(

̂θ0 (x) − θ0
)2

]

= Ex,θr ;θ0

[

(

̂θ0 (x) − θ0
)2

]

. (12)

Therefore:

min
̂θ0 ∈L2 (SX )

{

Ex;θ0

[

(

̂θ0 (x) − θ0
)2

]}

under

ξ
(

θN
)

= Ex;θ0

[(

̂θ0 (x) − θ0
)

υθ0

(

x;θN
)

]

, (13a)

is equivalent to:

min
̂θ0 ∈L2 (SX )

{

Ex,θr ;θ0

[

(

̂θ0 (x) − θ0
)2

]}

under

ξ
(

θN
)

= Ex,θr ;θ0

[(

̂θ0 (x) − θ0
)

υθ0

(

x,θr ;θN
)

]

.

(13b)

Note that the equivalence between (13a) and (13b) holds only
if ̂θ0 ∈ L2 (SX ). Unfortunately, since L2 (SX ) is a subspace of
L2 (SX ,Θ r ), the solution of (13b) cannot be given by the min-
imum norm lemma (6) in general, since the lemma provides a
solution in L2 (SX ,Θ r ), that is the solution of:

min
̂θ0 ∈L2 (SX ,Θ r )

{

Ex,θr ;θ0

[

(

̂θ0 (x,θr ) − θ0
)2

]}

under

ξ
(

θN
)

= Ex,θr ;θ0

[(

̂θ0 (x,θr ) − θ0
)

υθ0

(

x,θr ;θN
)

]

,

(13c)

yielding the following modified MSB:

MSEθ0

[

̂θ0
]

≥ ξ (θN )T
R−1
υθ 0
ξ
(

θN
)

,

(

Rυθ 0

)

n,m
= Ex,θr ;θ0 [υθ0 (x,θr ; θm ) υθ0 (x,θr ; θn )] , (14)

in the sense that it is a LB for unbiased estimates belonging to
L2 (SX ,Θ r ). One noteworthy point is that the modified MSB (14)
is obtained from the MSB (7b) by substituting Ex,θr ;θ0 [ ] for
Ex;θ0 [ ] and υθ0

(

x,θr ; θN
)

for υθ0

(

x;θN
)

. More generally,
since (13a) and (13c) share a similar formulation, reasoning by
analogy, one can state that any approximation of the BB deriving
from linear transformations of the set of constraints associated
with the MSB (8a–8b), has an analog formulation in non-standard
estimation obtained by substituting Ex,θr ;θ0 [ ] for Ex;θ0 [ ] and
υθ0

(

x,θr ;θN
)

for υθ0

(

x;θN
)

. Actually, this is obtained by
substituting p (x,θr ; θ) for p (x; θ) in any approximation of the
BB. This result holds whatever the prior p.d.f. depends or does not
depend on the deterministic parameters. In the end, we have sim-
ply embedded the search of the locally-best unbiased estimator
initially performed in the vector space L2 (SX ) (5) into a larger
vector space containing L2 (SX ), namely L2 (SX ,Θ r ), where the
search of the locally-best unbiased estimator is formulated as:

min
̂θ0 ∈L2 (SX ,Θ r )

{

Ex,θr ;θ0

[

(

̂θ0 (x,θr ) − θ0
)2

]}

under

Ex,θr ;θ

[

̂θ0 (x,θr ) − θ0
]

= θ − θ0 ,∀θ ∈ Θd . (15)

Indeed, if ̂θ0 ∈ L2 (SX ) ⊂ L2 (SX ,Θ r ), then (15) reduces to (5).
From this perspective, it seems appropriate to refer to these
LBs for unbiased estimates belonging to L2 (SX ,Θ r ) as mod-
ified LBs (MLBs) as it has been proposed initially in [4] and
[30] for the modified CRB. Since (13a) and (13b) are equivalent
and L2 (SX ) ⊂ L2 (SX ,Θ r ), it follows naturally that the modi-
fied form of a LB is looser (lower or equal) than the standard
form of the LB. This highlights the trade-off associated with
MLBs in non-standard estimation: computability at the possible
expense of tightness. However it is possible to increase the tight-
ness of MLBs by adding constraints in order to restrict the class
of viable estimators ̂θ0 ∈ L2 (SX ,Θ r ) and therefore to increase
the minimum norm obtained from (13c) as shown hereinafter in
Section III-B.

1) Old and New Modified Lower Bounds: In the light of the
above, the MCRB in vector parameter estimation θ is obtained
directly from the CRB:

CRBθ = Ex;θ

[

∂ ln p (x;θ)
∂θ

∂ ln p (x;θ)
∂θT

]−1

→

MCRBθ = Ex,θr ;θ

[

∂ ln p (x,θr ;θ)
∂θ

∂ ln p (x,θr ;θ)
∂θT

]−1

,

(16)

and one can assert that CRBθ ≥ MCRBθ , without having to
invoke neither the Jensen’s inequality [4] nor to prove specific
matrix inequality [30, (4)]. Furthermore, the MCRB expression
(16) is still valid if the prior depends on θ, which extends the
historical results provided in [4] and [30] under the restrictive
assumption of a prior independent of θ. In the same way, the



MBaB of order K is obtained from the BaB [10] [44, (19)]:

BaBθ = eT1 Ex;θ

[

� (x; θ)� (x; θ)T
]−1

e1 ,

� (x; θ)T = 1
p(x;θ)

(

∂p(x;θ)
∂θ , . . . , ∂

K p(x;θ)
∂K θ

)
→

MBaBθ = eT1 Ex,θr ;θ

[

� (x,θr ; θ)� (x,θr ; θ)
T
]−1

e1 ,

� (x,θr ; θ)
T = 1

p(x,θr ;θ)

(

∂p(x,θr ;θ)
∂θ , . . . , ∂

K p(x,θr ;θ)
∂K θ

)

,

where eT1 = (1, 0, . . . , 0). Therefore, with the proposed ap-
proach, we not only extend the result introduced in [34, (4)]
under the restrictive assumption of a prior independent of θ, but
we can also assert that BaBθ ≥MBaBθ , which has not been
proven in [34].

As with the CRB and the BaB, the modified form of all remain-
ing BB approximations released in the open literature, namely the
FGB [14], the MHB [19], the GlB [20], the AbB [22], and the
CRFB [24, (101-102)], can be easily obtained with the proposed
framework. For instance, the modified form of the general class
of LBs (9a–9d) proposed in [24, (34-36)] is obtained simply by
updating the definition of Rυθ 0 (θ, θ′) (9d) as follows:

Rυθ 0 (θ, θ′) = Ex,θr ;θ0

[

p (x,θr ; θ)
p (x,θr ; θ0)

p (x,θr ; θ′)
p (x,θr ; θ0)

]

, (17)

and one can also assert that TTBh
θ0 ≥MTTBh

θ0 .

B. A General Class of Tighter Modified Lower Bounds and its
Relationship with Hybrid Lower Bounds

As mentioned above, it is possible to increase the tightness
of MLBs by adding constraints in order to restrict the class of
viable estimators ̂θ0 ∈ L2 (SX ,Θ r ) and therefore to increase the
minimum norm obtained from (13c). However, such additional
constraints must keep on defining a subset of L2 (SX ,Θ r ) in-
cluding the set of unbiased estimates belonging to L2 (SX ), as
shown in the following with two general subsets of additional
constraints. The first subset can be related to historical works on
hybrid LBs [3], [29] but addressed in a different way. The second
subset is a generalization of [46, (8)] reformulated according to
the proposed framework.

1) A First Class of Tighter Modified Lower Bounds: Since:

p (x; θ) =
∫

SΘ r |x
p (x,θr ; θ) dθr

=
∫

RP r

p (x,θr ; θ) 1SΘ r |x (θr ) dθr ,

then, after change of variables θr = θ′r + hr and renaming θ′r
as θr :

p (x; θ) =
∫

RP r

p (x,θr + hr ; θ) 1SΘ r |x (θr + hr ) dθr .

Therefore for any hr such that:

1SΘ r |x (θr + hr ) = 1SΘ r |x (θr ) , ∀θr ∈ RPr , (18a)

then:

p (x; θ) =
∫

SΘ r |x
p (x,θr + hr ; θ) dθr , (18b)

and for any unbiased estimator ̂θ0 ∈ L2 (SX ), (7a) can be refor-
mulated as, ∀n ∈ [1, N ]

θn − θ0 = Ex;θ0

[(

̂θ0 (x) − θ0
)

υθ0 (x; θn )
]

=
∫

SX

(

̂θ0 (x) − θ0
)

p (x; θn ) dx

=
∫

SX

(

̂θ0 (x) − θ0
)

∫

SΘ r |x
p (x,θr + hr ; θn ) dθr dx

= Ex,θr ;θ0

[(

̂θ0 (x) − θ0
)

υθ0 (x,θr + hr ; θn )
]

,

that is in vector form:

ξ
(

θN
)

= Ex;θ0

[(

̂θ0 (x) − θ0
)

υθ0

(

x;θN
)

]

= Ex,θr ;θ0

[(

̂θ0 (x) − θ0
)

υθ0

(

x,θr + hr ; θN
)

]

.

(19)

The identity (19) means that for any ̂θ0 ∈ L2 (SX ), the
two subsets of N constraints are equivalent system of lin-
ear equations yielding the same vector subspace of L2 (SX ):

span
(

υθ0

(

x; θ1
)

, . . . , υθ0

(

x; θN
))

. Therefore, for any ̂θ0 ∈
L2 (SX ), any set of N ×K constraints of the form:

ξ
(

θN
)

= Ex,θr ;θ0

[(

̂θ0 (x) − θ0
)

υθ0

(

x,θr + hkr ;θ
N
)

]

,

(20)
where

{

h1
r , . . . ,hKr

}

satisfy (18a), is equivalent to the set of
N constraints (11). Fortunately this result does not hold a pri-
ori for all ̂θ0 ∈ L2 (SX ,Θ r ) where the N ×K constraints (20)
are expected to be linearly independent (not necessarily true
in the general case). As mentioned above, the main effect of
adding constraints is to restrict the class of viable estimators
̂θ0 ∈ L2 (SX ,Θ r ) and therefore to increase the minimum norm
obtained from (6):

min
̂θ0 ∈L2 (SX ,Θ r )

{

Ex,θr ;θ0

[

(

̂θ0 (x,θr ) − θ0
)2

]}

under

ξ
(

θN
)

= Ex,θr ;θ0

[(

̂θ0 (x,θr ) − θ0
)

υθ0

(

x,θr + hkr ; θ
N
)

]

,

(21)

1 ≤ k ≤ K, which remains smaller (or equal) than the minimum
norm obtained for ̂θ0 ∈ L2 (SX ) given by (13a). This LB ordering
was previously introduced in [29, (29)], but only in the restricted
case where the prior does not depend on the deterministic param-
eter and SΘ r |x = RPr , at the expense of a not straightforward
derivation (see Subsections III.C and III.D in [29]). Note that the
regularity condition (18a) only imposes on 1SΘ r |x (θr ), x ∈ SX ,
to be of the following form:

1SΘ r |x (θr ) =

∣

∣

∣

∣

∣

∣

0 if
∑

hr ∈Fx

(

∑

l∈Z
1S0

Θ r |x
(θr + lhr )

)

= 0,

1, otherwise,
(22)

where Fx and S0
Θ r |x are subsets of RPr , what means that the

complementary of SΘ r |x is the union (possibly uncountable) of
periodic subsets of RPr .



2) A Second Class of Tighter Modified Lower Bounds: Let
us recall that any real-valued function ψ (x, θr ; θ) defined on
SX ,Θ r

satisfying
∫

SΘ r |x
ψ (x,θr ; θ) p (x,θr ; θ) dθr = 0, (23)

is a Bayesian LB-generating functions [56]. A well known exam-
ple is, for γ ∈]0, 1[:

ψhr
γ (x,θr ; θ) = (p (x,θr + hr ; θ) /p (x,θr ; θ))

γ

− (p (x,θr − hr ; θ) /p (x,θr ; θ))
1−γ , (24)

if (x,θr ) ∈ SX ,Θ r
, and ψhr

γ (x,θr ; θ) = 0 otherwise, yielding
the Bayesian Weiss-Weinstein bound (BWWB). Let ψ (x, θr ; θ)
be a vector of L linearly independent functions satisfying (23).
Then ∀g (.) ∈ L2 (SX ):

Ex,θr ;θ0

[

g (x)ψ
(

x,θr ; θ0)] = 0, (25a)

which means that the subspace L2 (SX ) is orthogonal
to span

{

ψ1
(

x, θr ; θ0
)

, . . . , ψL
(

x, θr ; θ0
)}

in L2 (SX ,Θ r ).
Therefore, since (13a) can be reformulated as (13b), it is straight-
forward that (13a) is equivalent to:

min
̂θ0 ∈L2 (SX )

{

Ex,θr ;θ0

[

(

̂θ0 (x) − θ0
)2

]}

under

ξ
(

θN
)

= Ex,θr ;θ0

[(

̂θ0 (x) − θ0
)

υθ0

(

x;θN
)

]

0 = Ex,θr ;θ0

[(

̂θ0 (x) − θ0
)

ψ
(

x,θr ; θ0
)

] . (25b)

In other words, the addition of the set of L constraints

Ex,θr ;θ0

[(

̂θ0 (x) − θ0
)

ψ
(

x,θr ; θ0
)

]

= 0 to any linear trans-

formation of (7a) does not change the associated LB (8b)
computed for ̂θ0 ∈ L2 (SX ). Fortunately, once again, this

result does not hold a priori for all ̂θ0 ∈ L2 (SX ,Θ r ).
Indeed, provided that ψ (x,θr ; θ) is chosen such that

Ex,θr ;θ0

[

υθ0

(

x,θr ;θN
)

ψ
(

x,θr ; θ0
)T

]

�= 0 [55, Lemma 2],

one can increase the minimum norm obtained from (13c) by
computing:

min
̂θ0 ∈L2 (SX ,Θ r )

{

Ex,θr ;θ0

[

(

̂θ0 (x,θr ) − θ0
)2

]}

under

ξ
(

θN
)

= Ex,θr ;θ0

[(

̂θ0 (x,θr ) − θ0
)

υθ0

(

x,θr ;θN
)

]

0 = Ex,θr ;θ0

[(

̂θ0 (x,θr ) − θ0
)

ψ
(

x,θr ; θ0
)

] , (26)

which remains smaller (or equal) than the minimum norm ob-
tained for ̂θ0 ∈ L2 (SX ) given by (13a). First note that it is in
general not possible to compare (21) with (26) since they derive
from different subset of constraints. Second, (26) can be used with
joint p.d.f. p (x,θr ; θ) which does not satisfy the regularity con-
dition (22) since functions (24) are essentially free of regularity
conditions [56].

3) A General Class of Tighter Modified Lower Bounds and its
Relationship with Hybrid Lower Bounds: The tightest modified
LBs are obtained by combination of constraints (21) and (26) as

the solution of:

min
̂θ0 ∈L2 (SX ,Θ r )

{

Ex,θr ;θ0

[

(

̂θ0 (x,θr ) − θ0
)2

]}

under

ξ
(

θN
)

= Ex,θr ;θ0

[(

̂θ0(x,θr ) − θ0
)

υθ0

(

x,θr + hkr ; θ
N
)

]

0 = Ex,θr ;θ0

[(

̂θ0(x,θr ) − θ0
)

ψ
(

x,θr ; θ0)
]

, (27)

1 ≤ k ≤ K, where ψ
(

x,θr ; θ0
)

satisfies (23).
Firstly, if we restrict (27) to (21), that is no function

ψ
(

x, θr ; θ0
)

(23) is involved, then the solution of (21), (27)
given by the minimum norm lemma (6) yields the deterministic
part of the HLBs obtained as discrete forms [45, (30)] of linear
transformations on the CLR function introduced in [45]. Follow-
ing from similar argument given in Section II-B or in [46, Section
III], one obtains the deterministic part of the HLB integral form
proposed in [45], as linear transformations of (21) in the limiting
case whereN,K → ∞. Note that in [45] two restrictive regular-
ity conditions are assumed: i) SΘ r |x = RPr , ii) the prior does not
depend on θ, which are relaxed with the proposed framework:
HLBs obtained via linear transformations on the CLR function
are still valid if the prior depends on θ as long as SΘ r |x satisfies
(22), which includes RPr . In contrast, according to (22) such
bounds do not exist if SΘ r |x is a connected set of RPr and in
most cases, if SΘ r |x is a disconnected subset of RPr (not stated
in [45]). Last, since the modified LB obtained from (21) is lower
than or equal to the standard LB from (13a), one can assert that
the deterministic part of any HLB obtained via the linear trans-
formation on the CLR is looser (or equal) than the corresponding
standard LB (not proven in [45]).

Secondly, if SΘ r |x does not satisfy (22), e.g., if SΘ r |x is an in-
terval, then (21) can no longer be used to increase the minimum
norm obtained from (13c). One solution is therefore to restrict
(27) to (26) and, following from similar argument given in Sec-
tion II-B, to resort to some of its possible integral forms obtained
as the limiting cases where N,K → ∞ , where L has a finite
value:

min
̂θ0 ∈L2 (SX ,Θ r )

{

Ex,θr ;θ0

[

(

̂θ0 (x,θr ) − θ0
)2

]}

under

Γhθ0 (τ) = Ex,θr ;θ0

[(

̂θ0 (x,θr ) − θ0
)

ηhθ0 (x,θr ; τ)
]

0 = Ex,θr ;θ0

[(

̂θ0 (x,θr ) − θ0
)

ψ
(

x,θr ; θ0
)

] , (28a)

where ηhθ0 (x,θr ; τ) =
∫

Θd
h (τ, θ) υθ0 (x,θr ; θ) dθ and

Γhθ0 (τ) =
∫

Θd
h (τ, θ)

(

θ − θ0
)

dθ , or where L→ ∞, if we
choose (24):

min
̂θ0 ∈L2 (SX ,Θ r )

{

Ex,θr ;θ0

[

(

̂θ0 (x,θr ) − θ0
)2

]}

under

Γhθ0 (τ) = Ex,θr ;θ0

[(

̂θ0 (x,θr ) − θ0
)

ηhθ0 (x,θr ; τ)
]

0 = Ex,θr ;θ0

[(

̂θ0 (x,θr ) − θ0
)

κ
(

x,θr ; θ0
)

]

,
(28b)

where κ
(

x,θr ; θ0
)

=
∫∫

γ ,hr
ψhr
γ

(

x,θr ; θ0
)

dhr dγ. To the
best of our knowledge, (28b) defines a new class of MLBs,
whereas (28a) is a particular case of the deterministic part of
HLBs introduced in [46]. Thirdly, if we restrict ourselves to the
case whereSΘ r |x = RPr , then (27) and its possible integral forms



provide an extended class of MLBs which can be regarded as the
deterministic part of an extended class of HLBs which includes
all known HLBs introduced so far as shown in [45] and [46].
It is noteworthy that the proposed unified framework allows to
reformulate all known LBs on the MSE for unbiased estimates
in non-standard estimation as a MLBs without any regularity
condition on the (nuisance) random vector estimates, since θr is
neither required nor expected to be estimated. Moreover, since
any modified LB obtained from (27) is lower than or equal to its
standard form (13a), one can assert that the deterministic part of
any HLB is looser (or equal) than the corresponding standard LB,
which is a new general result. Last, the deterministic part of any
HLB is a valid MLBs whatever the prior depends on or does not
depend on the deterministic parameter θ , which is another new
general result.

4) Old and New Tighter Modified Lower Bounds: A typical
example is the case of the CRB. A tighter MCRB obtained from
(21) for N = 2, K = Pr , where θ2 =

(

θ0 + dθ, θ0
)

and hkr =
ukhkr , 1 ≤ k ≤ Pr , leading to the following subset of constraints:

v = dθ

(

0
e1

)

= Ex,θr ;θ0

[(

̂θ0 (x,θr ) − θ0
)

cθ0 (x,θr )
]

,

cTθ0 (x,θr ) =
(

υθ0

(

x,θr ; θ0) , υθ0

(

x,θr ; θ0 + dθ
)

,

υθ0

(

x,θr + u1h
1
r ; θ

0) , . . . , υθ0

(

x,θr + uPr h
Pr
r ; θ0)) ,

where e1 = (1, 0, . . . , 0)T and uk is the kth column of the
identity matrix IPr . By letting

(

dθ, h1
r , . . . , h

Pr
r

)

be infinites-
imally small, which imposes that (22) reduces to: ∀x ∈ SX ,
SΘ r |x = RPr , the LB obtained from (6) is:

MCRBθ0 = eT1 F
(

θ0)−1 e1 , (29)

F (θ) = Ex,θr ;θ

[

∂ ln p (x,θr ; θ)

∂
(

θ,θTr
)T

∂ ln p (x,θr ; θ)
∂
(

θ,θTr
)

]

.

Since F (θ) =

[

fθ (θ) fTθr ,θ (θ)

fθr ,θ (θ) Fθr (θ)

]

, therefore:

MCRBθ0 = 1/
(

fθ
(

θ0)− fTθr ,θ
(

θ0)F−1
θr

(

θ0) fθ,θr
(

θ0))

≥ 1/fθ
(

θ0) = MCRBθ0 . (30)

Actually (29) is also the deterministic part of the HCRB [3]
and a similar derivation was proposed in [29], but under the
unnecessary restrictive assumption of a prior independent of θ, as
in [3] which introduced the HCRB as an extension of the Bayesian
CRB proposed in [1]. This condition was relaxed in [28, (20)] with
sufficient conditions [28, (21)] unnecessary restrictive and which
have been an impediment to the dissemination of their result.
However if SΘ r |x is an interval of RPr , then the tighter MCRB
(29) cannot be derived any longer. Fortunately, as shown with the
proposed rationale, an alternative tighter MCRB can be derived
from (26). Indeed, for N = 2, where θ2 =

(

θ0 + dθ, θ0
)

, the
following subset of constraints:

v = dθ

(

0
e1

)

= Ex,θr ;θ0

[(

̂θ0 (x,θr ) − θ0
)

cθ0 (x,θr )
]

,

cTθ0 (x,θr ) =
(

υθ0

(

x,θr ; θ0) , υθ0

(

x,θr ; θ0 + dθ
)

,

ψ
(

x,θr ; θ0)T
)

,

yields, as a limiting form where dθ → 0, via Lemma (6):

MCRB
a
θ0 =

eT1 Ex,θr ;θ0

[

( ∂ ln p(x,θr ;θ)
∂θ

ψ (x,θr ; θ)

)( ∂ ln p(x,θr ;θ)
∂θ

ψ (x,θr ; θ)

)T ]−1

e1 ,

that is:

MCRB
a
θ0 = 1/

(

fθ
(

θ0)− f
(

θ0)F
(

θ0)−1 f
(

θ0)
)

≥ 1/fθ
(

θ0) = MCRBθ0 ,

where F (θ) = Ex,θr ;θ [ψ(x,θr ; θ)ψ(x,θr ; θ)T ], f(θ) =
Ex,θr ;θ [ψ(x,θr ; θ)

∂ ln p(x,θr ;θ)
∂θ ] and fθ (θ) = Ex,θr ;θ

[( ∂ ln p(x,θr ;θ)
∂θ )2 ]. In the same way, one could easily pro-

posed an alternative to the tighter MBaB of order K deriving
from (21), suitable to estimation problems for which SΘ r |x does
not satisfy (22). Or for the modified form of any known standard
LB.

C. On Closeness, Tightness, Regularity Conditions and
Implementation of Modified Lower Bounds

1) On the Closeness of MLBs to LBs: Actually, a “closeness
condition” required to obtain a modified LB equal to the standard
LB is quite simple to express: it is necessary, and sufficient, that
the estimator solution of the norm minimization under linear
constraints (13c), (21), (26), (27) belongs to L2 (SX ), that is
according to (6):

̂θ0 (x,θr )opt − θ0 =
K
∑

k=1

αk (cθ0 (x,θr ))k ∈ L2 (SX ) , (31)

a closeness condition fulfilled by a class of joint p.d.f. p (x,θr ; θ)
which depends on the vector of constraint functions chosen. For
example, if we consider the MCRBθ0 (29) then the tightness
condition is:

̂θ (x,θr )opt − θ =
∂ ln p (x,θr ; θ)
∂
(

θ,θTr
) α (θ) = ̂θ (x)opt − θ. (32)

Since eT1 F (θ)−1 = MCRBθ

(

1,−F−1
θr

fθr ,θ (θ)
)

, therefore
(32) is equivalent to:

∂ ln p (x,θr ; θ)
∂θ

− fθ,θr (θ)F−1
θr

(θ)
∂ ln p (x,θr ; θ)

∂θr

=
̂θ (x)opt − θ

MCRBθ

,

leading to the necessary, and sufficient, condition:

∂ ln p (x,θr ; θ)
∂θ∂θTr

= fθ,θr (θ)F−1
θr

(θ)
∂ ln p (x,θr ; θ)

∂θr∂θ
T
r

, (33)

which has been introduced in [52, (34)] at the expense of a quite
complex proof.

2) On Tightness, Regularity Conditions and Implementation
of MLBs: As mentioned above, the trade-off associated with
MLBs is computability at the possible expense of tightness. In-
deed, a key feature of the simplest form of the MLBs deriving
from the MMSB (14), is to be essentially free of regularity condi-
tions both on the joint p.d.f. p (x,θr ; θ) w.r.t the random param-
eters θr , and on the support SΘ r |x . This feature still holds for the



tighter MLBs obtained with Bayesian LB-generating functions
(26), (28a–28b). In contrast, none of the existing HLBs, which
are all obtained via linear transformations on the CLR function
[45], can be used if SΘ r |x does not satisfy (22), that is, for in-
stance, if SΘ r |x is a connected set of RPr and in most cases,
if SΘ r |x is a disconnected subset of RPr . Off course, any time
an existing HLB can be derived, its deterministic part provides
a tighter LB than the corresponding MLB deriving from (14),
however at the expense of an increased computational cost (see
(29)). Thus, the proposed unified framework is a useful tool to
look for the best possible trade-off between tightness, regular-
ity conditions and computational cost, in the choice of a MLB
for a given non-standard estimation problem. In that perspec-
tive, non-standard estimation can take advantage of the works
on computable approximations of the BB in standard estimation
[22]–[24], which have shown that the CRB and the BB can be
regarded as key representatives of two general classes of bounds,
respectively the Small-Error bounds and the Large-Error bounds.
Indeed, it is now well known that the Small-Error bounds, such
as the CRB, are optimistic bounds in a non-linear estimation
problem where the outliers effect generally appears [57]–[59].
This outliers effect leads to a characteristic threshold behavior
of estimators MSE which exhibits a “performance breakdown”
highlighted by Large-Error bounds [17]. Furthermore, it has been
underlined that under the norm minimization approach, the Small
Error bounds derive from linear constraints expressed at the true
value θ0 only, whereas the Large-Error bounds derive from linear
constraints expressed at vectors of test points θN+1 including the
true value [17], [20], [22]–[24]. The tightness of a given Large
Error bound is at the expense of some computational cost; in-
deed as its tightness depends on the used vector of test points
[24], [60], it generally incorporates the search of an optimum
over a set of vectors of test points. As a consequence, the final
practical form proposed by each author is an attempt to optimize
the trade-off between tightness and computational cost. For ex-
ample, in [17] the main goal was to reduce the complexity of
use of the BB by substituting the simplified form (7b) for the
initial form (8b). In [19] and generalized in [20] and [22], the
rationale is to combine a Small Error bound (CRB [19], [20]
or BaB [22]) with a Large Error bound (MSB [17]) in order to
obtain a bound which accounts for both local and large errors
and is able to handle the threshold phenomena. Indeed the use of
derivatives is also helpful to decrease the computational burden
since it allows to resort to smaller sets of tests point vectors to
achieve similar tightness [22], [24], however at the expense of the
existence of the derivatives (although this condition is mild and
generally satisfied). Last, the norm minimization approach nat-
urally incorporates possible tightness comparison between two
MLBs. Indeed, if the subset of linear constraints associated with
a MLB is included into the subset of linear constraints associ-
ated with another MLB, then the latter one is tighter. To wrap
up, when looking at a MLB, the following questions should be
answered: i) is the strong regularity condition (22) satisfied?,
e.g., is SΘ r |x � RPr ?, ii) is the joint p.d.f. p (x,θr ;θ) differ-
entiable w.r.t the random parameters? iii) which regions of op-
eration of estimators, among the asymptotic region, the thresh-
old region and the a priori region [58], are of interest?, iv) are
analytic forms of Ex,θr ;θ0

[

ψ
(

x,θr ; θ0
)

υTθ0

(

x, θr ;θN
)]

and
Ex,θr ;θ0 [ψ(x,θr ; θ0)ψ(x,θr ; θ0)T ] available? For instance, if
the asymptotic and threshold regions are of interest, and if the
answers to i), ii), iv) are positive, then at the expense of non
negligible computational burden, the tightest MLBs will be prob-

ably obtained by deriving from (27) a combination of the tight
version of the modified GlB (or of the modified CRFB) with
Bayesian LB-generating functions (23), since the MLB obtained
will incorporate most of the meaningful constraints available. If
the asymptotic and threshold regions are of interest, and if the
answers to i), ii), iv) are negative, then at the expense of a non
negligible computational burden, the tightest MLBs is the MMSB
(14).

IV. NON-STANDARD MAXIMUM LIKELIHOOD ESTIMATOR FOR

DETERMINISTIC ESTIMATION

Let us recall that the widespread use of MLEs in determin-
istic estimation originates from the fact that, under reasonably
general conditions on the observation model [8], [61], the MLEs
are asymptotically uniformly unbiased, Gaussian distributed and
efficient when the number of independent observations tends to
infinity. Additionally, if the observation model is Gaussian com-
plex circular, some additional asymptotic regions of operation
yielding uniformly unbiased Gaussian and efficient MLEs have
also been identified at finite number of independent observa-
tions [62]–[66]. If a closed-form of p (x; θ) does not exist or if a
closed-form of p (x; θ) does exist but the resulting expression is
intractable to derive the standard MLE of θ:

̂θM L (x) = arg max
θ∈Θd

{p (x; θ)} , (34a)

a sensible solution in the search of a realizable estimator based
on the ML principle is to look for:

(

̂θr (x) ,̂θ (x)
)

= arg max
θ∈Θd ,θr ∈SΘ r |x

{p (x|θr ; θ)} . (34b)

In the following ̂θ (x) and ̂θr (x) ( 34b) are referred to as “non-
standard” MLEs (NSMLEs). The underlying idea is that, since
in many estimation problems [1]–[4] p (x,θr ; θ) is a compound
probability distribution, i.e., p (x,θr ; θ) = p (x|θr ; θ) p (θr ; θ),
the closed-form of p (x|θr ; θ) is known and the NSMLEs
(34b) take advantage not only of the aforementioned proper-
ties, and in particular of the asymptotic uniform unbiasedeness
w.r.t. p (x|θr ; θ), but also of the extensive open literature on
MLE closed-form expressions or approximations [47]. These
key features clearly make the “non-standard” maximum likeli-
hood estimation more attractive than the two known following
alternative approaches. The first alternative approach consists
in deriving the joint maximum a posteriori-maximum likeli-
hood estimate (JMAPMLE) of the hybrid parameter vector
(

θTr , θ
)

:
(

̂θr J (x) , ̂θJ (x)
)

= arg max
θ∈Θd ,θr ∈SΘ r |x

{p (x,θr ; θ)} , (35)

but suffers from a major drawback: the JMAPMLE is biased and
inconsistent whatever the number of independent observations
[48], except for a class of hybrid estimation problems yield-
ing (34b) when the number of independent observations tends
to infinity [50, p. 6, 12]. One point worthy of note is that the
JMAPMLE may outperform the MLE (34a) in terms of MSE,
especially with short data records, where MLE is indeed dis-
armed of its asymptotic optimality [48]. However the biasedness
of the JMAPMLE prevents from the comparison of its MSE with
deterministic LBs. Indeed, if any known bias can be taken into
account in deterministic LBs formulation [11], the bias depends
on the specific estimator and, furthermore, is hardly ever known



in practice. The second alternative approach consists in resort-
ing to the expectation-maximization (EM) algorithm [49]. In the
general case the EM algorithm converges to a stationary point
of ln p (x; θ). The stationary point need not, however, be a local
maximum. Indeed, if it is shown that, under suitable regularity
conditions [67], it converges to the MLE (34a), it is also shown
[68] that it is possible for the algorithm to converge to local min-
ima or saddle points in unusual cases. Moreover, in non-standard
estimation, the EM algorithm consists in the following iterative
procedure:

θn+1 = arg max
θ∈Θd

{

Eθr |x;θn [ln p (x,θr ; θ)]
}

, (36)

which is unlikely to be of practical use in many estimation prob-
lems of interest where p (θr ; θ) is not a conjugate prior for the
likelihood function p (x|θr ; θ) and p (θr |x; θ) is not computable.
Last, in any case where the EM algorithm converge to the MLE
(34a), its MSE is lower bounded by the MLBs.

A. Performance Comparison

For that purpose, let us denote φ =
(

θ, θTr
)T ∈ Θd × RPr ,

p (x|φ) � p (x|θr ; θ) and Ex|φ [ ] � Ex|θr ;θ [ ]. Then any esti-

mator ̂φ
T

=
(

̂θ, ̂θ
T

r

)

∈ L2 (SX ,Θ r ), i.e., ̂φ � ̂φ (x, θr ), of a se-

lected vector value φ6 uniformly strict-sense unbiased [52], i.e.,
w.r.t. p (x|φ), must comply with:

∀φ′ =
(

θ′

θ′r

)

∈ Θd × RPr : Ex|φ′
[

̂φ
]

= φ′, (37)

which implies that:

∀θ′ ∈ Θd : Ex,θ′
r ;θ ′

[

̂φ
]

= Eθ′
r ;θ ′

[

φ′] =
(

θ′

Eθ′
r ;θ ′

[

θ′r
]

)

, (38)

that is ̂φ ∈ L2 (SX ,Θ r ) is a uniformly wide-sense unbiased 7 [52]
estimate of g (θ)T =

(

θ,Eθr ;θ
[

θTr
])

, i.e., w.r.t. p (x,θr ; θ). As
the reciprocal is not true:

∀θ′ ∈ Θd : Ex,θ′
r ;θ ′

[

̂φ− φ′
]

= 0 �

∀φ′ ∈ Θd × RPr : Ex|φ′
[

̂φ− φ′
]

= 0,

then US (SX ,Θ r ) =
{

̂φ ∈ L2 (SX ,Θ r ) verifying (37)
}

⊂ UW
(SX ,Θ r ) =

{

̂φ ∈ L2 (SX ,Θ r ) verifying (38)
}

.8 Let US (SX )
and UW (SX ) denote the restriction to L2 (SX ) of US (SX ,Θ r )
and UW (SX ,Θ r ). First, ∀̂φ ∈ L2 (SX ,Θ r ):

Ex,θ r ;θ

[

(

̂φ− g (θ)
)(

̂φ− g (θ)
)T

]

=

Ex,θ r ;θ

[

(

̂φ−Ex|φ
[

̂φ
])(

̂φ−Ex|φ
[

̂φ
])T

]

+

Eθr ;θ

[

(

Ex|φ
[

̂φ
]

− g (θ)
)(

Ex|φ
[

̂φ
]

− g (θ)
)T

]

. (39a)

6In this section, for sake of legibility,ψ denotes either the vector of unknown

parameters or a selected vector value ψ � ψ
0

= (θ0 , (θ0
r )
T )T .

7Regarding the deterministic parameter θ, uniform wide-sense unbiasedeness
is another name for unbiasedeness in the Barankin sense (4a).

8In most cases, the inclusion is strict leading to strict inequalities (40a–45a)

Therefore, if ̂φ ∈ US (SX ,Θ r ):

Ex,θ r ;θ

[

(

̂φ− g (θ)
)(

̂φ− g (θ)
)T

]

=

Ex,θ r ;θ

[

(

̂φ− φ
)(

̂φ− φ
)T

]

+ Cθ (φ) , (39b)

where:

Cθ (φ) = Eθr ;θ

[

(φ−Eθr ;θ [φ]) (φ−Eθr ;θ [φ])T
]

=

[

0 0T

0 Cθ (θr )

]

.

Second, as US (SX ) ⊂ UW (SX ) and US (SX ) ⊂ US (SX ,Θ r )
and, finally:

min
̂φ∈UW (SX )

{

Ex|θ

[

(

̂φ− g (θ)
)(

̂φ− g (θ)
)T

]}

≤

min
̂φ∈US (SX )

{

Ex,θ r ;θ

[

(

̂φ− φ
)(

̂φ− φ
)T

]}

+ Cθ (φ) , (40a)

and, in particular:

min
̂θ∈UW (SX )

{

Ex|θ

[

(

̂θ − θ
)2

]}

≤

min
̂θ∈US (SX )

{

Ex|θ

[

(

̂θ − θ
)2

]}

. (40b)

If we consider an asymptotic region of operation [8], [61]–[66] for
both ̂θM L (x) and ̂θ (x), then ̂θM L (x) is wide-sense unbiased,
i.e., ̂θM L ∈ UW (SX ), ̂θ (x) is strict-sense unbiased, i.e., ̂θ ∈
US (SX ), and (40b) holds for ̂θM L and ̂θ. Thus, the NSMLEs of
θ is in general an asymptotically suboptimal estimator of θ (in
the MSE sense) in comparison with the MLE of θ within the set
of unbiased estimates in the Barankin sense (4a). Therefore, from
a theoretical as well as a practical point of view, it is of interest
to investigate on a possible quantification of the suboptimality
of the NSMLE, which can be obtained in some extent by LBs
derivation and comparison.

B. Non-Standard Lower Bounds

For any ̂φ ∈ US (SX ,Θ r ), let Cφ(̂φ) = Ex|φ[(̂φ− φ)(̂φ−
φ)T ] denotes its covariance matrix w.r.t. p (x|φ). Then by
noticing that, ∀̂φ ∈ US (SX ,Θ r ):

Ex,θ r ;θ

[

(

̂φ− φ
)(

̂φ− φ
)T

]

= Eθr ;θ

[

Cφ
(

̂φ
)]

, (41)

one can derive LBs on the MSE of NSMLEs as follows. Firstly,
the rationale outlined in Sections II-B and III-A is generalizable
to vector parameter [17], [23], that is any LB on Cφ(̂φ), ̂φ ∈
US (SX ), can be expressed as linear transformations of the ad hoc
form of the MSB, that is in the present case, w.r.t. to p (x|φ) and
for strict-sense unbiased estimates (37) satisfying:

Ex|φ
[(

̂φ− φ
)

υTφ
(

ΦN
)

]

= Ξ
(

ΦN
)

, (42a)



where ΦN =
[

φ1 . . . φN
]

, Ξ
(

ΦN
)

= [φ1 − φ . . . φN −
φ], υφ

(

ΦN
)

� υφ
(

x;ΦN
)

= (υφ
(

x;φ1) , . . . , υφ(x;
φN ))T and υφ

(

x;φ′) = p
(

x|φ′) /p (x|φ). By resorting to the
generalization of (6) to a vector of estimators [23, Lemma 1],
the solution of:

min
̂φ∈US (SX )

{

Cφ
(

̂φ
)}

under

Ex|φ
[(

̂φ− φ
)

υTφ
(

ΦN
)

]

= Ξ
(

ΦN
)

, (42b)

is given by:

Cφ
(

̂φMSB

)

= Ξ
(

ΦN
)

R−1
υφ

(

ΦN
)

Ξ
(

ΦN
)T
,

̂φMSB = Ξ
(

ΦN
)

R−1
υφ

(

ΦN
)

υφ
(

x;ΦN
)

, (42c)

where Rυφ

(

ΦN
)

= Ex|φ
[

υφ
(

ΦN
)

υTφ
(

ΦN
)

]

. Therefore:

Cφ
(

̂φMSB

)

≤ min
̂φ∈US (SX )

{

Cφ
(

̂φ
)}

, (43a)

leading to (41):

Eθr ;θ

[

Cφ
(

̂φMSB

)]

≤

min
̂φ∈US (SX )

{

Ex,θ r ;θ

[

(

̂φ− φ
)(

̂φ− φ
)T

]}

. (43b)

In any asymptotic region of operation of NSMLEs, since NSM-

LEs belong to US (SX ), then Eθr ;θ

[

Cφ
(

̂φMSB

)]

is a LB on

the covariance matrix of NSMLEs. Therefore it seems sensible to
refer toEθr ;θ

[

Cφ
(

̂φMSB

)]

as a non-standard MSB (NSMSB)

to make the difference with the modified MSB (14). Indeed, the
NSMSB is a LB for ̂φ ∈ US (SX ), i.e., strict-sense unbiased es-
timates, whereas the MMSB is a LB for ̂φ ∈ UW (SX ,Θ r ), i.e.,
wide-sense unbiased estimates (see Section III-A). In the same
vein, any Barankin bound approximation (BBA) on the MSE of
MLEs resulting from a linear transformation of the MSB (7b),
has a non-standard version, referred to as NSBBA or as NSLB
hereinafter, and defined as

NSBBA = Eθr ;θ

[

Cφ

(

̂φBBA

)]

, (44)

where Cφ
(

̂φBBA

)

is the LB resulting from the same linear

transformation of ( 42c). As well as the NSMSB, any NSBBA
lower bounds the MSE of NSMLEs in any asymptotic region of
operation. Note that in general, the NSLBs cannot be arranged
in closed form due to the presence of the statistical expectation.
They however can be evaluated by numerical integration or Monte
Carlo simulation [33]. It is then worth noticing that an equivalent
form of (40a) is:

min
̂φ∈UW (SX )

{

Ex|θ

[

(

̂φ− g (θ)
)(

̂φ− g (θ)
)T

]}

≤ min
̂φ∈US (SX )

{

Eθr ;θ

[

Cφ
(

̂φ
)]}

+ Cθ (φ) . (45a)

Unfortunately, ̂φBBA /∈ US (SX ) and ̂φBBA /∈ UW (SX ,Θ r )
in general, therefore no general result can be drawn from

(45a) on the ordering between NSBBA + Cθ (φ) and
min

̂φ∈UW (SX )
{Ex|θ [(̂φ− g(θ))(̂φ− g(θ))T ]}, or any BBA com-

puted on UW (SX ).

C. Lower Bounds Comparison

If in general we cannot compare directly the performance of
the NSMLEs and the MLEs, however since:

min
̂φ∈UW (SX ,Θ r )

{

Ex,θr ;θ

[

(

̂φ− g (θ)
)(

̂φ− g (θ)
)T

]}

≤ min
̂φ∈US (SX )

{

Ex,θ r ;θ

[

(

̂φ− φ
)(

̂φ− φ
)T

]}

+ Cθ (φ) ,

we should be able to compare their associated LBs. Actually,
some comparisons are possible but for a restricted class of non-
standard estimation problems, as shown in the following. Using
the rationale outlined in Section III-A, one can state that all MLBs
on ̂φ ∈ UW (SX ,Θ r ) derive from sets of discrete or integral linear
transform of:

∀n ∈ [1, N ] ,g (θn ) − g (θ)

= Ex,θr ;θ

[(

̂φ (x,θr ) − g (θ)
)

υθ (x,θr ; θn )
]

, (46)

which can be rewritten as:

∀n ∈ [1, N ] ,g (θn ) − g (θ) = Eθr ;θn [φ] − g (θ)+

Eθr ;θ

[

Ex|φ
[(

̂φ (x,θr ) − φ
)

υθ (x,θr ; θn )
]]

,

and yields the general form of the MMSB for unbiased estimates
of functions of θ:

MMSB = Ξ
(

θN
)

R−1
υθ

(

θN
)

Ξ
(

θN
)T
, (47)

where Ξ
(

θN
)

=
[

g
(

θ1
)− g (θ) . . . g

(

θN
)− g (θ)

]

and
Rυθ

(

θN
)

= Ex,θr ;θ
[

υθ
(

x,θr ; θN
)

υTθ
(

x,θr ;θN
)]

. If
p (θr ; θ) does not depend on θ, i.e. p (θr ; θ) = p (θr ), then:

Eθr ;θ ′ [φ] = g (θ) , υθ (x,θr ; θ′) =
p (x|θr ; θ′)
p (x|θr ; θ) ,

and (46) becomes:

∀n ∈ [1, N ] ,g (θn ) − g (θ)

= Eθr ;θ

[

Ex|φ
[(

̂φ (x,θr ) − φ
)

υφ (x;φn )
]]

, (48)

where φn =
(

θn ,θTr
)T

, that is any ̂φ ∈ L2 (SX ,Θ r ) satisfying
(42a) also satisfies (46). Therefore, if p (θr ; θ) does not depend
on θ, ̂φMSB in (42c) satisfies (46) and the following inequality:

Ξ
(

θN
)

R−1
υθ

(

θN
)

Ξ
(

θN
)T

︸ ︷︷ ︸

MMSB

≤ Eθr ;θ

[

Ξ
(

ΦN
)

R−1
υφ

(

ΦN
)

Ξ
(

ΦN
)T

]

︸ ︷︷ ︸

NSMSB

+ Cθ (φ) , (49a)

where ΦN =
[

(θN )T

θr 1TN

]

, Ξ
(

ΦN
)

= Ξ
(

θN
)

=
[

ξ(θN )T
0

]

and

υφ
(

x;ΦN
)

= υθ
(

x, θr ;θN
)

. In particular, regarding the



estimation of θ, since θ =
(

1,0T
)

φ, one obtains:

ξ
(

θN
)T

R−1
υθ

(

θN
)

ξ
(

θN
)

≤ Eθr ;θ

[

ξ
(

θN
)T

R−1
υφ

(

ΦN
)

ξ
(

θN
)

]

. (49b)

Interestingly enough, it is straightforward to extend (49a–49b) by
introducing tighter NSLBs. It suffices to note that the addition of
any subset of K constraints:

∀k ∈ [N + 1, N +K] ,φk − φ =

Ex|φ
[(

̂φ (x,θr ) − φ
)

υφ

(

x;φk
)]

, φk =
(

θk ,
(

θkr

)T
)T

,

to (48) restricts the class of viable estimators ̂φ ∈ UW (SX ,Θ r )
and therefore increases the associated NSBBA (42c), leading to:

Ξ
(

θN
)

R−1
υθ

(

θN
)

Ξ
(

θN
)T

≤ Eθr ;θ

[

Ξ
(

ΦN
)

R−1
υφ

(

ΦN
)

Ξ
(

ΦN
)T

]

+ Cθ (φ)

≤ Eθr ;θ

[

Ξ
(

ΦN+K )

R−1
υφ

(

ΦN+K )

Ξ
(

ΦN+K )T
]

+ Cθ (φ) , (50a)

and, regarding the estimation of θ, to:

ξ
(

θN
)T

R−1
υθ

(

θN
)

ξ
(

θN
)

≤ Eθr ;θ

[

ξ
(

θN
)T

R−1
υφ

(

ΦN
)

ξ
(

θN
)

]

≤ Eθr ;θ

[

ξ
(

θN+K )T
R−1
υφ

(

ΦN+K )

ξ
(

θN+K )

]

, (50b)

where

ΦN+K =
[

ΦN ,

[

θN+1 . . . θN+K

θN+1
r . . . θN+K

r

]]

,

Ξ
(

ΦN+K )

=
[

Ξ
(

ΦN
)

,

[

ξ
(

θN+1
)

. . . ξ
(

θN+K
)

θN+1
r − θr . . . θN+K

r − θr

]]

,

and ξ
(

θN+K )

=
(

ξ
(

θN
)T
, ξ

(

θN+1
)

, . . . , ξ
(

θN+K
)

)T

.

Then one can take advantage of the use of the numerous (stan-
dard) BBAs derived for parameter vector [23] [24], however, at
a cost of numerical integration or Monte Carlo simulation to
evaluate their statistical expectation.

1) Old and New Non-Standard Lower Bounds: A typi-
cal example is the NSCRB obtained for N = 2, where θ2 =
(θ, θ + dθ) leading to the following subset of constraints:
(

0
dθ

)

= Ex,θr ;θ

[

(

̂θ (x,θr ) − θ
)

(

1SX ,Θ r
(x,θr )

υθ (x, θr ; θ + dθ)

)]

,

(51a)
which is equivalent to [55, Lemma 3]:

(

0
1

)

= Ex,θr ;θ

[

(

̂θ (x,θr ) − θ
)

(
1SX ,Θ r

(x,θr )
υ θ (x ,θr ;θ + d θ )−1

d θ

)
]

, (51b)

and can be reduced to [55, Lemma 2]:

1 = Ex,θr ;θ

[

(

̂θ (x,θr ) − θ
) p (x,θr ; θ + dθ) − p (x,θr ; θ)

dθp (x, θr ; θ)

]

,

(51c)

since Ex,θr ;θ [1SX ,Θ r
(x,θr )(υθ (x,θr ; θ + dθ) − 1)] = 0. Then

by letting dθ be infinitesimally small, (49b) becomes [4, (5)]:

MCRBθ � Ex,θr ;θ

[

(

∂ ln p (x,θr ; θ)
∂θ

)2
]−1

≤ NSCRBθ � Eθr ;θ

⎡

⎣Ex|φ

[

(

∂ ln p (x|φ)
∂θ

)2
]−1

⎤

⎦ ,

(52)

where theNSCRBθ is the MCB [2, (7)]. Following the rationale
introduced in [14], a straightforward extension of (52) is obtained

forθN =
(

θ1 , . . . , θN
)T

, θn = θ + (n− 1) dθ, 1 ≤ n ≤ N . In-
deed the set of N associated constraints:

dθwN = Ex,θr ;θ

[(

̂θ (x,θr ) − θ
)

υθ
(

x,θr ;θN
)

]

, (53a)

where wT
N = (0, . . . , N − 1), by letting dθ be infinitesimally

small, becomes equivalent to [14] [55, Lemma 3]:

v′ = Ex,θr ;θ

[(

̂θ (x,θr ) − θ
)

b′
θ (x, θr )

]

, (53b)

where v′ = (0, 1, 0, . . . , 0)T and b′
θ (x,θr ) =

1
p(x,θr ;θ) (p(x,θr ; θ),

∂p(x,θr ;θ)
∂θ , . . . , ∂

N −1 p(x,θr ;θ)
∂N −1 θ

)T . Since

v′1 = 0 and Ex,θr ;θ
[

(b′
θ )1 (x,θr ) (b′

θ )n (x,θr )
]

=

Ex,θr ;θ

[

∂n p(x,θr ;θ)
∂n θ

]

= 0, 2 ≤ n ≤ N − 1, (53b) is actu-

ally equivalent to [55, Lemma 2]:

e1 = Ex,θr ;θ

[(

̂θ (x,θr ) − θ
)

bθ (x,θr )
]

, (53c)

where bθ (x,θr ) = 1
p(x,θr ;θ)

(

∂p(x,θr ;θ)
∂θ , . . . , ∂

N −1 p(x,θr ;θ)
∂N −1 θ

)T

,

and (49b) becomes an inequality between the Battacharayya
bounds (BaBs) [10] of order N − 1:

MBaBθ � eT1 Ex,θr ;θ
[

bθ (x,θr )bTθ (x,θr )
]−1

e1 ≤

NSBaBθ � Eθr ;θ

[

eT1 Ex|φ
[

β (x;φ)βT (x;φ)
]−1

e1

]

,

(53d)

where β (x;φ) = 1
p(x|φ)

(

∂p(x|φ)
∂θ , . . . , ∂

N −1 p(x|φ)
∂N −1 θ

)T

= bθ
(x,θr ). Therefore, with the proposed approach, we not only
extend the result introduced in [34, (11)] under the restrictive
assumption of a prior independent of θ, but we can also assert
that MBaBθ ≤ NSBaBθ if the prior does not depend on θ,
which has not been proven in [34].

As with the CRB and the BaB, (49b) also allows to derive
inequalities between modified and non-standard forms of all
remaining BB approximations released in the open literature,
namely the FGB [14], the MHB [19], the GlB [20], the AbB [22],
and the CRFB [24, (101–102)].

Furthermore, an example of a tighter NSLB can be easily
derived from the usual NSCRB (52). Indeed by adding to (51a)
the following K = Pr constraints:

0 = Ex|φ
[(

̂θ (x,θr ) − θ
)

υφ
(

x;ΦK
)

]

,

where φk = ( θ
θr +uk hkr

) and uk is the kth column of the identity
matrix IPr , one obtains the following equivalent set of constraints



[55, Lemma 3 + Lemma 2]:

e1 = Ex|φ
[(

̂θ (x,θr ) − θ
)

c
(

x;ΦK+1)
]

,

cT
(

x;ΦK+1) =
(

p (x|θr ; θ + dθ)
p (x|θr ; θ) dθ − 1

dθ
,

p
(

x|θr + u1h
1
r , θ

)

p (x|θr ; θ)h1
r

− 1
h1
r

, . . . ,
p
(

x|θr + uK hKr , θ
)

p (x|θr ; θ)hKr
− 1
hKr

)

.

By letting
(

dθ, h1
r , . . . , h

Pr
r

)

be infinitesimally small, then

c
(

x;ΦK+1
) → ∂ ln p(x|φ)

∂φ and (50b) becomes [33, (24)]:

MCRBθ � Ex,θr ;θ

[

(

∂ ln p (x,θr ; θ)
∂θ

)2
]−1

≤

NSCRBθ � Eθr ;θ

⎡

⎣Ex|φ

[

(

∂ ln p (x|φ)
∂θ

)2
]−1

⎤

⎦ ≤

NSCRBθ = Eθr ;θ

[

eT1 Ex|φ

[

∂ ln p (x|φ)
∂φ

∂ ln p (x|φ)
∂φT

]−1

e1

]

.

(54)

In [33] NSCRBθ was introduced under the restrictive as-
sumption of a prior independent of θ, which can be relaxed as
shown with the proposed framework. Furthermore, the above ex-
ample illustrate that the tightest form of any NSLB is obtained
when the set of unbiasedness constraints are expressed for φ as
in ( 50b) and not only for θ as in (49b).

D. Non-Standard Lower Bounds (continued)

Any of the NSLBs mentioned in the previous section can be
derived in the general case where p (θr ; θ) does depend on θ,
except that no general inequalities between MBBA and NSBBA
can any longer be exhibited. Interestingly enough, since any ex-

isting standard LB can be obtained from (42c) as Cφ
(

̂φBBA

)

(a

multiple parameters version of (8b)), it has a non-standard coun-

terpart Eθr ;θ

[

Cφ
(

̂φBBA

)]

, which includes the FGB [14], the

MHB [19], the GlB [20], the AbB [22], and the CRFB [24, (101-
102)]. Last, let us recall that in general ̂φBBA ∈ US (SX ,Θ r ),
therefore the associated NSLB cannot be compared a priori nei-
ther with the MSE of ̂θM L ∈ UW (SX ) nor with any of its LBs
(computed with p (x; θ)). In particular, NSLBs are not in general
neither upper bounds on the MSE of ̂θM L nor on any of its LBs.

V. APPLICATION EXAMPLES

A. Application Examples in the Open Literature

Since the preliminary works [2], [3] and [4], non-standard esti-
mation has given rise to a growing interest [26]–[42] as compound
probability distributions arise in many applications such as tele-
com or radar and hybrid parameter vectors occur in miscellaneous
estimation problem.

1) Application Examples in Telecom: The MCRB has been
often used in linearly modulated signals for synchronization prob-
lems involving the estimation of carrier-frequency offset, carrier
phase, and timing epoch [4], [26], [27] where the calculation

of the CRB is infeasible, while application of the MCRB leads
to useful expressions with moderate analytical effort. In [30]
the MCRB is computed for linearly modulated signals corrupted
by correlated impulsive noise, wherein data symbols and noise
power are regarded as nuisance parameters. In [32] linearly mod-
ulated signals are observed on a frequency-flat time-selective
fading channel affected by additive white Gaussian noise. High
signal-to-noise ratio asymptote of the CRB and MCRBs are de-
rived and compared, for the joint estimation of all those channel
parameters that impact signal detection, namely, carrier phase,
carrier frequency offset, frequency rate of change, signal ampli-
tude, fading power, and Gaussian noise power. [33] considers
the problem of estimating the carrier frequency offset affecting
a linearly modulated waveform received through a Rician fad-
ing channel. The relevant CRB, HCRB, MCRB and NSCRBs
are calculated and the relative merits of these bounds are dis-
cussed, both in terms of their tightness and ease of calculation.
[36] addresses the CRB and the MCRB for the joint estimation
of the carrier frequency offset, the carrier phase and the noise and
signal powers of binary phase-shift keying (BPSK), minimum
shift keying (MSK), and quaternary phase-shift keying (QPSK)
modulated signals corrupted by additive white circular Gaussian
noise. [40] focuses on the MCRBs related to estimating the pa-
rameters of a noisy hybrid modulated signal which combines the
pseudo-random binary codes (PRBC) phase modulation and lin-
ear frequency modulation (LFM). The parameters to be estimated
of the PRBC-LFM signal include signal amplitude, carrier phase,
carrier frequency, chirp rate and symbol width.

2) Application Examples in Radar: MCRBs and NSLBs
have also been investigated in radar applications. [3] derives
HCRB on source location accuracies achievable with far-field
sources whose bearings are random and impinging on a two-
dimensional array of sensors whose locations are not known pre-
cisely. [2] derived the NSCRB for estimators of the arrival time of
a radar echo of random amplitude, unbiased for all values of the
signal amplitude. In [29] a similar problem is studied for real val-
ued radar echo via the HBB which deterministic part is shown to
handle the MSE threshold phenomena. [31] addresses the deriva-
tion of the HCRB for the parameters of a signal composed of a
mixture of spherically invariant random processes. The case of
signal composed of a mixture of K-distributed clutter, Gaussian
clutter, and thermal noise belongs to this set, and it is regarded
as a realistic radar scenario. In [37], [38] the problem of regis-
tration errors involved in the grid-locking problem for successful
multisensor target tracking is addressed, i.e., attitude, measure-
ment, and position biases. Linear least squares and non-linear
expectation-maximisation estimators of these bias terms are de-
rived and their statistical performances compared to the HCRB
as a function of sensor locations, sensors number, and accuracy
of sensor measurements. [39] computes the MCRB for the target
parameter (delay, Doppler) estimation error using universal mo-
bile telecommunications system (UMTS) signals as illuminators
of opportunity for passive multistatic radar systems. In [41] the
MCRB on the joint estimation of target location and velocity for a
non-coherent passive MIMO radar, employing the OFDMbased
L-band digital aeronautical communication system type 1 sig-
nals as signals of opportunity, is investigated. [42] considers the
problem of estimating the parameters of a low-rank compound-
Gaussian process in white Gaussian noise. This situation typically
arises in radar applications where clutter is relevantly modeled
as compound-Gaussian with a rankdeficient covariance matrix
of the speckle. First, assuming the textures are deterministic, the



CRB of the parameters describing the covariance matrix is de-
rived, which enables one to assess the impact of the time-varying
textures on the estimation performance. Then, considering the
textures as random, HCRB, MCB, MCRB are derived and com-
pared.

B. A New Look at Gaussian Observation Models

In the framework of modern array processing [47], the obser-
vation vector x generally consists of a bandpass signal which
is the output of an Hilbert filtering [1][69, §13], i.e., a complex
circular vector x ∼ CN (mx ,Cx) with p.d.f.:

pCN (x;mx ,Cx) = π−M ∣

∣C−1
x

∣

∣ e−(x−mx )H C−1
x (x−mx ) .

Mostly two different signal models are considered: the determin-
istic (conditional) signal model and the stochastic (unconditional)
signal model [70]. The discussed signal models are Gaussian and
the parameters are connected either with the expectation value
in the deterministic case or with the covariance matrix in the
stochastic one. A simple and well known instantiation is the ob-
servation model formed fromL independent snapshots of a linear
superposition of an individual signal of interest and noise:

xl = s (τ) al + nl , 1 ≤ l ≤ L, (55)

where a1 , . . . , aL are the complex amplitudes of the signal, s ()
is a vector of M parametric functions depending on a single
deterministic parameter τ , nl ∼ CN (

0, σ2
nIM

)

, 1 ≤ l ≤ L, are
independent and identically distributed (i.i.d.) Gaussian complex
circular noises independent of the signal of interest. Additionally
if the L components of a = (a1 , . . . , aL )T are i.i.d. zero mean
Gaussian complex circular random variables with varianceσ2

a , i.e.
a ∼ CN (

0, σ2
aIL

)

, then (55) is an unconditional signal model

characterized by a p.d.f. p (x|θ) , θ =
(

τ, σ2
a , σ

2
n

)T
, given by

[70]:

p (X|θ)=
∫

p
(

X|a, τ, σ2
n

)

p
(

a|σ2
a

)

da=
e−Ltr(C

−1
x

̂Rx )

(πM |Cx |)L
,

Cx = σ2
as (τ) s (τ)H + σ2

nIM , ̂Rx =
1
L

L
∑

l=1

xlxHl ,

p
(

X|a, τ, σ2
n

)

=
e
− L

σ 2
n
tr(̂Cn )

(πσ2
n)ML

, p
(

a|σ2
a

)

= e
− aH a

σ 2
a

(

πσ2
a

)−L
,

̂Cn =
1
L

L
∑

l=1

(xl − s (τ) al) (xl − s (τ) al)
H .

Then the MLE (34a) of τ , aka the unconditional MLE (UMLE),
is obtained by minimization of the concentrated criterion [64]:

τ̂ = arg min
τ

{∣

∣

∣

̂σ2
as (τ) sH (τ) + ̂σ2

nIM
∣

∣

∣

}

,

̂σ2
a =

1
‖s (τ)‖2 sH (τ)

(

̂Rx − ̂σ2
nIM

)

s (τ) ,

̂σ2
n =

1
M − 1

tr
(

Π⊥
s(τ )

̂Rx

)

,Π⊥
a = IM − aaH

‖a‖2 ,

and the associated CRB, aka the unconditional CRB (UCRB), is
[64, (4.64)][71]:

UCRBτ = σ2
n

(

2h (τ)Lσ2
a

SNR

SNR+ 1

)−1

, (56)

where SNR = σ2
a/σ

2
n ‖s (τ)‖2 is the signal-to-noise ratio com-

puted at the output of the single source matched filter [64], and

h (τ) = ∂ s(τ )
∂τ

H
Π⊥

s(τ )
∂ s(τ )
∂τ . The NSMLE (34b) of τ is actually

the conditional MLE (CMLE) obtained by minimization of the

concentrated criterion [64] τ̂ = arg min
τ

{

tr
(

Π⊥
s(τ )

̂Rx

)}

and

the associated NSCRB is NSCRBτ = Ea|σ 2
a
[CCRBτ (a)],

where CCRBτ (a) = σ2
n/

(

2h (τ) ‖a‖2
)

denotes the condi-

tional CRB associated to the CMLE [64, (4.68)]. First, it has
been shown [64, (4.74)], in the case of a vector of unknown
parameters τ , that asymptotically where L→ ∞ :

Cθ (τ̂ ) ≥ Cθ (τ̂ ) = UCRBτ ≥ CCRBτ , (57)

which illustrates that the act of resorting to the NSMLE (here
the CMLE) is in general an asymptotic suboptimal choice in the
MSE sense. However, in the case of single unknown parameter
τ , (57) becomes:

Cθ (τ̂) = Cθ (τ̂) = UCRBτ ≥ CCRBτ = σ2
n/

(

2Lh (τ)σ2
a

)

,

where Cθ (τ̂) = CCRBτ

(

1 + CCRBτ
2Lh(τ )
‖s(τ )‖2

)

[64, (4.73)].

Second, since ‖a‖2 /σ2
a ∼ χ2

2L , i.e. a chi-squared random vari-
able with 2T degrees of freedom, then [69]:

NSCRBτ =
∣

∣

∣

∣

σ 2
n

2Lσ 2
a h(τ )

L
L−1

∞
if L ≥ 2
if L = 1 . (58)

Therefore, if L ≥ 2:

NSCRBτ

UCRBτ
=
NSCRBτ

Cθ (τ̂)
=

L

L− 1
SNR

SNR+ 1
,

which illustrates the fact that NSLB are not in general neither
upper bounds on the MSE of MLEs nor on any of its LBs. Last,
the MCRB (29) can be computed from [55]:

F (θ) = Ea|σ 2
a

[

−∂ ln p
(

a|σ2
a

)

∂φ∂φH

]

+Ea|σ 2
a
[Fφ (a)] ,

Fφ (a) = Ex|θr ;θ

[

−∂ ln p
(

X|a, τ, σ2
n

)

∂φ∂φH

]

,

where φ =
(

σ2
n , σ

2
a ,a,a∗, τ

)T
,

Ea|σ 2
a

[

−∂ ln p
(

a|σ2
a

)

∂φ∂φH

]

=
1
σ2
a

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0T 0T 0

0
L

σ2
a

0T 0T 0

0 0 IL 0 0

0 0 0 IL 0

0 0 0T 0T 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,



and [72]:

Fφ (a) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ML

(σ2
n)2 0 0T 0T 0

0 0 0T 0T 0

0 0
‖s (τ)‖2 IL

σ2
n

0
ρsa∗

σ2
n

0 0 0
‖s (τ)‖2 IL

σ2
n

ρ∗sa
σ2

n

0 0
ρ∗sa

T

σ2
n

ρsaH

σ2
n

2�s ‖a‖2

σ2
n

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where ρs = ∂ s(τ )
∂τ

H
s (τ) and �s =

∥

∥

∥

∂ s(τ )
∂τ

∥

∥

∥

2
. Therefore

MCRBτ = σ2
n/

(

2Lσ2
a�s

)

and:

UCRBτ /MCRBτ = �sSNR/h (τ) / (SNR+ 1) . (59)

In the single tone estimation case for which s (τ) =
(

1, ej2πτ , . . . , ej2π (M−1)τ
)T

, then �s/h (τ) = 4 − 6
M+1 and:

2
(

1 + SNR−1) ≤ UCRBτ /MCRBτ ≤ 4
(

1 + SNR−1) ,

which can be an acceptable optimistic approximation of the
UCRBτ according to the application under consideration. An
additional comparison of the relative looseness of the modified
Hammersley-Chapman-Robbins bound for the unconditional sig-
nal model can be found in [29].

VI. CONCLUSION

In the present paper, we have addressed deterministic parame-
ter estimation and the situation where a closed-form of the con-
ditional p.d.f. does not exist or where a closed-form does exist
but the resulting expression is intractable to derive either LBs or
MLEs. We have provided a unified framework allowing to extend
the previous theoretical works released on that problem [2]–[4],
[29], [30], [34], [35], [45], [46], [52]. First, in terms of intrinsic
LBs by showing that any standard LB can be transformed into
a modified one fitted to non-standard deterministic estimation,
at the expense of tightness however. Second, in terms of relative
LBs, i.e. dedicated to characterize the asymptotically suboptimal
NSMLEs, by showing that any standard LB has a non-standard
version lower bounding the MSE of NSMLEs. Last, for a broader
perspective, let us mention that authors in [73] address compound
probability distribution the other way round, and derive CR-type
LBs on the MSE of estimators of random parameter subject to
unknown deterministic nuisance parameters.
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