EU-ASEAN Symposium and Workshop on Photocatalysis, 24 November 2015, Johor Bahru, Malaysia

Effect of Calcination Temperatures on the Photocatalytic Activities of Commercial **Titania Nanoparticles under Solar Simulator Irradiation**

Wai Ruu Siah¹, Hendrik O. Lintang¹, Mustaffa Shamsuddin², Leny Yuliati^{1*} ¹ Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.

² Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.

*Corresponding author: leny@ibnusina.utm.my

ABSTRACT

In this study, the effect of calcination temperatures on the photocatalytic activity of commercial TiO_2 photocatalysts (Evonik P25, Evonik P90, Hombikat UV100, Hombikat N100) was evaluated for degradation and removal of 2,4-dichlorophenoxyacetic acid (2.4-D) herbicide under solar simulator irradiation. The calcined samples were prepared by heating commercial TiO_2 photocatalysts at 573 or 773 K for 4 hours. It was confirmed that before calcination treatment, the P25 TiO₂ showed similar activity to the P90 TiO₂, which activity was higher than those of Hombikat UV100 and N100 TiO₂. The activity of P25 and P90 was reduced when the photocatalysts were calcined at 573 K and 773 K. On the other hand, the Hombikat catalysts showed an improved activity with the increase of calcination temperatures.

Commercial TiO₂ nanoparticles | Calcination temperature | 2,4-Dichlorophenoxyacetic acid | Solar simulator |