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ABSTRACT

Network-on-chip (NoC) is an on-chip communication network that allows
parallel communication between all cores to improve inter-core performance. Wireless
NoC (WiNoC) introduces long-range and high bandwidth radio frequency (RF)
interconnects that can possibly reduce the multi-hop communication of the planar
metal interconnects in conventional NoC platforms. In WiNoC, RF transceivers
account for a significant power consumption, particularly its transmitter, out of its
total communication energy. Current WiNoC architectures employ constant maximum
transmitting power for communicating radio hubs regardless of physical location of the
receiver radio hubs. Besides, high transmission power consumption in WiNoC with
constant maximum power suffers from significant energy and load imbalance among
RF transceivers which lead to hotspot formation, thus affecting the reliability of the on-
chip network system. There are two main objectives covered by this thesis. Firstly, this
work proposes a reconfigurable transmitting power control scheme that, by using bit
error rate (BER) estimation obtained at the receiver’s side, dynamically calibrates the
transmitting power level needed for communication between the source and destination
radio hubs. The proposed scheme achieves significant total system energy reduction
by about 40% with an average performance degradation of 3% and with no impact
on throughput. The proposed design utilizes a small fraction of both area and power
overheads (about 0.1%) out of total transceiver properties. The proposed technique
is generic and can be applied to any WiNoC architecture for improving its energy
efficiency with a negligible overhead in terms of silicon area. Secondly, an energy-
aware adaptive packet relocator scheme has been proposed. Based on transmission
energy consumption and predefined energy threshold, packets are routed to adjacent
transmitter for communication with receiver radio hub, with an aim to balance energy
distribution in WiNoC. The proposed strategy alone achieves total communication
energy savings of about 8%. A joint scheme of the reconfigurable transmitting power
management and energy-aware adaptive packet relocator is also introduced. The
scheme consistently results in an energy savings of 30% with minimal performance
degradation.
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ABSTRAK

Rangkaian-atas-cip (NoC) merupakan rangkaian komunikasi atas cip yang
membolehkan komunikasi selari di antara semua teras untuk meningkatkan prestasi
antara teras. NoC tanpa wayar (WiNoC) memperkenalkan jaringan komunikasi
frekuensi radio (RF) jarak jauh dan jalur lebar tinggi antara sambungan yang mampu
mengurangkan komunikasi pelbagai loncat yang berlaku kepada antara sambungan
pada logam satah dalam platform NoC konvensional. Dalam WiNoC, sistem pemancar
dan penerima RF melibatkan penggunaan kuasa yang ketara, terutamanya di bahagian
pemancar, daripada keseluruhan tenaga komunikasi. Senibina WiNoC pada masa
ini menggunakan kuasa pemancaran maksimum yang tetap bagi komunikasi antara
hab radio tanpa mengambilkira lokasi fizikal hab radio penerima. Selain itu,
penggunaan kuasa penghantaran yang tinggi dalam WiNoC dengan kuasa maksimum
tetap mengalami masalah ketidakseimbangan tenaga dan beban antara hab radio
RF yang ketara, yang membawa kepada pembentukan titik panas. Ini sekaligus
menjejaskan kebolehpercayaan terhadap sistem rangkaian pada cip. Terdapat dua
objektif utama yang dicakupi oleh tesis ini. Pertama, tesis ini mencadangkan satu
kaedah kawalan kuasa pemancaran secara boleh laras berasaskan maklumat kadar ralat
bit (BER) yang diperolehi daripada bahagian penerima. Kaedah ini menentukur tahap
kuasa pemancaran yang diperlukan untuk komunikasi antara hab radio sumber dan
destinasi bagi menjamin kebolehpercayaan penghantaran. Strategi yang dicadangkan
ini mampu mengurangkan penggunaan sistem tenaga dengan ketara sekitar 40%
dengan purata penurunan prestasi sebanyak 3% dan tiada kesan truput yang ketara.
Dalam strategi yang dicadangkan, hanya sebahagian kecil lebihan kuasa dan luas
kawasan daripada jumlah milikan pemancar dan penerima (kira-kira 0.1%) yang
digunakan. Strategi yang dicadangkan adalah umum dan boleh digunakan pada mana-
mana senibina WiNoC bagi meningkatkan kecekapan tenaga dengan lebihan luas
kawasan silikon yang boleh diabaikan. Bagi objektif kedua, tesis ini mencadangkan
satu skim penempat semula paket berkonsep sedar-tenaga di hab radio pemancar.
Bercirikan penggunaan tenaga penghantaran dan ambang tenaga yang telah ditetapkan,
paket dihalakan kepada hab radio pemancar bersebelahan untuk komunikasi dengan
hab radio destinasi, mensasarkan pengagihan tenaga yang seimbang dalam sistem
rangkaian. Strategi yang dicadangkan ini mampu memberikan pengurangan jumlah
tenaga komunikasi sekitar 8%. Skim pengurusan bersama kawalan kuasa pemancar
dan penempat semula paket berkonsep sedar-tenaga di radio hub pemancar juga
diperkenalkan. Skim ini mampu memberikan penjimatan tenaga secara konsisten
sebanyak 30% dengan penurunan prestasi yang minimum.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Network-on-chip (NoC) architectures are made up of a large number of
intellectual property (IP) blocks, or commonly known as cores [1, 2]. This platform
facilitates cores communication parallelism to reduce execution time and achieve high
performance. It was predicted that the rapid advancement in many-core SoC would
make the number of processing cores to increase rapidly on a single die over the next
few years [3]. With the continuous technology scaling and integration in many-core
architectures, global wire delays increase greater than the gate delays. Furthermore,
with faster clock rates, eighty percent of critical path delays are contributed by the
interconnects [4], which results in multiple clock cycle delays for data traversing
throughout the platform. This shows that it is an important measure in many-
core architectures to find alternatives for the enabling solutions to the conventional
interconnects. Therefore, many-core architectures have embarked on a perspective
shift from computation-centric to communication-centric as the number of cores in a
chip increases [5, 6].

Network-on-chip (NoC) is an on-chip communication network introduced to
enable integration of multiple cores in on-chip ambience [2]. It allows parallel
communication among all cores to improve inter-core performance. Several NoC
designs ranging from application-specific to general-purpose platforms have been
developed since the inception of NoCs such as ×pipes [7], Æthereal [8] and Proteo
[9]. Despite the advantages of NoC, the increasing number of cores in many-core
architectures limits the NoC performance in terms of latency and power consumption.
Although the interconnect frequency becomes higher with the aggressive very large
scale integration (VLSI) technology scaling and growing computational complexity
demand, high power consumption of the total system power mainly due to NoC’s
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multi-hop communication nature has emerged.

Future deep submicron (DSM) technologies, operating frequency, transistor
density and design complexity of many-core system-on-chip (MPSoC) will continue
to make latency, power and temperature dissipation a major design concern [6].
High power density per-core is resulted from increasing number of transistors
that contributes to hot spot formation at respective cores which accelerates static
power dissipation and mean-time-to-failure (MTTF) problems in SoC, which lead to
reliability issues. Some NoC prototypes significantly show NoCs taking substantial
portion of system power e.g ~40% in RAW chip [10] and ~30% in Intel 80 core teraflop
chip [11]. In addition to that, International Technology Roadmap for Semiconductors
(ITRS) predicts that the industry will need to explore new on-chip communication
perspective because the wire-based interconnects will no longer improve performance
metric in the future many-core architectures [4]. Hence, several improved NoC
architectures have been proposed such as 3D NoCs [12, 13], photonic NoC [14–16]
and wireless NoC (WiNoC) [17–20].

WiNoC introduces long-range and high bandwidth radio frequency (RF)
interconnects that can possibly reduce the multi-hop communication of the planar
metal interconnects in conventional NoC platforms. On average, implementing
WiNoC architecture improves about 20% performance and 30% energy savings over
the fully wired NoC links [17, 21]. For instance, WCube and Ultra Wideband (UWB)
designs reduce latency by about 20% - 45% and 23% respectively [20, 22]. Besides
improving the performance and energy metrics, WiNoC overcomes the scalability
problem in traditional NoC as the network size increases with time. Advances in
Complementary Metal-Oxide Semiconductor (CMOS) technology has shown possible
integration of antenna operating in millimeter-wave range frequency and transceivers
onto a single chip [23]. Furthermore, carbon-nanotube (CNT) antenna operating in
optical frequencies has also been explored [24]. Researchers have proven potential
communication hybrid between the prominent NoCs and wireless module. A group of
cores can be clustered together for integration with the top layer wireless transceiver
module to reduce communication hops especially between distant cores as compared
to the conventional wired links NoC. The wireless links network in WiNoC is
augmented to the traditional NoC interconnect network. Several WiNoC designs,
namely McWiNoC [20], iWise [19] and mmSwNoC [18] employ this cluster-based
concept.
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1.2 Problem Statement

Power and energy management continue to play an important role in
the on-chip communication issue, even for WiNoC. Despite the improvement in
communication performance over the conventional NoCs, the major contribution of
WiNoC power consumption is due to the radio transmitter front-end connected to
the antenna. It has been shown that RF transmitter front-end dissipates about 50%
in [25] and about 74% in [26] for the network size of 128, 256 and 512 cores from
the total WiNoC transceiver power consumption. Current WiNoC efforts employ the
maximum transmitting power for each transmitter regardless of the physical location
of the receiver antenna.

Previous works in the context of WiNoCs are based on fixed transmitting power
regardless of the physical location of destination nodes that is able to guarantee a
certain reliability level (in terms of bit error rate (BER) in the worst case scenario)
such as in [19, 20, 27]. However, some receiver locations may be oversupplied by
the transmitting power, leading to the waste of energy. Mineo et al. [28] proposed
a configurable transmitter with transmission power based on physical location of the
receiver. It has been shown that such transmitters allow significant power saving with a
negligible impact in terms of area and delay. However, the transceiver power manager
has to be configured offline by means of an extensive characterization phase which
requires either time consuming field solver simulations or direct measurement of real
context. This one-off configuration technique requires robust and accurate field solver
simulator of radiating fields in CMOS substrates, and many commercial field solver
simulators have not been rigorously tested or verified in on-chip integration level [29].
Another approach is by Ganguly et al. [18], who proposed a dynamic voltage and
frequency scaling technique based on predictive core switching rate implemented at
the wired link layer of WiNoC without considering reliability level at the wireless link.

Another important aspect in WiNoC is the energy distribution. High
transmission power consumption with constant maximum power makes WiNoC suffers
from significant energy and load imbalance among RF modules which leads to
hotspot formation, thus affecting the reliability requirement of the network system.
Computation and communication loads vary over time depending on various intrinsic
and extrinsic factors such as power saving mode specification, data streaming and
long duration of data transmission. These features necessitate extra computation
and communication run-time efforts causing load imbalance and potential hotspot
formation.
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The communication density grows higher as distant cores communicate,
inextricably linked to heavy resource utilization and eventually cause high energy
consumption. A task migration scheme based on predictive task allocation to balance
the energy distribution in WiNoC has been proposed through thermal management in
[30]. However, both wired and wireless links must be considered in this scheme which
results in complexity in terms of implementation. Consequently, besides transmitting
power management, other characteristics such as dynamic energy management on
WiNoC platform which can offer improvement in energy distribution while satisfying
system reliability constraint must be considered in the search of the power and energy
optimization in WiNoC system.

1.3 Research Objectives

As the power and energy management issues in WiNoC have been highlighted
in the Section 1.2, the objectives focus mainly at addressing the transmitting power
as well as managing the energy issues in order to achieve optimized power and
balanced energy distribution in WiNoC. The principal objectives of this thesis can be
summarized as below:

1. To design a reconfigurable transmission power management module in WiNoC
platform to achieve energy saving with limited performance degradation.

2. To design an adaptive energy-aware packet relocator module to achieve
improved energy distribution in WiNoC platform.

3. To design and verify a joint reconfigurable transmission power management
and energy-aware packet relocator module on WiNoC platform by integrating
designs in (1.) and (2.) to achieve energy saving and energy distribution on
WiNoC platforms.

1.4 Scope of Work

The work in this thesis uses a combination of tools mostly obtained from open
source repositories. These available NoC repositories open up new exploration for
new NoC paradigm such as 3D NoC [31], hardware/software cosimulation [32] and
WiNoC [33]. The works in this thesis have been benchmarked with benchmark suites
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from an open source repository. These multithreaded workloads [34] are used in the
simulator to evaluate the energy and latency parameters achieved as compared to the
baseline parameters. The scope of this thesis are summarized as follows:

1. The proposed designs are developed in SystemC and modeled using the extended
version of Noxim simulator [33] that supports wireless communication.

2. Attenuation map based on the communication between source and destination
radio hub for the 64-core network size is used throughout the work in this thesis.
This work is based on the work of Mineo et al. [28].

3. The proposed designs are implemented on two WiNoC architectures namely
WCube [22] and iWise [19] These architectures are developed on the
conventional mesh-based NoC. However, the proposed designs are also
implementable on other WiNoC platforms.

4. The works are evaluated based on real traffic that cover various application
domains such as high performance computing, media processing, animation and
data mining.

5. The network size in consideration is set to 64 cores, to suit the utilized
benchmark suites which support the network size.

6. Power and area overheads occupied by the designs are analysed using Synopsis
Design and Power Compiler. The power metric is used in the simulation that
contributes a fraction of the total power consumption of the designs.

1.5 Research Contributions

This work proposes two novel designs to realize the thesis objectives. Each
following subsection describes brief contributions achieved by the three thesis
objectives. Further research contributions are discussed in detail in Chapter 6.

1. Reconfigurable Transmission Power

This work proposes a mechanism for reducing the power dissipation of
transmitters in WiNoC architectures, given a certain reliability requirement
expressed in term of maximum allowable error rate. A power management
scheme that is able to dynamically tune the transmitting power of each
communicating transmitter-receiver pair to meet this requirement with minimum
energy consumption has been employed. The power manager is an independent
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entity which regulates the transmitting power in part or for the whole WiNoC.
By allowing the self-calibration scheme on WiNoC, the network is able to self-
organize power consumption to achieve reliability. Significant energy savings
have been achieved as this design is utilized on WiNoC platforms used.

2. Adaptive Packet Relocator

In this part of work, a dynamic energy management on WiNoC platform is
proposed to offer energy consumption improvement while satisfying system
reliability constraint. An energy-aware packet relocator scheme has been
proposed which, based on transmission energy consumption and predefined
energy threshold, packets are routed to adjacent transmitter for communication
with destination radio hub, aiming at energy distribution in the network
system. Hence, WiNoC is able to self-organize the energy distribution. Energy
distribution has been achieved as the energy-aware design is utilized on WiNoC
platforms used. In addition to that, distributed and lower energy dissipation have
been observed when both designs are integrated in WiNoC system operation.

1.6 Thesis Organization

This thesis is organized in six chapters. The rest of the thesis are organized as
follow.

Chapter 2 introduces the background studies of WiNoC designs and theories
such as the topology, data routing and transmission protocol as well as WiNoC
transceiver system. It covers the literature information needed to implement the
proposed designs in this thesis. Power and energy management issues in the
conventional NoC as well as WiNoC are reviewed to highlight the significance of the
proposed works.

Chapter 3 highlights the design methodologies implemented in this thesis. The
first part of the chapter explains the research approach and top level overview to
provide the overall perspectives of the works to achieve the objectives. The rest of the
chapter detail out the research perspective mentioned in the first part such as tools and
platforms, formulations and terminology used in analyzing the experimental results
of the works. Design verification method using common benchmark suites is also
presented at the end of the chapter.
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Chapter 4 specifically presents the first objective of this thesis which is the
proposed reconfigurable transmitting power scheme. The technique aims at achieving
energy savings with limited performance degradation. Introduction to the theory on
obtaining the required transmitting power to guarantee a certain error rate using a
basic modulation technique is presented, followed by the detailed implementation
of the proposed design on two WiNoC architectures. Verification has been done
using SPLASH-2 and PARSEC benchmark application suites [35,36] and comparison
analysis are presented.

Chapter 5 discusses the energy management strategy in WiNoC platforms.
The background theories that lead to the implementation of the proposed work are
presented, followed by the detailed architecture of the proposed packet relocator
module on two WiNoC architectures. The platforms are benchmarked using SPLASH-
2 and PARSEC benchmark application suites [35,36]. In the final part of the chapter, an
integration of the power management with the energy aware packet relocation schemes
is introduced, analysed and compared against baseline architectures to determine the
best energy management approach in WiNoC platforms.

Finally, Chapter 6 presents the conclusions of the work in this thesis. It
highlights the contributions to knowledge achieved in terms of energy savings as well
as performance degradation when the proposed designs are implemented on WiNoC
platforms. The directions for future work are discussed to serve as a basis for future
research in the low-power and distributed energy issue in WiNoC architectures.
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