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Sampler
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Abstract—In this paper, we propose a hierarchical Bayesian
model approximating the ℓ20 mixed-norm regularization by a
multivariate Bernoulli Laplace prior to solve the EEG inverse
problem by promoting spatial structured sparsity. The posterior
distribution of this model is too complex to derive closed-form
expressions of the standard Bayesian estimators. An MCMC
method is proposed to sample this posterior and estimate the
model parameters from the generated samples. The algorithm is
based on a partially collapsed Gibbs sampler and a dual dipole
random shift proposal for the non-zero positions. The brain
activity and all other model parameters are jointly estimated
in a completely unsupervised framework. The results obtained
on synthetic data with controlled ground truth show the good
performance of the proposed method when compared to the ℓ21

approach in different scenarios, and its capacity to estimate point-
like source activity.

Index Terms—EEG, MCMC, inverse problem, source localiza-
tion, structured-sparsity, hierarchical Bayesian model, ℓ20-norm
regularization

I. INTRODUCTION

EEG source localization is an ill-posed inverse problem [1]

that continues to attract a significant amount of interest in

the signal and image processing literature. The problem is

classically addressed using some regularization that enforces

realistic properties on the solution. Among the proposed regu-

larizations, the ℓ0 pseudo-norm is known to estimate correctly

sparse focal brain activity [2]. Unfortunately, the minimization

of the ℓ0 pseudo-norm is intractable. Thus it is usually

approximated by the convex ℓ1 norm that can be handled more

easily using classical optimization techniques [3] but does not

provide the same solution [2]. In a previous work, we have

proposed to combine them in a Bayesian framework providing

good results [4]. However this method, as the ℓ0 and ℓ1 norms,

considers each time sample independently which can lead to

unrealistic solutions [5]. It has been shown that structured

sparsity can provide better results by exploiting the temporal

dimension of the data [6]. Structured sparsity can be enforced

for EEG source localization using mixed-norms such as the

ℓ21 norm [5] (also known as group-lasso), which constrains

all the time samples of a dipole to be either completely

active or inactive during the time period. As an alternative

to the ℓ21 norm, we introduce a new hierarchical Bayesian

model based on a multivariate Bernoulli Laplacian prior on the

dipole activity. This paper will show that the proposed prior

allows sparser solutions to be obtained. Since the posterior

associated with this prior is intractable, a Markov chain Monte

Carlo sampling technique is used to draw samples of the

unknown parameters asymptotically distributed according to

this posterior. A dual dipole random shift proposal is also

added in order to improve convergence. The generated samples

are then used to estimate both the brain activity and the model

parameters and hyperparameters in a completely unsupervised

framework.

The paper is organized as follows: Section II introduces the

proposed Bayesian model. Section III presents the partially

collapsed Gibbs sampler that can generate samples asymp-

totically distributed according to the posterior of this model.

Results obtained with synthetic data are presented in Section

IV. Section V concludes the paper.

II. PROPOSED METHOD

We consider a distributed-source model that has a fixed

number (N) of dipoles on the cortical surface whose orien-

tations are supposed orthogonal to the cortex [1]:

Y = HX +E (1)

where X ∈ R
N×T contains the amplitudes of the N dipoles

for the corresponding T time samples, Y ∈ R
M×T contains

the measurements of the M electrodes for these T time

samples, H ∈ R
M×N models the propagation of the electro-

magnetic field from the sources to the sensors and E ∈ R
M×T

is a noise term. The EEG source localization problem consists

of estimating the matrix X from the measurements Y , which

we propose to solve with the following Bayesian model.

A. Likelihood

It is very classical in the literature to consider an additive

white Gaussian noise with a constant variance σ2
n for the T

considered time instants [1]. Note that when this assumption

does not hold, it is possible to estimate the noise covariance

matrix from the data and to whiten the measurements in a pre-

processing stage [5]. This assumption leads to the likelihood

f(Y |θ) =
T
∏

t=1

N
(

yt
∣

∣

∣
Hxt,σ2

nIM

)

(2)

where IM is the identity matrix of size M , θ = {X,σ2
n} and

mj denotes the j-th column of matrix M .



B. Priors

Dipole amplitudes X

The weighted ℓ20 pseudo norm of a matrix X with

rows x1, ...,xN is defined by

||X||20 = #{i :
√
vi||xi||2 #= 0} (3)

where #S is the cardinal of the set S and vi = ||hi||2 (hi

being the i-th column of the operator H) is a weight used

to compensate for the depth-weighting effect as explained in

[1, 3]. We propose to approximate the ℓ20 mixed norm using

a multivariate Bernoulli Laplace prior for each row xi of X .

More precisely, we consider the following prior

f(xi|zi, a,σ
2
n) ∝

{

δ(xi) if zi = 0

exp
(

−
√

via
σ2
n

||xi||2
)

if zi = 1
(4)

where a is a hyperparameter that controls the amplitudes of

the non-zero rows of X and z ∈ {0, 1}N is a vector indicating

which rows of X are non-zero. The elements of z are assigned

a Bernoulli prior with parameter ω ∈ [0, 1]

zi|ω ∼ B (zi|ω) . (5)

Note that the prior of xi defined in (4) contains two different

parts: the Dirac delta function δ(.) that promotes sparsity

by ensuring absence of activity and the multivariate Laplace

distribution that adjusts the amplitudes of the non-zero rows.

Setting ω = 0 reduces to X = 0 whereas ω = 1 corre-

sponds to the ℓ21-mixed norm regularization introduced in

the Bayesian formulation of the group-lasso. To be able to

sample efficently from the posterior distribution of the model

parameters, it is interesting to introduce a latent variable τ2i
for each row xi as in [7]. More precisely, the joint prior

distribution of (τ2i ,xi) can be defined as

f(τ2i |a) =G
(

τ2i

∣

∣

∣

T + 1

2
,
via

2

)

(6)

f(xi|zi, τ
2
i ,σ

2
n) =

{

δ(xi) if zi = 0

N
(

xi

∣

∣

∣
0,σ2

nτ
2
i IT

)

if zi = 1
(7)

where G and N denote the gamma and normal distributions.

Indeed, the prior distribution specified above is such that the

marginal distribution of xi is (4) [7].

Noise variance σ2
n

The noise variance σ2
n is assigned a Jeffrey’s prior

f(σ2
n) ∝

1

σ2
n

1R+(σ2
n) (8)

where 1R+(ξ) = 1 if ξ ∈ R
+ and 0 otherwise. Motivations

for using this prior can be found in [8].

C. Hyperparameter priors

In the ℓ21 norm based approach, the regularization parame-

ter makes a compromise between the sparsity of the solution

and the fidelity to the measurements. In the proposed Bayesian

model, this compromise is adjusted by two hyperparameters:

(1) ω that determines the proportion of the rows of X that are

non-zero and (2) a that controls the amplitudes of the non-

zero rows of X . We will denote the hyperparameter vector by

φ = {ω, a}. To make our algorithm capable of estimating the

values of ω and a from the data, we need to assign priors to

these hyperparameters (usually called hyperpriors).

A conjugate gamma prior is chosen for a for simplicity

f(a|α,β) = G
(

a

∣

∣

∣
α,β

)

(9)

with α = β = 1. This choice of (α,β) corresponds to a vague

hyperprior for a.

A non-informative uniform prior on [0, 1] is used for ω

f(ω) = U(ω|0, 1) (10)

also reflecting the absence of knowledge for this parameter.

D. Posterior distribution

Using the priors and hyperpriors defined in Section II, the

posterior distribution of the proposed Bayesian model can be

derived as follows

f(θ, z, τ 2,φ|Y ) ∝ f(Y |θ)f(θ|z, τ 2)f(z, τ 2|φ)f(φ) (11)

where f(Y |θ) has been defined in (2) and

f(θ|z, τ 2) ∝ f(σ2
n)

N
∏

i=1

f(xi|zi, τ
2
i ,σ

2
n)

f(z, τ 2|φ) =
N
∏

i=1

f(zi|ω)f(τ
2
i |a)

f(φ) = f(a|α,β)f(ω).

III. A PARTIALLY COLLAPSED GIBBS SAMPLER

The Bayesian estimators of the unknown model parameters

σ2
n,X, z, a, τ 2,ω are clearly difficult to express in closed

form using (11). Thus, we propose to draw samples from the

posterior distribution (11) and use these samples to estimate

the model parameters and hyperparameters using a partially

collapsed Gibbs sampler which samples the variables zi and

xi jointly. The corresponding conditional distributions are

detailed in the following sections.

A. Conditional distributions

The conditional distributions of the different parameters and

hyperparameters are provided in Table I, where G, GIG, N ,

B, IG and Be stand for the gamma, generalized inverse Gaus-

sian, normal, Bernoulli, inverse gamma and beta distributions

respectively (for the definition of the GIG distribution, see

[7]).
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n IG

(

(M+||z||0)T
2
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2
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||HX − Y ||2 +
∑

i

||xi||
2

τ
2
i
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ω Be
(

1 + ||z||0, 1 +N − ||z||0
)

TABLE I: Conditional distributions f(τ2i |xi,σ
2
n, a, zi),

f(zi|Y ,X−i,σ
2
n, τ

2
i ,ω), f(xi|zi,Y ,X−i,σ

2
n, τ

2
i ), f(a|τ 2),

f(σ2
n|Y ,X, τ 2, z) and f(ω, z).

We denote by X−i the matrix X with its i-th row set to

zero and

µi =
σ2
i h

iT (Y −HX−i)

σ2
n

,σ2
i =

σ2
nτ

2
i

1 + τ2i h
iThi

k0 = 1− ω, k1 = ω

(

σ2
nτ

2
i

σ2
i

)−
T

2

exp
( ||µi||

2

2σ2
i

)

.

B. Dual dipole random shift proposal

In practice, the Gibbs sampler can get trapped in local

maxima of the target distribution, especially when the indicator

variables zi have to be sampled. This problem has been

reported in several works such as [9] and has been observed for

the proposed partially collapsed Gibbs sampler. To solve this

problem, after each sampling iteration, a new value of z can be

proposed in order to escape from a possible local maximum.

This value is accepted or rejected using the Metropolis-

Hastings acceptance ratio to keep the same target distribution.

In this work, we have implemented dual dipole random shift

proposals which consist of moving up to two indicators within

their neighborhood, which is defined as follows

neigh
γ
(i) !

{

j #= i

∣

∣

∣
|corr(hi,hj)| ≥ γ

}

(12)

where corr(hi,hj) is the correlation between the two column

vectors and γ ∈ [0, 1] tunes the neighborhood size (γ = 0
corresponds to a neighborhood containing all the dipoles and

γ = 1 corresponds to an empty neighborhood). In our exper-

iments, we have used γ = 0.8, adjusted by cross validation.

IV. EXPERIMENTAL VALIDATION

A comparison with the ℓ21 approach has been done consid-

ering the Stok three-shell head model with M = 41 electrodes

and N = 212 dipoles. Synthetic damped sinusoidal excitations

with frequencies between 5 and 20Hz were assigned to the

active dipoles dipoles. These excitations are 500ms long (a

period in which the dipole activity is known to be stationary)

and sampled at 200Hz, resulting in T = 100. The regularization

parameter of the weighted ℓ21 norm was set according to the

uncertainty principle.

(a) Ground truth

(b) Proposed method

(c) Weighted ℓ21-norm

Fig. 1: Typical brain activity localization (SNR = −3dB).

Two different kind of simulations were run, the first one

has a fixed amount of active dipoles in the ground truth and a

variable level of SNR whereas the second one presents a fixed

level of SNR with a variable amount of active dipoles.

For the first kind of simulations three dipoles were active

in the ground truth. For high SNR values (20dB or more),

both methods are able to correctly detect the dipole locations

and estimate their activation waveforms. However, as the SNR

decreases, the proposed method outperforms the approach

based on the ℓ21 norm. A representative example is illustrated

in Figs. 1 and 2. As we can see in this particular case, the

proposed algorithm manages to recover correctly the three

activations while concentrating each of the activations in

only one dipole. In comparison, the ℓ21 norm only recovers

two activations and spreads some of the activity between

neighboring dipoles. One can also see that the waveforms

recovered by the proposed method are much closer to the

original excitations than those obtained with the ℓ21 norm

(note the presence of a bias with the latter). This result can be

explained by the fact that the ℓ1 norm tends to overpenalize

large amplitudes whereas the proposed prior penalizes all non-

zero coefficients equally.

For the second kind of simulations, the SNR was set to

30dB while the amount of active dipoles in the ground truth

(denoted by P ) was varied from 1 to 7. Fifty different active

dipole localizations were used for each value of P . After each

simulation run, the P dipoles with highest estimated activity

were considered to be active. The recovery rate (defined as the

probability of detecting an active dipole in its correct location)

for both methods is shown in Table II. The proposed method

is able to detect up to 5 active dipoles with a near perfect

recovery rate while the performance of the ℓ21 norm method
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Fig. 2: Ground truth and typical estimated time waveforms with SNR = -3dB.

starts decreasing at P = 3.

It is important to note that the price to pay with the proposed

method is its computational complexity. One simulation of

the previous examples was processed in 6 seconds with a

modern Xeon CPU E3-1240 @ 3.4GHz processor (using a

Matlab implementation with MEX files written in C) against

104 milliseconds for the ℓ21 mixed norm. However, also note

that the ℓ21 norm approach requires running the algorithm

multiple times to adjust the regularization parameter by cross-

validation.

P 1 - 2 3 4 5 6 7

PM 100% 100% 100% 98.8% 84.0% 65.1%
ℓ21 100% 97.3% 93.5% 78.8% 61.7% 49.1%

TABLE II: Recovery rate as a function of P for the proposed

method and the weighted ℓ21 norm (computed with 50 Monte

Carlo runs).

V. CONCLUSION

This paper introduced a new hierarchical Bayesian model

for EEG source localization promoting structured sparsity

using a multivariate Bernoulli Laplacian prior. A partially

collapsed Gibbs sampler was developed to draw samples from

its posterior distribution. A specific Metropolis-Hastings move

(called dual dipole random shift) was also introduced in order

to speed up the algorithm convergence. The generated samples

were used to estimate the source activity and the model

hyperparameters jointly in an unsupervised framework. The

resulting algorithm was compared to the ℓ21 mixed norm

regularization showing promising results for synthetic data

composed by point-like source activations. More precisely,

the proposed method showed better detection results and a

better recovery of the activation waveforms for small SNRs,

while avoiding the amplitude underestimation observed with

the ℓ21 approach. In addition, the proposed method presented

a better recovery rate for different amounts of active dipoles.

The method is currently being applied to real data and is

already showing promising results which will be published in

the near future. Future work will try to generalize the method

to practical cases where H is only partially known.
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