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ABSTRACT 

 

 

 

 

The inefficient On/Off control for the compressor operation has long been 

regarded as the major factor contributing to energy loss and poor cabin temperature 

control of an automotive air conditioning (AAC) system. In this study, two soft 

computing based controllers, namely the proportional-integral-derivative (PID) based 

controllers tuned using differential evolution (DE) algorithm and an adaptive neural 

network based model predictive controller (A-NNMPC), are proposed to be used in 

the regulation of cabin temperature through proper compressor speed modulation. 

The implementation of the control schemes in conjunction with DE and neural 

network aims to improve the AAC performance in terms of reference tracking and 

power efficiency in comparison to the conventional On/Off operation. An AAC 

experimental rig equipped with variable speed compressor has been developed for 

the implementation of the proposed controllers. The dynamics of the AAC system is 

modelled using a nonlinear autoregressive with exogenous inputs (NARX) neural 

network. Based on the plant model, the PID gains are offline optimized using the DE 

algorithm. Experimental results show that the DE tuned PID based controller gives 

better tracking performance than the Ziegler-Nichols tuning method. For A-NNMPC, 

the identified NARX model is incorporated as a predictive model in the control 

system. It is trained in real time throughout the control process and therefore able to 

adaptively capture the time varying dynamics of the AAC system. Consequently, 

optimal performance can be achieved even when the operating point is drifted away 

from the nominal condition. Finally, the comparative assessment indicates clearly 

that A-NNMPC outperforms its counterparts, followed by DE tuned PID based 

controller and the On/Off controller. Both proposed control schemes achieve up to 47% 

power saving over the On/Off operation, indicating that the proposed control 

schemes can be potential alternatives to replace the On/Off operation in an AAC 

system. 
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ABSTRAK 

 

 

 

 

Ketidakcekapan pengawal On/Off dalam operasi pemampat telah lama 

dianggap sebagai faktor utama yang menyumbang kepada kehilangan tenaga dan 

kelemahan kawalan suhu kabin dalam sistem penyaman udara automotif (AAC). 

Dalam kajian ini, dua pengawal berasaskan pengkomputeraan lembut, iaitu pengawal 

terbitan kamiran berkadaran (PID) yang ditala dengan algoritma evolusi kebezaan 

(DE) dan pengawal adaptif rangkaian saraf ramalan (A-NNMPC), telah dicadangkan 

untuk mengawal suhu kabin melalui modulasi kelajuan pemampat. Perlaksanaan 

skim kawalan bergabungan dengan DE dan rangkaian saraf bertujuan untuk 

meningkatkan prestasi sistem AAC dari segi penjejakan rujukan dan kecekapan 

kuasa berbanding dengan operasi On/Off yang konvensional. Satu sistem ujikaji 

AAC yang dilengkapi dengan pemampat elektrik kelajuan boleh ubah telah 

dibangunkan dan digunakan dalam perlaksanaan pegawal yang dicadangkan. Satu 

autoregresi tak lurus dengan input luaran (NARX) rangkaian saraf digunapakai untuk 

pemodelan dinamik AAC. Berdasarkan model ini, parameter PID dioptimalkan 

secara luar talian dengan menggunakan algoritma DE. Hasil ujikaji menunjukkan 

talaan pengawal PID berasaskan DE memberikan prestasi penjejakan rujukan yang 

lebih baik dibandingkan dengan kaedah penalaan Ziegler-Nichols. Bagi A-NNMPC, 

model NARX yang sudah dikenalpasti itu dijadikan sebagai model ramalan dalam 

sistem kawalan. Ia dilatih secara dalam talian sepanjang proses kawalan. Dengan itu, 

system dinamik yang berubah-ubah dari masa ke semasa dapat diperolehi secara 

adaptif. Dengan ini, prestasi optimum dapat dicapai walaupun titik operasi optimum 

beralih jauh dari keadaan nominal. Akhir sekali, penilaian perbandingan 

menunjukkan bahawa prestasi paling baik diperolehi daripada A-NNMPC, dan 

diikuti oleh pengawal PID yang ditalakan dengan DE and pengawal On/Off. Jika 

dibandingkan dengan pengawal On/Off, penjimatan kuasa sebanyak 48% dapat 

dicapai oleh skim kawalan yang dicadangkan. Ini menunjukkan bahawa pengawal 

yang dicadangkan adalah alternatif yang berpotensi dalam sistem AAC berbanding 

dengan pengawal On/Off. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

1 INTRODUCTION 

1.1 Introduction 

Road transport activity is one of the main contributors to greenhouse gas 

emissions in the atmosphere. As the effort to counter the issue of greenhouse effect 

and global energy shortage, a new national fuel economy program has been launched 

in the United States, which requires an average fuel economy standard of 172 g/km 

CO2 emission for new light vehicles by 2016 (Cheah and Heywood, 2011). Similarly, 

the European Commission, Japan and China have respectively set mandatory 

standards of 120 g/km, 125 g/km and 167 g/km for the average emissions of new 

cars to be phased in by the year 2015 (Atabani et al., 2011; Zhang et al., 2014). 

 

 

Among all the components in a conventional vehicle, the compressor of an 

automotive air conditioning (AAC) system is the single largest auxiliary load on the 

engine (Rugh and Hendricks, 2001). A compressor driven by the engine can 

consume up to 5 to 6 kW peak power draw on a vehicle engine and is equivalent to a 

vehicle being driven down the road at 56 km/hr (Hensen et al., 2002). According to 

the findings of National Renewable Energy Laboratory in Golden, Colorado, seven 

billion gallons of gasoline, a volume representing nearly 5.5% of total national light 

duty fuel consumption in the United States, are used annually to run the air 

conditioners of vehicles (Rugh et al., 2007). In addition, the study done by Rugh and 

Hendricks (2001) indicated that the increment of tailpipe emissions resulting from air 

conditioning system on average can be up to 70% carbon dioxide (CO2) and 80% 

nitrogen oxides (NOx). 

 



2 

Aiming at reducing the overall vehicle fuel consumption due to the 

reinforcement of the more stringent environmental regulation, the manufacturers are 

concerned with the cost effectiveness of AAC system designs and their operating 

strategies. One of the major functions of air conditioning system in a vehicle is to 

maintain the desired cabin temperature for the thermal comfort of occupants (Wang 

et al., 2000). In a conventional vehicle, the compressor is usually powered by a 

combustion engine and its cooling capacity is controlled via activation and 

deactivation of the magnetic clutch system. Sensor units are integrated to the air 

conditioning control panels or/and fitted to the air ducting of the evaporator to 

monitor the respective local cabin temperature (Daly, 2006). During partial load 

conditions, the magnetic clutch of the compressor has to undergo engagement and 

disengagement cycles continuously in order to achieve the desired cooling effect in 

the cabin. The On/Off control of the compressor has led to several drawbacks, such 

as cycling losses and poor cabin temperature control (Ananthanarayana, 2005; 

Buzelin et al., 2005). 

 

 

A feasible alternative to the less efficient On/Off operation is the variable 

speed control of the compressor with the basic function of varying the refrigerant 

flow rate in the refrigerant circuit. Cabin temperature control through proper 

modulation of the compressor speed has emerged to be a popular choice due to its 

superior power efficiency (Qureshi and Tassou, 1995). 

 

 

Application of On/Off compressor in a conventional vechicle remains a 

popular choice worldwide (Daly, 2006; Nasution, 2005) due to the fact that the 

implementation of variable speed compressor (VSC) is restricted by the 12 V power 

supply. In view of this limitation, reciprocating compressor driven by vehicle engine 

is still widely applied in many foreign and local vehicles. Technically, VSC is only 

applicable for heavy trucks, buses, electric and hybrid vehicles, in which high 

voltage battery supply is available to drive the VSC. Recently, it has become a 

prospective application in conventional vehicles, as the key German carmakers are 

working on stepping up the existing 12 V power supply to the proposed 48 V power 

net system (Hammerschmidt, 2011). The effort of the power net transition makes the 
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application of VSC become more attractive, as it will facilitate the integration of an 

electric VSC in the conventional vehicle powered fully by a 48 V battery. 

 

 

In view of the stricter emission standards of today‟s automotive industry and 

the promising improvement brought about by the VSC application, the design of 

efficient and optimised control strategies for the implementation of VSC is desirable. 

With the advent of powerful computers, rapid development of advanced control 

techniques such as the use of soft computing approaches is spawn to achieve more 

satisfactory process controls (Silva, 2000). Soft computing emerges to receive 

growing acceptance in the industry due to its capability to tolerate with the 

ambiguous real life situation such as imprecision and uncertainty (Malhotra et al., 

2011). The principle constituents of soft computing include artificial neural networks 

(ANN), fuzzy logic, evolutionary algorithms and probabilistic computing (Ray, 

2014), which have been well recognized as powerful tools to handle nonlinearity, 

complex optimization problems and uncertain environmental condition. There is an 

extensive literature in soft computing from theoretical as well as applied viewpoint 

(Dote and Ovaska, 2001; Fortuna et al., 2001; Ray, 2014). However the main focus 

of this study will be on differential evolution (a subset of evolutionary algorithm) and 

ANN. Both soft computing approaches are adopted and incorporated in the proposed 

control schemes for the VSC operation. Further review on the recent development of 

conventional and soft computing based control methods and their respective 

applications in air conditioning and refrigeration (AC&R) systems is presented in 

Chapter 2. 

1.2 Problem Statement 

The main issue needs to be addressed in this study is the inefficient operation 

of the engine driven compressor integrated in a conventional vehicle. When the AAC 

system is operated under partial load condition, the compressor has to be cycled „On‟ 

and „Off‟ via magnetic clutch. The major drawback of this control method is the 

energy loss associated with the pressure equalization during compressor stoppage 

and power losses due to the pulley belt friction. Additionally, the transient start-up 
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and shut-down of the compressor often results in the fluctuating cabin temperature. 

Another major disadvantage of this system is that the location of the air conditioning 

system is restricted due to the engine shaft-pulley-belt-compressor configuration. In 

addition, the continuous „On‟ and „Off‟ switching process may reduce the lifetime of 

the mechanical parts. 

 

 

Innovative solutions are necessary to improve fuel consumption and the cabin 

temperature control of a conventional AAC system. A possible alternative is by 

converting the conventional On/Off cycling to a variable speed operating mode 

(Buzelin et al., 2005; Nasution and Hassan, 2006). The reason for energy saving lies 

in the fact that establishment of a proper speed control for the VSC can insure a 

continuous matching between the cooling capacity and the time varying thermal load. 

Furthermore, variable speed operation is expected to deliver better temperature 

control, as the compressor speed is no longer a function of the engine speed and thus 

can be freely regulated in response to the set point change as well as the variation of 

the operating condition. 

 

 

Optimal thermal control of a mobile AAC system through proper modulation 

of the comrpessor speed is a rather complex job, as the system is consistently 

subjected to a wide range of transient disturbances such as the sun radiation, 

changing ambient temperature and incoming air speed of condenser (Shah et al., 

2004). Under the consideration of the inherently nonlinear dynamics of the air 

conditioning system (He et al., 1997; Li et al., 2012), application of simple controller 

such as proportional-integral-derivative (PID) control in regulating the compressor 

speed requires proper optimisation of the control parameters. Repetition of 

experimental tests for parameter tuning based on trial and error can be costly and 

time consuming (Saad et al., 2012). Thus, implementation of a proper tuning method 

is essential for determining the optimal parameter setting for the PID controller. 

 

 

Apart from the PID control system, advanced control strategies such as model 

based controllers require preliminarily a detailed nonlinear physical model of the 

vapour compression cycles derived from first principles. However, developing an 

adequate physical model with satisfactory prediction accuracy is a challenging task, 
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as air conditioning system is highly nonlinear and it consists of complex subsystems 

that mutually influence one another (He et al., 1997; Rasmussen  et al., 2002). 

Consequently, establishment of a model adequately representing the nonlinear AAC 

system is essential to ensure satisfactory cabin temperature control of the AAC 

system. 

 

 

Soft computing is a practical method in solving computationally complex and 

mathematically intractable problems. In this study, differential evolution (DE) 

algorithm and artificial neural networks (ANN) are integrated with the conventional 

control system in a complementary hybrid framework to handle the complex control 

problems. Two soft computing based control schemes, namely PID based controllers 

tuned using DE algorithm and an adaptive neural network based model predictive 

controller (A-NNMPC), have been proposed for the implementation of VSC. In 

contrast to the conventional On/Off operation, the implementation of the proposed 

control schemes allows the compressor speed to be regulated optimally within the 

predefined range in order to achieve the target cabin temperature. 

1.3 Research Objectives 

The main goal of this research is to implement the proposed control schemes 

for the VSC operation in an AAC system. Accordingly, following objectives are to 

be accomplished: 

 

 

1. To design an AAC experimental rig integrated with a VSC. The rig serves as 

a platform for the implementation of VSC using the proposed control 

schemes. 

 

2. To develop an ANN model simulating the dynamics of the AAC system. This 

model is intended to be applied for the design and implementation of the 

proposed controllers. 
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3. To develop PID based controllers tuned using DE algorithm and an adaptive 

neural network based model predictive control system (A-NNMPC) that can 

effectively regulate the cabin temperature by modulating the compressor 

speed. Additionally, a conventional On/Off controller is introduced as a 

benchmark to evaluate the performance delivered by the proposed controllers. 

 

4. To compare the reference tracking performance, robustness and power 

efficiency of the proposed control schemes with the conventional On/Off 

controller. 

1.4 Scope of the Study 

The scopes of the research are as follows: 

 

1. In this study, an experimental setup, comprising refrigeration circuit, ducting 

systems and measurement instrumentation, is developed to resemble an AAC 

system equipped with a VSC. All the proposed control schemes are 

implemented and tested on this experimental rig. 

 

2. For the analysis of the AAC steady state performance, the variation of three 

operational parameters are taken into account, namely the compressor speed, 

air temperature upstream of the evaporator, and inlet air velocity of the 

condenser. The range of the respective operational parameters is 24005750 

rpm for the compressor, 20.531.5 °C for the air temperature upstream of the 

evaporator, and 36.2 m/s for the inlet air velocity of the condenser. 

 

3. A nonlinear autoregressive with exogenous inputs (NARX) neural network is 

used to model the dynamic behaviour of the experimental AAC system. Two 

network architectures considered in this study are the multilayer perceptron 

(MLP)  and radial basis network (RBN). The RBN and MLP based NARX 

models are used to capture the transient dry bulb cabin temperature under 

random modulation of the compressor speed. Selection of the optimal 

network architecture is determined based on the prediction capability, 
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network complexity and computational effort for the ANN training. The 

prediction capability of the NARX neural networks is evaluated using the 

one-step-ahead and model-predictive-output prediction tests, while the 

network complexity is determined based on the number of connection weight 

and biases. 

 

4. Two control schemes, namely PID based controllers (PI and PID) tuned using 

DE algorithm and an adaptive neural network based model predictive 

controller (A-NNMPC), are developed. The soft computing approaches 

incorporated in the control schemes involve the DE algorithm and the ANN 

model. By implementing the proposed controllers, the average dry bulb cabin 

temperature is controlled through proper modulation of the compressor speed. 

 

5. Offline tuning of the PI and PID controllers is performed using DE algorithm. 

The identified NARX neural network is used as the plant model during the 

optimization process. The reference tracking performance of the DE tuned 

PID based controllers is evaluated by being compared to the conventional ZN 

tuning rules. 

 

6. The A-NNMPC is developed by adopting the Newton-Rahpson method to 

solve the nonlinear cost optimisation problem. The identified NARX neural 

network is incorporated as a plant predictive model in the control system. 

Levenberg-Marquardt algorithm and sliding stack window technique are 

adopted for the online ANN training scheme. The necessity of using the 

online AAN training scheme in the control system is highlighted based on the 

comparative study between the proposed controller and a model predictive 

controller using an offline trained neural network (O-NNMPC). 

 

7. All the experimental tests involving both proposed controllers are performed 

under nominal condition as well as in the presence of disturbance. Nominal 

condition can be understood as the operating condition, under which data 

collection is performed for the identification of an ANN model. This working 

condition is achieved by fixing the flow rate and temperature of the incoming 

air upstream of the condenser at 4.0 m/s and 33 °C respectively. A total of 

three heaters in the environmental chamber are switched on in order to 
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produce 1650 W thermal load. Air flow over the evaporator is driven at a 

speed of 4.25 m/s. It is recirculated without channelling additional air from 

the ambient. On the other hand, the disturbances introduced for the robustness 

tests comprise the variation of air speed (3 m/s−4.25 m/s) upstream of the 

evaporator and the thermal load (550 W−2200 W) in the cabin. The operating 

condition is varied via the adjustment of the evaporator fan and On/Off 

switching of the cabin heaters. 

 

8. The performance of the proposed control schemes and the On/Off controller 

is analyzed based on reference tracking performance, power efficiency and 

robustness of the controller against the time varying operating condition. 

Three criteria used to quantify the power efficiency of the control schemes 

include the cooling capacity, power consumption and coefficient of 

performance (COP) of the AAC system. 

1.5 Research Contributions 

A brief outline of the main contributions of this research is given as follows: 

 

1. This research provides detailed development of the AAC test rig equipped 

with an electric rotary vane compressor. This experimental rig can be used for 

the steady state performance analysis and the implementation of different 

control schemes for the operation of VSC. 

 

2. Nonlinear identification technique is introduced for the dynamic modelling of 

the AAC system using the MLP based and RBN based NARX neural 

networks. The identified model can be further used for the development of 

different control schemes, such as the model based controllers and 

optimisation methods that require an AAC model. The tedious effort required 

for the physical modelling of an AAC system can be avoided by mean of this 

identification technique. 
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3. The research gives the details regarding the implementation of the DE tuned 

PI and PID controllers for the VSC operation on the AAC experimental rig. 

Optimisation of the control parameters can be carried out in simulation based 

on the aforementioned NARX neural network. This tuning method can be an 

alternative to the widely adopted ZN tuning rules and the cubersome trial and 

error method. 

 

4. An adaptive neural network based model predictive control scheme (A-

NNMPC) is introduced and tested experimentally for the cabin temperature 

control in an AAC system equipped with a VSC. Experimental resutls are 

provided to highlight the robustness of the control schemes against the 

disturbances and its adaptability to time varying operating conditions. 

 

5. This research provides the outcome of a comparative study between the 

proposed control schemes and the On/Off control strategy. It highlights the 

respective performance in term of reference tracking and power efficiency. 

1.6 Research Methodology 

After extensive review of the past research works, an AAC experimental rig 

equipped with a VSC was first developed to demonstrate experimentally the practical 

implementation of the proposed control schemes. In order to ensure that the rig is a 

good representation of an actual AAC system, the refrigeration circuit was made up 

of the original key components (condenser, evaporator, thermostatic expansion valve 

(TXV)) obtained from a compact vehicle. However, the original reciprocating 

compressor was replaced by an electric rotary vane compressor. The rig was 

designed in such a way that it resembled an AAC system under the influence of 

different operational condition, such as the variation of thermal load in the vehicle 

cabin, air temperature and air velocity upstream of the evaporator and condenser. 

Measurement instrumentations were installed on the experimental rig for control 

application, performance evaluation and monitoring purpose. The task of signal 

sampling and analog-to-digital conversion for sensors and actuators were performed 

with National Instrument data acquisition (DAQ) system. This served to interface the 
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communication with the hardwares for real time actuator regulation, data storing and 

data analysis. 

Several preliminary experimental tests were carried out to make a basic 

analysis of the system dynamics and performances. Step response tests at different 

compressor speeds have been performed and the system dynamics was quantified 

based on the time constant, rise time and the static gain. These parameters were able 

to provide the basic knowledge regarding the nonlinear nature of the AAC system. 

Additionaly, steady state performance of the AAC system with respect to different 

operating conditions was investigated. The three operational parameters considered 

here included the compressor speed, the incoming air temperature upstream of the 

evaporator and the condenser inlet air velocity. This test aimed at determining the 

influence of each operational parameter on the system performance based on a 

sensitivity analysis. The implementation of VSC would be of great interest if the 

variation of compressor speed gives predominant effect on the AAC performance as 

compared to the other operational parameters. This is to ensure that the desired 

cooling capacity can be achieved effectively via modulation of the compressor speed 

over a wide range of operating conditions. Subsequently, an uncertaintity analysis 

was performed on the performance indices of the AAC experimental rig. Such 

analysis is essential, as various uncertainty sources involved in the computation of 

the performance indices may result in higher overall uncertainty of the performance 

indices. Finally, two conventional control schemes were applied on the experimental 

rig, namely the On/Off operation and a PID controller tuned using ZN rules. This 

experiment was designed to analyse the performance delivered by both conventional 

controllers, which are often use as the first solution before the development of a new 

control scheme. In addition, the drawbacks indicated by both control schemes may 

motivate further research effort in hybridizing the soft computing approach with the 

conventional control system to deal with the complexity of the control problem. 

 

 

The dynamic behaviour of the AAC system has been identified using a 

NARX neural network. The input and output data, namely the randomly modulated 

compressor speed and the corresponding transient dry bulb temperature in the cabin, 

were collected from the experimental rig. The experimental data was presented to the 

neural network model during the training phase, so that a notion of memory was 
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incorporated into the networks and thereby leading to the capability of the network 

model to capture the system dynamics. The two neural network architectures 

employed for the system identification were MLP and RBN models. The optimality 

of the network structure was quantified based on model prediction capability, 

network complexity and computational effort of the ANN training. The NARX 

model with optimal network architecture was determined and used for further 

application in the proposed control schemes. If none of the model candidates have 

delivered satisfactory prediction results, the whole process of the system 

identification was repeated by either collecting a larger data sets or optimizing the 

network structures. 

 

 

Two proposed control schemes: PID based controllers tuned using DE and A-

NNMPC were developed and implemented experimentally. PI and PID controllers 

were tuned in simulation based on the aforementioned NARX neural network. 

Experimental tests were carried out to compare the performance of DE tuned PI and 

PID controllers with those tuned using ZN rules. The tracking performance of the 

respective controllers was evaluated by conducting the tests under nominal condition 

as well as in the presence of disturbance. The main objective of this comparative 

study is to exploit the advantages of using the DE tuning method for the PID based 

controller in conjunction with the identified neural network. Finally, a comparative 

study was performed between the DE tuned PI and PID controllers to evaluate the 

necessity of having the derivative component in the control system. 

 

 

The application of A-NNMPC was realized by adopting the Newton-Rahpson 

method to solve the nonlinear optimisation problem. The aforementioned NARX 

neural network was incorporated as a plant predictive model in the control system. 

Online training of the NARX neural network was implemented using the Levenberg-

Marquardt algorithm and sliding stack window technique. The online ANN training 

scheme helps to minimized the model mismatching due to the time varying operation 

condition. A parametric study was conducted to evaluate the effect of various 

adjustable control parameters on the performance of A-NNMPC. Optimal parameter 

configuration was determined for A-NNMPC based on the results obtained from the 

parametric study. A comparative assessment was carried out for the proposed 
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controller and a model predictive controller with offline trained ANN model. The 

comparative study involved set point tracking and disturbance rejection tests, which 

aimed at highlighting the adaptability of the proposed control scheme in response to 

the time varying disturbances introduced to the AAC system. 

 

 

Finally, the proposed control schemes were compared with the On/Off 

controller by carrying out experimental tests under nominal condition as well as in 

the presence of disturbance. The performance of each controller was quantified based 

on the reference tracking capability and power efficiency. The main objective of this 

comparative study is to determine the overall performance delivered by each control 

strategy and to identify the advantages and drawbacks of each control schemes. The 

proposed research strategy in the form of a flow chart is graphically shown in Figure 

1.1. 
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Figure 1.1 Research strategies flowchart. 
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1.7 Thesis Outline 

The thesis is organized into 7 chapters. A brief outline of contents for each 

chapter is detailed as follows: 

 

 

Chapter 1 gives an overview of the background study as well as the problem 

statement of the research. The research objectives, the scopes of the study and its 

contribution are also presented. Finally, the research methodology and a flow chart 

representing the research strategies are outlined in this chapter. 

 

 

In Chapter 2, a review of the existing design of AAC experimental rigs and 

different approaches of dynamic modelling proposed in previous works are presented. 

A brief overview of different control strategies for air conditioning and refrigeration 

system and their respective performance are highlighted. Finally the research gaps on 

AAC thermal control schemes with VSC operation are identified. 

 

 

Chapter 3 presents the development of an AAC experimental rig equipped 

with a VSC. The design of the ducting system, refrigeration circuit, measurement 

instruments and interfaces between the data signals and computer are further 

elaborated. Step response tests are performed to have a basic study of the AAC 

dynamics. Subsequently, the effects of different operating conditions on the AAC rig 

performance are then evaluated based on experimental results. Finally, two 

conventional control systems, namely an On/Off controller and a PID control system 

tuned using ZN tuning rules are implemented on the experimental rig. These tests 

serve to analyse the performance delivered by both conventional control methods in 

term of reference tracking performance and power efficiency. 

 

 

Chapter 4 presents the dynamic modelling of the AAC system using a NARX 

neural networks. The two network architectures investigated in this research are the 

MLP and RBN networks. A comparative study is conducted to evaluate the 

performance of these two classes of NARX models in capturing the dynamics of the 

AAC system. Following this, the application of PI and PID controllers tuned using 
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DE algorithm is introduced for the cabin temperature control of an AAC system. The 

optimisation of the PID based controllers is performed based on the aforementioned 

NARX model in simultion. The advantages of the proposed controller over the 

conventional ZN method are highlighted based on the experimental results.  

 

 

Chapter 5 presents the working principle of A-NNMPC. Experimental tests 

are carried out to verify the control performance of the proposed control scheme. A 

parametric study is performed to investigate the effect of each control parameter on 

the performance of the proposed controller. To show the necessity of adopting an 

online trained ANN model in the control application, a comparative assessment is 

performed between the proposed adaptive controller and the predictive controller 

with an offline trained ANN model. 

 

In Chapter 6, a comparative study is performed between the performance of 

the two proposed control schemes and the On/Off operation. The comparative results 

provide several findings which highlight the strengths and weaknesses of the 

proposed control methods. 

 

 

The final chapter of this thesis summarises the work presented and draws 

relevant conclusions. Recommendations of future works for further improvement are 

discussed. 
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