
Broad Phase Collision Detection using
Multi-core Processor

Norhaida Mohd Suaib
UTM VicubeLab, Faculty of Computing,

Universiti Teknologi Malaysia, Johor, Malaysia,
81310 UTM Skudai

haida@utm.my

Fawwaz Mohd Nasir
Faculty of Computing,

Universiti Teknologi Malaysia, Johor, Malaysia,
81310 UTM Skudai

fawwaz_bmn@yahoo.com

Abstract Collision detection is a very important component in
computer graphics applications. However, due to its high
algorithm complexity, collision detection usually forms a
bottleneck in many of these applications causing the simulation
performance to deteriorate. Earlier algorithms for collision
detection are sequential in nature. The multi-core processor
technology is seen as an opportunity to reduce and eliminate this
bottleneck by parallelizing the collision detection algorithm.
Therefore, this paper implements the sphere bounding volume in
the broad phase collision detection using the sequential and
parallel approach separately, in order to identify the simulation
performance differences between both approaches. The
algorithm used to implement the broad phase collision detection
involved the all-pair test where it is based on the comparison of

unding volume to determine if collision occurs. As
an extension, this paper utilizes the graphics processing unit to
implement the parallel approach. The implementation of the
broad phase parallel collision detection shows improved frame
rate for larger number of objects involved up to 1.2 x faster
compared to the sequential implementation.

Keywords-component; collision detection; broad phase; parallel
computing

I. INTRODUCTION
Collision detection refers to the problem of determining

whether moving objects collide, in other words, whether the
corresponding shapes intersect [1]. Without collision detection,
objects can penetrate each other. In order to efficiently
implement collision detection, a two-phased approach is used
which are the broad phase followed by the narrow phase [2].
The first phase which is the broad phase is responsible for the
quick and efficient removal of the object pairs that are not in
collision [3]. The narrow phase on the other hand, performs
tests in more detail and is performed on objects that have the
potential to collide [2]. Tests made during the first phase use
the traditional way of testing collisions that are based on
bounding volumes. It is one of the bottlenecks in real time
rendering loop [4].

Hence, this paper focuses on the implementation of the
broad phase approach of the collision detection using the all-
pair test. The sphere is used as the bounding volume to perform
collision tests. Graphics processing unit (GPU) programming
using the Compute Unified Device Architecture (CUDA) is

applied in this paper to determine the differences when the
sequential and parallel algorithm is executed in the
implementation of the collision detection. An NVIDIA
GeForce G105M graphics card was used for the experiments.

This paper is organized into six different sections. The first
section gives an in-depth discussion on the issues relating to
the traditional collision detection. This is followed by the
research framework in the second section. The experimental
layout is discussed in the third section. The results and
discussions are presented in fourth section and the final section
concludes this paper.

II. TRADITIONAL COLLISION DETECTION ISSUES
Collision detection refers to the process of determining if

two objects collide with each other. It is a very important
component in computer graphics applications. However, it
remains as a fundamental problem since it forms a bottleneck
in many of these applications. Earlier algorithms for collision
detection are sequential in nature. They are designed for single
core processor. One of those sequential or traditional
algorithms is the brute-force algorithm. This algorithm tests
every object for collision. It has an algorithm complexity of
O(n2). The next algorithm is the sort and sweep algorithm.
Although it is simple to implement, it has an average
complexity of O(n log n) and its worse case complexity is
O(n2). Spatial subdivision can also be used as one of the
algorithm in broad phase collision detection. This algorithm
has the same complexity as to the previous mentioned
algorithm where its average algorithm complexity is O(n log n)
with O(n2) being its worse case algorithm complexity.

double every 18 months [5]. This means that programs will
automatically run faster on newer processors. The design goal

increase the clock rate. This was accomplished by increasing
the number of transistors on the smaller chip. Unfortunately,
this method becomes unreliable around 2002 because by
further increasing the number of transistors it causes the
increase in power dissipation of the processor chip, beyond the
capacity of inexpensive cooling techniques. Therefore,
opportunities for improving the raw performance of individual

ID: 54

59

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/83531773?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

processor has become very limited because of this problem
which is commonly known as the power wall [6].

In order to continue delivering performance improvement
and due to cost constrains on the need for inexpensive cooling
techniques, the multi-core processors were introduced. A
multi-core processor can run more operations and system
processers at the same time, compared to a single-core
processor. It can complete a complex task in a short period of
time. For instance, with a weak processor, decoding a high
definition movie and playing it can take up to more than three
hours [7]. However, with a dual-core processor, it can be done
within an hour besides having the ability to do something else
in the background [7]. The number of cores is likely to increase
at the rate corresponding to th
that programs will not get any faster unless the ever-increasing
number of cores is effectively utilized. Therefore, software
developers are trying to make use of this multi-core technology
to improve the performance of their application.

Modern GPUs offer higher peak throughput compared to
the central processing units (CPUs) [8]. This has been proven
by many organizations where the developers have achieved an
increase in performance when using the GPU to perform
computations traditionally handled by the CPU. Although not
all applications can see this kind of speed-up, but 100 times
speed-up and beyond have been seen by hundreds of
developers [9]. Therefore, by using the GPU to implement the
algorithm for the broad phase approach of the collision
detection, it is expected that there will be a performance
improvement since CPUs has lower throughput compared to
the GPUs. Besides, using the concept of parallelism can also
improve the algorithm performance compared to using the
traditional sequential approach.

The broad phase collision detection is one of the
bottlenecks of the real time rendering loop due to its algorithm
complexity. This will eventually lower the frames per second
(FPS) since it affects the overall performance of the
application. The limited ability in improving individual
processor since its interception with the power wall has
resulted in the introduction of the multi-core processors.
Therefore, this is seen as an opportunity to utilize the multi-
core GPU especially to overcome the bottleneck since there
was very little study regarding the implementation of collision
detection on multi-core processors. GPU is used since it is said
to have higher throughput compared to the CPU and better
results are expected in terms of FPS when using GPU
compared to CPU.

III. RESEARCH FRAMEWORK
Figure 1 illustrates the research framework for the

implementation of the broad phase collision detection in
sequential computing. The algorithm used is the all-pair test
which is a brute force approach of collision detection. The all-
pair tests checks for collision between objects by testing
whether the objects bounding volume intersect with each other.

Figure 1. Sequential Computing Research Framework

bounding volume. The input of the research framework shown
above is the objects. Objects that have the potential to collide
with each other are pair up together, creating a list of object
pairs. Each pair is then tested for collisions. During the test
process, the radius of bounding sphere pair is summed up

calculated. The calculated values are then compared with each
other to check whether the bounding spheres intersect. An
intersection between a pair of bounding sphere does not occur

sum of the radius of both spheres. Else, if is the other way
around, then the intersection occurs. By the end of the collision
testing, the output, which is the simulation performance
measured in FPS for the whole process is calculated. Note that
for this sequential computing approach, the object pairs are
tested one after another in a sequential manner.

60

Figure 2. Parallel Computing Research Framework

Figure 2 on the previous page represents the framework for
conducting the parallel computing on the broad phase collision
detection. The framework is quite similar to the framework for
sequential computation. The only difference is that instead of
checking for bounding spheres intersection sequentially,
intersections are checked concurrently. Meaning, the object
pairs created in the earlier step will be tested for collision in a
parallel fashion by delegating the job between several GPU
threads or cores. Figure 3 shows how the workload, which in
our case is the object pairs, is delegated in a CUDA capable
NVIDIA GPU. The workload is distributed by first specifying
the number of blocks and the number of threads per block
needed to complete the task. These numbers depend on the
amount of object pairs that will be tested for collision. CUDA
will then distribute the workload based on these specified
numbers.

To compare the differences between the sequential and
parallel approach, comparisons are made on the frame rates
from both computation. A frame rate is the frequency where
unique consecutive images were produced by the imaging
device. In computer graphics, it refers to the speed at which the
image is refreshed. Usually frame rates were measured in
seconds. The higher the frame rate, the smoother the motion
image being displayed. A lower frame rate causes the motion
image to look choppy or jumpy. Therefore, in our case, parallel

computing is expected to produce a higher frame rate when
compared to the sequential approach.

Figure 3. Workload Distribution

The program for this paper is written in C++ programming
language and is developed using an integrated development
environment (IDE) named Microsoft Visual Studio 2008. The
Open Graphics Library (OpenGL) application programming
interface (API) is used to render the scene. Besides, NVIDIA
CUDA Toolkit 5.5 is also used to allow direct access to the
GPU. Currently, the toolkit only supports Visual C++ 9.0
compiler (part of Microsoft Visual Studio 2008 IDE) or later
for programs written in C++ and developed in the Microsoft
Windows operating system. Apart from that, this paper utilizes
the NVIDIA GeForce G105M processor which is one of

IV. EXPERIMENTAL LAYOUT
The experiment is conducted by adding different number of

spheres to the scene. The chosen set for the number of spheres
is 64, 128, 192, 256 and 320. Also, besides using different
number of spheres, different approaches were also used to
conduct the intersection test. The set of numbers mentioned
was tested with these approaches, which are the sequential and
parallel approaches. A set of 200 FPS readings is then recorded
into a text file by a user triggered event. Separate files are
created to record the readings for both the sequential and
parallel approaches. The readings will be summed up together
and will be divided by the total number of FPS records to get
the average. This process is performed in order to increase the

61

precision of the FPS value. Note that the greater the number of
FPS readings, the higher the precision.

Figure 4. The Scene

V. RESULTS AND DISCUSSIONS
Table 1 shows the calculated average of the recorded real-

time FPS for both the sequential and the parallel approaches.
The effects of using different number of spheres were also
documented in the table. The number of spheres used is
actually a multiple of 16. In CUDA, the smallest executable
unit of parallelism is 32 threads, which is called a wrap [10].
The graphics card used performs memory transfers and
instruction dispatch at half-wrap or 16 threads. Therefore, in
order to maximize the graphics card occupancy, multiples of 16
is used. In general, from what is shown in the table and Figure
5 below, the parallel approach is faster than the sequential
approach especially when the number of spheres is higher.

TABLE I. AVERAGE FPS FOR DIFFERENT NUMBER OF SPHERES AND
APPROACHES

Number of
Spheres

Average FPS
Speed-up

Sequential Approach Parallel Approach

64 59.31 36.49 0.6152

128 19.43 18.39 0.9465

192 9.354 9.730 1.041

256 5.359 6.198 1.157

320 3.420 4.342 1.270

The amount of speed-up gained in the parallel approach
when compared to the sequential approach was also calculated.
In parallel computing, speed-up refers to how much faster the
parallel approach is compared to the sequential approach. It is
calculated by dividing the average FPS of the parallel approach
by the average FPS of the sequential approach. Notice that
from Table 1 shown above and Figure 6 on the next page, this
value increases as the number of spheres increases. This shows
that the parallel approach works better when there are higher

numbers of spheres. In other words, the GPU is at its best
performance if there are higher numbers of tasks to be
performed.

Figure 5. Sequential and Parallel Approach Frame Rate

Figure 6. Parallel Approach Speed-up

VI. CONCLUSIONS
This paper has investigated the implementation of the broad

phase collision detection in both sequential and parallel
approaches. As mentioned earlier, the purpose of this paper
was to investigate the difference between executing the broad
phase collision detection algorithm in the sequential and
parallel approaches. Since the processor architecture hit the
power wall, the multi-core processors were introduced to
continue delivering performance improvement. Therefore, in
order for the applications to run faster, they need to utilize the
multi-core technology. The performance of the computer
graphics applications, especially that involves collision
detection can be improved since collision detection forms a
bottleneck in many of these applications. Generally, from the
outcome of the conducted test, the parallel approach works
better than the sequential approach when there are higher
amount of work that needs to be completed. Also, the amount
of speed-up correlates to the amount of spheres added to the
scene.

62

ACKNOWLEDGMENT
This research is supported by Universiti Teknologi

Malaysia (UTM) and Ministry of Higher Education (MOHE),
in collaboration with Research Management Centre (RMC),
UTM, and partly supported by Research University Grant
(RUG) Program, Tier 1 (research grant 09H18) and RUG Tier
2 (research grant 05J21).

REFERENCES
[1] Klawonn, F. Introduction to Computer Graphics: Using Java 2D and

3D. London: Springer. 2008.
[2] Grand, S. L. Broad-Phase Collision Detection with CUDA. In: Nguyen,

H. ed. GPU Gems 3. Boston: Addison-Wesley. 697 721; 2008.
[3] Avril, Q., Gouranton, V. and Arnaldi, B. A Broad Phase Collision

Detection Algorithm Adapted to Multi-cores Architectures. Proceedings
of Virtual Reality International Conference (VRIC 2010). April 7 9,
2010. Laval: Laval Virtual. 2010. 95 100.

[4] Malmsten, M. and Klasen, S. Practical Collision Detection on GPU: A
Case Study Using CInDeR. Retrieved February 27, 2013 from
http://fileadmin.cs.lth.se/graphics/ theses/projects/gpucd/report.pdf. n.d.

[5] Stallings, W. Computer Organization and Architecture: Designing for
Performance (Eighth Edition). New Jersey: Pearson. 2010.

[6] Karras, T. Thinking Parallel, Part 1: Collision Detection on the GPU.
Retrieved February 27, 2013 from
https://developer.nvidia.com/content/thinking-parallel-part-i-collision-
detection-gpu. 2012.

[7] Paul M. Why dual-core is faster than single-core processors. Retrieved
March 17, 2013 from http://www.helium.com/items/1021144-why-dual-
core-is-faster-than-single-core-processors. 2013.

[8] Tang, M., Manocha, D., Lin, J. and Tong, R. Collision-Streams: Fast
GPU-based Collision Detection for Deformable Models. Proceedings of

 February
18 20, 2011. San Francisco: ACM. 2011. 63 70.

[9]
Intel. Retrieved March 24, 2013 from
http://blogs.nvidia.com/2010/06/gpus-are-only-up-to-14-times-faster-
than-cpus-says-intel/. 2010.

[10] NVIDIA Corporation. CUDA C Best Practices Guide: Design Guide.
n.p.: NVIDIA Corporation. 2013.

63

