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ABSTRACT

Texture analysis is an image processing task that can be conducted

using the mathematical framework of multifractal analysis to study

the regularity fluctuations of image intensity and the practical tools

for their assessment, such as (wavelet) leaders. A recently intro-

duced statistical model for leaders enables the Bayesian estimation

of multifractal parameters. It significantly improves performance

over standard (linear regression based) estimation. However, the

computational cost induced by the associated nonstandard posterior

distributions limits its application. The present work proposes an al-

ternative Bayesian model for multifractal analysis that leads to more

efficient algorithms. It relies on three original contributions: A novel

generative model for the Fourier coefficients of log-leaders; an ap-

propriate reparametrization for handling its inherent constraints; a

data-augmented Bayesian model yielding standard conditional pos-

terior distributions that can be sampled exactly. Numerical simula-

tions using synthetic multifractal images demonstrate the excellent

performance of the proposed algorithm, both in terms of estimation

quality and computational cost.

Index Terms— Multifractal Analysis, Wavelet Leaders, Bayesian

Estimation, Whittle Likelihood, Data Augmentation

1. INTRODUCTION

Context. Texture analysis is an important technique in image

processing and many different paradigms have been proposed to

quantify it. The mathematical framework of multifractal analysis

has proven particularly relevant, providing standard processing tools

also used in a large range of other applications, cf., e.g., [1, 2] and

references therein. Multifractal analysis is an instance of scale in-

variance analysis that considers an image through the prism of the

fluctuations of the pointwise smoothness of its amplitude. More pre-

cisely, the texture of an imageX is encoded by the multifractal spec-

trum D(h) defined as the Hausdorff dimension of the sets of points

that have the same pointwise regularity h, classically measured with

the Hölder exponent, cf., e.g., [3–6].

From a practical point of view, multifractal models translate to the

power law behaviors of the sample moments of adequate multireso-

lution quantities TX(j,k) ofX (i.e., quantities depending jointly on

scale 2j and spatial position k) over a range of scales 2j

S(q, j) ,
1

nj

∑

k

|TX(j,k)|q ≃ (2j)ζ(q), jm ≤ j ≤ jM (1)
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where nj ≈ ⌊N2/22j⌋ is the number of TX(j,k) at scale j and

⌊·⌋ stands for the truncation to integer values. Here, wavelet lead-

ers l(j,k) are used as multiresolution quantities, which are specifi-

cally tailored for the purpose of multifractal analysis [1, 4] and de-

fined in Section 2. The exponents ζ(q) in (1), termed scaling ex-

ponents, are closely linked to the multifractal properties of the im-

age X(k) via a Legendre transform L such that, D(h) ≤ L(h) ,

infq∈R[2 + qh − ζ(q)]. The scaling exponents ζ(q) enable the dis-

tinction of the two most prominent classes of scale invariance mod-

els: while ζ(q) is linear in the vicinity of q = 0 for self-similar

processes [7], it is strictly concave for multifractal multiplicative

cascade (MMC) based processes [8]. The linearity of ζ(q) can be

efficiently tested by considering the development of ζ(q) as a poly-

nomial at q = 0, ζ(q) =
∑
m≥1 cmq

m/m! [1,9,10]. Notably, it can

be shown that c2 < 0 for multiplicative cascades whereas c2 = 0
for self-similar processes (cf., e.g, [10]) and c2 = 0 implies that

cm = 0, ∀m ≥ 3 [4]. Therefore, the estimation of c2, termed the

intermittency or multifractality parameter, enables the identification

of the model that best fits the data and is thus of paramount impor-

tance in multifractal analysis. For details on multifractal analysis,

the reader is referred to, e.g., [3–6].

Related work. The coefficients cm have been shown to be di-

rectly tied to the cumulants of the logarithm of the multiresolution

quantities, see [9]. Specifically, for the multifractality parameter c2,

C2(j) , Var [ln l(j, ·)] = c02 + c2 ln 2
j . (2)

Relation (2) motivates the classical estimation procedure of c2 which

is based on a linear regression of the sample variance V̂ar [·] of the

log-leaders with respect to scale j

ĉ2 =
1

ln 2

∑j2

j=j1
wj V̂ar [ln l(j, ·)] (3)

where [j1, j2] is the range of considered scales and wj are appropri-

ate regression weights [1, 11, 12]. This linear regression based esti-

mation is appealing due to its simplicity and low computational cost.

However it suffers from poor performance for images (or patches) of

small size due to the limited number of available scales.

In [13], a generalized method of moments has been proposed to

address this difficulty. However, it relies on fully parametric mod-

els that are often too restrictive in real-world applications. Another

alternative has been recently proposed in [2, 14] and embeds the es-

timation of c2 in a Bayesian framework. It relies on a generic semi-

parametric model for the multivariate statistics of the log-leaders

in which the parameters of interest, notably c2, are encoded in the

variance-covariance structure of a Gaussian likelihood. A Whittle

approximation was used in [2] to numerically assess the Gaussian

likelihood and a closed-form expression was proposed in [14] for



its efficient evaluation. In both [2, 14], the Bayesian inference was

accomplished by a Markov chain Monte Carlo (MCMC) algorithm.

More precisely, a Metropolis-Hasting within Gibbs (MHG) scheme

was considered to bypass the difficulties resulting from non-standard

conditional distributions associated with the posterior of interest.

This method yielded excellent estimation performance at the price

of significantly increased computational cost compared to (3).

Goals and contributions. The goal of this paper is to propose

a novel Bayesian estimation procedure for c2 for images that in-

herits the excellent estimation performance of the Bayesian frame-

work introduced in [2,14] while significantly reducing the associated

computational cost. Starting from the statistical model introduced in

[2,14] (recalled in Section 2), this is achieved through the following

original key developments. First, instead of using a Whittle approx-

imation exclusively for numerically evaluating the Gaussian likeli-

hood more efficiently in the Fourier domain as in [2,14], we propose

here to rely on a statistical interpretation of the Whittle approxima-

tion and formulate the statistical model directly in the Fourier do-

main (see Section 3.1). Second, we propose a reparametrization of

the problem for handling the parameter constraints more efficiently

and, third, we express the Fourier domain likelihood as the marginal

of a data augmented likelihood [15, 16] (cf. Section 3.2). The key

property of this data augmentation scheme lies in the fact that the use

of standard priors (e.g., Jeffreys or inverse Gamma) leads to condi-

tional posterior distributions that can be sampled exactly. There-

fore, unlike the framework in [2, 14], it does not require the use of

MHG steps for the numerical approximation of the posterior dis-

tribution. The computation of an estimator associated with the pro-

posed Bayesian model and the marginalization of the latent variables

are then achieved efficiently by an MCMC algorithm (cf. Section 4).

In Section 5, the performance of the resulting estimation procedure

is assessed by means of Monte Carlo simulations on synthetic mul-

tifractal images. The proposed algorithm significantly outperforms

the linear regression (3), reducing root mean squared error (RMSE)

values up to one quarter, while its total computational cost is only 2

(large images) to 5 (small images) times larger.

2. MULTIVARIATE STATISTICAL MODEL FOR LEADERS

2.1. Statistical model of log-leaders

Wavelet leaders. Given a scaling function φ(x) and a mother

wavelet ψ(x) for a 1D multiresolution analysis, 2D wavelets can

be defined as tensorial products ψ(0)(x) = φ(x1)φ(x2), ψ
(1)(x) =

ψ(x1)φ(x2), ψ
(2)(x)=φ(x1)ψ(x2), ψ

(3)(x)=ψ(x1)ψ(x2) [17, 18].

For a suitable ψ, the dilated and translated templates of ψ(m), de-

noted ψ
(m)
j,k (x)=2−jψ(m)(2−jx − k), form a basis of L2(R2) with

a=2j and x=2jk. The (L1-normalized) discrete wavelet transform

coefficients of the image X are defined as d
(m)
X (j, k) = 〈X,ψ(m)

j,k 〉,
m = 0, . . . , 3 [17]. Denote as λj,k the dyadic cube of side length

2j centered at k2j and 3λj,k =
⋃
n1,n2={−1,0,1}λj,k1+n1,k2+n2

the

union of this cube with its eight neighbors. The wavelet leaders are

defined as the supremum of the wavelet coefficients within this spa-

tial neighborhood over all finer scales [1, 4], i.e.,

l(j,k) , sup
m∈(1,2,3),λ′⊂3λj,k

|d(m)
X (λ′)|. (4)

Statistical model. Let the log-leaders at scale j, ℓ(j, ·) , ln l(j, ·),
be stacked in the vector ℓj of which the mean has been removed

(since we focus on the estimation of c2, cf. (2)). It has been reported

in [2, 14] that the statistics of ℓj for MMC based processes can be

well approximated by a multivariate Gaussian distribution with co-

variance Cj(k,∆k) , Cov[ℓ(j,k), ℓ(j,k + ∆k)] modeled by a

radial symmetric function parametrized only by θ = (c2, c
0
2),

Cj(k,∆k) ≈ ̺j(||∆k||;θ) ,
{
̺0j (||∆k||;θ) ||∆k|| ≤ 3

̺1j (||∆k||;θ) 3 < ||∆k|| (5)

where || · || is the Euclidian norm. The function ̺1j is given by

a logarithmic decay ̺1j (r;θ) , c2 ln(r/rj)I[0,rj ](r) where rj =
⌊√nj/4⌋ and IA is the indicator function of the set A. The short-

term correlation is modeled by ̺0j (r;θ) , aj ln(1 + r) + c02 +

c2 ln 2
j where aj , (̺1j (3;θ) − c02 − c2 ln 2

j)/ln 4 (see [2] for

details). With the above assumptions, the likelihood of ℓj reads

p(ℓj |θ) ∝ |Σj,θ|−
1

2 exp
(
− 1

2
ℓ
T
j Σ

−1
j,θℓj

)
(6)

where the matrix Σj,θ is defined by ̺j(||∆k||;θ) [2] and where | · |
denotes the determinant and T the transpose operator.

2.2. Closed-form Whittle likelihood

The evaluation of the Gaussian likelihood (6) requires computing the

matrix inverse Σ−1
j,θ , which is problematic even for small images.

Therefore, (6) is evaluated using the Whittle approximation [19–22]

pW (ℓj |θ)=exp

(
− 1

2

∑

m∈Jj

lnφj(ωm;θ) +
y∗j (ωm)yj(ωm)

φj(ωm;θ)

)
(7)

as proposed in [2, 14], where yj(·) is the discrete Fourier trans-

form of ℓ(j, ·), ωm = 2πm/
√
nj , Jj is the grid of integers Jj ,

[[⌊(−√
nj − 1)/2⌋, . . . ,√nj −⌊√nj/2⌋]]2\{0} and (·)∗ stands for

complex conjugation. In (7), y∗j (ωm)yj(ωm) corresponds to the pe-

riodogram of {ℓ(j,k)} and φj(ωm;θ) to the discretized parametric

spectral density associated with the model (5). It has been shown

in [14] that the function φj(ωm;θ) has a closed-form parametric

expression given by

φj(ωm;θ) = c2 fj(ωm) + c02 gj(ωm) (8)

where the two functions fj(·) and gj(·) do not depend on θ, which

enables the efficient evaluation of (8) and hence (7) (cf. [14]).

3. EXTENDED FOURIER DOMAIN STATISTICAL MODEL

One limitation of the model above is that the parameters of interest

are implicitly encoded in Σ−1
j,θ . Thus, the conditional distributions

of these parameters are not standard, and sampling the posterior dis-

tribution of interest with an MCMC method [2, 14] requires MHG

moves. Here we propose a solution that yields a more efficient algo-

rithm. First, we use a generative model based on a statistical inter-

pretation of (7). Second, we reparametrize its constraints in order to

enable the use of data augmentation [15, 16]. Third, we propose an

extended likelihood for which the design of classical priors leads to

standard conditional distributions.

3.1. Statistical model in the Fourier domain

The statistical model of [2, 14] summarized in Section 2 exploits

the Whittle approximation only to numerically evaluate (6). Here,

we use a statistical interpretation of the Whittle approximation and

replace the likelihood (6) by a statistical model for the Fourier co-

efficients yj(ωm). The central symmetry properties of yj(ωm) and



of the parametric spectral density φj(ωm;θ) (due to properties of

Fourier transform of real functions) imply that only half of the fre-

quency plane, denoted Jj , needs be considered in the sum in (7).

The expression (7) can hence be rewritten as

pW (ℓj |θ) = |Γj,θ|−1 exp
(
−y

H
j Γ

−1
j,θyj

)
, yj , F(ℓj) (9)

where the operator F(·) computes and vectorizes the Fourier coeffi-

cients contained in the half-plane Jj , H is the conjugate transpose

operator and Γj,θ is the diagonal matrix defined by

Γj,θ , c2F j + c02Gj ,F j , diag (fj) , Gj , diag (gj) (10)

with fj,(fj(ωm))
m∈Jj

and gj,(gj(ωm))
m∈Jj

. In view of (9),

using pW (ℓj |θ) thus amounts to modeling yj by a random vector

with a non-degenerate centered circular-symmetric complex Gaus-

sian distribution CN (0,Γj,θ), provided the covariance matrix Γj,θ
is positive definite (PD).

In the rest of this paper, we thus consider the Fourier coefficients

yj , j = j1, . . . , j2 with likelihood

p(yj |θ) = |Γj,θ|−1 exp
(
−y

H
j Γ

−1
j,θyj

)
(11)

as the observed data (rather than the log-leaders ℓj , modeled by (6)).

Assuming independence between scales j leads to the likelihood

p(y|θ) ,
j2∏

j=j1

p(yj |θ) ∝ |Γθ|−1 exp
(
−y

H
Γ

−1
θ

y
)

(12)

for the vector y , [yTj1 , ...,y
T
j2
]T , with diagonal covariance matrix

Γθ , c2F + c02G F , diag (f) G , diag (g) (13)

f , [fTj1 , ..., f
T
j2 ]

T
g , [gTj1 , ...,g

T
j2 ]

T .

To ensure that theNY ×NY matrix Γθ is PD, whereNY , card(y),
the parameters θ=(c2, c

0
2) must belong to the admissible set

A = {θ ∈ R
−
⋆ ×R

+
⋆ |c2f(k)+c02g(k) > 0, k = 1, . . . , NY }. (14)

3.2. Reparametrization and data augmentation

Finally we propose to replace the likelihood p(y|θ) with an extended

likelihood p(y,µ|θ) using an appropriate set of latent variables µ.

To do so, we first need to reparametrize the model.

Reparametrization. To construct the extended likelihood p(y,µ|θ),
Γθ must be expressed as the sum of two PD diagonal matri-

ces, which is not the case in (13) because c2F is not PD since

∃k : f(k) > 0 (while ∀k : g(k) > 0) [14]. We thus propose a

reparametrization defined by the mapping

ψ : θ 7→ θ̃,(−c2, c02/γ + c2), γ = sup
k

f(k)/g(k). (15)

It is easy to show that ψ is a one-to-one transformation from A to

R
+2
⋆ and that the likelihood (12) expressed with θ̃ is given by

p(y|θ̃) ∝ |Γ
θ̃
|−1 exp

(
−yHΓ−1

θ̃
y
)

(16)

Γ
θ̃
= θ̃1F̃ + θ̃2G̃ F̃ = −F +Gγ G̃ = Gγ (17)

where, by construction, the two diagonal matrices θ̃1F̃ and θ̃2G̃
are PD for θ̃ ∈ R

+2
⋆ . This last property is essential for the data

augmentation scheme proposed in the next paragraph. Furthermore,

since θ̃ ∈ R
+2
⋆ , (15) yields independent positivity constraints.

Data augmentation. We can now define the extended model

y|µ, θ̃2 ∼ CN (µ, θ̃2G̃), µ|θ̃1 ∼ CN (0, θ̃1F̃ ) (18)

where the vector µ is an additional latent variable. The model (18)

is associated with the extended likelihood

p(y,µ|θ̃) ∝ θ̃−NY
2 exp

(
− 1

θ̃2
(y − µ)HG̃

−1
(y − µ)

)

× θ̃−NY
1 exp

(
− 1

θ̃1
µ
H
F̃

−1
µ
)
. (19)

Here, µ has been chosen such that the likelihood (16) is found by

marginalizing (19) with respect to µ. Moreover, it is easy to see

that (19) leads to standard conditional distributions when used with

classical priors for θ̃i ∈ R
+
⋆ (e.g., inverse Gamma or Jeffreys priors).

4. BAYESIAN ESTIMATION

4.1. Prior and posterior distribution

Assuming a priori independence between (µ, θ̃1) and θ̃2 and given

priors p(θ̃i) for the parameters θ̃i, the joint posterior distribution for

(θ̃,µ) is given by Bayes’ theorem

p(θ̃,µ|y) ∝ p(y|θ̃2,µ) p(µ|θ̃1) p(θ̃1) p(θ̃2).

In this paper, we consider non-informative Jeffreys priors, p(θ̃i) ∝
1/θ̃i (even if other priors could be investigated), in which case the

resulting posterior distribution is given by

p(θ̃,µ|y) ∝ θ̃−NY
2 exp

(
− 1θ̃−1

2 (y − µ)HG̃
−1

(y − µ)
)

× θ̃−NY
1 exp

(
− θ̃−1

1 µ
H
F̃

−1
µ
)
× θ̃−1

1 × θ̃−1
2 . (20)

4.2. Inference procedure

Bayesian estimators. Since the latent variable µ is of no interest for

multifractal analysis purposes, we consider the marginal posterior

mean estimator for θ̃, denoted MMSE (minimum mean square error)

estimator and defined as

θ̃
MMSE

, E[θ̃|y] (21)

where the expectation is taken with respect to the marginal poste-

rior density p(θ̃|y). Unfortunately, (21) cannot be computed di-

rectly because this would require integrating over the full posterior

(20). Thus, we propose here to resort to an MCMC algorithm [23]

to approximate (21). More precisely, we investigate a Gibbs sam-

pler drawing samples (θ̃
(k)
,µ(k))Nmc

k=1 that are asymptotically dis-

tributed according to the joint posterior p(θ̃,µ|y). The marginal

posterior mean can then be approximated by [23]

θ̃
MMSE ≈ 1

Nmc −Nbi

∑Nmc

t=Nbi+1
θ̃
(t)

(22)

where Nbi is the length of the burn-in period.

Gibbs sampler. The Gibbs sampler consists in successively

generating samples from the conditional distributions p(µ|y, θ̃),
p(θ̃1|y,µ, θ̃2) and p(θ̃2|y,µ, θ̃1). It is easy to show that for the

posterior (20), these conditional distributions are given by

µ|y, θ̃ ∼ CN
((
θ̃1F̃ Γ

−1

θ̃

)
y,
((
θ̃1F̃

)−1
+
(
θ̃2G̃

)−1)−1
)

(23)

θ̃1|y,µ, θ̃2 ∼ IG
(
NY ,µ

H
F̃

−1
µ
)

(24)

θ̃2|y,µ, θ̃1 ∼ IG
(
NY , (y − µ)HG̃

−1
(y − µ)

)
(25)



where IG stands for the inverse Gamma distribution. Note that none

of the conditional sampling steps requires the use of an acceptance-

rejection procedure, contrary to the classical MHG algorithm pro-

posed in [2, 14], which constitutes the main advantage of the pro-

posed extended Bayesian model defined in (20).

5. NUMERICAL EXPERIMENTS

We compare the proposed Bayesian estimator (denoted as G) to the

Bayesian estimator presented in [14] (denoted as MHG) and to the

standard linear regression based estimator (using (3) and denoted as

LF) by applying them to a large number of independent realizations

of a 2D multifractal random walk (MRW). MRW is a widely used

member of the class of multifractal multiplicative cascade based pro-

cesses whose multifractal properties mimic those of the Mandel-

brot’s log-normal cascades, with scaling exponents ζ(q) = (H −
c2)q + c2q

2 (cf., [24] for details and Fig. 1 (top) for realizations of

MRW obtained with identical multipliers for different values of c2).

Experimental setup. MRW parameters are set to H = 0.72 and

c2 ∈ {−0.1,−0.09, . . . ,−0.01}. The 2D DWT uses a Daubechies’

mother wavelet with Nψ = 2 vanishing moments and the linear

regression weights wj are chosen proportional to nj (cf. [1,11,12]).

For both Bayesian estimators, frequencies considered in (7) are

restricted to ||ωm|| < π/4 as in [2, 14]. The estimation perfor-

mance is quantified through the bias, the standard deviation (STD)

and the root mean squared error (RMSE), respectively defined by

b= Ê[ĉ2] − c2, s=(V̂ar[ĉ2])
1

2 and rms=
√

b2 + s2 and computed

for 200 independent realizations of MRW of size N ×N .

Estimation of c2. Fig. 1 investigates estimation performance as

a function of c2 for three different image sizes N ∈ {27, 29, 211}.

Clearly, the Bayesian estimators compete favorably when compared

to the LF estimator. Notably, the STD are up to 4 times smaller,

resulting in significantly lower RMSE values. The Bayesian estima-

tors have bias comparable to LF for the smallest image size consid-

ered, and significantly smaller bias for larger images. The estimators

MHG and G build upon the same initial model (6) and thus unsur-

prisingly exhibit similar performance with only a slight difference

for the bias which arises from the different priors (uniform for MHG

and Jeffreys for G) and vanishes for large image sizes as expected.

Convergence. Fig. 2(a) displays the evolution of Markov Chains

(MCs) of G and MHG averaged over 200 realizations (with iden-

tical random initializations for both algorithms; N = 210, c2 =
{−0.07, −0.1}). Clearly, the augmented model used in G leads

to MCs that converge almost immediately, while MHG requires a

much longer burn-in period: Indeed, the accept-reject procedure of

MHG requires tuning of the (adaptive) step size of the random walk

propositions, which is not necessary for G. Consequently, G en-

ables us to use much shorter MCs than MHG. Here, we assume that

500 samples are required in the sum (22) and hence MCs of length

Nmc = {600, 3000} must be sampled for G and MHG, respectively.

Computational cost. Fig. 2(b) plots the computational times T
(in seconds; defined as the total time to compute an estimate of θ

from an image X) as a function of image size N for LF, MHG and

G. Clearly, LF is the fastest approach. However, while the compu-

tational time for MHG is up to 25 times greater than that of LF, the

Bayesian estimator G proposed here is between 5 (small N ) and 2

(large N ) times slower than the linear regression based estimation

LF, which clearly demonstrates the efficiency of the proposed ex-

tended Fourier domain model and algorithm.

Overall, these results illustrate that the proposed estimator G is an

operational alternative to linear regression, significantly improving

estimation performance at only ∼2−5 times the computational cost.
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6. CONCLUSIONS AND PERSPECTIVES

In this paper, a novel Bayesian framework to estimate the multifrac-

tality parameter c2 for images was proposed. It builds on a generic

statistical model for the multivariate statistics of log-leaders of MMC

based processes that was recently introduced in [2, 14] and relies on

the following original key contributions. First, a generative model

in the Fourier domain was developed based on the Whittle approxi-

mation. Then, the joint parameter constraints inherent to this model

were reformulated as independent positivity constraints. This finally

enabled the proposition of an extended likelihood which leads to

conditional posterior distributions that are standards laws, contrary

to the model in [2, 14]. Its main virtue is that the computation of

the associated Bayesian estimators can be achieved efficiently with

an MCMC algorithm involving only Gibbs sampling. The proposed

procedure yields excellent estimation performance, both for small

and large image sizes, at computational cost comparable to classi-

cal linear regression based estimation. Future work will include the

analysis of multivariate images (e.g., multi-band, multi-temporal) or

of multiple image patches for which more informative priors (e.g.,

modeling correlations between parameters of different modalities)

could be efficiently handled within the framework introduced here.
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