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Abstract— Interpretation and analysis of intrapartum fetal

heart rate, enabling early detection of fetal acidosis, remains

a challenging signal processing task. Recently, a variant of the

wavelet-based multifractal analysis, based on ppp-exponents and

ppp-leaders, which provides a rich framework for data regular-

ity analysis, has been proposed. The present contribution aims

at studying the benefits of using the ppp-leader multifractal for-

malism for discrimination of intrapartum fetal heart rate. First,

a dependence on ppp of the multifractal properties of data is ev-

idenced and interpreted. Second, classification between healthy

subjects and fetuses suffering from acidosis is shown to have sat-

isfactory performance that increases when ppp is decreased.

Keywords— wavelets, multifractal analysis, ppp-leaders, intra-

partum, fetal heart rate variability, acidosis detection.

I INTRODUCTION

Fetal monitoring. Fetal monitoring is commonly per-

formed using cardiotocography, the simultaneous recording

of fetal heart rate (FHR) and uterine contractions. FHR mon-

itoring helps clinicians to identify and extract fetuses at risk

before asphyxia and severe long term consequences, such as

neuro-development disability, neonatal encephalopathy, and

cerebral palsy, occur. Continuous FHR offers valuable infor-

mation about fetal oxygenation status, and provides insight

into defense mechanisms fetuses use to adapt to hypoxia. Fe-

tuses’s reactions to hypoxic events result in a complex be-

haviour governed by multiple nervous feedback loops and

exhibiting complex FHR dynamics. In clinical practice such

dynamics are captured by the measurement of short/long term

variability and shifts in baseline fetal heart rate [1].

Multifractal analysis of FHR – related works. Multi-

fractal analysis is a recent signal processing technique that

is well suited to measure information encoded in the regular-

ity fluctuations of data. Therefore, it can be used as a natural

and improved substitute of the time variability analysis clas-

sically performed on heart rate variability. It has been widely
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used for the analysis of adult heart rate [2–4]. It has also been

used for the analysis of FHR in e.g. [5]. Multifractal analy-

sis is based on a measure of pointwise regularity, which has

traditionally been the Hölder exponent h (cf. e.g. [6] for its

definition). Rather than focusing on the value that the Hölder

exponent takes on each time instant, multifractal analysis pro-

vides a global description of the distribution of Hölder expo-

nents throughout the data, the multifractal spectrum D(h). Its

practical estimation is tied to the use of specifically tailored

multi-resolution quantities in a multifractal formalism [6].

Recently, a new measure of pointwise regularity has been

introduced: the p-exponent [7, 8]. The corresponding multi-

fractal formalism relies on the use of a new multiresolution

quantity, the p-leaders [8]. The use of p-exponents provides

a number of benefits over the Hölder exponent. First, it can

take on negative values and therefore is well suited to mea-

sure negative regularity, which is typically present in heart

rate data. Second, the dependence on parameter p can be used

to obtain information on the presence of different kinds of

oscillatory singularities in data [8], and hence enriches the

multifractal description of singularities. Finally, estimations

based on p-leaders have better statistical performance than

Hölder exponent based ones [8, 9].

Goals, contributions and outline. In this contribution, we

conduct a study of the benefits of using a p-leader based mul-

tifractal formalism for discrimination of FHR of healthy fe-

tuses against fetuses suffering from acidosis. To that end, the

p-leader formalism (cf. Sec. III) is applied to almost 1000

FHR time series, recorded in a French academic hospital (cf.

Sec. II). The aims of the study are twofold: first, to determine

whether estimations change for different p-exponents or not;

second, to assess whether the increased estimation perfor-

mance for the p-leader multifractal formalism, shown in [9],

reflects in increased discriminatory power between healthy

subjects and those suffering from acidosis (cf. Sec. IV).

II DATABASE

Database. The database of FHR signals was collected at

the public academic French Hospital Femme-Mère-Enfant in

Bron, between 2000 and 2010. In total the database consists
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of 3049 intrapartum cardiotocogram (CTG) signals – all ac-

quired using a scalp electrode system STAN S21 or S31,

with 12 bit resolution, 500 Hz sampling frequency (STAN,

Neoventa Medical, Moelndal, Sweden). Clinical information

for women and neonates were systematically collected by ob-

stetricians in charge, cf., [10] for details.

Dilation Stage. In normal delivery, two stages of labour

are recognized: the dilation stage and the active pushing

stage. Studies describing the different nature of FHR during

labour exist [11] but the manifestation of temporal dynamics

with respect to both stages still remains unclear. Because of

better signal quality, it is chosen here to perform the analysis

on the last 20 minutes of the dilation stage of labour. It is re-

quired further that the last FHR measurement is taken as close

in time as possible to the measurement of umbilical artery pH

once labour is concluded; hence only those records with ac-

tive pushing stage shorter than 10 minutes were selected. The

application of such criteria leads to 905 records available for

analysis, amongst which 31 fetuses were defined as having

neonatal acidosis (umbilical artery pH≤ 7.05). Hereafter, we

refer to this latter group as nonhealthy, as opposed to healthy.

Preprocessing. FHR data are irregularly sampled, with

{ti, i = 1, . . . ,N}, where ti represents the time interval be-

tween consecutive R peaks. Classically, in heart rate variabil-

ity analysis, beat to beat time series are interpolated and re-

sampled into regularly sampled signals. Since FHR does not

contain frequencies beyond 3 Hz, it is chosen here to resam-

ple the FHR to 10 Hz using cubic splines interpolation.

III METHODOLOGY

ppp-regularity. Multifractal analysis has been traditionally

based on the use of the Hölder exponent h to measure lo-

cal regularity (cf. [6] for definition). This choice imposes the

restriction that only positive regularity can be measured, or,

conversely, that the function under analysis must be locally

bounded: X ∈ L∞
loc(R). To overcome this restriction, it has re-

cently been proposed to replace the Hölder exponent by the

p-exponent [8]. Let X ∈ L
p
loc(R) for p ≥ 1. X is said to be-

long to T
p

α (t), with α > −1/p, if there exist C,R > 0 and a

polynomial Pt (with deg(Pt)≤ α) such that ∀α < R,

(

1

a

∫ t+a/2

t−a/2
|X(u)−Pt(u− t)|p du

)1/r

≤Caα . (1)

The p-exponent of X at t is defined as hp(t) = sup{α :

X ∈ T
p

α (t)} and is a natural substitute for the Hölder expo-

nent when dealing with functions which are not bounded but

rather belong locally to Lp, and admits negative local regu-

larity exponents hp >−1/p. Obviously, the Hölder exponent

equals the p-exponent for p = ∞; furthermore, hp′ ≥ hp if

p′ ≥ p [8, 9].

Multifractal ppp-spectrum. Mimicking the definition of the

multifractal spectrum D(h) for the Hölder exponent [6,8], the

multifractal p-spectrum Dp(hp) can be defined as the Hauss-

dorf dimension of the set of points where the p-exponent

takes the value hp. In practice, Dp(hp) can not be computed

using this definition, but rather using an alternative formula-

tion, termed multifractal formalism, based on p-leaders.

ppp-leaders. The practical estimation of the Hölder-

exponent-based multifractal spectrum relies on the use of

wavelet leaders [12]. Equivalently, the estimation of a p-

exponent based spectrum calls for the use of p-leaders, de-

fined as follows. Let dX ( j,k) be the L1 normalized discrete

wavelet transform coefficients of X [12, 13]. Let us define

the dyadic intervals λ = λ j,k = [k2 j,(k + 1)2 j), and 3λ =
⋃

m∈{−1,0,1}λ j,k+m. Therefore, the wavelet coefficients can be

indexed as dλ = dX ( j,k). Then, the p-leaders are defined

as [7–9]:

L(p)( j,k)≡ L
(p)
λ

=

(

∑
λ ′⊂3λ

|dλ ′ |
p 2−( j− j′)

)1/p

. (2)

p-leaders permit to measure p-exponent local regularity in

the sense that

for t = 2 jk, L(p)( j,k)∼C2 jhp(t), 2 j → 0. (3)

Furthermore, the definition of p-leaders enables to extend the

definition of p-exponents to 0 < p < 1, see [8] for details.

Multifractal formalism. The p-leader multifractal for-

malism allows to compute Dp(hp) in a practically feasible

way. First, the scaling exponents ζp(q) are defined by the

scaling behavior of the structure functions Sp(q, j):

Sp(q, j) = 1/n j

n j

∑
k=1

L(p)( j,k)q ∼Cq,p2 jζp(q),2 j → 0. (4)

An (upper bound) estimate of the multifractal spectrum can

be obtained as a Legendre Transform of ζp(q) [6]: Dp(hp)≤
minq(1+qhp−ζp(q)). In practice, the equality is assumed to

be satisfied and the multifractal formalism is said to hold.

Log-cumulants. In real-world applications, it is useful to

approximate the multifractal spectrum by a parabolic expan-

sion: D(h) = 1+(h−c1)
2/(2c2) [12]. It can be shown [8,12]

that the coefficients cm are directly related to the scale depen-

dence of the m-th order cumulants, C
(p)
m ( j), of lnL(p)( j, ·):

C
(p)
m = Cumm lnL(p)( j, ·) = c

(0,p)
m + c

(p)
m ln2 j + γ( j, p), (5)

where γ( j, p) is a nonlinear function whose precise expres-

sion is given in [8]. Eq. (5) is used for practical estimation

of the c
(p)
m by linear regression of the estimates of C

(p)
m ( j)

against ln2 j, for j ∈ [ j1, j2]. The estimation procedures, im-

plemented by ourselves in the MATLAB programming lan-

guage, are used to obtain the results in Sec. IV.

Pseudo-fractional integration. In practice, it must be

verified that X ∈ Lp(R) before computing p-leaders. This
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Fig. 1: Dependence on ppp: estimated multifractal spectra for typical healthy
(left) and nonhealthy (right) subjects.

can be easily done by checking the condition: η(p) =
1/n j ∑

n j

k=1 |dX ( j,k)|p ≥ 0 [7, 8]. If the condition is found not

to hold, a pseudo fractional integration in the wavelet do-

main can be performed [12]. It must be chosen such that

η(−γ)(p) = η(p)+ γ p≥ 0, where (−γ) indicates that a quan-

tity was computed from a pseudo-fractional integral X (−γ) of

order γ of X . The pseudo fractional integration is performed

by computing the wavelet p-leaders of the modified wavelet

coefficients d
(−γ)
X ( j,k) = 2−γ jdX ( j,k) [8, 12].

IV RESULTS AND DISCUSSION

Experimental setup. Wavelet coefficients were com-

puted using a Daubechies mother wavelet with Nψ = 3

vanishing moments. Estimations were performed using p ∈
{0.25,0.5,1,2,4,10,∞} and a scaling range j1 = 6, j2 = 10.

The minimum regularity condition η(p) > 0 was checked a

priori for all subjects, and it was determined that a fractional

integration of order γ = 0.5 was needed. Data processing and

statistical analysis was performed in MATLAB.

Fetal heart rate and multifractal attributes. Fig. 1 dis-

plays estimated spectra for p ∈ {0.25,1,2,4,∞}, for a rep-

resentative healthy (left) and nonhealthy (right) subjects. It

shows that, whatever p, spectra for the nonhealthy subjects

are to the right of those for healthy ones. Fig. 2 displays

the average of the estimates of c1 (left) and c2 (right), with

95% confidence intervals, for healthy (black lines) and non-

healthy (red lines) subjects, and shows that healthy subjects

have smaller c1 and larger |c2| than nonhealthy ones, for all p.

The large difference in the widths of the confidence intervals

between healthy and nonhealthy subjects stems from the un-

balanced sizes of the classes (874 healthy and 31 nonhealthy

records). Figs. 1 and 2 thus both indicate that FHR time series

for nonhealthy subject are characterized by more regularity as

measured by multifractal analysis: Larger c1 and smaller |c2|,
and thus by a decrease of heart rate variability. This suggests

that multifractal analysis can potentially be used for early aci-

dosis detection.

Fetal heart rate and dependence on ppp. Fig. 1 also sug-

gests that as p decreases from ∞ (black line) to 0.25 (blue

line), p-spectra are shifted to larges values of h and become

more narrow. In addition, Fig. 2 shows that estimations of
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Fig. 2: Dependence on ppp: mean of the estimations of c1 (left) and c2

(right), with 95% confidence intervals.

Table 1: Dependence on ppp: p-values for Kruskal-Wallis tests with

H0 : c
(p)
m = c

(p′)
m for m = 1,2, and for healthy and nonhealthy groups.

c1 c2

HEALTHY 1.70e−22 2.13e−133

NONHEALTHY 0.83 0.03

c1 and c2 for both groups indeed display dependence on p.

To assess whether differences c1 and c2 for different p are

significant or not, for both groups, Kruskal-Wallis tests are

performed. Results, reported in Table 1, show that the null

hypothesis (no difference between estimations for different

p) is strongly rejected for the healthy group, with a very low

p-value. To the contrary, the test rejects the null hypothesis at

a 5% confidence level for c2 for the unhealthy group, but fails

to do so for c1. Dependence on p is thus clear, obvious and

significant for the healthy group. Dependence on p remains

slightly less easy to assess for the nonhealthy group, likely

due to its significantly smaller sample size yielding thus a re-

duced power of the test.

As discussed in [8], the fact that p-spectra vary with p

has a profound and deep meaning: It provides evidence that

data have a special sort of oscillating singularities called la-

cunary singularities, and not only consist of simpler canon-

ical singularities, referred to as cusps [8]. Therefore, Figs. 1

and 2, as well as Table 1, showing a significant dependence

on p, indicate that healthy FHR are characterized by a rich

oscillatory singularity behavior with potentially lacunary sin-

gularities. This broadens the description provided up to now

by Hölder exponent based analysis, by permitting to distin-

guish lacunary singularities from the canonical ones. Further,

Fig. 2 and Table 1 also suggest that the dependence on p for

nonhealthy FHR is less significant. If confirmed, this would

mean that complex oscillatory behaviors existing in healthy

FHR temporal dynamics are decreased under acidosis.

Discrimination between healthy and nonhealthy subjects.

To study the impact of p on classification performance, c1

and c2 are computed for all subjects. Receiver operator char-

acteristic (ROC) curves are computed independently for c1

and c2, and the area under ROC curve (AUC) are computed.

Results in Table 2 and Fig. 3 clearly show that lower values of

p achieve better classification performance. For larger values



Table 2: Classification performance. AUC values for different p.

0.25 0.5 1 2 4 10 ∞

c1 0.71 0.70 0.69 0.67 0.67 0.67 0.67

c2 0.66 0.63 0.62 0.61 0.60 0.60 0.60
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Fig. 3: ROC curves for c1 (left) and c2 (right), for several values of p.

of p, AUC decreases markedly. Notably for p = ∞, estimates

of c2 are less reliable showing large variance, and thus clas-

sification performance are lower compared to those obtained

with p = 0.25. The difference between AUC for c1 and c2 is

mainly due to performance in the lower part of ROC curves

(better sensitivity and specificity in left bottom corner for c1).

Further, Fisher Linear Discriminant (FLD) analysis is ap-

plied to (c1,c2), for p = 0.25, to explore the benefits of the

joint use of c1 and c2. The use of five fold cross validation

technique induces a slight improvement in performance, with

AUC reaching 0.73±0.09. Fig. 4 depicts linear separation of

healthy (left side from separating line) and nonhealthy (right

side) domains. First, on the lower right side, the higher den-

sity of nonhealthy cases highlights that c1 and c2 well charac-

terize FHR regularity of fetuses with acidosis. Second, on the

upper left side, there remain a number of nonhealthy subjects

in the healthy domain. Preliminary analysis of such subjects

indicates that the dependence on p of multifractal attributes,

as described in Fig. 1, resembles that observed for healthy

subjects. The reason for this is under current investigation.

V CONCLUSIONS

This contribution illustrates the benefits provided by the p-

leader formalism for the characterization and discrimination

of intrapartum FHR data. First, non healthy subjects mostly

show an increased regularity, and thus less variability in FHR

temporal dynamics. Second, a significant dependence on p

for healthy FHR is observed, which can be interpreted as the

fact that FHR temporal dynamics involve complex singular

behaviors (reminiscent of lacunary singularities). Moreover,

dependence on p for nonhealthy FHR is potentially weaker,

again pleading for decreased variability. This seems to also be
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Fig. 4: Joint use of c1 and c2 for p = 0.25. Left: Fisher linear discriminant
analysis of c1 and c2; points with c2 <−0.35 are plotted as c2 =−0.35 for
better readability of the main clusters. Right: ROC curve for c1, c2 and FLD

jointly c1 and c2.

the case for subjects affected by acidosis. In addition, classi-

fication performance between healthy and nonhealthy FHR

was shown to improve, with respect to the traditional wavelet

leaders, with the use of this novel technique and small p

which may stem from two reasons: p-leader multifractal for-

malism provides richer information by considering the oscil-

latory behavior; p-leaders provide better estimation perfor-

mance for small values of p.
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