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Abstract-This paper presents a high-resolution hyperspectral 
image fusion algorithm based on spectral unmixing. The widely 
used linear observation model (with additive Gaussian noise) is 
combined with the linear spectral mixture mode! to form the data 
terms. The non-negativity and sum-to-one constraints, resulting 
from the intrinsic physical properties of the abondances (i.e., 
fractions of' the materials contained in each pixel), are introduced 
to regularize the ill-posed image fusion problem. The joint fusion 
and unmixing problem is f'ormulated as the minimization of a 
cost function with respect to the mixing matrix (which contains 
the spectral signatures of the pure material, referred to as 
endmembers) , and the abondance maps, with non-negativity and 
sum-to-one constraints. This optimization problem is attacked 
with an alternating optimization strategy. The two resulting 
sub-problems are convex and are solved efficiently using the 
alternating direction method of' multipliers. Simulation results, 
including comparisons with the state-of'-the-art, document the 
ef'f'ectiveness and competitiveness of the proposed unmixing based 
fusion algorithm. 

Index Terms-Multi-band image fusion, Bayesian estimation, 
block circulant matrix, Sylvester equation, alternating direction 
method of multipliers, block coordinate descent. 

1. INTRODUCTION 

Hyperspectral (HS) images contain a large number of spec­
tral bands (often of the order of hundreds), which enables fine 
spectroscopy analysis of the materials present in the analyzed 
scene. However, owing to physical constrains linked with the 
available energy to form the images, a high spectral resolution 
often implies a low spatial resolution. 

HS image fusion is a class of inverse problems aimed at 
enhancing the resolution of the observed images. HS fusion 
usually involves an observed HS image with high-spectral and 
low-spatial resolution and a multispectral (MS) image with 
low-spectral and high-spatial resolution. Note that pansharpen­
ing is a similar inverse problem where the HS and MS images 
are replaced by MS and panchromatic (PAN) images. Inverse 
problems considered for HS and MS image fusion are often 
ill-posed and large scale, thus calling for effective regularizers 
and inference algorithms [l]-[5]. 
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In general, the degradation mechanisms in HS , MS, and 
PAN imaging, with respect to (w.r.t.) the target high-spatial and 
high-spectral image, can be summarized as spatial and spectral 
linear operations plus additive noise. The HS or MS image 
fusion is thus often formulated as a regularized linear inverse 
problem [3]-[5]. Regarding regularization, the usual very high 
spectral and spatial correlations of the target images imply that 
they admit sparse or low rank representations, which has been 
exploited in, for example, [3]-[10] . 

In [7], a maximum a posteriori (MAP) estimator incor­
porating a stochastic mixing model has been designed for 
the fusion of HS and MS images. In [11], a non-negative 
sparsity constrained algorithm for fusing HS and red-green­
blue (RGB) images has been developed based on an alternating 
optimization method. However, the approaches developed in 
[7] and [ 11] assume th at the pixels of the low-spatial resolution 
image are obtained by averaging the high resolution pixels 
belonging to the same area. The size of the blurring kernel is 
smaller or equal to the downsampling ratio. This assomption is 
convenient as it allows the fusion of the two multi-band images 
to be divided into the fusion of small blocks, which greatly 
decreases the complexity of the overall problem. 1 However, 
this assomption is often violated as the size of a blurring kernel 
can be larger than the downsampling ratio and does not consist 
of simple uniform averaging. 

To overcome the limitations described above, a more general 
forward model, which formulates blurring and downsampling 
as two separate operations, has been recently developed [2], 
[3], [5], [8], [14]-[16]. Based on this model, a non-negative 
matrix factorization (NMF) method for the fusion of MS and 
HS images has been proposed in [14]. Similar works have 
been developed independently in [9], [17]. Later, Yokoya et 
al. have proposed a coupled nonnegative matrix factorization 
(CNMF) unmixing for fusing low-spatial-resolution HS and 
high-spatial-resolution MS data, where both HS and MS im­
ages are alternately unmixed into endmember and abundance 
matrices by the CNMF algorithm [8] . This algorithm relies 
on a physical rationale and is easy to implement owing to its 
simple update rules. It does not use, however, the abondances 
estimated from the HS image and the endmember signatures 

1 Note that thi s assumption has al so been used in [10], [12], [13]. 
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estimated from the MS image. Therefore, the spectral and 
spatial information present in both images is not fully ex­
ploited. Besides, the convergence of the CNMF to a stationary 
point of its cost function is not guaranteed. It is worthy 
to note that a similar fusion and unmixing framework was 
recently introduced in [18], in which the alternating NMF 
steps in CNMF were replaced by alternating proximal forward­
backward steps. 

In this work, we formulate the HS image fusion as an 
inverse problem in which the regularization is implicitly 
imposed by low rank representation inherent to the linear 
spectral mixture mode!. In the proposed approach, the end­
member signatures and abundances are joint! y estimated from 
the observed multi-band images (i .e., HS and MS images). 
The optimizations w.r.t. the endmember signatures and the 
abundances are solved efficiently by the alternating direction 
method of multipliers (ADMM). 

Il. PROBLEM FORM ULATION 

A. Composite Fusion Madel 

Combining the widely used linear mixture model [19] and 
the forward model [2], [20], [21] leads to 

where 

YM = RMA + N M 
YH = MABS + NH 

(1) 

• M E JRmÀ x p is the endmember matrix whose columns 
are spectral signatures, 

• A E JRP Xn is the corresponding abundance matrix whose 
columns are abundance fractions, 

• Y M E ]RnÀxn and Y H E JRm Àx m are the observed 
spectrally degraded and spatially degraded images, 

• R E ]Rn À x mÀ is the spectral response of the MS sen sor, 
which can be a priori known or estimated by cross­
calibration [22], 

• B E JR.n x n is a cyclic convolution operator acting on the 
bands, 

• S E JRnxm is a d = d,.. x de uniform downsampling 
operator, where d,.. and de are the row and column down­
sampling factors, respectively. Therefore, S has m = n / d 
ones and zeros elsewhere, which satisfies srs = l m, 

• N M and N H are additive Gaussian terms that include 
both modeling errors and sensor noise. 

B. Statistical and variational methods 

To summarize, the problem of fusing and unmixing high­
spectral and high-spatial resolution images can be formulated 
as that of estimating the unknown matrices M and A from ( 1 ), 
which can be regarded as a joint NMF problem. As it is well 
known, the NMF problem is non-convex and has no unique 
solution, leading to an ill-posed problem. The conditioning of 
this problem is improved by incorporating constraints related 
to the abundances (matrix A) and the endmembers (matrix 
M). 

Solving the constrained optimization problem including a 
data-fitting term derived from mode! (1) is a challenging 

task, mainly due to the large size of A and to the presence 
of the downsampling operator S, which prevents any direct 
use of the Fourier transform to diagonalize the whole spatial 
degradation operator BS. To overcome these hurdles, severa) 
computational strategies have been proposed including Markov 
chain Monte Carlo (MCMC) algorithm [3], block coordinate 
descent method (BCD) [23], and tailored variable splitting, 
under the ADMM framework [5]. These strategies have been 
applied to different kinds of regularizations (or priors in the 
Bayesian framework), e.g., the empirical Gaussian prior [3], 
[23], sparse regularization [4] , or total variation regularization 
[5] . 

Recently, contrary to the algorithms described above, a 
much more efficient method from a computational point­
of-view, named Fast fUsion based on Sylvester Equation 
(FUSE) has been proposed to solve explicitly an underlying 
Sylvester equation associated with the fusion problem derived 
from (1) [24], [25]. In our work, we regularize this ill-posed 
problem by exploiting the physical properties of abundances 
and endmembers, which have been widely used in spectral 
unmixing, to infer A and M from the observed data Y M and 
YH. 

C. Data Fidelity Term 

From the observation model (1) and the assumption that the 
noise has Gaussian distribution, we adopt the data-fitting term 

d(M,A) = 

~ l i A~~ (YH - MABS) Il } + ~ l iA~~ (YM- RMA) Il } 

(2) 

where AH and AM denote the covariance matrices of the 
columns of N H and N M and it is assumed that both noises 
are pixel-wise independent. 

D. Constraints 

1) Abundances: Let a1 and a i, j denote the jth column of A 
(associated with the jth image pixel), and the ith component 
of aJ (representing the proportion of the ith endmember in 
the jth pixel), respectively. As a i, j represents a proportion 
[19] , [26], then the abundance vectors aj satisfies the so-called 
abundance non-negativity constraint (ANC) and abundance 
sum-to-one constraint (ASC) 

a1 ;::: 0 and 1~a1 = 1, \t'j E {1 , ··· , n } (3) 

where ;::: means "element-wise greater or equal than" (for 
vectors and matrices) and 1r is a p x 1 vector with ail ones. 
The constraints (3) can be rewritten in matrix form 

A ;::: 0 and 1~ A = 1~. (4) 

2) Endmembers: As the endmember signatures represent 
the reflectances of different materials, each element of the 
matrix M should be between 0 and 1. Thus, the constraints 
for M can be written as 

0 ::::; M ::::; 1. (5) 



E. Constrained Optimization Formulation 

By combining the data terms (2) and the constraints (4) and 
(5), the unmixing based fusion problem can be formulated as 
the following minirnization problem 

where 

min L(M, A) s.t. A :2: 0 and 
M,A 

o ::; M ::; 1 

L(M, A) = ~ l i A~! (YH - MABS) Il } 

1 11 _ l 11 2 + 2 AM 2 (YM - RMA) F· 

(6) 

We remark that the inclusion of the covariance matrices AH 
and AM allows to deal with colored noises (band-dependent), 
which is often the case in real world applications. 

In the proposed formulation, fusion can be regarded as 
a generalized unmixing problem, which includes two data 
fidelity terms. Thus, both images contribute to the estimation 
of the endmember signatures ( endmember extraction step) and 
the high-resolution abundance maps (inversion step). For the 
endmember estimation, a popular strategy is to use subspace 
projection as a preprocessing step, such as in [27], [28]. In 
general, the subspace transformation is learned beforehand 
from the high-spectral resolution image empirically, e.g., from 
the HS data. The subspace projection step alleviates the 
computational burden greatly and can be incorporated in our 
framework easily. 

III . ALTERNATING ÜPTIMIZATION SCHEME 

Even though problem (6) is convex w.r.t. M and A sepa­
rately, it is non-convex w.r.t. these two matrices jointly and 
thus hard to solve. We attack this hurdle with alternating 
optimization, also known as block coordinate descent (BCD), 
w.r.t. M and A. The optimization w.r.t. M (resp. A) con­
ditional on A (resp. M) can be carried out efficiently with 
the ADMM [29]. Under rnild conditions the sequence gener­
ated by ADMM converges to a solution of the sub-problem 
under consideration. The resulting alternating optimization 
algorithm, referred to as Fusion based on Unmixing for Mu/ti­
band Images (FUMI), is detailed in Algo. 1, where EEA(Y H) 
in tine 1 represents an endmember extraction algorithm to 
estimate endmembers from HS data, A = {A E JR;_vxn iA :2: 
0, 1~ A = 1~} is the constraint set associated with ANC and 
ASC. The optimization steps w.r.t. A and M are sketched 
below. More details about the used optimization strategy are 
available in [30] and are omitted here for space limitations. 

A. Optimization w.r.t. the Abundance Matrix A (M fixed) 

Let L(A) denote L(M, A) with M fixed. The optimization 
w.r.t A can be formulated as 

where 

minL(A) + ~A(A) 
A 

~ A = {O ifA E A 
A ( ) + oo otherwise. 

(7) 

Algorithm 1: Fusion based on Unmixing for Multi­
band Images (FUMI) 

Input: YM, YH, A M, AH, R, B, S 
/* Initialize M */ 

1 M(ü) +- EEA(YH); 
2 for t = 1, 2, ... to stopping rule do 

1* Optimize w.r.t. A by ADMM */ 

3 A(t) E arg ~j~ L(M(t- t ), A); 

1* Optimize w.r.t. M by ADMM */ 
4 M(t) E arg min L(M A(tl); 

o::; M::; t ' 
s end 
6 Set À = A(t) and M = M(t); 

Output: À and M 

A constrained formulation equivalent to (7) and suitable to 
apply ADMM is 

min L(A) + ~A(V) s.t. V = A. 
A 

(8) 

The augmented Lagrangian for (8) is 

.C(A, V , G) =~ li A~! (YH - MABS) Il } + ~A(V) 
1 _ l 2 fJ, Il 11 2 + 211AM 2 (Y M - RMA) II F + 2 A - v - G F 

(9) 

where G is the scaled Lagrange multipliers (dual variables) 
and p, > 0 weights the augmented Lagrangian term. 

ADMM iteratively optimizes (9) w.r.t A , then w.r.t, V, and 
then updates the dual variable G (see [29] for further details). 

Functions L( A) and ~A (V) are closed, proper, and convex. 
According to the Eckstein and Bertsekas's Theorem [31, 
Theorem 8], the convergence to a solution of (7) is guaranteed. 

Note that the optimizations w.r.t. A and V can both be 
solved analytically. The minimization of (9) w.r.t. A amounts 
to solve a generalized Sylvester linear equation, which, by 
exploiting the properties of the circulant and downsampling 
matrices B and S, has an analytical solution, as demonstrated 
in [24], [32]. The update of V is the Euclidean projection of 
A - G onto the canonicat simplex A [33]. 

B. Optimization w.r.t. the Endmember Matrix M (A fixed) 

Let L(M) denote L(M, A) with A fixed. The optimization 
of L(M) can be rewritten as 

minL(M) + ~M(M) , 
M 

(10) 

1 

where M = {M E lRm"xv10::; M::; 1}. Assuming that A"ii2 

is diagonal and has positive diagonal elements, then, (1 0) is 
equivalent to 

1 1 

minL(M) + ~M(A~T) s.t. M = A~T. 
M 

(11) 

The augmented Lagrangian for problem (11) is 

L:(M, T, G) = L(M) + ~M(A~T) + ~ ~~ A~!M - T - G II ~· 



ADMM iteratively optimizes L:(M, T , G) w.r.t M , then w.r.t, 
T, and then updates the dual variable G. As L(M) and 

1 1 

~M(A~T) are closed, proper, and convex functions and A~ 
has full column rank, the ADMM is guaranteed to converge 
to the solution of (10). 

C. Convergence Analysis 

Regarding the sequence generated by Algorithm 1, the 
Proposition 2.7.1 of [34] asserts that its limit points are 
stationary points of (6) provided that L(M, A) is continuously 
differentiai in M x A and the minima of (7) and ( 1 0) are 
uniquely attained. The former condition raises no problem but 
the latter cannot be guaranteed. We may however argue that a 
simple modification of the objective function, consisting in 
adding the quadratic term ai!IA II } + a2 II M II }, where Œ1 

and a 2 are very small, ensures that the minima of (7) and 
(10) are uniquely attained and thus we may invoke that result. 
In practice, even without including the quadratic terms, we 
have systematically observed convergence of the optimization 
variables A and M. 

IV. EXPERIMENTAL RESULTS 

The proposed unmixing based fusion method is now applied 
to semi-real HS and high-resolution images. Ali the algorithms 
have been implemented in MATLAB R2014A and run on 
a computer with Intel(R) Core(TM) i7-2600 CPU@3.40GHz 
and 8GB RAM. 

A. Quality Metrics 

1) Fusion Quality: To evaluate the quality of the proposed 
fusion strategy, five image quality measures have been in­
vestigated. Referring to [12], [24], [35] , we propose to use 
the restored signal-to-noise ratio (RSNR), the averaged spec­
tral angle mapper (SAM), the universal image quality index 
(UIQI), the relative dimensionless global error in synthesis 
(ERGAS) and the degree of distortion (DD) as quantitative 
measures. The smaller SAM, ERGAS and DD, the better the 
fusion. The larger RSNR, UIQI, the better the fusion. Note 
that these quality metrics have been widely used to assess 
the quality of a reconstructed multi-band image in image 
restoration, deconvolution, super-resolution and so on [2] , [35]. 

2) Unmixing Quality: In order to analyze the quality of 
the unmixing results, we consider the normalized mean square 
error (NMSE) for both endmember and abundance matrices 

II M - M II} 
NMSEM = IIM II } ) 

II Â - A II} 
NMSEA = II A II} 

The sm aller NMSE, the better the quality of the unmixing. The 
SAM between the actual and estimated endmembers (different 
from SAM defined previously for pixel vectors) is a measure 
of spectral distortion defined as 

( ' ) ( (mn, m n) ) 
SAMM mn, mn = arccos llmnll 2llmnll 2 . 

The overall SAM is obtained by averaging the SAMs com­
puted from all endmembers. The value of SAMM is expressed 

in degrees and, given that the components of mn and mn are 
nonnegative, thus belongs to [0, 90]. The smaller the absolute 
value of SAM, the Jess important the spectral distortion . 

B. Stopping Rule 

In this work, we use the distance of two consecutive 
objective function values as the stopping rule mainly due to 
its simplicity, i.e., 

IL(M(t+l)) A (t+l) ) - L(M(t) ) A (t)) 1 

IL(M(t), A(t))l < é 

where é has been fixed to w- 4 by cross-validation. 

C. Moffett Dataset 

In this experiment, the reference HS image has size 100 x 
100 x 176 and it was acquired over Moffett field, CA, in 
1994 by the JPL/NASA airborne visible/infrared imaging 
spectrometer (AVIRIS). This image was initially composed of 
224 bands that have been reduced to 176 bands after removing 
the highly noisy bands due to water vapor absorption. A 
composite color image of the scene of interest is shown in 
the bottom right of Figs. 1. As there is no ground-truth for the 
endmembers and abundances of the reference image, we have 
unmixed this image with an unsupervised unmixing method 
and reconstructed the reference image X with the estimated 
endmembers and abundances, after normalization enforcing 
ASC. The number of endmembers has been fixed to p = 3. 

The reference image X is reconstructed from a coregistered 
HS and PAN pair of images. The observed HS image Y H 

has been generated by applying a 7 x 7 Gaussian filter with 
standard deviation 1. 7 and by down-sampling every 4 pixels 
in both vertical and horizontal directions for each band of X. 
A PAN image Y lvi has been obtained by averaging the first 
50 HS bands. The HS and PAN images are both contaminated 
by Gaussian noises such that SNR= 50dB for ali the bands. 

To analyze the role of estimating the endmembers, the 
proposed FUMI algorithm has been implemented in two sce­
narios: estimating A with fixed M , referred to as supervised 
FUM! (S-FUMI) and estimating A and M jointly, referred 
to as unsupervised FUM! (UnS-FUMI). Note that the fixed 
matrix M used for S-FUMI has been chosen as the matrix M 
obtained using SISAL [36]. 

The proposed FUMI (including both S-FUMI and UnS­
FUMI) and two other methods studied in [14] and [8] have 
been implemented to process the two observed images. The 
fused images are available in Figs. 1. Visually, S-FUMI 
and UnS-FUMI give better fused images than the other two 
methods. Furthermore, the quantitative fusion results reported 
in Table I are consistent with this conclusion as S-FUMI 
and UnS-FUMI outperform the other two methods for all the 
fusion metrics. The priee to pay with the S-FUMI and UnS­
FUMI methods is their larger computational complexity. 

The unmixed endmembers and abundance maps are dis­
played in Figs. 2 and 3. The quantitative unmixing results 
are reported in Table II. FUMI methods offer competitive 
endmember estimation and much better abundance estimation 



compared with Berne's and Yokoya's methods. lt is interesting 
to note that even if S-FUMI and UnS-FUMI share very similar 
fusion results, the endmember estimation obtained with UnS­
FUMI is much better compared with S-FUMI, which basically 
uses the endmembers estimated from the HS image. This 
gives evidence that the estimation of endmembers benefits 
from being updated jointly with the abundances, thanks to the 
complementary spectral and spatial information contained in 
HS and PAN images. 

Fig. 1: Fusion results (Moffett datasets): (Top left) HS image. 
(Top right) PAN image. (Row 2 left) Berne's method. (Row 
2 middle) Yokoya's method. (Row 2 right) S-FUMI. (Bottom 
left) UnS-FUMI. (Bottom right) Reference image. 

TABLE 1: Fusion Performance for Moffett (HS+PAN 
datasets): RSNR (in dB), UIQI, SAM (in degree), ERGAS, 
DD (in 10- 2 ) and time (in second). 

Methods 1 RSNR UIQI SAM ERGAS DO Time 1 

Berne2010 16.95 0.8923 4.446 3.777 3.158 0.3 
Yokoya2012 17.04 0.9002 4.391 3.734 3.132 1.1 

S-FUMI 22.57 0.9799 2.184 2.184 1.488 2l.l 
UnS-FUMI 22.15 0.9778 2.346 2.292 1.577 32.2 

TABLE II: Unmixing Performance for Moffett HS+PAN 
dataset: SAMM (in degree), NMSEM (in dB) and NMSEA 
(in dB). 

Methods 1 SAMM NMSEM NMSEA 1 

Beme2010 7.568 -16.425 -1 1.167 
Yokoya2012 6.772 -17.405 -11.167 

S-FUMI 7.579 -16.419 -14.172 
UnS-FUMI 7.028 -16.685 -14.695 

V. CONCLUSION 

This paper developed a new algorithm based on spectral 
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Fig. 2: Unmixed endmembers for Moffett HS+PAN datasets. 
Top left, top right and bottom left: Actual spectral signatures 
(ground truth) and estimated endmembers. Bottom right: Sum 
of absolute values of all endmember errors. 

Fig. 3: Unmixed abundance maps for Moffett HS+PAN 
datasets. Estimated abundance maps using (Row 1) Berne's 
method, (Row 2) Yokoya's method, and (Row 3) UnS-FUMI. 
(Row 4) Reference abundance maps. 

unrnixing for fusing an hyperspectral image with another high- resolution image. In the proposed algorithrn, the endmembers 



and abundances were updated alternatively both using an 
alternating direction method of multipliers. The updates used 
for the abundances consisted of solving a Sylvester matrix 
equation and projecting onto a simplex, which were solved 
analytically and efïiciently. The endmember updating was 
divided into two steps: a !east square regression and a thresh­
olding, with light computational cost. Numerical experiments 
showed that the proposed joint fusion and unmixing algorithm 
compared competitively with two state-of-the-art methods, 
with the advantage of improving the performance for both 
fusion and unmixing. 
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