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h i g h l i g h t s

• We propose to base multifractal analysis on p-exponents and p-leaders.
• This tool can directly be used with non locally bounded data (negative regularity).
• Estimation performance improves as the parameter p is decreased.
• We provide theoretical and practical connections with Multifractal DFA.
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a b s t r a c t

Multifractal analysis studies signals, functions, images or fields via the fluctuations of their
local regularity along time or space,which capture crucial features of their temporal/spatial
dynamics. It has become a standard signal and image processing tool and is commonly used
in numerous applications of different natures. In its common formulation, it relies on the
Hölder exponent as a measure of local regularity, which is by nature restricted to positive
values and can hence be used for locally bounded functions only. In this contribution,
it is proposed to replace the Hölder exponent with a collection of novel exponents for
measuring local regularity, the p-exponents. One of the major virtues of p-exponents
is that they can potentially take negative values. The corresponding wavelet-based
multiscale quantities, the p-leaders, are constructed and shown to permit the definition of
a new multifractal formalism, yielding an accurate practical estimation of the multifractal
properties of real-world data. Moreover, theoretical and practical connections to and
comparisons against another multifractal formalism, referred to as multifractal detrended
fluctuation analysis, are achieved. The performance of the proposed p-leader multifractal
formalism is studied and compared to previous formalisms using synthetic multifractal
signals and images, illustrating its theoretical and practical benefits. The present
contribution is complemented by a companion article studying in depth the theoretical
properties of p-exponents and the rich classification of local singularities it permits.

∗ Correspondence to: CNRS, Laboratoire de Physique, Ecole Normale Superieure de Lyon 46, allée d’Italie, F-69364, Lyon cedex 7, France. Tel.: +33 47272
8493.



1. Introduction

Context: Scale invariance and multifractal analysis. The paradigm of scale-free dynamics, scale invariance, or scaling,
has been shown to be relevant to model empirical data from numerous real-world applications of very different natures,
ranging from Neurosciences [1–4], heart rate variability [5–7], bones textures [8] to physics (turbulence [9]), geophysics
(rainfalls [10], wind [11], earthquakes [12]), finance [13–15], Internet traffic [16], art investigations [17], music [18] . . . . In
essence, scale invariance is associated to signals whose temporal dynamics involve a wide range (continuum) of time/space
scales, rather than being dominated by one or a few specific time/space scales.

Multifractal analysis provides a generic framework for studying scaling properties both theoretically and practically.
Multifractal analysis describes the dynamics of the fluctuations along time or space of the local regularity, h(x0), of the
signal (or image) X around location x0. However, though theoretically grounded on local or pointwise quantities,multifractal
analysis actually does not aim to produce estimates of h for all x. Instead, it provides practitioners with a global, geometrical
and statistical description of the fluctuations of h across all time or space locations. This global information is encoded in the
so-calledmultifractal spectrum D(h) (also termed singularity spectrum) which is defined as the fractal dimension of the set
of points xwhere the pointwise regularity exponent h(x) takes the value h.

For real-world data, the estimation of the multifractal spectrum does not rely directly on local estimates of h but instead
involves a thermodynamics-inspired formalism, the so-calledmultifractal formalism. A multifractal formalism first requires
the choice of multiresolution quantities, hereafter labeled TX (a, k), i.e., quantities that depend jointly on the position k and
the analysis scale a. Scale invariance is defined as the power-law behavior, with respect to the analysis scale a, of the time
average of the qth power of these TX (a, k):

S(a, q) = 1

na

na
∑

k=1

|TX (a, k)|q ≃ aζ (q). (1)

The quantity S(a, q) is referred to as the structure function associated with the quantities TX (a, k), and the function ζ (q) is
termed the scaling function. The scaling function ζ (q) can be related to functional space signal or image characterization, cf.
e.g., Refs. [19,20]. Most importantly, the multifractal formalism relates the Legendre transform L(h) of ζ (q) to D(h) via the
formula practical estimation of D(h) can be obtained via the:

D(h) ≤ L(h) := inf
q∈R

(d + qh − ζ (q)) (2)

(cf. e.g., Refs. [19,21]), and strongly ties the paradigm of scale invariance to multifractal properties and the spectrum D(h)
and provides a way of estimating D(h) in practice.

For a number of synthetic processes with knownD(h), it can be shown that the inequality (2) turns out to be an equality.
It is also well-known that earlier formulations of multifractal formalisms relying on increments or wavelet coefficients as
multiresolution quantities yield poor or incorrect estimates of the multifractal spectrum. Commonly used formalisms are
relying onWavelet TransformModulus Maxima (WTMM) [22] or MultiFractal Detrended Fluctuation Analysis (MFDFA) (cf.
Ref. [23] for the founding article, and [24,25] for related developments). Recently, it has been shown that a formalism based
onWavelet Leaders provides a theoreticallywell grounded and practically robust and efficient framework for the estimation
of D(h) [26–28,21].

Multiresolution quantities and regularity exponents. An often overlooked issue lies in the fact that the choice of multires-
olution quantity TX is crucial, both theoretically and practically: Themultifractal formalism (2) relies on the assumption that
the pointwise exponent h(X) can be theoretically recovered through local log–log regressions of the multiresolution quan-
tities

h(x) = lim inf
a→0

log(TX (a, k(x)))

log a
(3)

(where TX (a, k(x)) denotes the value taken by TX (a, k) at the location k(x) closest to x). Therefore, choosing the multires-
olution quantity TX (a, k) on which the formalism is based also amounts to choosing (and thus changing) the definition
of local regularity. The predominantly if not exclusively employed notion of local regularity h is the Hölder exponent (cf.
Section 3.1). Typical examples for TX that have been associated with Hölder exponents are increments, oscillations, continu-
ous and discrete wavelet coefficients, wavelet transformmodulus maxima (WTMM) [22,29–31], or wavelet leaders [19,32].
Note, however, that oscillations and wavelet leaders are the only multiresolution quantities for which it has been shown
theoretically that (3) holds and that it actually characterizes the Hölder exponent [19]. It has been shown that increments
and wavelet coefficients are associated to another (and weaker) notion of regularity [33,32,28], thus partially explaining
their poor estimation performance. So far, there are no theoretical results available connectingWWTM or MFDFA to Hölder
regularity. It is shown here in Section 4 below that the latter, MFDFA, is not associated to Hölder regularity but to a dif-
ferent local regularity measure. At present, wavelet leaders constitute the core of the current state-of-the-art multifractal
formalism associated to Hölder regularity [26,27].

However, the Hölder exponent based measure of regularity suffers from the fundamental drawback that it is, by
definition, positive and can hence not characterize negative regularity. Multifractal analysis is therefore restricted to



functions whose local regularity is positive everywhere. This represents a severe limitation since data are often found to
contain negative regularity in applications (cf. e.g., Refs. [28,20]).

Goals, contributions and outline. In this context, the present contribution aims to overcome this restriction for the
application of multifractal analysis by making use of new pointwise regularity exponents, the p-exponents, and the
corresponding multiresolution quantities, the p-leaders, which have been proposed in the mathematical literature
recently [34]. The p-exponents offer a more versatile framework than Hölder exponents and notably enable to theoretically
define and measure negative regularity. In the companion paper [35], p-exponent regularity and p-leaders have been
theoretically defined, studied and characterized. The first goal of the present contribution is the development of the
corresponding multifractal formalism. The second goal is to compare the p-leader multifractal formalism theoretically and
practically against wavelet leaders and against MFDFA.

After having formulated a wavelet-based definition of p-exponents and p-leaders and having briefly restated their key
properties (Section 2), the p-leader multifractal formalism is derived in Section 3, and explicit estimation procedures for
the multifractal spectrum that take into account the discrete and finite-size nature of data are developed. Section 4 starts
with a brief description of the original formulation of DFA and recalls its multifractal extension, the MFDFA method. It
establishes, for the first time, clear theoretical and practical connections between MFDFA and p-exponents and points out
the theoretical and practical consequences of the conceptual differences between MFDFA and p-leaders. Section 5 provides
a numerical study and validation of the proposed p-leader multifractal formalism and compares it with the wavelet leader
and MFDFA formalisms in terms of estimation performance, illustrating the clear practical benefits of the proposed novel
multifractal formalism.

A Matlab toolbox implementing estimation procedures for performing p-multifractal analysis will be made publicly
available at the time of publication.

2. Wavelet based definition of pointwise p-exponents

2.1. Wavelet characterization of uniform regularity

2.1.1. Discrete wavelet decomposition

Wavelet analysis has already been massively used for the study of the regularity of a function [36,29,37,38,19]. Let
{ψ (i)(x)}i=1,...,2d−1 denote a family of mother wavelets, consisting of oscillating functions with fast decay and good joint

time–frequency localization. Mother wavelets are defined so that the collection of dilated (to scales 2j) and translated (to
space/time location 2jk) templates

{

2−dj/2ψ (i)(2−jx − k), for i = 1, . . . , 2d − 1, j ∈ Z and k ∈ Z
d
}

, (4)

forms an orthonormal basis of L2(Rd) [39]. Without loss of generality, a d-dimensional orthonormal wavelet basis is defined
here by tensor product of the univariate orthonormal wavelet basis. Mother wavelets ψ (i)(x) are moreover defined to
guarantee a number of vanishing moments, a strictly positive integer Nψ ≥ 1 such that

∫

R
P(x)ψ (i)(x)dx = 0 for any

polynomial P of degree strictly smaller than Nψ , while this integral does not vanish for some polynomials of degree Nψ .
The coefficients of the d-dimensional discrete wavelet transform of X are defined as

c
(i)
j,k =

∫

Rd

X(x) 2−djψ (i)(2−jx − k) dx (5)

where the L1 normalization for the wavelet coefficients is better suited in the context of local regularity analysis, see
Refs. [26,21].

2.1.2. Wavelet structure function and scaling function

Let q > 0. The wavelet structure function is defined as

Sc(j, q) = 2dj
∑

k

2d−1
∑

i=1

∣

∣c
(i)
j,k

∣

∣

q
, (6)

and the wavelet scaling function as

∀q > 0, η(q) = lim inf
j→−∞

log (Sc(j, q))

log(2j)
. (7)

The wavelet scaling function η(q) does not depend on the (sufficiently smooth) wavelet basis which is used, see Refs.
[33,19] and Section 3.1 of companion article [35].

The wavelet scaling function is of central importance for validating uniform regularity assumptions on the function X in
(13), see the companion paper [35,20,33,21,28] for details. Thewavelet scaling function also serves as an important auxiliary
quantity in the construction of estimators for finite resolution data, cf. Section 3.4.



2.2. p-leader based definitions of p-exponents

2.2.1. p-leaders

Let us now define themultiresolution quantities at the heart of the present contribution, the p-leaders (cf. the companion
paper [35] for details). Let k = (k1, . . . , kd), j ∈ Z and let the dyadic cubes be indexed by

λ (= λj,k) :=
[

2jk1, 2
j(k1 + 1)

)

× · · · ×
[

2jkd, 2
j(kd + 1)

)

and, accordingly: c
(i)
λ = c

(i)
j,k . Furthermore, let 3λ denote the cube with the same center as that of the cube λ but 3 times

wider.

Definition 1. Let p > 0. The p-leaders are defined as [40,20,34,35]

ℓ(p)(j, k) ≡ ℓ
(p)
λ =





∑

j′≤j, λ′⊂3λ

2d−1
∑

i=1

∣

∣c
(i)

λ′
∣

∣

p
2−d(j−j′)





1
p

, p > 0 (8)

where j′ ≤ j is the scale associated with the sub-cube λ′ of width 2j′ included in 3λ.

This definition is illustrated in Ref. [35, Fig. 1]. The sum in (8) is finite if the condition η(p) > 0 is satisfied, see (13).

2.2.2. p-exponents

When p-leaders are well defined (η(p) > 0), the pointwise p-exponent hp(x0) can be defined as follows [40,20,34].

Definition 2. Let p > 0 and η(p) > 0. The pointwise p-exponent of X at x0 is

hp(x0) = lim inf
j→−∞

log
(

ℓ
(p)

λj(x0)

)

log(2j)
, (9)

where λj(x0) denotes the dyadic cube of width 2j that contains x0.

This definition does not depend on the wavelet as long as the wavelet is smooth enough (cf. Refs. [35, Section 3.1] and
[39, Chapter 3]).

In practice, (9) essentially means that

ℓ
(p)

λj(x0)
∼ C2jhp(x0) when a = 2j → 0, (10)

which meets the natural prerequisite (cf. (3)) to construct a multifractal formalism. This will be the subject of Section 3.

When p ≥ 1, Definition 2 is equivalent to the original definition of p-exponents supplied by the T p
α(x0) regularity of A.

Calderón and A. Zygmund [41], which essentially states that

T (p)(a, x0) =
(

1

ad

∫

B(0,a)

|X(u + x0)− Px0(u + x0)|pdu
)

1
p

∼ Cahp(x0) (11)

where B(x0, a) denotes the ball of radius r centered at x0, Px0 is a polynomial of degree less than hp(x0) and C, R are positive
constants, see Refs. [34,40,20] and [35, Definition 1] for details. Note that the advantage of Definition 2 is that it is valid for
all p > 0. Furthermore, note that for the case p = +∞, we recover from (8) the definition of classical wavelet leaders, see,
e.g., Refs. [19,32,26,27]

ℓλ = ℓ
(+∞)
λ = sup

i∈[1,...,2d−1], λ′⊂3λ

|c(i)
λ′ |

and from (11) the definition of the classical Hölder exponent [19]

|X(a + x0)− Px0(a + x0)| ∼ C |a|h(x0), |a| → 0. (12)

When 0 < p < 1, this wavelet-based Definition 2 of p-exponents has been shown to be well-grounded, relevant and
useful (cf. Ref. [35]).



2.3. Properties of p-exponents

The following theoretical key properties are satisfied by p-exponents (details and proofs are given in the companion
paper [35]).

Domain of definition. p-exponents are defined for p ∈ (0, p0], where the critical Lebesgue index p0 is defined as1

p0 = sup{p : η(p) > 0}. (13)

In contradistinction, Hölder exponents are only defined for locally bounded functions, i.e., functions for which p0 = +∞.

Negative regularity. p-exponents can take values down to −d/p, see Ref. [35, Theorem 1]. Therefore, p-exponents enable
the use of negative regularity exponents. For instance, they enable to model local behaviors of the form |X(x)| ∼ 1/|x − x0|α
for α < d/p.

p-exponents for different values of p. p-exponents for different values of p do not in general coincide but satisfy hp(x0) ≥
hp′(x0) for p ≤ p′ ≤ p0, see Ref. [35, Theorem 1]. Therefore, p-exponents for different values of p can provide complementary
information for the characterization of singularities.

Classification of singularities. p-exponents enable a generic classification of singularities, see Ref. [35, Section 4] for details
and examples. Let X have a singularity at x0 that has p-exponent hp(x0). The singularity of X at x0 is p-invariant if the function
p → hp(x0) does not depend on p. Moreover,

– X has a canonical singularity at x0 if the p-exponent of its fractional integral X (−t) of order t equals hp(x0) + t (cf.,
Ref. [35, Definition 3–4]). Examples are provided by deterministic self-similar functions, e.g., the cusps |x − x0|α , α > 0,
see Ref. [35, Proposition 1]. An important property of canonical singularities is that they form a subclass of the p-invariant
singularities [35, Theorem 2].

– A singularity that is not canonical is called an oscillating singularity:

– An oscillating singularity that is p-invariant is termed balanced, see Ref. [35, Definition 7]. An example is provided by
the ‘‘chirp’’ type singularities |x − x0|α sin(1/|x − x0|β), α, β > 0.

– An oscillating singularity for which the function p → hp(x0) does depend on p is termed lacunary. An example is given
by the lacunary comb Fα,γ (x) in Ref. [35, Eq. (12)] and by the random processes in Section 5.1.2.

Hölder exponent. The Hölder exponent is given by the p-exponent with p = +∞: h(x0) ≡ h+∞(x0). However, it is central
to realize that p-exponents for finite values of pmeasure a regularity inX that does not in general coincidewith that captured
by the Hölder exponent, cf., Ref. [35, Theorem 1].

When p → ∞, Condition η(p) > 0 in (13) is the counterpart to the condition met in wavelet leader multifractal analysis
(cf. Refs. [35,28,20]):

hmin = lim inf
j→−∞

log

(

sup
i,k

∣

∣c
(i)
j,k

∣

∣

)

log(2j)
> 0. (14)

3. Multifractal analysis

In practice, the values taken by a pointwise regularity exponent h(x) cannot be extracted point by point from data X(x).
Instead, multifractal analysis aims to provide a global description of the fluctuations along time or space of h(x), termed the
singularity ormultifractal spectrum, which can be estimated from data X(x) by recourse to a so-calledmultifractal formalism.
In the case of Hölder regularity, such a formula is given by the wavelet leader multifractal formalism, cf., e.g., Refs. [19,32,
26,27,21]. The goal of this section is to define and study a multifractal formalism based on p-exponents and p-leaders and
to derive explicit expressions for estimators that can be applied to data in applications.

The p-leaders and p-exponents have not yet been used for practical multifractal analysis intended for real-world data
analysis except in our preliminary works [42–44].

3.1. Multifractal p-spectrum

Themultifractal p-spectrum of X is defined as follows.

1 Note that (13) actually provides a lower bound for the quantity p0(x0) whose definition is given in Ref. [35, Theorem 1] and will be used here as an
operational surrogate.



Definition 3. The multifractal p-spectrum D
(p)(h) is the Hausdorff dimension dimH of the set of points where the

p-exponent takes the value h

D
(p)(h) = dimH

(

{x ∈ R
d, hp(x) = h}

)

. (15)

The support of the spectrum is the image of the mapping x → hp(x), i.e. the collection of values of h such that {x ∈ R
d :

hp(x) = h} 6= ∅.
By convention dim(∅) = −∞.

Because p-exponents are necessarily larger than −d/p, the support of D
(p) is included in [−d/p,+∞]. In addition, D (p)

is further constrained by the following sharper condition:

Proposition 1. Let p > 0 and let X be a function for which η(p) > 0. Then

∀h ≤ 0, D
(p)(h) ≤ d + hp. (16)

The proof is given in the Appendix.
This condition implies that themultifractal p-spectrum is necessarily below a straight line that connects points (−d/p, 0)

and (0, d). This is illustrated in Figs. 1 and 5.
For further details on multifractal analysis, notably for the definition of the Hausdorff dimension, interested readers are

referred to Refs. [45,37,38,19].

3.2. p-leader multifractal formalism

p-leader structure functions. The p-leader multifractal formalism relies on the p-leader structure function S
(p)

ℓ (j, q), which
is defined as the sample moments of the p-leaders

∀q ∈ R, S
(p)

ℓ (j, q) = 2dj
∑

k

(ℓ
(p)
j,k )

q. (17)

p-leader scaling function. The p-leader scaling function is defined as

∀q ∈ R, ζ (p)(q) = lim inf
j→−∞

log
(

S
(p)

ℓ (j, q)
)

log(2j)
. (18)

The function ζ (p)(q) does not depend on the wavelet basis when the mother wavelets are C∞ (e.g., in the Schwarz class), cf.
Refs. [34,40,19].

p-leader multifractal formalism. A multifractal formalism can be defined via the Legendre transform of the mapping
q → ζ (p)(q)

L
(p)(h) := inf

q∈R

(d + qh − ζ (p)(q)). (19)

It provides practitioners with an upper bound for D
(p): If η(p) > 0, then

∀h, D
(p)(h) ≤ L

(p)(h) (20)

as a particular occurrence of the general principles that lead to (2), see Refs. [34,40,33].
A key property of (20) is that it yields a nontrivial upper bound also for the decreasing part of the spectrum (a property

that did not hold for formulas based on wavelet coefficients instead of wavelet leaders even in the setting supplied by the
Hölder exponent [19]). This upper bound turns out to be sharp for many models: this has been verified either theoretically
(e.g., for fBm or random wavelet series [33]), or numerically (e.g., for multifractal random walks or Lévy processes, see
Ref. [19]). The generic validity of the multifractal formalism has been proven in Ref. [46].

The p-leader multifractal formalism and its estimation performance are illustrated and studied in Section 5.

3.3. p-leader cumulants

In Ref. [47], the use of the cumulants of the log of p-leaders has been motivated by the fact that they enable to capture,

with a small number of coefficients, most of the information contained in the spectra L
(p)(h). Let C

(p)
m (j) denote the mth

order cumulant of the random variables log(ℓ
(p)
λ ). Assuming that the moments of order q of the p-leader ℓ

(p)
λ exist and

E

[

(ℓ
(p)
λ )

q
]

= 2jζ (p)(q)
E

[

(ℓ
(p)
λ0
)q
]

,



where λ0 is the unit cube [0, 1]d, one obtains that

log
(

E

[

(ℓ
(p)
λ )

q
])

= log
(

E

[

(ℓ
(p)
λ0
)q
])

+ ζ (p)(q) log(2j) (21)

and, for q close to 0

log
(

E

[

(ℓ
(p)
λ )

q
])

= log
(

E

[

eq log ℓ
(p)
λ

])

=
∑

m≥1

C (p)m (j)
qm

m! . (22)

Comparison of (21) and (22) yields that the cumulants C
(p)
m (j) are necessarily of the form

C (p)m (j) = C (p,0)m + c(p)m log(2j), (23)

and that ζ (p)(q) can be expanded around 0 as

ζ (p)(q) =
∑

m≥1

c(p)m

qm

m! . (24)

The concavity of ζ (p) implies that c
(p)
2 ≤ 0. Note that, even if themoment of order q of ℓ

(p)
λ is not finite, the cumulant of order

m of log(ℓ
(p)
λ ) is likely to be finite and (23) above is also likely to hold.

Relation (23) provides practitioners with a direct way to estimate the coefficients c
(p)
m in the polynomial expansion

(24), termed the log-cumulants, by means of linear regressions of C
(p)
m (j) versus log(2j) [26]. Moreover, on condition that

c
(p)
2 6= 0, the polynomial expansion (24) can be translated into an expansion ofL(p)(h) around itsmaximumvia the Legendre
transform

L
(p)(h) = d +

∑

m≥2

Cm

m!

(

h − c
(p)
1

c
(p)
2

)m

(25)

with C2 = c
(p)
2 , C3 = −c

(p)
3 , C4 = −c

(p)
4 + 3

c
(p)
3

2

c
(p)
2

, etc., see Ref. [27].

3.4. Estimation and finite size effects

In the computation of the multifractal formalism for data in applications (in contrast with the theoretical analysis of
functions) one is confronted with the fact that only values of X sampled at finite resolution are available (in contrast with
values for an interval inR

d). As a consequence, the infinite sum in the theoretical definition of p-leaders, cf. (8), is truncated at
the finest available scale induced by the resolution of the data. Moreover, the lim inf in the definition of the scaling function
(18) cannot be evaluated.

Our goal is here to compute the equivalents of (17), (18) and (23) for such finite resolution p-leaders and to use these

expressions for identifying estimators for the p-leader scaling function ζ (p)(q), the log-cumulants c
(p)
m and the p-spectrum

L
(p)(h). As a constructive model, we make use of a binomial deterministic wavelet cascade. For simplicity, we consider the

univariate case d = 1. In Section 5, numerical results are provided that demonstrate that this simple deterministic model
yields estimators with excellent performance for large classes of stochastic multifractal processes.

3.4.1. p-leaders for deterministic wavelet cascades

Let j̄ < 0 denote the finest and j = 0 the coarsest available scales, respectively, i.e., j̄ ≤ j ≤ 0. Let ω0, ω1 > 0 and,
by convention, let cj=0,k=1 = 1. The coefficients cλ of the deterministic wavelet cascades are constructed by the following

iterative rule [9]. For j = 0,−1, . . . , j̄ + 1, for each coefficient cj,k at scale j two children coefficients are obtained at scale

j − 1 by multiplication with ω0 and ω1, cj−1,2k−1 = ω0cj,k and cj−1,2k = ω1cj,k. At a given scale j < 0, there are hence 2−j

coefficients, taking the values

cj,k ∈ {ω−n
0 ω

−j−n
1 , n = 0, . . . ,−j}.

The wavelet structure function (17) is therefore given by

Sc(j, q) = 2j
2−j
∑

k=1

(cj,k)
q = 2j(ω

q
0 + ω

q
1)

−j =
(

ω
q
0 + ω

q
1

2

)−j

=: 2jη(q)

from which we identify the wavelet scaling function (7) of the cascade

η(q) = 1 − log2(ω
q
0 + ω

q
1).



Let p > 0 be such that η(p) > 0. The restricted p-leaders, denoted ℓ̄
(p)

λ,j̄
, are defined by replacing 3λ with λ in (8) and the

corresponding structure function, denoted S̄
(p)

ℓ̄
(j, q; j̄), by replacing ℓ

(p)
λ with ℓ̄

(p)

λ,j̄
in (17). It can be shown that structure

functions with restricted p-leaders yield quantities equivalent to (17) so that the corresponding scaling functions (18)
coincide, see Ref. [20]. Then

ℓ̄
(p)

λ,j̄
:=

(

∑

λ′⊂λ
|cλ′ |p2j′−j

)
1
p

= cλ

(

j−j̄
∑

l=0

(

ω
p
0 + ω

p
1

2

)l
)

1
p

= cλ

(

j−j̄
∑

l=0

2−η(p)l

)

1
p

.

For infinite resolution j̄ → −∞, this expression boils down to ℓ̄
(p)
λ,−∞ = cλ

(

1

1−2−η(p)

)
1
p
. In this case, the structure function

reads

S̄
(p)

ℓ̄
(j, q; −∞) = 2j

2−j
∑

k=1

(cj,k)
q

(

1

1 − 2−η(p)

)
q
p

= 2jη(q)

(

1

1 − 2−η(p)

)
q
p

from which we identify the p-leader scaling function (18) of the cascade

ζ (p)(q) ≡ η(q).

However, for finite resolution j̄ > −∞ we have ℓ̄
(p)

λ,j̄
= cλ

(

1−2−(j−j̄+1)η(p)

1−2−η(p)

)
1
p
and hence

S̄
(p)

ℓ̄
(j, q; j̄) = 2jζ (p)(q)

(

1 − 2−(j−j̄+1)η(p)

1 − 2−η(p)

)
q
p

. (26)

Similarly, if C̄
(p)
m (j) denotes the mth order sample cumulant of log(ℓ̄

(p)

λ,j̄
) = log(cλ)+ 1

p
log

(

1−2−(j−j̄+1)η(p)

1−2−η(p)

)

, then

C̄
(p)
1 (j) = C

(p,0)
1 + c

(p)
1 log(2j)+ 1

p
log

(

1 − 2−(j−j̄+1)η(p)

1 − 2−η(p)

)

(27)

while C̄
(p)
m (j) ≡ C

(p)
m (j) = C

(p,0)
m +c

(p)
m log(2j) form ≥ 2. Comparing (26) and (27)with (18) and (23) shows that the truncation

of the definition of p-leaders (8) at finite scale induces an additional scale-dependent term, parametrized by j̄ and η(p), in
the p-leaders structure functions and first log-cumulant.

3.4.2. Estimation

Assuming that η(p) is known, the expressions (26) and (27) enable us to define estimators for ζ (p)(q) and c
(p)
m as linear

regressions in logarithmic coordinates

ζ̂ (p)(q) =
j2

∑

j=j1

wj

(

log2

(

S
(p)

ℓ (j, q)
)

− q

p
log2

(

1 − 2−(j−j̄+1)η(p)
)

)

(28)

ĉ
(p)
1 = 1

log(2)

j2
∑

j=j1

wj

(

C
(p)
1 (j)− 1

p
log

(

1 − 2−(j−j̄+1)η(p)

1 − 2−η(p)

))

(29)

ĉ(p)m = 1

log(2)

j2
∑

j=j1

wjC
(p)
m (j), m ≥ 2. (30)

Estimators for the Legendre spectra can be defined in a similar way for the parametric development L(q), h(q) described
in Ref. [48]. Note that the expressions (28) and (29) differ from those employed in the standard wavelet leader setting
[19,32,26,27,21] due to the additional scale-dependent terms identified in (26) and (27). However, since η(p) → ∞ when
p → ∞, these expressions are equivalent to the wavelet leader ones. In practice, the unknown function η(p) in (28) and
(29) is replaced with the estimate

η̂(p) =
j2

∑

j=j1

wj log2 (Sc(j, p)) . (31)

In the above expressions, j1 and j2 are the finest and coarsest scales, respectively, over which the estimation is performed.

The linear regressionweightswj have to satisfy the constraints
∑j2

j1
jwj ≡ 1 and

∑j2
j1
wj ≡ 0 and can be selected to reflect the

confidence granted to each log2(Sℓ(p)(j, q)) (or C
(p)
m (j)), see e.g. Ref. [49]. In the numerical experiments reported in Section 5,

following Ref. [49], we perform weighted linear fits; alternative choices have been reported in Ref. [26].



4. Multifractal detrended fluctuation analysis

4.1. Detrended Fluctuation Analysis for the estimation of the self-similarity parameter

Detrended Fluctuation Analysis (DFA) was originally proposed for the estimation of the self-similarity parameter H for
fractional Brownian motion (fBm) [50,51]. Therefore, DFA has essentially been stated and studied in the univariate setting,
d = 1. In essence, it relies on the observation that the Hölder exponent of a sample path of fBm is a constant function
h(t) ≡ H . From the definition of the Hölder exponent (cf., (12)) a naturalmultiresolution quantity T (a, t) emerged

Td(a, t) = |X(t)− Pt,a,NP
(t)| (32)

where Pt,a,NP
is a polynomial of degreeNP that is obtained by local fit to the data in awindowof size a (note that, alternatively,

the use of a moving average model for Pt,a,NP
has been proposed more recently, cf., e.g., Ref. [52]). From discrete versions

Td(a, k) of these multiresolution quantities, structure functions

Sd(a, 2) = 1

na

∑

k

Td(a, k)
2

are computed, and the parameter H is classically estimated by linear regression of log2 Sd(a, 2) versus log2 a. The
performance of this procedure for the estimation of H has been studied and compared to that of others, notably those based
on wavelets, in various contributions (cf. e.g., Refs. [53,54]).

4.2. Multifractal extension

4.2.1. Natural extension

To extend DFA to multifractal analysis, a straightforward choice could have been to construct a multifractal formalism
based on Td(a, t) (cf. Ref. [55] for a preliminary attempt):

Sd(a, q) = 1

na

∑

k

Td(a, k)
q ≃ Cqa

ζd(q), a → 0.

However, it is now well understood that the Legendre transform of ζd(q) yields a poor upper bound for the multifractal
spectrum D(h). One reason for this is that the values of Td concentrate around 0 and can thus not be raised to negative
powers (note that this is also the case for increments or wavelet coefficients, leading to similarly poor estimates for D(h)).
From a theoretical point of view, this poor performance can be understood in the light of the fact that the definition of
the Hölder exponent (12) leads to the incorrect intuition that it must be tied to increments, X(t + a)− X(t), or ‘‘improved’’
increments, Td, asmultiresolution quantities. However, recent theoretical contributions (cf., e.g., Refs. [19,32,26,56,21]) show
that correct multiresolution quantities associated with the Hölder exponent are the oscillations

O(a, x) = sup
u,v∈B(x,a)

|X(u)− X(v)|.

A relevant multifractal formalism can be constructed for O(a, x) as long as the smooth parts of the data have Hölder
exponents strictly smaller than 1. Otherwise, higher order oscillations must be used. Note that in a wavelet framework,
wavelet leaders play for wavelet coefficients the same role as oscillations play for increments.

4.2.2. L2-norm formulation

The use of oscillations O(a, x) instead of Td would thus have been a natural way to extend DFA to multifractal
analysis. However, the multifractal extension proposed by Kantelhardt et al. followed a different path: In the seminal
contribution [23], they proposed the following original multiresolution quantity

Tmfd(a, k) =
(

1

a

a
∑

i=1

|X(ak + i)− Pk,a,NP
(i)|2

)
1
2

, k = 1, . . . ,
n

a
(33)

and constructed a multifractal formalism with Tmfd(a, k), the so-called multifractal detrended fluctuation analysis (MFDFA).
Here n denotes the number of available samples and Pk,a,NP

is the same polynomial as in (32). Defining structure functions

Smfd(a, q) = a

n

n/a
∑

k

Tmfd(a, k)
q = a

n

n/a
∑

k

(

1

a

a
∑

i=1

|X(ak + i)− Pk,a,NP
(i)|2

)
q
2

and the corresponding scaling function

ζmfd(q) = lim inf
j→−∞

log
(

Smfd(a, q)
)

log(a)



yields, via a Legendre transform, the MFDFA multifractal formalism

Lmfd(h) = inf
q∈R

(d + qh − ζmfd(q)) ≥ D(h).

It was numerically compared against the wavelet leader and WTMM multifractal formalisms for multiplicative cascade-
type multifractal processes, see Ref. [23] for the original contribution. Despite the fact that there has been no theoretical
motivation for the use of (33), the MFDFA formalism was found to perform very satisfactorily and is commonly used in
applications (cf., e.g., Refs. [57–62]), thus empirically justifying a posteriori the choice of Tmfd as a relevant multiresolution
quantity for multifractal analysis.

4.3. p-exponents, p-leaders and MFDFA

Comparing the definition of the multiresolution quantity T (p) in (11) for the p-exponent to that of Tmfd in (33) for MFDFA
clearly shows that the latter mimics the former, for p = 2, with a discretized setting of the continuous integral in (11), and
with the theoretical Taylor polynomial Px0 replaced by a data-driven locally adjusted polynomial Pk,a,NP

. Therefore, MFDFA
can a posteriori be interpreted, and theoretically grounded, in the framework of p-exponent analysis: While MFDFA was
originally associated to the analysis of local regularity as measured by the Hölder exponent, the present contribution thus
shows that Tmfd must be related to a p-exponent based characterization of local regularity with p = 2 and not to the Hölder
exponent.

The following paragraphs provide a detailed theoretical and practical comparison of theMFDFA and p-leader frameworks.

Choosing p. In theMFDFAmethod, p is arbitrarily set to 2, while p-exponents in (11) are theoretically defined for p ∈ (0, p0).
There are practical benefits stemming from varying p, as summarized in Section 2.3 and discussed in detail in the companion
paper [35, Section 4]: Notably, the analysis requires to choose p such that η(p) > 0; moreover, the use of various values
p < p0 may help practitioners to reveal the fine local singularity structure of data (see Section 5.3 for a numerical
illustration).

Local regularity and integration. In numerous real-world data, notably in biomedical applications (Heart Rate variability,
fMRI), it is observed that hmin < 0 (cf., e.g., Ref. [28]). This explains why MFDFA procedures, as detailed, e.g., in Refs.

[23,63,64], always perform an integration of the data, X(t) →
∫ t

X(s)ds, as a preliminary step (hence implicitly assuming

that for the integrated data, hmin > 0). However, as long as η(p) > 0 and h > −1/p, this preprocessing of data is not needed
and may even constitute a drawback if data contain oscillating singularities, cf. Ref. [35, Section 4].

Time domain versus wavelet domain. The MFDFA method relies on a time domain implementation, i.e., Tmfd is computed
directly from the sampled time series X , while the p-leader formalism relies on wavelet projections. This has fundamental
theoretical and practical implications which are detailed in the next paragraphs.

Local regularity, Taylor polynomial and vanishingmoments. A key property of thewavelet characterization is that it does
not require the knowledge of the Taylor polynomial (cf. Ref. [21]) whereas MFDFA require some (heuristic) estimation of
this polynomial (cf. a contrario [24,25], where a variation of MFDFA that attempts to avoid the estimation of the polynomial
is devised). Despite its being inspired from the definition of the Hölder exponent, the polynomial Pt,a,NP

(t) is in practice
obtained as the best fit of X(u) for u ∈ [t − a/2, t + a/2] for a priori chosen and fixed degree NP . The polynomial Pt,a,NP

must
be computed for each time position t and analysis scale a. It thus depends on a, while it should not depend on a in theory,
cf., (11). Moreover, the order of the polynomial in (11) can depend on the time position t (cf., Ref. [21]) while the order NP

in the MFDFA method is fixed.
Another key difference in the use of p-leaders ℓ(p) and Tmfd lies in the fact that the former requires the choice of the

number of vanishing moments Nψ of the mother wavelet ψ0, while the latter implies the choice of the degree NP of the
polynomial Pt,a,NP

. Often, the parameters Nψ and NP are regarded as equivalent, yet this is only partially correct since the
choices of Nψ and NP are framed by different theoretical constraints: In order to recover the local power-law behavior

T
(p)
X (a, t) ∼ Cah, a → 0 for an isolated singularity with regularity exponent h, Nψ must be larger than h (and can be set

globally to be larger than the largest regularity exponent of X , cf., Refs. [35,19, Section 3.1]), while it is required that NP < h
by definition of the Hölder exponent.

Robustness to trends and finite size effects. Practically, the choice of Nψ and NP is often thought of in terms of robustness
to trends (cf. e.g., Refs. [65,50,53,66–69]).

Assuming that the data to analyze are actually corrupted by deterministic trends Z seen as noise, X + Z , it has been
documented that increasing the number of vanishing moments of the mother wavelet Nψ diminishes the impact of the
additive trends to the estimation of the scaling exponent [65,53]: The possibility of varying Nψ brings theoretical and
practical robustness to analysis and estimation. The practical price paid for increasing Nψ consists of a larger number of
wavelet coefficients being polluted by border effects (finite size effect) and can also decrease the coarsest scale at which
data can be analyzed. This price turns out to be very low since coarse scales contain only few coefficients and hence have
very little impact on estimated scaling exponents. Note that the finest scale that is available using p-leaders is independent
of Nψ and directly and only determined by the resolution of the data (i.e., if the data is sampled at1t , then the finest scale
contains coefficients at rate 21t).



In the MFDFA method, increasing NP also brings some form of robustness to additive noise, however, this far more
depends on the nature of the trend [66–69] (see also the numerical illustrations in Section 5.2.3). Yet, increasing NP has
a more drastic practical consequence: The finest scales of data cannot be used practically since the best fit of X(u) for
u ∈ [t−a/2, t+a/2] cannot be achieved until the number of samples actually available in [t−a/2, t+a/2] is substantially
larger thanNP : For a polynomial of orderNP , one needs at leastNP +2 data points and consequently,1j = ⌈log2(NP +2)⌉−1
fine scales that can be analyzed with p-leaders are not accessible for MFDFA. Losing fine scales is problematic from a
statistical estimation point of view (since fine scales contain many coefficients) as well as from a multifractal analysis point
of view (since it theoretically requires to estimate the scaling exponents in the limit of fine scales a → 0).

In summary, the choice of Nψ is theoretically better grounded and practically much easier and less critical than that
of NP . The polynomial subtraction entering MFDFA is thus a more intricate issue than it may seem, with little theoretical
guidelines.

Extension to higher dimension. Theoretically, MFDFA can be extended straightforwardly to higher dimensions, d > 1. In
practice, the computation of local best fit polynomials becomes a real issue in higher dimension, and there are few attempts
to extend MFDFA to dimension d = 2 [70–73]. Along the same line, the use of polynomials of degree 2 or higher is uneasy
(higher order polynomial fitting andmultivariate integral numerical evaluation). In contrast, the p-leader formalism extends
without difficulties to higher dimensions given that higher dimensional discrete wavelet transforms are readily obtained
by tensor product of 1D-mother wavelets (cf., e.g., Ref. [74]). Also note that the MFDFA method has larger computational
complexity (of order O(n log n), where n is the total number of samples) than the p-leader formalism (of order O(n)), which
quickly becomes an issue in higher dimension.

Conclusions. This connection ofMFDFA to p-leaders provides a theoretical grounding for the choice of Tmfd, which otherwise
appears as a relevant, yet ad-hoc, intuition used to construct a multifractal formalism. It also makes explicit that MFDFA
measures local regularity via the 2-exponent and not the Hölder exponent. The p-leader formalism can thus be read as an
extension (different p) and wavelet-based reformulation of MFDFA. The p-leader and MFDFA formalisms are compared in
terms of estimation performance and robustness to trends in Section 5.2.2. It is also of interest to note that p-exponents and
p-leaders, on one side, and MFDFA, on other side, were proposed independently and in different fields: In the Mathematics
literature for the former around year 2005 [34,40], in the Physics literature for the latter around year 2002 [23]. This is, to
the best of our knowledge, the first time that these two notions are connected, related and compared.

5. Illustrations and estimation performance

We numerically illustrate and validate the proposed p-leaders multifractal formalism and compare it against the leader
and MFDFA formalisms. To this end, the formalisms are applied to independent realizations of synthetic random processes
with prescribedmultifractal p-spectra, and their respective estimation performances are studied in detail and compared. For
the sake of exhaustivity in comparisons, processes whose p-spectra do not depend on p as well as processes whose spectra
vary with p are used. Also, situations in which p-exponents all collapse with the Hölder exponents are considered as well
as examples where this is not the case. The p-leader multifractal formalism is furthermore numerically validated in higher
dimensions by application to synthetic (2D) images with prescribed multifractal p-spectra.

The WTMM formalism has already been compared independently against the wavelet-leader formalism [33,32] and
MFDFA [23,75] and is thus not re-included in this study.

Results illustrate the benefit of the extra flexibility of varying p in the p-leader multifractal formalism, both in terms of
estimation performance and for evidencing data whose multifractal p-spectra are not p-invariant.

Sample paths of all processes were numerically simulated byMatlab routines implemented by ourselves, available upon
request.

5.1. Random processes with prescribed multifractal p-spectra

5.1.1. Fractionally differentiated multifractal random walk

The multifractal random walk (MRW) has been introduced in Ref. [76] and is defined as

X(k) =
n

∑

k=1

GH(k) exp(ω(k))

where GH(k) are increments of fractional Brownian motion with parameter H > 1/2 and ω is a Gaussian process that is

independent ofGH and has covariance cov(ω(k1), ω(k2)) = λ ln
(

L
|k1−k2|+1

)

when |k1−k2| < L, and 0 otherwise,withλ > 0.

By construction, MRW has stationary increments and mimics the multifractal properties of Mandelbrot’s multiplicative
cascades [9]. It has been chosen here as an easy-to-simulate member of this widely used class of multifractal processes.

By means of fractional integration of negative order s < 0 of X (in practice fractional differentiation of positive order
ν = −s, cf., Ref. [35, Definition 3]), we obtain sample paths X (ν) with different values for the critical Lebesgue index p0.
MRW contains only canonical singularities (cf. Ref. [35, Definition 4]), hence fractional differentiation results in a pure shift



of their multifractal p-spectra by ν to smaller values of h. Moreover, since canonical singularities are p-invariant (cf., Ref.
[35, Theorem 2]), the multifractal p-spectra of X (ν) collapse for all p ≤ p0 and are given by

D
(p)
ν (h) ≡ Dν(h) =







1 + c2

2

(

h − c1,ν

c2

)2

for hp ∈
[

c1,ν −
√

−2c2, c1,ν +
√

−2c2

]

−∞ otherwise

(34)

where c1,ν = H + λ2/2 − ν, c2 = −λ2. Furthermore, cm ≡ 0 for allm ≥ 3. The wavelet scaling function is given by

η(p) =







(H + λ2/2 − ν)p + c2

2
p2 for 0 ≤ p ≤

√

−2/c2

(H + λ2/2 − ν)
√

−2/c2 − 1 −
√

−2c2 + c2p for p >
√

−2/c2.

By elementary calculations, evaluation of condition (13) yields

p0 =



































∞ for ν ∈
[

0, H + λ

(

λ

2
−

√
2

)

]

1/
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ν − H − λ

(
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2
−
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2

))
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−
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2
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2

(
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2
− ν

)

/λ2 for ν ∈
(

H + λ

(

λ

2
− 1√

2

)

, H + λ2

2

]

(35)

and η(p) < 0 for any p > 0 if ν ≥ H + λ2/2.

5.1.2. Lacunary wavelet series

Lacunary wavelet series (LWS) Xα,η depend on a lacunarity parameter η ∈ (0, 1) and a regularity parameter α ∈ R. At

each scale j ≤ 0, the process has a fraction of exactly 2−ηj nonzero wavelet coefficients on each interval [l, l + 1) (l ∈ Z),
at uniformly distributed random locations, and whose common amplitude is 2αj. This process was introduced in Ref. [77]
when α > 0 (i.e., suited to Hölder exponent based multifractal analysis) and in Ref. [78] for the general case α ∈ R (thus
requiring the use of p-exponents). The use of LWS here is motivated by the fact that they contain singularities that are not
p-invariant: Indeed, it is shown in Ref. [78] that almost every point is a lacunary singularity (cf., Ref. [35, Definition 7]). For
α > 0, η ∈ (0, 1), LWS are bounded and their p-spectra ∀p > 0 are given by [78]

D
(p)(h) =







η
H + 1/p

α + 1/p
h ∈

[

α,
α

η
+

(

1

η
− 1

)

1

p

]

−∞ otherwise.

(36)

5.1.3. Simulation setup

We generate NMC = 500 independent realizations of N = 216 samples each of MRW (with parameters H = 0.72,

λ =
√
0.08 and fractional differentiation ν ∈ {0, 0.4, 0.6, 0.7, 0.73}, yielding p0 = {+∞, 25, 4, 1.5, 0.75}, cf., (35))

and LWS (with parameters α ∈ {0.2, 0.3}, η ∈ {0.7, 0.8}, p0 = +∞). For each realization, we compute the Legendre spectra

L
(p)(hp) in (19) and Lmfd(h) as well as the log-cumulants c

(p)
m for m = 1, 2, 3 (cf., (23)–(24)). We adhere to the convention

that the finest available dyadic scale is labeled by j̄ = 1. Estimates are computed using (28)–(30) for dyadic scales from
j1 = 4 to the coarsest available scale j2 (j2 = 13 for p-leaders due to border effects and j2 = 15 for MFDFA) with weighted
linear regressions (bj = nj, see Ref. [49]). For p-leaders, a Daubechies’ wavelet with Nψ = 2 vanishing moments is used, and
consistently the degree of the polynomial for MFDFA is set to NP = 1. Furthermore, the p-leader estimates are calculated
for the set of values p ∈ { 1

4
, 1

2
, 1, 2, 4, 5, 8, 10, +∞} (where p = +∞ corresponds to wavelet leaders).

5.2. p-invariant p-spectra and negative regularity

We use fractionally differentiated MRW here because it enables us to study negative regularity and to compare the
respective performance for different values of p since its multifractal p-spectra are p-invariant.

5.2.1. Numerical illustrations of multifractal p-spectra

We illustrate and qualitatively compare the p-leader, leader andMFDFAmultifractal formalisms, based on their Legendre
spectra L

(p)(h) and Lmfd(h). Averages over independent realizations are plotted in Fig. 1 (colored solid lines with symbols),
together with the theoretical spectra (34) (black solid lines and shaded area) and the respective theoretical bounds (16) for
D
(p)(h) (colored dashed lines).



Fig. 1. Fractionally differentiated MRW with p0 = {+∞, 25, 4, 1.5, 0.75} (from top to bottom row); the top row plots MRW without fractional
differentiation: Single realizations (left column), theoretical spectraD(h) (black solid line and shaded area), estimatesLmfd(h) andL

(2)(h) (center column)

and estimatesL
(p)(h) (right column). The dashed lines indicate the theoretical bound (16). (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

Sample paths. Fig. 1 (left column) plots representative examples of sample paths X (ν) with, from top to bottom, increasing
value of ν (and, hence, decreasing regularity and p0). Visual inspection of the sample paths indicates the practical benefit of
the use of model processes with (potentially negative) regularity: While (positive only) Hölder regularity implies relatively
smooth sample paths, the use of (negative) p-exponents provides practitioners with a rich set of models for applications
with highly irregular sample paths, with a continuously rougher appearance as p-exponents take on smaller and smaller
values (cf. first column of Fig. 1).

2-leaders andMFDFA. In Fig. 1 (center column) Legendre spectra obtainedwithMFDFA and p-leaderswith p = 2 are plotted
together with the theoretical 2-spectra D

(2)(h).



– The estimates L
(2)(h) and Lmfd(h) are observed to be qualitatively equivalent when p0 is large. However, for negative

regularity (2 < p0 ≪ +∞), the Legendre spectra Lmfd(h) obtained with MFDFA only partially capture the theoretical

spectra for negative values of h and appear shifted to larger values of hwith respect to the theoretical spectrum D
(2)(h).

– In contrast to MFDFA, the 2-leaders formalism clearly provides excellent estimates for D
(2)(h) for any of the processes

X (ν) for which p0 ≥ 2.

We conjecture that the bias (shift towards positive values of h) of Lmfd(h) for processes with negative regularity is caused
by finite size effects similar to those analyzed for p-leaders in Section 3.4.

p-leaders for p 6= 2. In the right column of Fig. 1, averages of p-leader estimates L
(p)(h) are plotted for several values of p

and compared to the theoretical p-spectra D
(p)
ν (h) and the theoretical bounds (16).

– Clearly, the p-leader multifractal formalism provides excellent estimates for the theoretical spectra D
(p)
ν (h) for p ≤ p0,

hence validating the proposed formalism.
– The estimates are of excellent quality also for p < 1; notably, the choice p = 1/2 < 1 enables to correctly recover the

p-spectrum D
(p)
ν (h) for X

(ν) with p0 = 0.75 (Fig. 1, bottom row), which is not possible for p ≥ 1 (and, hence, neither
with the MFDFA method).

– When p > p0, the estimates L
(p)(h) are tangent to the theoretical bounds (16). Consequently, they are shifted to larger

values of h with respect to the theoretical spectrum D
(p)
ν (h) and hence biased. This is visually most striking for the case

p = +∞ (i.e. for classical leaders associated with Hölder exponents), for which estimated spectra are constrained to
positive values of h. This phenomenon will be investigated in a forthcoming study (see Ref. [79] for preliminary results).

– Finally, in consistency with Ref. [35, Theorem 2], the spectra L
(p)(h) coincide for all p ≤ p0 for fractionally differentiated

MRW.

5.2.2. Estimation performance

We proceed with a quantitative analysis of the estimation performance of the p-leader and MFDFA multifractal

formalisms, respectively. To this end, we assess the estimation performance for the log-cumulants c
(p)
m for m = 1, 2, 3, 4

(cf., (23)–(24)) based on their root mean squared error (rmse), defined as

rmse
c
(p)
m

=
√

〈

(

ĉ
(p)
m − c

(p)
m

)2
〉

NMC

where 〈 · 〉NMC
stands for the average over independent realizations.

Results for fractionally differentiated MRW X (ν) with ν ∈ {0, 0.4, 0.6, 0.7} (p0 = {+∞, 25, 4, 1.5}) are plotted
in Fig. 2 (top to bottom rows, respectively); the logarithm (log10) of rmse values of p-leaders are plotted as a function of p
(solid red lines with squares), those of MFDFA are plotted with a red circle. Distributions of the estimates, after subtraction
of theoretical value, are shown in black boxplots for p-leaders and blue boxplots for MFDFA. The values for p on the right of

the vertical red dashed lines are larger than p0, p > p0. Since c
(p)
m ≡ cm, we omit the superscript ·(p) below.

Estimation of c1. Rmse values and estimates for the first log-cumulant are reported in the left column of Fig. 2 and yield the
following conclusions.

– For p ≤ p0, the p-leader multifractal formalism systematically yields better estimation performance for small values of p
than for large values of p; the improved performance for small values of p is induced by reduced standard deviations of
estimates, resulting in considerable rmse gains of up to a factor 2 for p = 1/2 over the value of pwhich is picked closest
to p0.

– For p > p0, there is a sharp increase in rmse due to a systematic bias. Indeed, c1 captures the position of the maximum of
the p-spectra, which is shifted to larger values of h as compared to the theoretical spectrum when p > p0, as discussed
in Section 5.2.1.

Estimation of cm for m ≥ 2. The second, third and fourth column of Fig. 2 plot rmse values and estimates for c2, c3 and c4,
respectively, and yield the following conclusions:

– A systematic benefit in choosing small values for p in the p-leadermultifractal formalism is observed. Indeed, rmse values
decrease sharply and pronouncedly for p ≤ 4, and the smallest rmse values are obtained for small values for p (p = 1/2
or p = 1).

– Unlike for c1, choosing p > p0 does not significantly alter estimation performance for cm form ≥ 2. The interested reader
is referred to Ref. [79] for further details.

Comparison with MFDFA.

– The MFDFA and 2-leader formalisms have similar performance for the estimation of c1 as long as p0 = +∞. As soon
as the support of the p-spectrum includes negative values for h and p0 < ∞, MFDFA produces estimates for c1 that are
biased. This is consistent with the observations of Section 5.2.1 where theLmfd(h) are found to be shifted to larger values
of h.



Fig. 2. log-cumulants of fractionally differentiatedMRWwith p0 = {+∞, 25, 4, 1.5} (from top to bottom). Red: log10 of rmse of p-leaders (solid lines
and squares), as a function of p, and for MFDFA (full circles), for cm ,m = {1, 2, 3} (left to right column). Black and blue: boxplots of the error (ĉm − cm) for
p-leaders (black) and MFDFA (blue). The left and right y-scales correspond, respectively, to rmse and boxplots. Rmse is shown in the same y-scale across
the rows. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

– For the estimation of cm for m ≥ 2, the MFDFA formalism yields similar performance as the p-leader formalism for
moderately small values p ≈ 2.

These results lead to the conclusion that, for data containing p-invariant singularities only, it is beneficial to choose a small
value of p in the analysis. Note that the p-leader formalism with moderately small values for p, e.g. p ≤ 4, significantly
outperforms the current state-of-the-art wavelet leader formalism (p = +∞) which yields up to 50% larger rmse values.
The MFDFA and p-leaders formalisms have comparable performance for the estimation of cm for m ≥ 2 and also for c1 as
long as p0 = +∞. Yet, MFDFA estimates of c1 are biased when the data are characterized by negative regularity exponents.

5.2.3. Robustness against non-polynomial trend

Here, we study the robustness of MFDFA and the p-leader formalism for estimation of the log-cumulants cm for m =
1, 2, 3, 4 when a C∞ but non-polynomial trend of the form

τ(t) = 100(t + 1/100)−1/2, t ∈ [0, 1]
is added to MRWwith parameters specified as in Section 5.1.3 and ν = 0. We use Daubechies’ wavelet with Nψ = {3, 4, 5}
vanishing moments for p-leaders and, correspondingly, polynomials of degree NP = {2, 3, 4} for MFDFA. Note that with the
largest choice NP = 4 for the degree of polynomial, the finest available scale for MFDFA is j = 4; unlike p-leaders, finer
scales cannot be used for estimation with MFDFA, cf., Section 4.3. In order not to penalize MFDFA in the comparisons, we
perform linear regressions from scale j1 = 4 to the coarsest available scales (j2 = 13 for p-leaders due to border effects and
j2 = 15 for MFDFA).

Rmse values and estimates for cm,m = 1, . . . , 4, are plotted in Fig. 3 forNψ = {3, 4, 5} (top to bottom rows, respectively).
Clearly, the estimation performance of MFDFA is severely degraded by the non-polynomial trend: Evenwith the polynomial



Fig. 3. MRW with non-polynomial trend (H = 0.72, λ =
√
0.08, ν = 0), for different detrending powers: Nψ = 3, NP = 2 (top row), Nψ = 4, NP = 3

(center row),Nψ = 5,NP = 4 (bottom row). Red: rmse for p-leaders (solid squares), as a function of p, and for MFDFA (full circles). Black and blue: boxplots
of the error (ĉm − cm) for p-leaders (black) and MFDFA (blue). The left and right y-scales correspond, respectively, to rmse and boxplots. Rmse is shown in
the same Y-scale across the rows. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

of highest degree considered here (NP = 4), rmse values for c2, c3 and c4 for MFDFA are up to one order of magnitude larger
than in the absence of the trend (cf. Fig. 2, top row).

In contrast, the rmse values for p-leaders with Nψ = 4 are very close to those obtained in the absence of the trend. This
indicates that thewavelet transformunderlying p-leaders is considerablymore effective in removing the impact of the trend
on the higher order statistics of the multiresolution quantities than the empirical polynomial-fitting procedure employed
by the MFDFA method.

5.3. p-spectra and lacunary singularities

We illustrate the p-leader multifractal formalism for the estimation of the multifractal p-spectra of LWS, which contain
lacunary singularities at almost every point and are hence not p-invariant. Averages ofL(p)(h) over independent realizations
are plotted in Fig. 4 (colored solid lines with symbols), together with the theoretical spectra (36) (colored dashed lines) for
four combinations of the parameters (α, η)with α ∈ {0.2, 0.3} and η ∈ {0.7, 0.8}. Since the MFDFA method cannot reveal
the difference in the p-spectra because it is limited to p = 2, it is omitted in Fig. 4.

As expected (cf., (36)), the numerical estimates of the p-spectra are not invariant with p but reproduce the evolutionwith
pof the theoretical spectraD

(p)(h): The larger p, themore theupper limit of the support of the spectra are shifted towards the
point α. The positions of the mode of L(p)(h) slightly underestimate those of the true spectra, and the Hausdorff dimension
of the leftmost point of the spectra are poorly estimated. Yet, the L

(p)(h) qualitatively reproduce the theoretical spectra
satisfactorily well and, in particular, clearly and unambiguously reveal the lacunary nature of the sample paths.

5.4. Images: canonical Mandelbrot cascades

As mentioned above, MFDFA has barely been used for images (except for the attempts in Refs. [70–73]), while the
p-leader multifractal formalism extends in a straightforward manner to higher dimensions. Here, we illustrate this point
and apply the p-leader multifractal formalism to synthetic multifractal images.

Canonical Mandelbrot Cascades (CMC). The construction of multiplicative cascades of Mandelbrot (CMC) [9] is based on
an iterative split-and-multiply procedure on an interval; we use a 2D binary cascade for two different multipliers: First,
log-normal multipliers (CMC-LN), W = 2−U with U ∼ N (m, 2m/ ln(2)) a Gaussian random variable; Second, log-Poisson

multipliers (CMC-LP), W = 2γ exp (ln(β)πλ), where πλ is a Poisson random variable with parameter λ = − γ ln(2)

(β−1)
. We

use fractional integration of order α = 0.2. CMC contain only canonical singularities, hence fractional integration results
in a pure shift of their multifractal p-spectra by α. Their multifractal p-spectra hence all collapse due to the p-invariance of



Fig. 4. LWS for (α, η) =
{

(0.2, 0.7), (0.2, 0.8), (0.3, 0.7), (0.3, 0.8)
}

(from top to bottom row): Single realizations (left column), theoretical spectraD(h)

(right column, dashed lines) and estimated spectra L(h) (right column, solid lines). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

canonical singularities. For CMC-LN, the multifractal p-spectrum is given by

D(p)(h) ≡ D(h) = 2 − (h − α − m)2

4m
, with c1 = m + α, c2 = −2m, cm ≡ 0 for all m ≥ 3.

The expression for the multifractal p-spectrum of CMC-LP is

D(h) = 2 + γ

β − 1
+ −α + γ + h

lnβ

[

ln

(

(−α + γ + h)(β − 1)

γ lnβ

)

− 1

]

,

with c1 = α + γ

(

ln(β)

β−1
− 1

)

and all higher-order log-cumulants are non-zero: cm = − γ

β−1
(− ln(β))m. We set m = 0.04,

β = 0.8395 and γ = 0.4195, yielding c1 = 0.24 and c2 = −0.08 for both cascades, and c3 = 0.014 for CMC-LP.

Illustration of multifractal p-spectra. Averages over 100 realizations of p-leader Legendre spectra L
(p)(h) 2D CMC of side

length N = 211 are reported in Fig. 5 (bottom) for CMC-LN (left) and CMC-LP (right), single realizations of the random fields
are plotted in Fig. 5 (top); we use the scaling range j1 = 3 and j2 = 8 and tensor-product Daubechies’ wavelet with Nψ = 2
(cf. Ref. [74]). The observations and conclusions are similar to those obtained in the previous subsection for (1D) signals
(MRW); indeed, the p-leader estimates L

(p)(h) (solid lines in color, symbols) enable to correctly recover the theoretical
p-spectrum D

(p)(h) as soon as the condition p < p0 is fulfilled.



Fig. 5. 2D Mandelbrot cascade. Log-Normal (left) and Log-Poisson (right) multipliers. Top: Single realization. Bottom: D(h) (black solid line and shaded
area), L(p)(h) for p = +∞ (black, cross), p = 1/2 (blue, circle), p = 2 (magenta, square), p = 4 (red, triangle), p = 16 (green, diamond) and theoretical
limits for multifractal p-spectra (dashed). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

6. Discussions, conclusions and perspectives

The present contribution has developed and analyzed a novel multifractal formalism based on new local regularity
exponents, the p-exponents, and their corresponding multiresolution quantities, the p-leaders, that have been theoretically
defined and studied in the companion paper [35]. This new formulation of multifractal analysis generalizes the traditional
Hölder-exponent-based formulation in several ways. First and foremost, it naturally allows to perform the multifractal
analysis of functions that have negative regularity or, equivalently, that are not locally bounded (but instead belong locally
to Lp). This allows to avoid the commonplace a priori (fractional) integration of the data and the pitfalls it entails.

Moreover, the dependence on the parameter p provides an important and rich information concerning the characteristics
of the singular behavior of data. When the multifractal spectra differ for different valid values of p, this clearly indicates the
presence of complex singular behaviors on the data, known as lacunary singularities. This information is a distinctive feature
of p-exponents and is not accessible with previous tools.

This contribution has also made a clear connection between the p-leader multifractal formalism and MFDFA, a related
technique that iswidely used in applications. This has allowed to provide a theoretical grounding toMFDFA,which remained
a useful but ad hoc intuition. Also, it has brought to light that MFDFA actually measures the 2-exponent, rather than the
Hölder exponent as had been assumed previously.

Numerical simulations on synthetic multifractal processes have shown that the p-leader formalism, for small values of p,
benefits from significant improvements in estimation performance, compared towavelet leaders andMFDFA. It is important
to emphasize that, even though p-leaders were originally introduced with the goal of analyzing negative regularity, they
show better estimation performance than wavelet leaders even for processes that have positive regularity only.

To conclude, the benefits of the p-leader multifractal formalism over existing formulations are threefold: First, it allows
the analysis of negative regularity; second, it shows better estimation performance; and third, the dependence of the
estimates on the parameter p provides richer and more detailed information on the characteristics of the singularities that
can be found in the data. This suggests that the p-leader multifractal formalism, for small values of p, should be preferred
for practical multifractal analysis.

A Matlab toolbox implementing estimation procedures for performing p-multifractal analysis will be made publicly
available at the time of publication.
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Appendix. Proofs

Proof of Proposition 1. We start by considering the case p ≥ 1, in which case, wewill prove the slightly sharper result that
(16) holds as soon as f ∈ Lp. Let H > −d/p be given. Let EH denote the set of points where the p-exponent of X is smaller
than H . If x0 ∈ EH , then there exists a sequence rn → 0 such that

(

1

rdn

∫

B(x0,rn)

|f (x)|p dx

)1/p

≥ rHn ,

so that there exists a sequence jn → −∞ such that the dyadic cubes λjn(x0) satisfy

∫

3λjn (x0)

|f (x)|p dx ≥ C2jn(d+Hp)

(pick the smallest dyadic cube λjn(x0) such that B(x0, rn) ⊂ 3λjn(x0)). One of the 3d cubes of width 2jn that constitute 3λjn
(which we denote by µjn ) satisfies

∫

µjn (x0)

|f (x)|p dx ≥ C3−d2jn(d+Hp).

We consider now the maximal such dyadic cubes, of width less than a fixed ε, satisfying this inequality for all possible x0,
and we denote by R this collection. Then, since maximal dyadic cubes necessarily are 2 by 2 disjoint,

C
∑

µ∈R

2j(d+Hp) ≤
∑

µ∈R

∫

µ

|f (x)|p dx ≤ C

where µ is of width 2j. If x ∈ EH , then x belongs to one of the 3µ, and therefore to the ball of same center and radius 3d2j.
Since rn ≥ C2jn , we have obtained a covering of EH by balls of radius at most 3dε such that

∑

diam(B(x, r))d+Hp ≤ C,

and the result follows for p ≥ 1.

We now consider the case p < 1. Hypothesis η(p) > 0 means that

∃C, ε > 0 : ∀j < 0, 2dj
∑

i,k

|c(i)j,k |p ≤ C2εpj. (A.1)

If hp(x0) < H , then there exists an infinite sequence of dyadic cubes λwhich contain x0 and such that

∑

j′≤j, λ′⊂3λ

2d−1
∑

i=1

∣

∣c
(i)

λ′
∣

∣

p
2−d(j−j′) ≥ 2Hpj.

We now consider the maximal cubes of width less than ε and which satisfy this condition. This yields a covering of EH
by dyadic cubes λ which are 2 by 2 disjoint. Denoted by Aj the cubes of this covering which are of width 2j, and by Nj the
cardinality of Aj. On one hand

∑

λ

∑

j′≤j, λ′⊂3λ

2d−1
∑

i=1

∣

∣c
(i)

λ′
∣

∣

p
2−d(j−j′) ≥ Nj2

Hpj

(where the sum over λ is taken on all dyadic cubes of width 2j). On the other hand, the left side is equal to

3d
∑

j′≤j





∑

k′∈Zd

2d−1
∑

i=1

∣

∣c
(i)

λ′
∣

∣

p
2−d(j−j′)



 .

But (A.1) implies that the term between parentheses is bounded by 2−dj2εpj
′
; thus we obtain that

Nj2
Hpj ≤ C2−dj,

which implies that dim(EH) ≤ d + Hp, and the result follows for p < 1.
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