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ABSTRACT

Convolutional neural networks (CNNs) are a variant of deep neural networks
(DNNs) optimized for visual pattern recognition, which are typically trained using first
order learning algorithms, particularly stochastic gradient descent (SGD). Training
deeper CNNs (deep learning) using large data sets (big data) has led to the concept
of distributed machine learning (ML), contributing to state-of-the-art performances in
solving computer vision problems. However, there are still several outstanding issues
to be resolved with currently defined models and learning algorithms. Propagations
through a convolutional layer require flipping of kernel weights, thus increasing the
computation time of a CNN. Sigmoidal activation functions suffer from gradient
diffusion problem that degrades training efficiency, while others cause numerical
instability due to unbounded outputs. Common learning algorithms converge slowly
and are prone to hyperparameter overfitting problem. To date, most distributed
learning algorithms are still based on first order methods that are susceptible to various
learning issues. This thesis presents an efficient CNN model, proposes an effective
learning algorithm to train CNNs, and map it into parallel and distributed computing
platforms for improved training speedup. The proposed CNN consists of convolutional
layers with correlation filtering, and uses novel bounded activation functions for faster
performance (up to 1.36×), improved learning performance (up to 74.99% better), and
better training stability (up to 100% improvement). The bounded stochastic diagonal
Levenberg-Marquardt (B-SDLM) learning algorithm is proposed to encourage fast
convergence (up to 5.30% faster and 35.83% better than first order methods) while
having only a single hyperparameter. B-SDLM also supports mini-batch learning
mode for high parallelism. Based on known previous works, this is among the first
successful attempts of mapping a stochastic second order learning algorithm to be
deployed in distributed ML platforms. Running the distributed B-SDLM on a 16-
core cluster achieves up to 12.08× and 8.72× faster to reach a certain convergence
state and accuracy on the Mixed National Institute of Standards and Technology
(MNIST) data set. All three complex case studies tested with the proposed algorithms
give comparable or better classification accuracies compared to those provided in
previous works, but with better efficiency. As an example, the proposed solutions
achieved 99.14% classification accuracy for the MNIST case study, and 100% for
face recognition using AR Purdue data set, which proves the feasibility of proposed
algorithms in visual pattern recognition tasks.
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ABSTRAK

Rangkaian neural konvolusi (CNNs) merupakan variasi kepada rangkaian
neural dalam (DNNs) yang dioptimumkan bagi pengecaman corak visual, dan
lazimnya dilatih dengan algoritma pembelajaran tertib pertama, terutamanya
penurunan kecerunan stokastik (SGD). Latihan bagi CNN yang lebih mendalam
(pembelajaran mendalam) dengan set data besar mendorong ke arah konsep
pembelajaran mesin teragih, dan mencapai prestasi terkini dalam masalah-masalah visi
komputer. Namun, masih terdapat isu-isu mengenai model and algoritma pembelajaran
yang belum diselesaikan. Perambatan melalui lapisan konvolusi memerlukan kalihan
pemberat inti yang meningkatkan masa pengiraan CNN. Fungsi-fungsi pengaktifan
sigmoid mengalami masalah resapan kecerunan yang mengurangkan kecekapan
latihan, manakala fungsi-fungsi lain menyebabkan ketidakstabilan berangka akibat
output tak terbatas. Algoritma pembelajaran biasa bertumpu dengan perlahan dan
cenderung kepada masalah hyperparameter overfitting. Sehingga kini, kebanyakan
algoritma pembelajaran mesin teragih adalah berdasarkan kaedah-kaedah tertib
pertama yang mengalami pelbagai isu pembelajaran. Tesis ini membentangkan
model CNN yang lebih efisien, mencadangkan algoritma pembelajaran untuk melatih
CNN dengan efektif, dan memetakannya ke dalam platform perkomputeran selari
dan teragih untuk mempercepatkan latihan. CNN yang dicadangkan mempunyai
lapisan-lapisan konvolusi dengan penapisan korelasi, dan menggunakan fungsi-fungsi
pengaktifan terbatas untuk mencapai prestasi yang lebih cepat (sehingga 1.36× lebih
cepat), hasil pembelajaran yang lebih baik (74.99% lebih baik), dan kestabilan latihan
yang lebih baik (peningkatan sehingga 100%). Algoritma pembelajaran stokastik
pepenjuru Levenberg-Marquardt terbatas (B-SDLM) dicadangkan bagi menggalakkan
penumpuan cepat (sehingga 5.30% lebih cepat dan 35.83% lebih baik daripada kaedah-
kaedah tertib pertama) dengan mempunyai hanya satu hiperparameter. B-SDLM juga
menyokong cara pembelajaran kelompok mini untuk keselarian tinggi. Berdasarkan
kajian sedia ada, ini adalah antara percubaan pertama yang berjaya memetakan
algoritma pembelajaran stokastik tertib kedua ke dalam platform pembelajaran mesin
teragih. Pelaksanaan B-SDLM teragih dalam kluster dengan 16 teras mencapai
penumpuan dan ketepatan tertentu bagi set data MNIST sehingga 12.08× dan
8.72× lebih cepat. Semua kajian kes kompleks yang diuji dengan algoritma yang
dicadangkan memberikan kadar klasifikasi yang sama atau lebih baik berbanding
dengan kajian-kajian sebelumnya, tetapi dengan kecekapan yang lebih baik. Sebagai
contoh, penyelesaian yang dikemukakan menunjukkan kadar klasifikasi sebanyak
99.14% bagi kajian kes MNIST, dan 100% bagi pengecaman muka menggunakan
set data AR Purdue. Hasil ini membuktikan kebolehlaksanaan algoritma yang
dicadangkan dalam pengecaman corak visual.
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CHAPTER 1

INTRODUCTION

1.1 Artificial Neural Networks

An artificial neural network (ANN) is a biologically inspired mathematical
model that consists of a group of artificial neurons. A neuron (commonly known
as perceptron [1]) is a single processing entity comprised of some functions (partial
summation by default), a bias (determines threshold), and an activation function
(provides nonlinearity behavior [2]) which is usually a sigmoidal function. Such
neurons are interconnected among each other by the weights (define the connection
strengths among these neurons), and multiple layers of these neurons form a powerful
hierarchical structure commonly known as the multilayer perceptron (MLP).

ANNs possess the ability to learn from data, and the process of learning is
known as the training process. Typical ANNs are usually trained based on the labels
assigned to the data, hence are often categorized as supervised machine learning
algorithms [3, 4, 5] (as depicted in Figure 1.1). A typical training procedure consists
of a series of tasks (Figure 1.2), i.e. weight initialization (generates random weights
as a starting point), forward propagation (propagates the inputs through the ANN
to calculate the outputs), backward propagation (calculates the error gradients by
propagating the errors from the output to input layers), and weight update (tunes the
weights based on the error gradients to learn better) [6]. An input sample is typically
normalized into a range that is suitable to be processed by the ANN. Classification
is usually performed by determining the output neuron that produces the maximum
value (i.e. winner-takes-all (WTA)). A loss function is essential to evaluate the learning
performance of the ANN and calculate the errors to be backward propagated. A typical
example is the mean squared error (MSE) loss function.

A learning algorithm defines how the weights are to be updated. The most
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Figure 1.1: Common types of the supervised machine learning algorithms.
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Figure 1.2: Typical training procedure of an ANN model.

common learning algorithm is the gradient descent (GD) method [7], which typically
operates in one of the three learning modes: updates the weights after processing all the
samples once (batch mode); updates them after processing a single sample (stochastic);
or a combination of both (mini-batch mode). A learning rate mainly dictates the update
step sizes for these weights, and is usually manually tuned (i.e. a hyperparameter).

ANNs have been successfully applied in solving various classification,
prediction, and control problems due to its powerful learning ability. For a given
problem, a feature extractor is usually designed to generate a compact and meaningful
feature for an input sample, which is then processed by the ANN to produce the result
(as shown in Figure 1.3). They are suitable for any complex problems that have no
definite algorithmic solutions or are too difficult to be expressed algorithmically.

Raw input
Preprocessing 

module

Trainable 
classifier 

(MLP)
Result

Feature 
extraction 

module

Feature 
vector

Dimensionality 
reduction 
module

Compressed 
input

Preprocessed 
input

Figure 1.3: A typical pattern recognition system using the conventional ANN (i.e.
MLP) as the classifier.

However, conventional ANNs (i.e. MLPs) do have many drawbacks and
limitations. A larger ANN model can present a better solution, yet is often harder
and slower to be trained due to its massively interconnected and rigid structure. Such
structure is very compute-intensive, and often leads to the overfitting problem during
the learning [8], where the model tends to memorize the training samples instead of
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generalizing from them and be able to classify the unseen samples correctly.

Since a conventional ANN is unable to handle the raw input patterns, re-design
of the complete system is required whenever the problem domain changes [9]. Also,
typical ANNs have a planar structure that ignores the input topology for any given
problem [10], hence can perform poorly on the distorted samples due to having only
little or no invariance to such input distortions.

1.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a variant of the ANNs that
attempts to alleviate the aforementioned problems with the conventional ANN models
[9, 11]. Inspired by the animal’s visual system [12], the CNN differs from the
conventional ANNs by incorporating the feature extraction, dimensionality reduction,
and classification into a single hierarchical model (see Figure 1.4). The weight sharing
concept is also implemented in the CNN model that breaks the rigid structure of
the conventional ANNs [9], allowing it to achieve better generalization performance,
especially when dealing with the multi-dimensional computer vision problems.

Raw input
Preprocessing 

module
Result

Dimensionality reduction module
Feature extraction module

Trainable classifier

Preprocessed 
input

Convolutional neural network

Figure 1.4: A pattern recognition system using the CNN model.

A typical CNN model consists of a few types of neuron layers: convolutional
layers, pooling layers, fully-connected layers, and softmax layer. The convolutional
layers perform convolutions to extract features from the inputs and produce the feature
maps. A pooling layer reduces the dimension of a feature map while preserving the
spatial locality of the features in the feature map. Fully-connected layers work similar
to the MLP that performs classification and regression. A softmax layer calculates the
probability of the class for an input sample, which is often used in conjunction with the
cross-entropy (CE) loss function. Training a CNN model is similar to the conventional
ANNs, where similar training procedures and learning algorithms are usually applied
to both model types [9].
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CNNs have shown great success in solving various kinds of visual pattern
recognition problems, which include classifications, verifications, detections, tracking,
and many more [13, 14, 15, 16]. Motivated by the superiority of the CNN in the
computer vision applications, CNNs have become a very active research area in both
academia and industries. For instance, many giant companies such as Facebook,
Google, and Microsoft have released various products and services with CNNs as the
underlying algorithm [17, 18, 19, 20]. More complex and powerful CNN models have
been proposed to deal with the real-world complex problems, which motivates the
research direction towards the deep learning and distributed machine learning.

1.3 Deep Learning and Distributed Machine Learning

Deep learning (DL) is a branch of machine learning (ML) algorithms that learn
deeper abstractions of meaningful features by constructing a hierarchical model with
multiple processing layers that perform nonlinear transformations [14]. The idea is
based on the complex and hierarchical computations involved in a biological brain [21].
A typical example of the DL model is deep neural network (DNN). Notwithstanding
the greater learning ability of the DL models that tend to achieve superior classification
performance, training such complex models is extremely computationally expensive
and difficult [22]. The problem becomes even more apparent when dealing with large-
scale databases with tens of thousands of samples or more, and running on a single
processor sequentially as in the traditional implementations [22]. This motivates the
development of distributed ML techniques that aim to accelerate the training process
through parallelism.

The concept of distributed ML is to distribute the training process to multiple
processing units or machines in a parallel or distributed computing platform [19].
These computing platforms can be a multi-core central processing unit (CPU) system
[23], a single system with multiple graphics processing units (GPUs) [24], or even a
large-scale computer cluster [19]. Various fine-grained optimizations are performed on
different computing platforms to achieve scalable parallelism speedup [19, 25, 26, 27].
This thesis generally denotes these platforms as parallel computing platforms for
simplicity purposes.

Distributed versions of the conventional learning algorithms have been
developed to train the DL models in the distributed ML environment. These
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algorithms are usually derived from the stochastic gradient descent (SGD) that support
asynchronous weight updates, and most of them are first order learning algorithms
[19, 20, 25, 28, 29, 30, 31]. All these advancements make the training of a DL model
possible, which often leads to the state-of-the-art performances in various pattern
recognition problems.

1.4 Problem Statement

CNNs have shown great potentials in the computer vision problems as reported
in current literature [13, 14, 15, 16]. Still, there are several outstanding issues with the
modeling of CNN and the learning algorithm. Computational efficiency and effective
learning convergence of the CNN model are the primary goals of this thesis.

A typical CNN model is a hierarchical structure consisting several neuron
layers. Convolutional layer constitutes a great proportion of the computational
complexity in a CNN model [29]. Forward and backward propagations through a
convolutional layer require flipping of the kernel weights due to the spatial convolution
operations [32, 33]. This can be performed by exchanging values between the memory
locations, or manipulating the memory addressing during the convolutions. Either
method slows down the computational time of a CNN model. More importantly, the
effect of the weight flipping on the generalization performance of the CNN remains an
open question, which is one of the main focuses in this thesis.

In addition, there has been confusion between using either discrete
convolutions or cross-correlations in the convolutional layers by analyzing a wide
range of previous works. Some have reported to perform convolutions, but instead
using cross-correlation operations as indicated by their mathematical representations
of a convolutional layer [34, 35, 36, 37, 38].

As a mathematical model that provides nonlinearity to ANNs [2, 39], the
impacts of an activation function on the generalization performance and training
stability of an NN model are often ignored. There is a lack of consensus on how
to select a good activation function for an NN, and a specific activation function may
not be suitable for all applications. This is especially true for problem domains where
the numerical boundaries of the inputs and outputs are the main considerations.
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Also, their effect on the generalization performance of DNN models remains
an open question, since most comparative studies on the activation functions were
only performed on simple and shallow MLP models [40, 41, 42]. Some previous
works evaluated on the DNN models, yet covered a few common activation functions
only [43, 44]. As different activation functions have different input and output
characteristics, the effect of using different loss functions during a training process
on the learning performance of a DNN model is yet to be determined.

An NN training process is heavily dependent on the choice of the activation
function. As most supervised learning algorithms are based on the backward
propagation of the error gradients, the tendency at which an activation function
saturates is one of the main concerns during the backward propagation. This is because
the saturation problem can lead to inefficient propagation of the error gradients (i.e.
gradient diffusion problem), which can result in poor learning convergence [45, 46].
Common examples include the logistic and hyperbolic tangent activation functions
[10].

Some modified functions such as scaled hyperbolic tangent with specific
coefficients attempt to alleviate this problem [9]. However, these coefficients do not
satisfy the characteristics that are claimed to improve the network convergence. Some
non-sigmoidal functions can propagate gradients well, but numerical instability can
occur due to unbounded output values [46]. Also, since an activation function is
applied to the outputs of all neurons in most cases, its computational complexity will
contribute heavily to the overall execution time of an NN model.

Most research works on the activation functions are focused on the complexity
of the nonlinearity that an activation function can provide [2], how well it can propagate
errors [46], or how fast it can be executed [47], but often neglect its impact on the
overall training stability due to the numerical stability. The numerical stability of
a training process is largely dependent on the input and output boundaries of the
activation function as well as the numerical representation of the physical computing
machine. Larger boundary values allow for more efficient propagation of neurons’
values [46], but with higher risk of getting into the numerical overflow problem,
which causes unstable outputs in a trained NN model. This should be taken into
considerations as well when designing a suitable activation function for an NN model.

Regardless of how well the learning capacity of a model is, the learning
performance is still highly dependent on the effectiveness of its learning algorithm.
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A learning algorithm defines how a trainable model can make use of the underlying
information within the data, and learn from its statistics.

Convergence rate has been an important criterion in choosing a suitable
learning algorithm. First order methods are widely used in NN training [7], yet suffer
from slow convergence and higher chance of reaching poor local minima. Some
previous works have shown the benefits of having learning rate annealing on the
convergence speed in NN training [48], yet with the expense of introducing more
hyperparameters. An adaptive learning rate schedule should be hyperparameter free
to reduce the effort of manually tuning these variables as little as possible.

Second order learning algorithms generally converge faster than first order
methods due to the utilization of both gradient and curvature information of a problem
[49]. Despite their fast convergence rate, they are impractical in solving DL problems
due to being very computationally expensive [49]. Most second order learning
algorithms only support batch learning mode [50, 51], which are less effective in
propagating the error gradients.

Some second order stochastic learning algorithms such as the stochastic
diagonal Levenberg-Marquardt (SDLM) have been proposed [9], yet these algorithms
usually contain more hyperparameters than conventional first order methods. This can
result in the hyperparameter overfitting problem [52], in which there are endless ways
of configuring the learning algorithm, and this may end up selecting a combination of
values that outperforms others purely by chance. More importantly, this will drastically
increase the difficulty of finding a good solution, as most efforts are devoted to
selecting good hyperparameter values by means of trial and error, which is more of an
art than science. Moreover, some learning algorithms are hyperparameter sensitive, as
choosing an inappropriate combination of values can even cause numerical instability
[52]. It is likely that the reluctant adoption of second order methods in DL is related to
these outstanding issues.

In general, stochastic learning algorithms reach convergence faster than batch
algorithms due to the noisy weight updates that increase the tendency of escaping from
local minima [49]. On the contrary, a batch algorithm can be easily parallelized to
support parallel computation that results in faster training time. Most state-of-the-art
works have been utilizing the mini-batch version of SGD to train DNNs [19, 25, 28].
How a stochastic second order learning algorithm performs when running in mini-
batch learning mode remains an open question.
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The concept of distributed ML attempts to solve the problem of training
larger and deeper NN models (deep learning) on large-scale datasets (big data).
Most existing works focused on the performance speedup gained from fine-grained
parallelism, which includes optimizations for different computing platforms, various
implementation approaches, and techniques to reduce the communication bandwidth
[19, 25, 26, 27]. However, these works rarely discussed on the importance of an
efficient and effective distributed learning algorithm.

Common distributed learning algorithms are usually derived from conventional
first order methods (particularly SGD) [19, 25, 28]. However, first order learning
algorithms are known to be inefficient because of their slow convergence, and they
are also prone to other learning issues [45, 49]. Second order algorithms, such as
Levenberg-Marquardt algorithm (LMA), use the Hessian matrix to perform better
estimation of both step sizes and directions, so that they can converge much faster
than first order algorithms [49]. Research reported in [19, 53, 54] have applied second
order learning algorithms for distributed learning in batch learning mode; however, in
most cases, they did not outperform the distributed SGD.

Some distributed learning algorithms, like those proposed in [19] and [55] are
effective in training deep models, but they are too computationally expensive due to
re-evaluation of instantaneous learning rates in each training iteration. Comparisons
among these algorithms in terms of computational time have not been clearly discussed
in current literature.

Deep learning (DL), like most large-scale problems, achieves learning within
reasonable computational time through parallel and distributed computing. Most
existing works focus on the implementation issues of learning algorithms on parallel
computing platforms; but are limited in the discussions of the algorithmic mapping
process [30, 56, 57]. In [19] and [29], this mapping process is discussed, but rather
briefly, hence rather inadequate to lead to good results. The design methodology of
mapping a learning algorithm for parallel computation serves an important role in
deriving a learning algorithm that is suitable for distributed computing environment
to achieve the best possible performance speedup.
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1.5 Objectives

The primary objective of this thesis is to improve on the existing CNN models,
to propose an effective learning algorithm to train the CNNs, and to map it into
a distributed machine learning environment to achieve fast parallelism speedup. In
detail, the objectives of this thesis are:

1. To propose an efficient convolutional neural network (CNN) model that consists
of the convolutional layers with correlation filtering and bounded activation
functions for faster computation, improved generalization performance and
better training stability.

2. To develop an effective stochastic second order learning algorithm, i.e. bounded
stochastic diagonal Levenberg-Marquardt (B-SDLM) that converges faster,
alleviates the hyperparameter overfitting problem, and is computationally
efficient.

3. To propose a distributed second order learning algorithm that can converge
faster and better than the common distributed first order learning algorithms, and
present a systematic methodology of mapping the proposed learning algorithm
for parallel computation.

1.6 Scope of Work

The work in this thesis uses a variety combination of tools and software
libraries to assist in modeling, design and implementation of the proposed algorithms.
The approaches, software tools, performance measures, and case studies are
summarized as follows:

• The development of the proposed learning algorithm is targeted for the
supervised training mode on the NN models. The computation of the error
gradients is based on the standard backpropagation (BP) algorithm.

• All the proposed algorithms (including the NN models) are developed in C/C++
programming languages. Pthreads and MPICH libraries are applied for two
different parallel computing platforms.

• The code compilations are performed by the GNU G++ native compiler in the
Ubuntu Linux 14.04 64-bit LTS OS, except for the MPICH implementation that
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requires MPI C++ as the compiler. All the compiler optimizations are turned
on (level 3) for maximum performance. Real-valued data is represented by the
single-precision floating data type throughout the experiments.

• All the single and multi-threaded software programs are executed on a computer
with an overclocked 4.5 GHz Intel Core i7 4790K processor and 4 GB RAM.
As for the MPICH implementation, the MPI program runs on a simple Beowulf
computer cluster consisting of 4 identical computers as described previously,
which are all connected with a 8-port Gigabit network switch.

• The experimental results and analysis are illustrated using MATLAB in the
output forms of graphs and bar charts. It is also used for minimal preprocessing
of the datasets (data format conversion).

• The viability of the resulting CNN models and learning algorithms is
demonstrated with the performance analysis of the complex, real world case
studies. The case studies used to verify and analyze the performances of the
proposed CNN models and learning algorithms are limited to the following
problems:

1. Basic handwritten digit classification using the MNIST database [9];

2. Complex handwritten digit classification using the mnist-rot-bg-img

database [58]; and

3. Face recognition using the AR Purdue database [59].

• All the case studies applied in this thesis are multinomial classification problems.
Common biometric performance measures such as the equal error rate (EER) are
irrelevant in this thesis. Instead, the performance of an NN model is evaluated
based on its classification accuracy and misclassification error rate (MCR).

1.7 Contributions

The CNN model presented in this thesis has an efficient structure over the
existing works. A fast second order learning algorithm is proposed to train the CNN
model effectively while performing better than most supervised learning algorithm. In
addition, the distributed version of the proposed learning algorithm is developed to
achieve scalable parallelism speedup when training the CNN models. In summary, the
main contributions of this thesis are:
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• This work demonstrates the effectiveness of cross-correlation filtering in a
convolutional layer of the CNN model compared to the conventional convolution
filtering to achieve faster execution speed and better learning performance.

• Three novel bounded activation functions are proposed in this thesis, namely
bounded rectified linear unit (ReLU), bounded leaky ReLU, and bounded
bi-firing functions. These activation functions improve the generalization
performance of an NN model and reduce the numerical instability during the
training process.

• This thesis proposes a new set of coefficient values for the scaled hyperbolic
tangent activation function based on the desired properties of an activation
function as reported in [9], which performs better than the function in the
previous work in terms of the classification accuracy.

• A novel second order stochastic learning algorithm, i.e. B-SDLM is proposed to
train the NN models. It has minimal computational overhead than SGD due to
the simpler Hessian estimation, while achieving significantly better convergence
rate than similar existing works. The learning algorithm contains only a single
hyperparameter that alleviates the hyperparameter overfitting problem, while
ensuring the training stability due to the boundary condition on the learning
rates. This work is also among the first attempts to run the stochastic second
order learning algorithm (i.e. the B-SDLM) in the mini-batch learning mode for
better parallelism.

• A distributed version of the B-SDLM learning algorithm is developed to train the
CNN models on the parallel computing platform. The proposed distributed B-
SDLM learning algorithm performs better than the conventional asynchronous
SGD algorithm on the same parallel computing platform, which demonstrates
its superiority over the distributed first order learning algorithms in the previous
works.

• This thesis presents a systematic methodology of mapping a learning algorithm
into the deployment on parallel computing platforms. The learning algorithm is
parallelized based on the parameter server thread model. To our knowledge,
this is among the first successful attempts of mapping a stochastic second
order learning algorithm for parallel computation. The experimental results
have shown the viability of running a second order learning algorithm in the
distributed learning environment while gaining fair parallelism speedup.
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1.8 Thesis Organization

This thesis is organized into seven chapters. Chapter 2 describes the
background theory of the ANN, deep learning (including the CNN model), and
distributed machine learning. It also covers the literature review of the related previous
works.

Chapter 3 presents the methodology for the research work done in this thesis.
This includes the approach taken to conduct the research, software libraries and tools
used, as well as the methodology of mapping the algorithms towards the parallel
computing platforms.

Chapter 4 covers the fundamentals of the CNN model, and proposes a better
convolutional layer and activation functions for an efficient CNN model. The training
procedure with the proposed learning algorithm for the NN models is presented here.
This chapter also presents the mapping process of the proposed learning algorithm into
the distributed ML environment to achieve fast parallelism speedup. The coding and
implementation details are also described here.

Chapter 5 presents the experimental design, results and analysis of the proposed
CNN models in this thesis. These include the performance evaluation of the
convolutional layer with correlation filtering, and the comparative analysis of various
activation functions (including the proposed functions).

Chapter 6 presents the experimental results and analysis of the learning
algorithms proposed in this thesis, including the benchmarking of the learning
algorithm and training speedup of the distributed learning algorithm on different
parallel computing platforms. Discussions and justifications of the work are done in
this chapter as well.

Chapter 7 summarizes the thesis, re-stating the contributions based on the
results, and suggests directions for future research works.
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