
AN EFFICIENT AND EFFECTIVE CONVOLUTIONAL NEURAL NETWORK
FOR VISUAL PATTERN RECOGNITION

LIEW SHAN SUNG

UNIVERSITI TEKNOLOGI MALAYSIA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/83531011?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AN EFFICIENT AND EFFECTIVE CONVOLUTIONAL NEURAL NETWORK
FOR VISUAL PATTERN RECOGNITION

LIEW SHAN SUNG

A thesis submitted in fulfilment of the
requirements for the award of the degree of

Doctor of Philosophy (Electrical Engineering)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

JUNE 2016

iii

Dedicated to my beloved family.

iv

ACKNOWLEDGEMENT

The past three years has been one of the most challenging yet exciting journey
for me, and I feel very grateful to be able to experience it first hand, while shaping
myself to become a better person.

First and foremost, I would like to express my deepest gratitude to my dear
supervisor, Prof. Dr. Mohamed Khalil Mohd. Hani for his encouragement, criticism,
and love during my Ph.D. journey. His great enthusiasm for the research and
philosophy of life have enlightened me in a significant way. I always look up to him
not just being a mentor, but a role model, and a father.

My sincerest appreciation also goes to my former co-supervisor Dr. Rabia
Bakhteri for her guidance and dedication towards my research work. Thank you Dr.
and I wish you all the best in Canada. In addition, I would like to express my great
appreciation to my internal and external examiners, Assoc. Prof. Dr. Muhammad
Nadzir Marsono from Universiti Teknologi Malaysia and Prof. Dr. Raveendran a/l
Paramesran from Universiti Malaya for their invaluable comments and commendation
in evaluating my thesis. I would also like to convey my gratitude to Dr. Usman Ullah
Sheikh for his comments and criticism during my Ph.D. proposal defense.

It was also a great privilege to work closely with my fellow seniors Dr. Jasmine
Hau, Dr. Vishnu, Dr. Syafeeza, Moganeshwaran, Lee Yee Hui and Sia Chen Wei
for their technical supports and advices. Not to forget the members of the VeCAD
Research Laboratory: Alireza, Han Chien, Hui Ru, Ikmal, Jeevan, Jia Wei, Khang
Hua, Ling Kim, Omid, Stephen, Vidya, and Yin Zhen. It would be a dull and lonely
journey without your company.

Most importantly, I would like to thank my family, especially my dear parents
for always being there for me, and for their love and patience. Thank you for the
boundless supports to pursue my dream. Without exception, a special thanks to
Evonne, for her unwavering love, devotion, support, and patience through these years,
even at the times when I was in the state of depression or frustration. This Ph.D.
journey would have been impossible without all of you. Thank you.

v

ABSTRACT

Convolutional neural networks (CNNs) are a variant of deep neural networks
(DNNs) optimized for visual pattern recognition, which are typically trained using first
order learning algorithms, particularly stochastic gradient descent (SGD). Training
deeper CNNs (deep learning) using large data sets (big data) has led to the concept
of distributed machine learning (ML), contributing to state-of-the-art performances in
solving computer vision problems. However, there are still several outstanding issues
to be resolved with currently defined models and learning algorithms. Propagations
through a convolutional layer require flipping of kernel weights, thus increasing the
computation time of a CNN. Sigmoidal activation functions suffer from gradient
diffusion problem that degrades training efficiency, while others cause numerical
instability due to unbounded outputs. Common learning algorithms converge slowly
and are prone to hyperparameter overfitting problem. To date, most distributed
learning algorithms are still based on first order methods that are susceptible to various
learning issues. This thesis presents an efficient CNN model, proposes an effective
learning algorithm to train CNNs, and map it into parallel and distributed computing
platforms for improved training speedup. The proposed CNN consists of convolutional
layers with correlation filtering, and uses novel bounded activation functions for faster
performance (up to 1.36×), improved learning performance (up to 74.99% better), and
better training stability (up to 100% improvement). The bounded stochastic diagonal
Levenberg-Marquardt (B-SDLM) learning algorithm is proposed to encourage fast
convergence (up to 5.30% faster and 35.83% better than first order methods) while
having only a single hyperparameter. B-SDLM also supports mini-batch learning
mode for high parallelism. Based on known previous works, this is among the first
successful attempts of mapping a stochastic second order learning algorithm to be
deployed in distributed ML platforms. Running the distributed B-SDLM on a 16-
core cluster achieves up to 12.08× and 8.72× faster to reach a certain convergence
state and accuracy on the Mixed National Institute of Standards and Technology
(MNIST) data set. All three complex case studies tested with the proposed algorithms
give comparable or better classification accuracies compared to those provided in
previous works, but with better efficiency. As an example, the proposed solutions
achieved 99.14% classification accuracy for the MNIST case study, and 100% for
face recognition using AR Purdue data set, which proves the feasibility of proposed
algorithms in visual pattern recognition tasks.

vi

ABSTRAK

Rangkaian neural konvolusi (CNNs) merupakan variasi kepada rangkaian
neural dalam (DNNs) yang dioptimumkan bagi pengecaman corak visual, dan
lazimnya dilatih dengan algoritma pembelajaran tertib pertama, terutamanya
penurunan kecerunan stokastik (SGD). Latihan bagi CNN yang lebih mendalam
(pembelajaran mendalam) dengan set data besar mendorong ke arah konsep
pembelajaran mesin teragih, dan mencapai prestasi terkini dalam masalah-masalah visi
komputer. Namun, masih terdapat isu-isu mengenai model and algoritma pembelajaran
yang belum diselesaikan. Perambatan melalui lapisan konvolusi memerlukan kalihan
pemberat inti yang meningkatkan masa pengiraan CNN. Fungsi-fungsi pengaktifan
sigmoid mengalami masalah resapan kecerunan yang mengurangkan kecekapan
latihan, manakala fungsi-fungsi lain menyebabkan ketidakstabilan berangka akibat
output tak terbatas. Algoritma pembelajaran biasa bertumpu dengan perlahan dan
cenderung kepada masalah hyperparameter overfitting. Sehingga kini, kebanyakan
algoritma pembelajaran mesin teragih adalah berdasarkan kaedah-kaedah tertib
pertama yang mengalami pelbagai isu pembelajaran. Tesis ini membentangkan
model CNN yang lebih efisien, mencadangkan algoritma pembelajaran untuk melatih
CNN dengan efektif, dan memetakannya ke dalam platform perkomputeran selari
dan teragih untuk mempercepatkan latihan. CNN yang dicadangkan mempunyai
lapisan-lapisan konvolusi dengan penapisan korelasi, dan menggunakan fungsi-fungsi
pengaktifan terbatas untuk mencapai prestasi yang lebih cepat (sehingga 1.36× lebih
cepat), hasil pembelajaran yang lebih baik (74.99% lebih baik), dan kestabilan latihan
yang lebih baik (peningkatan sehingga 100%). Algoritma pembelajaran stokastik
pepenjuru Levenberg-Marquardt terbatas (B-SDLM) dicadangkan bagi menggalakkan
penumpuan cepat (sehingga 5.30% lebih cepat dan 35.83% lebih baik daripada kaedah-
kaedah tertib pertama) dengan mempunyai hanya satu hiperparameter. B-SDLM juga
menyokong cara pembelajaran kelompok mini untuk keselarian tinggi. Berdasarkan
kajian sedia ada, ini adalah antara percubaan pertama yang berjaya memetakan
algoritma pembelajaran stokastik tertib kedua ke dalam platform pembelajaran mesin
teragih. Pelaksanaan B-SDLM teragih dalam kluster dengan 16 teras mencapai
penumpuan dan ketepatan tertentu bagi set data MNIST sehingga 12.08× dan
8.72× lebih cepat. Semua kajian kes kompleks yang diuji dengan algoritma yang
dicadangkan memberikan kadar klasifikasi yang sama atau lebih baik berbanding
dengan kajian-kajian sebelumnya, tetapi dengan kecekapan yang lebih baik. Sebagai
contoh, penyelesaian yang dikemukakan menunjukkan kadar klasifikasi sebanyak
99.14% bagi kajian kes MNIST, dan 100% bagi pengecaman muka menggunakan
set data AR Purdue. Hasil ini membuktikan kebolehlaksanaan algoritma yang
dicadangkan dalam pengecaman corak visual.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES xiii
LIST OF FIGURES xvi
LIST OF ABBREVIATIONS xxii
LIST OF SYMBOLS xxvi
LIST OF APPENDICES xxix

1 INTRODUCTION 1
1.1 Artificial Neural Networks 1
1.2 Convolutional Neural Networks 3
1.3 Deep Learning and Distributed Machine Learning 4
1.4 Problem Statement 5
1.5 Objectives 9
1.6 Scope of Work 9
1.7 Contributions 10
1.8 Thesis Organization 12

2 LITERATURE REVIEW 13
2.1 Artificial Neural Networks (ANNs) 13

2.1.1 Neurons 13
2.1.2 Multilayer Neural Networks 15
2.1.3 Input Normalization Methods 16
2.1.4 Weight Initialization Methods 17
2.1.5 Classification 18

viii

2.1.6 Selection of Optimal ANN Topologies 19
2.2 Activation Functions 20

2.2.1 Sigmoidal Functions 21
2.2.2 Non-sigmoidal Functions 23
2.2.3 Related Works on the Comparative Study

of Activation Functions 29
2.3 Training Neural Networks 32

2.3.1 Loss Functions 33
2.3.2 Related Works on the Training Stability of

Neural Networks 36
2.4 First Order Learning Algorithms 37

2.4.1 Backpropagation Algorithm 38
2.4.2 Global Adaptive Algorithms 43
2.4.3 Local Adaptive Algorithms 44

2.5 Second Order Learning Algorithms 45
2.5.1 Newton-Raphson (Newton’s) Method 45
2.5.2 Approximations to the Hessian 47

2.6 Shortcomings of Conventional ANNs 49
2.7 Deep Learning 51

2.7.1 Deep Neural Networks (DNNs) 52
2.7.2 Deep Belief Networks (DBNs) 52
2.7.3 Neocognitron 54
2.7.4 Convolutional Neural Networks (CNNs) 55
2.7.5 Other Variants of Neuron Layers 56
2.7.6 CNN-inspired NN Models 58
2.7.7 Complex CNN Models 59
2.7.8 Ensembles of the CNN Models 60
2.7.9 Challenges: Deep Learning for Big Data 62

2.8 Distributed Machine Learning 62
2.8.1 Background Theory 63
2.8.2 Previous Works on the Distributed Learn-

ing Algorithms 66
2.9 Summary 68

3 RESEARCH METHODOLOGY 70
3.1 Research Approach 70
3.2 Software Libraries and Tools 71

3.2.1 NNLib Library 71
3.2.2 POSIX Threads (Pthreads) Library 72

ix

3.2.3 Message Passing Interface Chameleon
(MPICH) Library 74

3.2.4 Matrix Laboratory (MATLAB) 77
3.3 Methodology of Mapping Algorithms for Parallel

Computing Platforms 77
3.3.1 Introduction 78
3.3.2 Parallelization and Scheduling Phase 79
3.3.3 Coding Phase 84
3.3.4 Implementation Phase 88

3.4 Summary 88

4 PROPOSED CONVOLUTIONAL NEURAL
NETWORK: MODELING, LEARNING ALGORITHM,
AND DISTRIBUTED COMPUTING 89
4.1 Baseline Convolutional Neural Network Model 89

4.1.1 Convolutional Layer 89
4.1.2 Pooling Layer 94
4.1.3 Fused Convolutional-pooling Layer 96
4.1.4 Fully-connected Layer 97
4.1.5 Softmax Layer 97

4.2 Proposed Convolutional Layer with Correlation
Filtering 98

4.3 New Activation Functions 99
4.3.1 Bounded ReLU Activation Function 99
4.3.2 Bounded Leaky ReLU Activation Func-

tion 100
4.3.3 Bounded Bi-firing Activation Function 101
4.3.4 Propositions based on the UAT 101
4.3.5 Better Coefficient Values for the Scaled

Hyperbolic Tangent Function 103
4.4 Training Convolutional Neural Networks 103

4.4.1 Softmax Layer 104
4.4.2 Fully-connected Layer 104
4.4.3 Convolutional Layer 105
4.4.4 Pooling Layer 107

4.5 Proposed Learning Algorithm 110
4.5.1 Second Order Backpropagation 111
4.5.2 Second Order Method with “Pseudo-

Newton Step” 112

x

4.5.3 Stochastic Diagonal Levenberg-
Marquardt (SDLM) 114

4.5.4 Proposed Learning Algorithm: Bounded
SDLM (B-SDLM) 116
4.5.4.1 Simpler Hessian Estimation 116
4.5.4.2 Boundary Condition on the

Learning Rates 117
4.5.4.3 Mini-Batch Learning Mode 117

4.5.5 Training Procedure with the Proposed
Learning Algorithm 118
4.5.5.1 Fully-connected Layer 118
4.5.5.2 Convolutional Layer 119
4.5.5.3 Pooling Layer 121

4.5.6 Time Complexity Analysis 122
4.6 Mapping the Learning Algorithm to Distributed

Computing Platform 125
4.6.1 Application Phase 126
4.6.2 Algorithmic Development Phase 126
4.6.3 Parallelization and Scheduling Phase 127

4.6.3.1 Parallelization 128
4.6.3.2 Scheduling 133
4.6.3.3 Synchronization 135

4.6.4 Coding Phase 139
4.6.4.1 Thread Models 140
4.6.4.2 Communications and Synchro-

nizations 141
4.6.5 Implementation Phase 144

5 EXPERIMENTAL RESULTS AND PERFORMANCE
ANALYSIS OF PROPOSED CONVOLUTIONAL NEU-
RAL NETWORK MODELS 145
5.1 Experimental Design 145

5.1.1 Data Preparation and Partitioning 146
5.1.1.1 MNIST 146
5.1.1.2 Rotated MNIST Digits with

Background Images 146
5.1.1.3 AR Purdue 147

5.1.2 Neural Network Models 148
5.1.2.1 MLP Models 148

xi

5.1.2.2 CNN Models 149
5.1.3 Training Methodology 151
5.1.4 Performance Evaluation 152

5.2 Effects of the Convolutional Layer with Different
Filtering Modes 153

5.3 Experimental Results on the New Activation
Functions 155
5.3.1 Benchmarking with Previous Works 155
5.3.2 Training Efficiency 156
5.3.3 Comparisons with Various Activation

Functions 162
5.3.3.1 Classification Performance 162
5.3.3.2 Computational Efficiency 167

5.3.4 Classification Performance on Other Case
Studies 169

5.3.5 Training Stability 170
5.3.6 Summary 172

6 RESULTS AND ANALYSIS OF PROPOSED LEARN-
ING ALGORITHM AND ITS DISTRIBUTED COM-
PUTING IMPLEMENTATION 174
6.1 Analysis of the Proposed Learning Algorithm 174

6.1.1 Benchmarking with Previous Works 174
6.1.2 Comparisons among Different Learning

Algorithms 176
6.1.3 Impact of Dataset Size Allocated for the

Hessian Estimation 179
6.1.4 Effects of the Frequency of the Learning

Rate Update 181
6.1.5 Compatibility with Mini-Batch Learning

Mode 182
6.1.6 Summary 184

6.2 Performance Analysis of the Proposed Distributed
Learning Algorithm 185
6.2.1 Learning Convergence 185
6.2.2 Parallelism Speedup 186
6.2.3 Impact of Parallelism to Convergence

Rate 189

xii

6.2.4 Comparison between Different Thread
Models 191

6.2.5 Viability towards Larger Scale Parallel
Computing Platform 194

6.2.6 Summary 196

7 CONCLUSION 198
7.1 Concluding the Experimental Results 199
7.2 Contributions 202
7.3 Future Work 204

REFERENCES 207

Appendices A – G 227 – 248

xiii

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Sigmoidal activation functions and their respective first order
derivatives. 24

2.2 Non-sigmoidal activation functions and their respective first
order derivatives. 30

2.3 Global learning rate schedules. 43
2.4 List of known supervised learning algorithms for training the

NN models. 50
2.5 List of known recent previous works on distributed supervised

learning algorithms. 69
3.1 Main components in a UML sequence diagram. 83
3.2 Examples of the interaction operators in a UML sequence

diagram. 84
4.1 Equations representing the operations involved in a conven-

tional convolutional layer and the proposed convolutional
layer with correlation filtering. 122

4.2 List of tasks in the training procedure with the B-SDLM
algorithm. 127

4.3 Additional tasks for parallel gradient computation. 131
4.4 Additional tasks for parallel gradient computation with a

parameter server. 133
4.5 The functions in Figure 4.29 and their descriptions. 139
5.1 The MLP1 model for the experiments using the mnist-rot-bg-

img dataset. 148
5.2 The MLP2 model for the experiments using the MNIST

dataset. 149
5.3 The CNN1 model for the experiments using the MNIST and

mnist-rot-bg-img datasets. 150
5.4 The CNN2 model for the experiments using the AR Purdue

dataset. 150

xiv

5.5 The CNN3 model for the experiments using the AR Purdue
dataset. 151

5.6 List of the hyperparameter values used in the experiments. 152
5.7 MCRs and average execution time for CNN models

composed of convolutional layers with different weight
flipping modes on the MNIST dataset. 154

5.8 MCRs and average execution time for CNN models
composed of convolutional layers with different weight
flipping modes on the mnist-rot-bg-img dataset. 154

5.9 MCRs and average execution time for CNN models
composed of convolutional layers with different weight
flipping modes on the AR Purdue dataset. 154

5.10 Hyperparameters of the activation functions and the
corresponding search range during the NN training. 155

5.11 Testing MCRs of the MLPs with different activation functions
on the mnist-rot-bg-img dataset. The bolded functions denote
the proposed functions. 156

5.12 Results of the CNN models using different activation
functions on MNIST dataset. The bolded functions denote
the proposed functions. 161

5.13 Hyperparameters for other activation functions and the
corresponding search range during the training. 162

5.14 Results of the CNN models using different sigmoidal
activation functions on the MNIST dataset. The bolded
function denotes the function with the proposed coefficients. 163

5.15 Results of the CNN models using different non-sigmoidal
activation functions on MNIST dataset. The bolded functions
denote the proposed functions. 165

5.16 Results of the CNN models using different activation
functions on the mnist-rot-bg-img dataset. The bolded
functions denote the proposed functions. 169

5.17 Results of the CNN models using different activation
functions on the AR Purdue dataset. The bolded functions
denote the proposed functions. 170

5.18 Probability of numerical instability for the CNN models using
different activation functions on the MNIST dataset. The
bolded functions denote the proposed functions. 171

xv

5.19 Probability of numerical instability for the CNN models using
different activation functions on the mnist-rot-bg-img dataset.
The bolded functions denote the proposed functions. 172

5.20 Probability of numerical instability for the CNN models using
different activation functions on the AR Purdue dataset. The
bolded functions denote the proposed functions. 172

6.1 Benchmarking of various learning algorithms with previous
existing works on the MNIST dataset. 175

6.2 Average execution time of a single training epoch for the
MLP2 model using various learning algorithms on the
MNIST dataset. 175

6.3 Benchmarking of face recognition using the AR Purdue face
dataset. 176

6.4 CE errors and MCRs for various learning algorithms on the
MNIST dataset. 177

6.5 CE errors and MCRs for various learning algorithms on the
mnist-rot-bg-img dataset. 178

6.6 CE errors and MCRs for various learning algorithms on the
AR Purdue dataset. 179

6.7 Average execution time per training epoch for various
learning algorithms on the mnist-rot-bg-img and AR Purdue
datasets. 179

6.8 Impacts of the dataset size allocated for the Hessian
estimation on the CE errors and MCRs for the MNIST
dataset. 180

6.9 Effects of different learning rate update frequencies on the CE
errors and MCRs for the MNIST dataset. 182

6.10 Effects of different mini-batch sizes on the CE errors and
MCRs for the MNIST dataset. 183

6.11 Average execution time per training epoch for various
learning algorithms and their respective distributed versions
based on the parameter server thread model using a single
worker. 188

xvi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 Common types of the supervised machine learning algo-
rithms. 2

1.2 Typical training procedure of an ANN model. 2
1.3 A typical pattern recognition system using the conventional

ANN (i.e. MLP) as the classifier. 2
1.4 A pattern recognition system using the CNN model. 3
2.1 Comparison between a biological neuron and artificial

neuron. 14
2.2 A multilayer perceptron (MLP) with a single hidden layer. 15
2.3 Weight initialization of an MLP. 17
2.4 Activation and gradient curves of the sigmoidal activation

functions: (a) logistic and (b) hyperbolic tangent. 22
2.5 Activation and gradient curves of the sigmoidal activation

functions. 25
2.6 Activation and gradient curves of the sigmoidal activation

functions. 26
2.7 Activation and gradient curves of non-sigmoidal activation

functions: (a) ReLU and (b) bi-firing. 28
2.8 Activation and gradient curves of the non-sigmoidal

activation functions. 31
2.9 Activation and gradient curves of the non-sigmoidal

activation functions. 32
2.10 Illustration of (a) forward propagation and (b) backward

propagation of a feedforward NN. 39
2.11 A massively interconnected MLP with an image as the input.

51
2.12 A traditional pattern recognition system. 51

xvii

2.13 A simple DBN architecture. Pre-training is performed by
training the first RBM, fixing the weightsW (0), then continue
with the second RBM and repeat until all the weights are pre-
trained. 53

2.14 A four-staged neocognitron model. 55
2.15 The LeNet-5 CNN architecture. 56
2.16 Types of parallelism in distributed ML: (a) model parallelism,

(b) data parallelism, and (c) combination of model and data
parallelisms. 64

2.17 Parameter server approach in the DistBelief software
framework. 65

3.1 Phases or layers of implementing an algorithm in software or
hardware for parallel computations. 78

3.2 Representations of data dependencies among the algorithm
tasks: (a) dependence graph, (b) DAG, (c) DCG, and (d)
adjacency matrix. 79

3.3 Examples of different algorithm types: (a) SA, (b) PA, (c)
SPA, (d) NSPA, and (e) RIA. 80

3.4 Types of diagrams as defined in the UML specification. 81
3.5 Multiprocessor systems: (a) shared-memory with a single

system bus, (b) shared-memory with an interconnected
network, and (c) distributed-memory. 86

3.6 Common thread models: (a) manager/worker, (b) peer, and
(c) pipeline. 87

4.1 Forward propagation of a convolutional layer. 90
4.2 Forward propagation of an output neuron in a convolutional

layer. 91
4.3 Conventional connection schemes: (a) full, (b) partial, (c)

binary, and (d) Toeplitz. 92
4.4 Evolvable connection schemes: (a) dropout and (b)

DropConnect. The cross denotes disabled neuron(s) or
connection(s). 93

4.5 Forward propagation of a pooling layer. 94
4.6 Forward propagation of an output neuron in a pooling layer. 95
4.7 A set of convolutional and pooling layers (above) and the

corresponding fused convolutional-pooling layer. 96
4.8 Forward propagation of a fully-connected layer. 97
4.9 Forward propagation of a softmax layer. 98

xviii

4.10 Convolutions versus cross-correlations: (a) the original
kernel, (b) convolution with the flipped kernel, and (c) cross-
correlation with the original kernel. 99

4.11 Activation and gradient curves of proposed activation
functions: (a) bounded ReLU and (b) leaky bounded ReLU. 100

4.12 Activation and gradient curves of the proposed bounded bi-
firing activation function. 102

4.13 Activation and gradient curves of the hyperbolic tangent
function with different sets of coefficients. 103

4.14 First order backward propagation of an output neuron in a
fully-connected layer. 105

4.15 First order backward propagation of an output neuron in a
convolutional layer. 106

4.16 First order backward propagation of an output neuron in a
pooling layer. 108

4.17 Directed cyclic graph (DCG) of the B-SDLM algorithm. 128
4.18 DAGs of the initialization stage in the B-SDLM algorithm. 129
4.19 DCG of Hessian estimation stage in B-SDLM algorithm. 129
4.20 DCG of Hessian estimation stage with (a) a model replica per

data sample or (b) a model replica per data batch. 130
4.21 DCG of the training stage in the B-SDLM algorithm. 131
4.22 DCG of the incomplete asynchronous training stage in the B-

SDLM algorithm. 132
4.23 DCG of the asynchronous training stage with a centralized

parameter memory storage. 132
4.24 (a) Diagram of a centralized parameter memory storage; and

(b) DAG of the weight update operation in a parameter server.
133

4.25 DCG of the asynchronous training stage with a parameter
server. 134

4.26 DCG of the testing stage in the B-SDLM algorithm. 134
4.27 DCG of testing stage with (a) a model replica per data sample

or (b) a model replica per data batch. 135
4.28 DCG of the proposed distributed B-SDLM algorithm. 136
4.29 Sequence diagram of the proposed distributed B-SDLM

learning algorithm. 137
4.30 Critical sections of the sequence diagram in Figure 4.29 that

require synchronizations. 138

xix

4.31 The parameter server thread model for the (a) Pthreads and
(b) MPICH implementations. 141

4.32 Writing process on the shared memory in the Pthreads
implementation: (a) replacing the data with new values, or
(b) accumulating values to the data. 142

4.33 Writing process on the shared memory in the Pthreads
implementation using the pthread_mutex_trylock()
routine. 142

4.34 Writing process on the remote memory in the MPICH
implementation: (a) replacing the data with new values, or
(b) accumulating values to the data. 143

4.35 Reading process of the shared memory in the Pthreads
implementation by using (a) pthread_mutex_lock() or
(b) pthread_mutex_trylock(). 143

4.36 Reading process on the remote memory in the MPICH
implementation. 143

5.1 Examples of the MNIST handwritten digit images. 146
5.2 Examples of the handwritten digit images in the mnist-rot-bg-

img database. 147
5.3 The face images of a single subject in the AR Purdue face

database. 147
5.4 The CNN1 model for handwritten digit classification using

the MNIST and mnist-rot-bg-img datasets. 149
5.5 Training efficiencies of the CNNs with the relu and brelu

functions: (a) training losses and (b) testing MCRs using the
MSE loss function; and (c) training losses and (d) testing
MCRs using the CE loss function. 158

5.6 Training efficiencies of the CNNs with the lrelu and blrelu

functions: (a) training losses and (b) testing MCRs using the
MSE loss function; and (c) training losses and (d) testing
MCRs using the CE loss function. 159

5.7 Training efficiencies of the CNNs with the bifire and bbifire

functions: (a) training losses and (b) testing MCRs using the
MSE loss function; and (c) training losses and (d) testing
MCRs using the CE loss function. 160

5.8 Training efficiencies of the CNNs with the tanh function with
different sets of coefficient values: (a) training losses and (b)
testing MCRs using the MSE loss function; and (c) training
losses and (d) testing MCRs using the CE loss function. 161

xx

5.9 Average execution time of a single training epoch for CNN
models using different activation functions. 168

6.1 (a) Training CE errors and (b) testing MCRs for various
learning algorithms on the MNIST dataset. 177

6.2 Average execution time of a single training epoch for various
learning algorithms on the MNIST dataset. 178

6.3 (a) Training CE errors and (b) testing MCRs using different
portions of the MNIST training set for the Hessian estimation
on the MNIST dataset. 180

6.4 Average execution time of a single training epoch for different
sizes of Hessian set on the MNIST dataset. 181

6.5 (a) Training CE errors and (b) testing MCRs for different
learning rate update frequencies on the MNIST dataset. 182

6.6 (a) Training CE errors and (b) testing MCRs using different
mini-batch sizes on the MNIST dataset. 183

6.7 Testing MCRs for various distributed learning algorithms
based on the parameter server thread model on (a) MNIST
and (b) mnist-rot-bg-img datasets. 185

6.8 CPU utilization during the training process in the Pthreads
implementation. 187

6.9 Average execution time of a single training epoch for various
distributed learning algorithms based on the parameter server
thread model on (a) MNIST and (b) mnist-rot-bg-img

datasets. 187
6.10 Parallelism efficiency for the proposed distributed B-SDLM

learning algorithm based on the parameter server thread
model on (a) MNIST and (b) mnist-rot-bg-img datasets. 189

6.11 Time taken to reach a fixed classification accuracy on the
MNIST dataset for various distributed learning algorithms
based on parameter server thread model: (a) 99.9% on
training set, and (b) 98% on testing set. 190

6.12 Time taken to reach a fixed classification accuracy on
the mnist-rot-bg-img dataset for various distributed learning
algorithms based on parameter server thread model: : (a) 86%
on training set, and (b) 75% on testing set. 190

6.13 (a) Testing MCRs and (b) average execution time of a single
training epoch for various distributed learning algorithms
based on peer worker thread model on the MNIST dataset.

192

xxi

6.14 Parallelism efficiency for the proposed distributed B-SDLM
learning algorithm on the MNIST dataset: (a) peer worker
thread model; and (b) comparison between parameter server
and peer worker thread models. 192

6.15 Time taken to reach a fixed classification accuracy on the
MNIST dataset for various distributed learning algorithms
based on peer worker thread model: (a) 99% on training set,
and (b) 98% on testing set. 193

6.16 Time taken to reach a fixed classification accuracy on
the MNIST dataset for the proposed distributed B-SDLM
learning algorithm based on different thread models: (a) 99%
on training set, and (b) 98% on testing set. 193

6.17 Average execution time per training epoch for (a) Pthreads
and MPICH implementations in stochastic learning mode;
and (b) MPICH implementation with different mini-batch
sizes. 194

6.18 Network congestion issue of the MPICH implementation
when running in the stochastic learning mode (i.e. batch size
= 1). 195

6.19 Time taken to reach a certain (a) loss value and (b)
classification accuracy on the MNIST dataset when training
with batch size = 16 in the MPICH implementation. 196

F.1 Directed cyclic graph (DCG) of the distributed B-SDLM
algorithm with a centralized parameter memory storage. 245

F.2 Sequence diagram of the distributed B-SDLM algorithm
with a centralized parameter memory storage (including the
critical sections). 246

F.3 The peer worker thread model for the Pthreads implementa-
tion. 247

xxii

LIST OF ABBREVIATIONS

A-SGD – Asynchronous Stochastic Gradient Descent

AAPNet – Autoassociative Pyramidal Neural Network

AdaGrad – Adaptive Subgradient

ANN – Artificial Neural Network

API – Application Programming Interface

ASIC – Application-Specific Integrated Circuit

ASM – Algorithmic State Machine

B-SDLM – Bounded Stochastic Diagonal Levenberg-Marquardt

BFGS – Broyden-Fletcher-Goldfarb-Shanno

BGD – Batch Gradient Descent

BP – Backpropagation

BRAIN – Brain Research through Advancing Innovative
Neurotechnologies

CD – Contrastive Divergence

CDBN – Convolutional Deep Belief Network

CE – Cross-Entropy

CNN – Convolutional Neural Network

ConvNet – Convolutional Network

COTS – Commodity Off-The-Shelf

CPU – Central Processing Unit

CUDA – Compute Unified Device Architecture

DAG – Directed Acyclic Graph

DARPA – Defense Advanced Research Projects Agency

DBN – Deep Belief Network

xxiii

DCG – Directed Cyclic Graph

DeSTIN – Deep SpatioTemporal Inference Network

DG – Directed Graph

DL – Deep Learning

DLP – Data-Level Parallelism

DNN – Deep Neural Network

DSN – Deep Stacking Network

EER – Equal Error Rate

EMSO-CD – Efficient Mini-batch for Stochastic Optimization - Coordinate
Descent

EMSO-GD – Efficient Mini-batch for Stochastic Optimization - Gradient
Descent

FPGA – Field Programmable Gate Array

GA – Genetic Algorithm

GD – Gradient Descent

GN – Gauss-Newton

GNU – GNU’s Not Unix

GPU – Graphics Processing Unit

GUI – Graphical User Interface

HCNN – Hybrid Convolutional Neural Network

HDL – Hardware Description Language

HPC – High Performance Computing

HTM – Hierarchical Temporal Memory

I/O – Input/Output

IEEE – Institute of Electrical and Electronics Engineers

ILP – Instruction-Level Parallelism

IPC – Inter-process Communication

L-BFGS – Limited-memory Broyden-Fletcher-Goldfarb-Shanno

L-SDLM – Layer-specific Stochastic Diagonal Levenberg-Marquardt

LAN – Local Area Network

xxiv

LIPNet – Lateral Inhibition Pyramidal Neural Network

LMA – Levenberg-Marquardt Algorithm

LTS – Long Term Support

MATLAB – Matrix Laboratory

MCDNN – Multi-Column Deep Neural Network

MCR – Misclassification Error Rate

MIMD – Multiple Instruction Multiple Data

MISD – Multiple Instruction Single Data

ML – Machine Learning

MLP – Multilayer Perceptron

MNIST – Mixed National Institute of Standards and Technology

MP – Message Passing

MPI – Message Passing Interface

MPICH – Message Passing Interface Chameleon

MPF – MaxPoolingFragment

MSE – Mean Squared Error

NaN – Not a Number

NIN – Network in Network

NN – Neural Network

NSPA – Non Serial-Parallel Algorithm

NUMA – Nonuniform Memory Access

OOP – Object Oriented Programming

OpenMP – Open Multi-Processing

OS – Operating System

PA – Parallel Algorithm

PLP – Process-Level Parallelism

POSIX – Portable Operating System Interface

PSGD – Parallel Stochastic Gradient Descent

PWL – Piecewise Linear

PWQ – Piecewise Quadratic

xxv

PyraNet – Pyramidal Neural Network

RAM – Random Access Memory

RBF – Radial Basis Function

RBM – Restricted Boltzmann Machine

ReLU – Rectified Linear Unit

RIA – Regular Iterative Algorithm

RMA – Remote Memory Access

Rprop – Resilient Propagation

RTL – Register-Transfer Level

SA – Serial Algorithm

SCNN – Similarity Convolutional Neural Network

SDLM – Stochastic Diagonal Levenberg-Marquardt

SGD – Stochastic Gradient Descent

SICoNNet – Shunting Inhibitory Convolutional Neural Network

SIMD – Single Instruction Multiple Data

SISD – Single Instruction Single Data

SPA – Serial-Parallel Algorithm

SSE – Sum of Squared Errors

SVM – Support Vector Machine

TLP – Thread-Level Parallelism

UAP – Universal Approximation Property

UAT – Universal Approximation Theorem

UMA – Uniform Memory Access

UML – Unified Modeling Language

UNIX – Uniplexed Information Computing System

VHDL – Very High Speed Integrated Circuit Hardware Description
Language

vSGD – Variance-based Stochastic Gradient Descent

WTA – Winner-takes-all

xxvi

LIST OF SYMBOLS

(xj)m – jth value of mth vector(
x
′
j

)
m

– jth value of mth normalized vector

(xmax)m – Maximum value of mth vector

(xmin)m – Minimum value of mth vector

xdmax – Desired maximum value of mth vector

xdmin – Desired minimum value of mth vector

(µx)m – Mean of mth vector

(σx)m – Standard deviation of mth vector

M – Total training samples

MB – Total samples of a mini-batch

MH – Total samples for Hessian estimation

MT – Total testing samples

U [a, b] – Uniform distribution with lower boundary a and upper
boundary b

N (µ, σ2) – Normal distribution with mean µ and standard deviation σ

b c – Floor function

f () – Activation function

avg () – Average function

exp () – Exponential function

flip () – Flipping function

max () – Maximum function

min () – Minimum function

PU – Upper boundary of an activation function

PL – Lower boundary of an activation function

xxvii

N (l) – Total neurons (or feature maps) in layer l

R(l) – Feature map’s height in layer l

C(l) – Feature map’s width in layer l

K
(l)
x – Kernel’s height in layer l

K
(l)
y – Kernel’s width in layer l

S
(l)
x – Vertical step size for convolutions in layer l

S
(l)
y – Horizontal step size for convolutions in layer l

M
(l−1)
i – R(l−1) × C(l−1) matrix that contains indices of all activated

neurons from ith feature map in layer (l − 1)

Wc – Current set of weights

Wopt – Optimal set of weights

Wt – Set of weights at the tth iteration

Wthres – Threshold value of the weights

4Wt – Weight update step sizes at tth iteration

W
(l)
ji – Weight between jth neuron in layer l and ith neuron in layer

(l − 1)

W
(l)
ji (u, v) – Weight (u, v) of the kernel between jth feature map in layer l

and ith feature map in layer (l − 1)

W̃
(l)
ji (u, v) – Weight (u, v) of the flipped kernel between jth feature map in

layer l and ith feature map in layer (l − 1)

B
(l)
j – Bias of jth neuron in layer l

X
(l)
j – Partial summation of jth neuron in layer l

X
(l)
j (x, y) – Partial summation of neuron (x, y) at jth feature map in layer l

Y
(l)
j – Output of jth neuron in layer l

Y
(l)
j (x, y) – Output of neuron (x, y) at jth feature map in layer l(
Y

(0)
j

)
m

– jth value of mth sample (input layer)(
Y

(L)
j

)
m

– Output of jth neuron in output layer L for mth sample

(dj)m – Desired (target) value of jth neuron in output layer L for mth

sample(
p
(L)
j

)
m

– Output probability of jth neuron in output layer L for mth

sample

xxviii

Cm – Class assigned to mth sample

E – Error or loss function

Em – Error for mth sample

(ESSE)m – Sum squared error for mth sample

(EMSE)m – Mean squared error for mth sample

(ECE)m – Cross-entropy error for mth sample

(EWD)m – Error with weight decay for mth sample

ε – Desired loss value

tmax – Maximum training epochs

tupdt – Total epochs before the learning rate update
dE(W)
dW

– First derivatives of E with respect to the weights W

∂Em

∂W
(l)
ji

– First derivative of E with respect to W (l)
ji for mth sample

H (W) – Second derivatives (Hessian) matrix of the weights W
d2E(W)
dW 2 – Second derivatives of E with respect to the weights W

∂2Em

∂W
(l)2

ji

– Second derivative of E with respect to W (l)
ji for mth sample〈

∂2E

∂W
(l)2

ji

〉
– Running average of ∂2E

∂W
(l)2

ji

∂2E

∂W
(l)2

ji

– Average of ∂2E

∂W
(l)2

ji

η – Global learning rate

ηopt – Optimal global learning rate

η(l) – Global learning rate for layer l

η
W

(l)
ji

– Learning rate for weight W (l)
ji

α – Weight regularization constant

β – Momentum rate

γ – Memory constant

µ – Regularization parameter

µ(l) – Regularization parameter for layer l

xxix

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Publications 227
B Fan-in and Fan-out Calculations for Different Types of

Neuron Layers 229
C First Order Backward Propagations for Different Types of

Neuron Layers 232
D Propositions for the Proposed Activation Functions based on

the UAT 237
E Derivation of Better Coefficient Values for the Scaled

Hyperbolic Tangent Function 242
F Distributed B-SDLM Learning Algorithm based on the Peer

Worker Approach 244
G Source Code 248

CHAPTER 1

INTRODUCTION

1.1 Artificial Neural Networks

An artificial neural network (ANN) is a biologically inspired mathematical
model that consists of a group of artificial neurons. A neuron (commonly known
as perceptron [1]) is a single processing entity comprised of some functions (partial
summation by default), a bias (determines threshold), and an activation function
(provides nonlinearity behavior [2]) which is usually a sigmoidal function. Such
neurons are interconnected among each other by the weights (define the connection
strengths among these neurons), and multiple layers of these neurons form a powerful
hierarchical structure commonly known as the multilayer perceptron (MLP).

ANNs possess the ability to learn from data, and the process of learning is
known as the training process. Typical ANNs are usually trained based on the labels
assigned to the data, hence are often categorized as supervised machine learning
algorithms [3, 4, 5] (as depicted in Figure 1.1). A typical training procedure consists
of a series of tasks (Figure 1.2), i.e. weight initialization (generates random weights
as a starting point), forward propagation (propagates the inputs through the ANN
to calculate the outputs), backward propagation (calculates the error gradients by
propagating the errors from the output to input layers), and weight update (tunes the
weights based on the error gradients to learn better) [6]. An input sample is typically
normalized into a range that is suitable to be processed by the ANN. Classification
is usually performed by determining the output neuron that produces the maximum
value (i.e. winner-takes-all (WTA)). A loss function is essential to evaluate the learning
performance of the ANN and calculate the errors to be backward propagated. A typical
example is the mean squared error (MSE) loss function.

A learning algorithm defines how the weights are to be updated. The most

2

Supervised machine
learning algorithms

Artificial
neural

network
(ANN)

Support vector
machine

(SVM)

Logistic
regression

Bayesian
network

Naïve Bayes
classifier

k-nearest
neighbor

(k-NN)

Figure 1.1: Common types of the supervised machine learning algorithms.

Input
normalization

Weight
initialization

Forward
propagation

Classification
Loss

calculation

Backward
propagation

Weight
update

Figure 1.2: Typical training procedure of an ANN model.

common learning algorithm is the gradient descent (GD) method [7], which typically
operates in one of the three learning modes: updates the weights after processing all the
samples once (batch mode); updates them after processing a single sample (stochastic);
or a combination of both (mini-batch mode). A learning rate mainly dictates the update
step sizes for these weights, and is usually manually tuned (i.e. a hyperparameter).

ANNs have been successfully applied in solving various classification,
prediction, and control problems due to its powerful learning ability. For a given
problem, a feature extractor is usually designed to generate a compact and meaningful
feature for an input sample, which is then processed by the ANN to produce the result
(as shown in Figure 1.3). They are suitable for any complex problems that have no
definite algorithmic solutions or are too difficult to be expressed algorithmically.

Raw input
Preprocessing

module

Trainable
classifier

(MLP)
Result

Feature
extraction

module

Feature
vector

Dimensionality
reduction
module

Compressed
input

Preprocessed
input

Figure 1.3: A typical pattern recognition system using the conventional ANN (i.e.
MLP) as the classifier.

However, conventional ANNs (i.e. MLPs) do have many drawbacks and
limitations. A larger ANN model can present a better solution, yet is often harder
and slower to be trained due to its massively interconnected and rigid structure. Such
structure is very compute-intensive, and often leads to the overfitting problem during
the learning [8], where the model tends to memorize the training samples instead of

3

generalizing from them and be able to classify the unseen samples correctly.

Since a conventional ANN is unable to handle the raw input patterns, re-design
of the complete system is required whenever the problem domain changes [9]. Also,
typical ANNs have a planar structure that ignores the input topology for any given
problem [10], hence can perform poorly on the distorted samples due to having only
little or no invariance to such input distortions.

1.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a variant of the ANNs that
attempts to alleviate the aforementioned problems with the conventional ANN models
[9, 11]. Inspired by the animal’s visual system [12], the CNN differs from the
conventional ANNs by incorporating the feature extraction, dimensionality reduction,
and classification into a single hierarchical model (see Figure 1.4). The weight sharing
concept is also implemented in the CNN model that breaks the rigid structure of
the conventional ANNs [9], allowing it to achieve better generalization performance,
especially when dealing with the multi-dimensional computer vision problems.

Raw input
Preprocessing

module
Result

Dimensionality reduction module
Feature extraction module

Trainable classifier

Preprocessed
input

Convolutional neural network

Figure 1.4: A pattern recognition system using the CNN model.

A typical CNN model consists of a few types of neuron layers: convolutional
layers, pooling layers, fully-connected layers, and softmax layer. The convolutional
layers perform convolutions to extract features from the inputs and produce the feature
maps. A pooling layer reduces the dimension of a feature map while preserving the
spatial locality of the features in the feature map. Fully-connected layers work similar
to the MLP that performs classification and regression. A softmax layer calculates the
probability of the class for an input sample, which is often used in conjunction with the
cross-entropy (CE) loss function. Training a CNN model is similar to the conventional
ANNs, where similar training procedures and learning algorithms are usually applied
to both model types [9].

4

CNNs have shown great success in solving various kinds of visual pattern
recognition problems, which include classifications, verifications, detections, tracking,
and many more [13, 14, 15, 16]. Motivated by the superiority of the CNN in the
computer vision applications, CNNs have become a very active research area in both
academia and industries. For instance, many giant companies such as Facebook,
Google, and Microsoft have released various products and services with CNNs as the
underlying algorithm [17, 18, 19, 20]. More complex and powerful CNN models have
been proposed to deal with the real-world complex problems, which motivates the
research direction towards the deep learning and distributed machine learning.

1.3 Deep Learning and Distributed Machine Learning

Deep learning (DL) is a branch of machine learning (ML) algorithms that learn
deeper abstractions of meaningful features by constructing a hierarchical model with
multiple processing layers that perform nonlinear transformations [14]. The idea is
based on the complex and hierarchical computations involved in a biological brain [21].
A typical example of the DL model is deep neural network (DNN). Notwithstanding
the greater learning ability of the DL models that tend to achieve superior classification
performance, training such complex models is extremely computationally expensive
and difficult [22]. The problem becomes even more apparent when dealing with large-
scale databases with tens of thousands of samples or more, and running on a single
processor sequentially as in the traditional implementations [22]. This motivates the
development of distributed ML techniques that aim to accelerate the training process
through parallelism.

The concept of distributed ML is to distribute the training process to multiple
processing units or machines in a parallel or distributed computing platform [19].
These computing platforms can be a multi-core central processing unit (CPU) system
[23], a single system with multiple graphics processing units (GPUs) [24], or even a
large-scale computer cluster [19]. Various fine-grained optimizations are performed on
different computing platforms to achieve scalable parallelism speedup [19, 25, 26, 27].
This thesis generally denotes these platforms as parallel computing platforms for
simplicity purposes.

Distributed versions of the conventional learning algorithms have been
developed to train the DL models in the distributed ML environment. These

5

algorithms are usually derived from the stochastic gradient descent (SGD) that support
asynchronous weight updates, and most of them are first order learning algorithms
[19, 20, 25, 28, 29, 30, 31]. All these advancements make the training of a DL model
possible, which often leads to the state-of-the-art performances in various pattern
recognition problems.

1.4 Problem Statement

CNNs have shown great potentials in the computer vision problems as reported
in current literature [13, 14, 15, 16]. Still, there are several outstanding issues with the
modeling of CNN and the learning algorithm. Computational efficiency and effective
learning convergence of the CNN model are the primary goals of this thesis.

A typical CNN model is a hierarchical structure consisting several neuron
layers. Convolutional layer constitutes a great proportion of the computational
complexity in a CNN model [29]. Forward and backward propagations through a
convolutional layer require flipping of the kernel weights due to the spatial convolution
operations [32, 33]. This can be performed by exchanging values between the memory
locations, or manipulating the memory addressing during the convolutions. Either
method slows down the computational time of a CNN model. More importantly, the
effect of the weight flipping on the generalization performance of the CNN remains an
open question, which is one of the main focuses in this thesis.

In addition, there has been confusion between using either discrete
convolutions or cross-correlations in the convolutional layers by analyzing a wide
range of previous works. Some have reported to perform convolutions, but instead
using cross-correlation operations as indicated by their mathematical representations
of a convolutional layer [34, 35, 36, 37, 38].

As a mathematical model that provides nonlinearity to ANNs [2, 39], the
impacts of an activation function on the generalization performance and training
stability of an NN model are often ignored. There is a lack of consensus on how
to select a good activation function for an NN, and a specific activation function may
not be suitable for all applications. This is especially true for problem domains where
the numerical boundaries of the inputs and outputs are the main considerations.

6

Also, their effect on the generalization performance of DNN models remains
an open question, since most comparative studies on the activation functions were
only performed on simple and shallow MLP models [40, 41, 42]. Some previous
works evaluated on the DNN models, yet covered a few common activation functions
only [43, 44]. As different activation functions have different input and output
characteristics, the effect of using different loss functions during a training process
on the learning performance of a DNN model is yet to be determined.

An NN training process is heavily dependent on the choice of the activation
function. As most supervised learning algorithms are based on the backward
propagation of the error gradients, the tendency at which an activation function
saturates is one of the main concerns during the backward propagation. This is because
the saturation problem can lead to inefficient propagation of the error gradients (i.e.
gradient diffusion problem), which can result in poor learning convergence [45, 46].
Common examples include the logistic and hyperbolic tangent activation functions
[10].

Some modified functions such as scaled hyperbolic tangent with specific
coefficients attempt to alleviate this problem [9]. However, these coefficients do not
satisfy the characteristics that are claimed to improve the network convergence. Some
non-sigmoidal functions can propagate gradients well, but numerical instability can
occur due to unbounded output values [46]. Also, since an activation function is
applied to the outputs of all neurons in most cases, its computational complexity will
contribute heavily to the overall execution time of an NN model.

Most research works on the activation functions are focused on the complexity
of the nonlinearity that an activation function can provide [2], how well it can propagate
errors [46], or how fast it can be executed [47], but often neglect its impact on the
overall training stability due to the numerical stability. The numerical stability of
a training process is largely dependent on the input and output boundaries of the
activation function as well as the numerical representation of the physical computing
machine. Larger boundary values allow for more efficient propagation of neurons’
values [46], but with higher risk of getting into the numerical overflow problem,
which causes unstable outputs in a trained NN model. This should be taken into
considerations as well when designing a suitable activation function for an NN model.

Regardless of how well the learning capacity of a model is, the learning
performance is still highly dependent on the effectiveness of its learning algorithm.

7

A learning algorithm defines how a trainable model can make use of the underlying
information within the data, and learn from its statistics.

Convergence rate has been an important criterion in choosing a suitable
learning algorithm. First order methods are widely used in NN training [7], yet suffer
from slow convergence and higher chance of reaching poor local minima. Some
previous works have shown the benefits of having learning rate annealing on the
convergence speed in NN training [48], yet with the expense of introducing more
hyperparameters. An adaptive learning rate schedule should be hyperparameter free
to reduce the effort of manually tuning these variables as little as possible.

Second order learning algorithms generally converge faster than first order
methods due to the utilization of both gradient and curvature information of a problem
[49]. Despite their fast convergence rate, they are impractical in solving DL problems
due to being very computationally expensive [49]. Most second order learning
algorithms only support batch learning mode [50, 51], which are less effective in
propagating the error gradients.

Some second order stochastic learning algorithms such as the stochastic
diagonal Levenberg-Marquardt (SDLM) have been proposed [9], yet these algorithms
usually contain more hyperparameters than conventional first order methods. This can
result in the hyperparameter overfitting problem [52], in which there are endless ways
of configuring the learning algorithm, and this may end up selecting a combination of
values that outperforms others purely by chance. More importantly, this will drastically
increase the difficulty of finding a good solution, as most efforts are devoted to
selecting good hyperparameter values by means of trial and error, which is more of an
art than science. Moreover, some learning algorithms are hyperparameter sensitive, as
choosing an inappropriate combination of values can even cause numerical instability
[52]. It is likely that the reluctant adoption of second order methods in DL is related to
these outstanding issues.

In general, stochastic learning algorithms reach convergence faster than batch
algorithms due to the noisy weight updates that increase the tendency of escaping from
local minima [49]. On the contrary, a batch algorithm can be easily parallelized to
support parallel computation that results in faster training time. Most state-of-the-art
works have been utilizing the mini-batch version of SGD to train DNNs [19, 25, 28].
How a stochastic second order learning algorithm performs when running in mini-
batch learning mode remains an open question.

8

The concept of distributed ML attempts to solve the problem of training
larger and deeper NN models (deep learning) on large-scale datasets (big data).
Most existing works focused on the performance speedup gained from fine-grained
parallelism, which includes optimizations for different computing platforms, various
implementation approaches, and techniques to reduce the communication bandwidth
[19, 25, 26, 27]. However, these works rarely discussed on the importance of an
efficient and effective distributed learning algorithm.

Common distributed learning algorithms are usually derived from conventional
first order methods (particularly SGD) [19, 25, 28]. However, first order learning
algorithms are known to be inefficient because of their slow convergence, and they
are also prone to other learning issues [45, 49]. Second order algorithms, such as
Levenberg-Marquardt algorithm (LMA), use the Hessian matrix to perform better
estimation of both step sizes and directions, so that they can converge much faster
than first order algorithms [49]. Research reported in [19, 53, 54] have applied second
order learning algorithms for distributed learning in batch learning mode; however, in
most cases, they did not outperform the distributed SGD.

Some distributed learning algorithms, like those proposed in [19] and [55] are
effective in training deep models, but they are too computationally expensive due to
re-evaluation of instantaneous learning rates in each training iteration. Comparisons
among these algorithms in terms of computational time have not been clearly discussed
in current literature.

Deep learning (DL), like most large-scale problems, achieves learning within
reasonable computational time through parallel and distributed computing. Most
existing works focus on the implementation issues of learning algorithms on parallel
computing platforms; but are limited in the discussions of the algorithmic mapping
process [30, 56, 57]. In [19] and [29], this mapping process is discussed, but rather
briefly, hence rather inadequate to lead to good results. The design methodology of
mapping a learning algorithm for parallel computation serves an important role in
deriving a learning algorithm that is suitable for distributed computing environment
to achieve the best possible performance speedup.

9

1.5 Objectives

The primary objective of this thesis is to improve on the existing CNN models,
to propose an effective learning algorithm to train the CNNs, and to map it into
a distributed machine learning environment to achieve fast parallelism speedup. In
detail, the objectives of this thesis are:

1. To propose an efficient convolutional neural network (CNN) model that consists
of the convolutional layers with correlation filtering and bounded activation
functions for faster computation, improved generalization performance and
better training stability.

2. To develop an effective stochastic second order learning algorithm, i.e. bounded
stochastic diagonal Levenberg-Marquardt (B-SDLM) that converges faster,
alleviates the hyperparameter overfitting problem, and is computationally
efficient.

3. To propose a distributed second order learning algorithm that can converge
faster and better than the common distributed first order learning algorithms, and
present a systematic methodology of mapping the proposed learning algorithm
for parallel computation.

1.6 Scope of Work

The work in this thesis uses a variety combination of tools and software
libraries to assist in modeling, design and implementation of the proposed algorithms.
The approaches, software tools, performance measures, and case studies are
summarized as follows:

• The development of the proposed learning algorithm is targeted for the
supervised training mode on the NN models. The computation of the error
gradients is based on the standard backpropagation (BP) algorithm.

• All the proposed algorithms (including the NN models) are developed in C/C++
programming languages. Pthreads and MPICH libraries are applied for two
different parallel computing platforms.

• The code compilations are performed by the GNU G++ native compiler in the
Ubuntu Linux 14.04 64-bit LTS OS, except for the MPICH implementation that

10

requires MPI C++ as the compiler. All the compiler optimizations are turned
on (level 3) for maximum performance. Real-valued data is represented by the
single-precision floating data type throughout the experiments.

• All the single and multi-threaded software programs are executed on a computer
with an overclocked 4.5 GHz Intel Core i7 4790K processor and 4 GB RAM.
As for the MPICH implementation, the MPI program runs on a simple Beowulf
computer cluster consisting of 4 identical computers as described previously,
which are all connected with a 8-port Gigabit network switch.

• The experimental results and analysis are illustrated using MATLAB in the
output forms of graphs and bar charts. It is also used for minimal preprocessing
of the datasets (data format conversion).

• The viability of the resulting CNN models and learning algorithms is
demonstrated with the performance analysis of the complex, real world case
studies. The case studies used to verify and analyze the performances of the
proposed CNN models and learning algorithms are limited to the following
problems:

1. Basic handwritten digit classification using the MNIST database [9];

2. Complex handwritten digit classification using the mnist-rot-bg-img

database [58]; and

3. Face recognition using the AR Purdue database [59].

• All the case studies applied in this thesis are multinomial classification problems.
Common biometric performance measures such as the equal error rate (EER) are
irrelevant in this thesis. Instead, the performance of an NN model is evaluated
based on its classification accuracy and misclassification error rate (MCR).

1.7 Contributions

The CNN model presented in this thesis has an efficient structure over the
existing works. A fast second order learning algorithm is proposed to train the CNN
model effectively while performing better than most supervised learning algorithm. In
addition, the distributed version of the proposed learning algorithm is developed to
achieve scalable parallelism speedup when training the CNN models. In summary, the
main contributions of this thesis are:

11

• This work demonstrates the effectiveness of cross-correlation filtering in a
convolutional layer of the CNN model compared to the conventional convolution
filtering to achieve faster execution speed and better learning performance.

• Three novel bounded activation functions are proposed in this thesis, namely
bounded rectified linear unit (ReLU), bounded leaky ReLU, and bounded
bi-firing functions. These activation functions improve the generalization
performance of an NN model and reduce the numerical instability during the
training process.

• This thesis proposes a new set of coefficient values for the scaled hyperbolic
tangent activation function based on the desired properties of an activation
function as reported in [9], which performs better than the function in the
previous work in terms of the classification accuracy.

• A novel second order stochastic learning algorithm, i.e. B-SDLM is proposed to
train the NN models. It has minimal computational overhead than SGD due to
the simpler Hessian estimation, while achieving significantly better convergence
rate than similar existing works. The learning algorithm contains only a single
hyperparameter that alleviates the hyperparameter overfitting problem, while
ensuring the training stability due to the boundary condition on the learning
rates. This work is also among the first attempts to run the stochastic second
order learning algorithm (i.e. the B-SDLM) in the mini-batch learning mode for
better parallelism.

• A distributed version of the B-SDLM learning algorithm is developed to train the
CNN models on the parallel computing platform. The proposed distributed B-
SDLM learning algorithm performs better than the conventional asynchronous
SGD algorithm on the same parallel computing platform, which demonstrates
its superiority over the distributed first order learning algorithms in the previous
works.

• This thesis presents a systematic methodology of mapping a learning algorithm
into the deployment on parallel computing platforms. The learning algorithm is
parallelized based on the parameter server thread model. To our knowledge,
this is among the first successful attempts of mapping a stochastic second
order learning algorithm for parallel computation. The experimental results
have shown the viability of running a second order learning algorithm in the
distributed learning environment while gaining fair parallelism speedup.

12

1.8 Thesis Organization

This thesis is organized into seven chapters. Chapter 2 describes the
background theory of the ANN, deep learning (including the CNN model), and
distributed machine learning. It also covers the literature review of the related previous
works.

Chapter 3 presents the methodology for the research work done in this thesis.
This includes the approach taken to conduct the research, software libraries and tools
used, as well as the methodology of mapping the algorithms towards the parallel
computing platforms.

Chapter 4 covers the fundamentals of the CNN model, and proposes a better
convolutional layer and activation functions for an efficient CNN model. The training
procedure with the proposed learning algorithm for the NN models is presented here.
This chapter also presents the mapping process of the proposed learning algorithm into
the distributed ML environment to achieve fast parallelism speedup. The coding and
implementation details are also described here.

Chapter 5 presents the experimental design, results and analysis of the proposed
CNN models in this thesis. These include the performance evaluation of the
convolutional layer with correlation filtering, and the comparative analysis of various
activation functions (including the proposed functions).

Chapter 6 presents the experimental results and analysis of the learning
algorithms proposed in this thesis, including the benchmarking of the learning
algorithm and training speedup of the distributed learning algorithm on different
parallel computing platforms. Discussions and justifications of the work are done in
this chapter as well.

Chapter 7 summarizes the thesis, re-stating the contributions based on the
results, and suggests directions for future research works.

REFERENCES

1. Rosenblatt, F. The Perceptron: A Probabilistic Model for Information
Storage and Organization in the Brain. Psychological Review, 1958. 65(6):
386–408.

2. Sodhi, S. S. and Chandra, P. Bi-modal Derivative Activation Function for
Sigmoidal Feedforward Networks. Neurocomputing, 2014. 143: 182–196.
ISSN 0925-2312. doi:10.1016/j.neucom.2014.06.007.

3. Jordan, M. I. and Mitchell, T. M. Machine Learning: Trends, Perspectives,
and Prospects. Science, 2015. 349(6245): 255–260. doi:10.1126/science.
aaa8415.

4. Ayodele, T. Types of Machine Learning Algorithms. INTECH Open Access
Publisher. 2010.

5. Kotsiantis, S., Zaharakis, I. and Pintelas, P. Machine Learning: A Review
of Classification and Combining Techniques. Artificial Intelligence Review,
2006. 26(3): 159–190. ISSN 0269-2821. doi:10.1007/s10462-007-9052-3.

6. Rumelhart, D. E., Hinton, G. E. and Williams, R. J. Learning Internal
Representations by Error Propagation. In: Rumelhart, D. E., McClelland,
J. L. and PDP Research Group, C., eds. Parallel Distributed Processing:

Explorations in the Microstructure of Cognition, Vol. 1. Cambridge, MA,
USA: MIT Press. 318–362. 1986. ISBN 0-262-68053-X.

7. Igel, C. and Hüsken, M. Improving the Rprop learning algorithm.
Proceedings of the Second International Symposium on Neural Computation,
2000. 2000: 115–121.

8. Almási, A.-D., Woźniak, S., Cristea, V., Leblebici, Y. and Engbersen,
T. Review of Advances in Neural Networks: Neural Design Technology
Stack. Neurocomputing, 2016. 174, Part A: 31–41. ISSN 0925-2312. doi:
10.1016/j.neucom.2015.02.092.

9. Lecun, Y., Bottou, L., Bengio, Y. and Haffner, P. Gradient-based Learning
Applied to Document Recognition. Proceedings of the IEEE, 1998. 86(11):
2278–2324. ISSN 0018-9219. doi:10.1109/5.726791.

208

10. Cai, M. and Liu, J. Maxout Neurons for Deep Convolutional and LSTM
Neural Networks in Speech Recognition. Speech Communication, 2016. 77:
53–64. ISSN 0167-6393. doi:10.1016/j.specom.2015.12.003.

11. LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard,
W. and Jackel, L. Backpropagation Applied to Handwritten Zip Code
Recognition. Neural Computation, 1989. 1(4): 541–551. ISSN 0899-7667.
doi:10.1162/neco.1989.1.4.541.

12. Hubel, D. H. and Wiesel, T. N. Receptive Fields, Binocular Interaction
and Functional Architecture in the Cat’s Visual Cortex. The Journal of

Physiology, 1962. 160(1): 106–154. ISSN 1469-7793. doi:10.1113/jphysiol.
1962.sp006837.

13. Antipov, G., Berrani, S.-A. and Dugelay, J.-L. Minimalistic CNN-
based Ensemble Model for Gender Prediction from Face Images. Pattern

Recognition Letters, 2016. 70: 59–65. ISSN 0167-8655. doi:10.1016/j.
patrec.2015.11.011.

14. Chen, Y., Yang, X., Zhong, B., Pan, S., Chen, D. and Zhang, H. CNNTracker:
Online Discriminative Object Tracking via Deep Convolutional Neural
Network. Applied Soft Computing, 2016. 38: 1088–1098. ISSN 1568-4946.
doi:10.1016/j.asoc.2015.06.048.

15. Liu, L., Xiong, C., Zhang, H., Niu, Z., Wang, M. and Yan, S. Deep Aging
Face Verification With Large Gaps. Multimedia, IEEE Transactions on, 2016.
18(1): 64–75. ISSN 1520-9210. doi:10.1109/TMM.2015.2500730.

16. Shi, B., Bai, X. and Yao, C. Script Identification in the Wild via
Discriminative Convolutional Neural Network. Pattern Recognition, 2016.
52: 448–458. ISSN 0031-3203. doi:10.1016/j.patcog.2015.11.005.

17. He, K., Zhang, X., Ren, S. and Sun, J. Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification. CoRR,
2015. abs/1502.01852.

18. Taigman, Y., Yang, M., Ranzato, M. and Wolf, L. DeepFace: Closing the
Gap to Human-Level Performance in Face Verification. Computer Vision and

Pattern Recognition (CVPR), 2014 IEEE Conference on. 2014. 1701–1708.
doi:10.1109/CVPR.2014.220.

19. Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Ranzato,
M., Senior, A., Tucker, P., Yang, K., Le, Q. V. and Ng, A. Y. Large Scale

Distributed Deep Networks, Curran Associates, Inc. 2012, 1223–1231.

20. Le, Q. V., Ranzato, M., Monga, R., Devin, M., Chen, K., Corrado, G.,

209

Dean, J. and Ng, A. Y. Building High-level Features using Large Scale
Unsupervised Learning. Langford, J. and Pineau, J., eds. Proceedings of the

29th International Conference on Machine Learning (ICML-12). New York,
NY, USA: ACM. 2012. 81–88.

21. Lee, T. S. and Mumford, D. Hierarchical Bayesian Inference in the Visual
Cortex. Optical Society of America, 2003. 20(7): 1434–1448. doi:10.1364/
JOSAA.20.001434.

22. Chen, X.-W. and Lin, X. Big Data Deep Learning: Challenges and
Perspectives. Access, IEEE, 2014. 2: 514–525. ISSN 2169-3536. doi:
10.1109/ACCESS.2014.2325029.

23. Vanhoucke, V., Senior, A. and Mao, M. Z. Improving the Speed of Neural
Networks on CPUs. Deep Learning and Unsupervised Feature Learning

Workshop, NIPS 2011. 2011.

24. Krizhevsky, A., Sutskever, I. and Hinton, G. E. ImageNet Classification with
Deep Convolutional Neural Networks. In: Pereira, F., Burges, C., Bottou, L.
and Weinberger, K., eds. Advances in Neural Information Processing Systems

25. Curran Associates, Inc. 1097–1105. 2012.

25. Coates, A., Huval, B., Wang, T., Wu, D., Catanzaro, B. and Andrew, N. Deep
Learning with COTS HPC Systems. Proceedings of the 30th International

Conference on Machine Learning. 2013. 1337–1345.

26. Li, M., Zhou, L., Yang, Z., Li, A. and Xia, F. Parameter Server for Distributed
Machine Learning. Big Learning Workshop, 2013: 1–10.

27. Raina, R., Madhavan, A. and Ng, A. Y. Large-scale Deep Unsupervised
Learning Using Graphics Processors. Proceedings of the 26th Annual

International Conference on Machine Learning. New York, NY, USA: ACM.
2009, ICML ’09. ISBN 978-1-60558-516-1. 873–880. doi:10.1145/1553374.
1553486.

28. Heigold, G., McDermott, E., Vanhoucke, V., Senior, A. and Bacchiani,
M. Asynchronous Stochastic Optimization for Sequence Training of Deep
Neural Networks. Acoustics, Speech and Signal Processing (ICASSP), 2014

IEEE International Conference on. 2014. 5587–5591. doi:10.1109/ICASSP.
2014.6854672.

29. Krizhevsky, A. One Weird Trick for Parallelizing Convolutional Neural
Networks. CoRR, 2014. abs/1404.5997.

30. Kumar, A., Beutel, A., Ho, Q. and Xing, E. P. Fugue: Slow-worker-agnostic
Distributed Learning for Big Models on Big Data. Proceedings of the

210

Seventeenth International Conference on Artificial Intelligence and Statistics.
2014. 531–539.

31. Paine, T., Jin, H., Yang, J., Lin, Z. and Huang, T. S. GPU Asynchronous
Stochastic Gradient Descent to Speed Up Neural Network Training. CoRR,
2013. abs/1312.6186.

32. Fan, J., Xu, W., Wu, Y. and Gong, Y. Human Tracking using Convolutional
Neural Networks. Neural Networks, IEEE Transactions on, 2010. 21(10):
1610–1623. ISSN 1045-9227. doi:10.1109/TNN.2010.2066286.

33. Fasel, B. Head-pose Invariant Facial Expression Recognition using
Convolutional Neural Networks. Multimodal Interfaces, 2002. Proceedings.

Fourth IEEE International Conference on. 2002. 529–534. doi:10.1109/
ICMI.2002.1167051.

34. Ji, S., Xu, W., Yang, M. and Yu, K. 3D Convolutional Neural Networks
for Human Action Recognition. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 2013. 35(1): 221–231. ISSN 0162-8828. doi:10.1109/
TPAMI.2012.59.

35. Farabet, C., LeCun, Y., Kavukcuoglu, K., Culurciello, E., Martini, B.,
Akselrod, P. and Talay, S. Large-Scale FPGA-based Convolutional Networks.
2011.

36. Mamalet, F., Roux, S. and Garcia, C. Embedded Facial Image Processing
with Convolutional Neural Networks. Circuits and Systems (ISCAS),

Proceedings of 2010 IEEE International Symposium on. 2010. 261–264.
doi:10.1109/ISCAS.2010.5537897.

37. Scherer, D., Schulz, H. and Behnke, S. Accelerating Large-Scale
Convolutional Neural Networks with Parallel Graphics Multiprocessors. In:
Diamantaras, K., Duch, W. and Iliadis, L., eds. 20th International Conference

on Artificial Neural Networks (ICANN). Springer Berlin Heidelberg, Lecture

Notes in Computer Science, vol. 6354. 82–91. 2010. ISBN 978-3-642-15824-
7. doi:10.1007/978-3-642-15825-4_9.

38. Strigl, D., Kofler, K. and Podlipnig, S. Performance and Scalability of GPU-
Based Convolutional Neural Networks. Parallel, Distributed and Network-

Based Processing (PDP), 2010 18th Euromicro International Conference on.
2010. ISSN 1066-6192. 317–324. doi:10.1109/PDP.2010.43.

39. Hornik, K. Approximation Capabilities of Multilayer Feedforward Networks.
Neural Networks, 1991. 4(2): 251–257. ISSN 0893-6080. doi:10.1016/
0893-6080(91)90009-T.

211

40. Sibi, P., Allwyn Jones, S. and Siddarth, P. Analysis of Different Activation
Functions using Back Propagation Neural Networks. Journal of Theoretical

and Applied Information Technology, 2013. 47(3): 1264–1268.

41. Isa, I., Saad, Z., Omar, S., Osman, M., Ahmad, K. and Sakim, H. Suitable
MLP Network Activation Functions for Breast Cancer and Thyroid Disease
Detection. Computational Intelligence, Modelling and Simulation (CIMSiM),

2010 Second International Conference on. 2010. 39–44. doi:10.1109/
CIMSiM.2010.93.

42. Karlik, B. and Olgac, A. Performance Analysis of Various Activation
Functions in Generalized MLP Architectures of Neural Networks. Journal of

Artificial Intelligence and Expert, 2010. (1): 111–122.

43. Efe, M. Ö. Novel Neuronal Activation Functions for Feedforward Neural
Networks. Neural Processing Letters, 2008. 28(2): 63–79. ISSN 1370-4621.
doi:10.1007/s11063-008-9082-0.

44. Hara, K. and Nakayamma, K. Comparison of Activation Functions in
Multilayer Neural Network for Pattern Classification. Neural Networks,

1994. IEEE World Congress on Computational Intelligence., 1994 IEEE

International Conference on. 1994, vol. 5. 2997–3002. doi:10.1109/ICNN.
1994.374710.

45. Yoo, H.-J. Deep Convolution Neural Networks in Computer Vision: A
Review. IEIE Transactions on Smart Processing and Computing, 2015. 4(1):
35–43.

46. Li, J.-C., Ng, W. W., Yeung, D. S. and Chan, P. P. Bi-firing Deep Neural
Networks. International Journal of Machine Learning and Cybernetics,
2014. 5(1): 73–83. ISSN 1868-8071. doi:10.1007/s13042-013-0198-9.

47. Glorot, X., Bordes, A. and Bengio, Y. Deep Sparse Rectifier Neural
Networks. Gordon, G. J. and Dunson, D. B., eds. Proceedings of the

Fourteenth International Conference on Artificial Intelligence and Statistics

(AISTATS-11). Journal of Machine Learning Research - Workshop and
Conference Proceedings. 2011, vol. 15. 315–323.

48. Senior, A., Heigold, G., Ranzato, M. and Yang, K. An Empirical Study
of Learning Rates in Deep Neural Networks for Speech Recognition.
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International

Conference on. 2013. ISSN 1520-6149. 6724–6728. doi:10.1109/ICASSP.
2013.6638963.

49. LeCun, Y. A., Bottou, L., Orr, G. B. and Müller, K.-R. Efficient

212

Backprop. Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2012.
7700(1998): 9–48. ISSN 03029743. doi:10.1007/978-3-642-35289-8-3.

50. Byrd, R. H., Lu, P., Nocedal, J. and Zhu, C. A Limited Memory Algorithm
for Bound Constrained Optimization. SIAM Journal on Scientific Computing,
1995. 16(5): 1190–1208. doi:10.1137/0916069.

51. Shanno, D. F. Conditioning of Quasi-Newton Methods for Function
Minimization. Mathematics of Computation, 1970. 24(111): 647–656. ISSN
00255718. doi:10.2307/2004840.

52. Jäderbo, J. Tuning of Learning Algorithms for Use in Automated Product
Recommendations, 2014. Student Paper.

53. Agarwal, A., Chapelle, O., Dudík, M. and Langford, J. A Reliable Effective
Terascale Linear Learning System. J. Mach. Learn. Res., 2014. 15(1): 1111–
1133. ISSN 1532-4435.

54. Suri, N. N. R. R., Deodhare, D. and Nagabhushan, P. Parallel Levenberg-
Marquardt-based Neural Network Training on Linux Clusters - A Case Study.
3rd Indian Conference on Computer Vision, Graphics and Image Processing.
2002.

55. Zeiler, M. D. ADADELTA: An Adaptive Learning Rate Method. arXiv

preprint arXiv:1212.5701, 2012: 6.

56. Wang, M., Zhou, H., Guo, M. and Zhang, Z. A Scalable and
Topology Configurable Protocol for Distributed Parameter Synchronization.
Proceedings of 5th Asia-Pacific Workshop on Systems. New York, NY, USA:
ACM. 2014, APSys ’14. ISBN 978-1-4503-3024-4. 13:1–13:7. doi:
10.1145/2637166.2637231.

57. Ho, Q., Cipar, J., Cui, H., Lee, S., Kim, J. K., Gibbons, P. B., Gibson,
G. A., Ganger, G. and Xing, E. More Effective Distributed ML via a Stale
Synchronous Parallel Parameter Server. In: Burges, C., Bottou, L., Welling,
M., Ghahramani, Z. and Weinberger, K., eds. Advances in Neural Information

Processing Systems 26. 1223–1231. 2013.

58. Larochelle, H., Erhan, D., Courville, A., Bergstra, J. and Bengio, Y. An
Empirical Evaluation of Deep Architectures on Problems with Many Factors
of Variation. Proceedings of the 24th International Conference on Machine

Learning. New York, NY, USA: ACM. 2007, ICML ’07. ISBN 978-1-59593-
793-3. 473–480. doi:10.1145/1273496.1273556.

59. Martinez, A. M. and Kak, A. PCA versus LDA. Pattern Analysis and

213

Machine Intelligence, IEEE Transactions on, 2001. 23(2): 228–233. ISSN
0162-8828. doi:10.1109/34.908974.

60. Negnevitsky, M. Artificial Intelligence: A Guide to Intelligent Systems. 1st
ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc. 2001.
ISBN 0201711591.

61. McCulloch, W. and Pitts, W. A Logical Calculus of the Ideas Immanent
in Nervous Activity. The Bulletin of Mathematical Biophysics, 1943. 5(4):
115–133. ISSN 0007-4985. doi:10.1007/BF02478259.

62. Wang, W., Yang, X., Ooi, B., Zhang, D. and Zhuang, Y. Effective Deep
Learning-based Multi-modal Retrieval. The VLDB Journal, 2015: 1–23.
ISSN 1066-8888. doi:10.1007/s00778-015-0391-4.

63. Haykin, S. Neural Networks: A Comprehensive Foundation (3rd Edition).
Upper Saddle River, NJ, USA: Prentice-Hall, Inc. 2007. ISBN 0131471392.

64. Nguyen, D. and Widrow, B. Improving the Learning Speed of 2-layer
Neural Networks by Choosing Initial Values of the Adaptive Weights. Neural

Networks, 1990., 1990 IJCNN International Joint Conference on. 1990,
vol. 3. 21–26. doi:10.1109/IJCNN.1990.137819.

65. Glorot, X. and Bengio, Y. Understanding the Difficulty of Training Deep
Feedforward Neural Networks. Proceedings of the 13th International

Conference on Artificial Intelligence and Statistics (AISTATS), 2010. 9: 249–
256. ISSN 15324435. doi:10.1.1.207.2059.

66. Blanco, A., Delgado, M. and Pegalajar, M. A Genetic Algorithm to
Obtain the Optimal Recurrent Neural Network. International Journal of

Approximate Reasoning, 2000. 23(1): 67–83. ISSN 0888613X. doi:
10.1016/S0888-613X(99)00032-8.

67. Syafeeza, A. R., Khalil-Hani, M., Liew, S. S. and Bakhteri, R. Convolutional
Neural Network for Face Recognition with Pose and Illumination Variation.
International Journal of Engineering and Technology (IJET), 2014. 6(1): 44–
57. ISSN 0975-4024.

68. Cheung, B. and Sable, C. Hybrid Evolution of Convolutional Networks.
Machine Learning and Applications and Workshops (ICMLA), 2011 10th

International Conference on. 2011, vol. 1. 293–297. doi:10.1109/ICMLA.
2011.73.

69. Mozer, M. C. and Smolensky, P. Skeletonization: A Technique for Trimming
the Fat from a Network via Relevance Assessment. In: Touretzky, D., ed.
Advances in Neural Information Processing Systems 1. Morgan-Kaufmann.

214

107–115. 1989.

70. Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I. and
Salakhutdinov, R. Improving Neural Networks by Preventing Co-adaptation
of Feature Detectors. CoRR, 2012. abs/1207.0580.

71. Wan, L., Zeiler, M., Zhang, S., Cun, Y. L. and Fergus, R. Regularization
of Neural Networks using DropConnect. Dasgupta, S. and Mcallester, D.,
eds. Proceedings of the 30th International Conference on Machine Learning

(ICML-13). JMLR Workshop and Conference Proceedings. 2013, vol. 28.
1058–1066.

72. He, K., Zhang, X., Ren, S. and Sun, J. Deep Residual Learning for Image
Recognition. arXiv preprint arXiv:1512.03385, 2015.

73. Chopra, S., Hadsell, R. and LeCun, Y. Learning A Similarity Metric
Discriminatively, with Application to Face Verification. Computer Vision and

Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference

on. 2005, vol. 1. ISSN 1063-6919. 539–546. doi:10.1109/CVPR.2005.202.

74. Schaul, T., Zhang, S. and LeCun, Y. No More Pesky Learning Rates. ICML

(3). JMLR.org. 2013, JMLR Proceedings, vol. 28. 343–351.

75. Hornik, K., Stinchcombe, M. and White, H. Multilayer Feedforward
Networks are Universal Approximators. Neural Networks, 1989. 2(5): 359–
366. ISSN 0893-6080. doi:10.1016/0893-6080(89)90020-8.

76. Chandra, P., Ghose, U. and Sood, A. A Non-sigmoidal Activation Function
for Feedforward Artificial Neural Networks. Neural Networks (IJCNN), 2015

International Joint Conference on. 2015. 1–8. doi:10.1109/IJCNN.2015.
7280440.

77. Chandra, P. and Sodhi, S. S. A Skewed Derivative Activation Function
for SFFANNs. Recent Advances and Innovations in Engineering (ICRAIE),

2014. 2014. 1–6. doi:10.1109/ICRAIE.2014.6909324.

78. Gomes, G. S. d. S., Ludermir, T. B. and Lima, L. M. Comparison of
New Activation Functions in Neural Network for Forecasting Financial Time
Series. Neural Computing and Applications, 2011. 20(3): 417–439. ISSN
0941-0643. doi:10.1007/s00521-010-0407-3.

79. Van den Bout, D., Franzon, P., Paulos, J., Miller, T., Snyder, W., Nagle, T.
and Liu, W. Scalable VLSI Implementations for Neural Networks. Journal

of VLSI Signal Processing Systems for Signal, Image and Video Eechnology,
1990. 1(4): 367–385. ISSN 0922-5773. doi:10.1007/BF00929928.

215

80. Duch, W. and Jankowski, N. Survey of Neural Transfer Functions. Neural

Computing Surveys, 1999. 2: 163–212.

81. Nambiar, V. P., Hani, M. K., Sahnoun, R. and Marsono, M. N. Hardware
Implementation of Evolvable Block-based Neural Networks Utilizing a Cost
Efficient Sigmoid-like Activation Function. Neurocomputing, 2014. 140:
228–241. doi:10.1016/j.neucom.2014.03.018.

82. Singh, Y. and Chandra, P. A Class +1 Sigmoidal Activation Functions for
FFANNs. Journal of Economic Dynamics and Control, 2003. 28(1): 183–
187.

83. Elliott, D. L. A Better Activation Function for Artificial Neural Networks.
Technical report. Institute for Systems Research, University of Maryland.
1993.

84. Bonnell, J. A. Implementation of a New Sigmoid Function in

Backpropagation Neural Networks. Master’s Thesis. East Tennessee State
University. 2011.

85. Kamruzzaman, J. and Aziz, S. A Note on Activation Function in Multilayer
Feedforward Learning. Neural Networks, 2002. IJCNN ’02. Proceedings of

the 2002 International Joint Conference on. 2002, vol. 1. ISSN 1098-7576.
519–523. doi:10.1109/IJCNN.2002.1005526.

86. Broomhead, D. and Lowe, D. Multivariable Functional Interpolation and
Adaptive Networks. Complex Systems, 1988. 2: 321–355.

87. Maas, A. L., Hannun, A. Y. and Ng, A. Y. Rectifier Nonlinearities Improve
Neural Network Acoustic Models. Proc. ICML. 2013, vol. 30.

88. Dugas, C., Bengio, Y., Bélisle, F., Nadeau, C. and Garcia, R. Incorporating
Second-order Functional Knowledge for Better Option Pricing. Advances in

Neural Information Processing Systems. 2001. 472–478.

89. Suttisinthong, N., Seewirote, B., Ngaopitakkul, A. and Pothisarn, C.
Selection of Proper Activation Functions in Back-propagation Neural
Network algorithm for Single-Circuit Transmission Line. Proceedings of the

International MultiConference of Engineers and Computer Scientists. 2014,
vol. 2. ISBN 9789881925336. 10–14.

90. Hu, J., Lu, J. and Tan, Y.-P. Discriminative Deep Metric Learning for Face
Verification in the Wild. Computer Vision and Pattern Recognition (CVPR),

2014 IEEE Conference on. 2014. 1875–1882. doi:10.1109/CVPR.2014.242.

91. Belič, I. Neural Networks and Modelling in Vacuum Science. Vacuum, 2006.

216

80(10): 1107–1122. ISSN 0042-207X. doi:10.1016/j.vacuum.2006.02.017.
The World Energy Crisis: Some Vacuum-based Solutions.

92. Desell, T., Clachar, S., Higgins, J. and Wild, B. Evolving Neural Network
Weights for Time-Series Prediction of General Aviation Flight Data. In:
Parallel Problem Solving from Nature. Springer International Publishing,
Lecture Notes in Computer Science, vol. 8672. 771–781. 2014. ISBN 978-3-
319-10761-5. doi:10.1007/978-3-319-10762-2_76.

93. Ioannou, Y., Robertson, D. P., Shotton, J., Cipolla, R. and Criminisi, A.
Training CNNs with Low-Rank Filters for Efficient Image Classification.
CoRR, 2015. abs/1511.06744.

94. Mamalet, F., Roux, S. and Garcia, C. Real-time Video Convolutional Face
Finder on Embedded Platforms. EURASIP Journal on Embedded Systems,
2007. 2007(1): 1–8. ISSN 1687-3955. doi:10.1155/2007/21724.

95. Liu, X., Li, S., Kan, M., Zhang, J., Wu, S., Liu, W., Han, H., Shan, S.
and Chen, X. AgeNet: Deeply Learned Regressor and Classifier for Robust
Apparent Age Estimation. Proceedings of the IEEE International Conference

on Computer Vision Workshops. 2015. 16–24.

96. Zhang, L., Lin, L., Wu, X., Ding, S. and Zhang, L. End-to-end Photo-sketch
Generation via Fully Convolutional Representation Learning. CoRR, 2015.
abs/1501.07180.

97. Pinheiro, P. H. O. and Collobert, R. Weakly Supervised Object Segmentation

with Convolutional Neural Networks. Idiap-RR Idiap-RR-13-2014. Idiap.
2014.

98. Tompson, J. J., Jain, A., LeCun, Y. and Bregler, C. Joint Training of a
Convolutional Network and a Graphical Model for Human Pose Estimation.
In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. and Weinberger,
K., eds. Advances in Neural Information Processing Systems 27. Curran
Associates, Inc. 1799–1807. 2014.

99. Goodfellow, I. J., Bulatov, Y., Ibarz, J., Arnoud, S. and Shet, V. Multi-digit
Number Recognition from Street View Imagery using Deep Convolutional
Neural Networks. CoRR, 2013. abs/1312.6082.

100. Miao, Y., Gowayyed, M. and Metze, F. EESEN: End-to-End Speech
Recognition using Deep RNN Models and WFST-based Decoding. CoRR,
2015. abs/1507.08240.

101. Graves, A. Generating Sequences With Recurrent Neural Networks. CoRR,
2013. abs/1308.0850.

217

102. Kurach, K., Andrychowicz, M. and Sutskever, I. Neural Random-access
Machines. CoRR, 2015. abs/1511.06392.

103. Bian, W. and Chen, X. Neural Network for Nonsmooth, Nonconvex
Constrained Minimization Via Smooth Approximation. Neural Networks and

Learning Systems, IEEE Transactions on, 2014. 25(3): 545–556. ISSN 2162-
237X. doi:10.1109/TNNLS.2013.2278427.

104. Jain, S. K. and Singh, S. Low-Order Dominant Harmonic Estimation
Using Adaptive Wavelet Neural Network. Industrial Electronics, IEEE

Transactions on, 2014. 61(1): 428–435. ISSN 0278-0046. doi:10.1109/TIE.
2013.2242414.

105. Wang, N., Melchior, J. and Wiskott, L. Gaussian-binary Restricted
Boltzmann Machines on Modeling Natural Image Statistics. CoRR, 2014.
abs/1401.5900.

106. Jain, S. K. and Singh, S. Fast Harmonic Estimation of Stationary and Time-
Varying Signals Using EA-AWNN. Instrumentation and Measurement, IEEE

Transactions on, 2013. 62(2): 335–343. ISSN 0018-9456. doi:10.1109/TIM.
2012.2217637.

107. Bryson, A. E. and Ho, Y.-C. Applied Optimal Control: Optimization,

Estimation, and Control. Waltham: Blaisdell Publishing Company. 1969.

108. Werbos, P. Backpropagation: Past and Future. Neural Networks, 1988., IEEE

International Conference on. 1988. 343–353 vol.1. doi:10.1109/ICNN.1988.
23866.

109. Watrous, R. L. Learning Algorithms for Connectionist Networks: Applied
Gradient Methods of Nonlinear Optimization. Proceedings of the IEEE First

International Conference on Neural Networks (San Diego, CA). Piscataway,
NJ: IEEE. 1987, vol. 2. 619–627.

110. Battiti, R. Accelerated Backpropagation Learning: Two Optimization
Methods. Complex Systems, 1989. 3(4): 331–342.

111. Duchi, J., Hazan, E. and Singer, Y. Adaptive Subgradient Methods for
Online Learning and Stochastic Optimization. Journal of Machine Learning

Research, 2011. 12: 2121–2159. ISSN 1532-4435.

112. Riedmiller, M. and Braun, H. A Direct Adaptive Method for Faster
Backpropagation Learning: The RPROP Algorithm. IEEE International

Conference on Neural Networks, 1993: 586–591. doi:10.1109/ICNN.1993.
298623.

218

113. Daniel, C., Taylor, J. and Nowozin, S. Learning Step Size Controllers for
Robust Neural Network Training. AAAI - Association for the Advancement
of Artificial Intelligence. 2016.

114. Becker, S. and LeCun, Y. Improving the Convergence of Back-propagation
Learning with Second Order Methods. Proceedings of the Connectionist

Models Summer School. San Matteo, CA: Morgan Kaufmann. 1988. 29–
37.

115. Byrd, R. H., Lu, P., Nocedal, J. and Zhu, C. A Limited Memory Algorithm
for Bound Constrained Optimization. SIAM Journal on Scientific Computing,
1995. 16(5): 1190–1208. doi:10.1137/0916069.

116. Milakov, M. Convolutional Neural Networks in Galaxy Zoo Challenge. 2014.
(April): 1–7.

117. Puheim, M., Nyulaszi, L., Madarasz, L. and Gaspar, V. On Practical
Constraints of Approximation using Neural Networks on Current Digital
Computers. Intelligent Engineering Systems (INES), 2014 18th International

Conference on. 2014. 257–262. doi:10.1109/INES.2014.6909379.

118. Ranzato, M., Huang, F. J., Boureau, Y.-L. and LeCun, Y. Unsupervised
Learning of Invariant Feature Hierarchies with Applications to Object
Recognition. Computer Vision and Pattern Recognition, 2007. CVPR ’07.

IEEE Conference on. 2007. ISSN 1063-6919. 1–8. doi:10.1109/CVPR.
2007.383157.

119. Vincent, P., Larochelle, H., Bengio, Y. and Manzagol, P.-A. Extracting and
Composing Robust Features with Denoising Autoencoders. Proceedings of

the 25th International Conference on Machine Learning. New York, NY,
USA: ACM. 2008, ICML ’08. ISBN 978-1-60558-205-4. 1096–1103. doi:
10.1145/1390156.1390294.

120. Hawkins, J. and George, D. Hierarchical Temporal Memory: Concepts,
Theory, and Terminology, 2006.

121. Arel, I., Rose, D. and Coop, R. DeSTIN: A Scalable Deep
Learning Architecture with Application to High-Dimensional Robust Pattern
Recognition. AAAI Fall Symposium: Biologically Inspired Cognitive

Architectures. 2009.

122. Arel, I., Rose, D. C. and Karnowski, T. P. Deep Machine Learning
- A New Frontier in Artificial Intelligence Research [Research Frontier].
Computational Intelligence Magazine, IEEE, 2010. 5(4): 13–18. ISSN 1556-
603X. doi:10.1109/MCI.2010.938364.

219

123. Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A., Jaitly, N., Senior,
A., Vanhoucke, V., Nguyen, P., Sainath, T. and Kingsbury, B. Deep Neural
Networks for Acoustic Modeling in Speech Recognition: The Shared Views
of Four Research Groups. Signal Processing Magazine, IEEE, 2012. 29(6):
82–97. ISSN 1053-5888. doi:10.1109/MSP.2012.2205597.

124. Hinton, G. E., Osindero, S. and Teh, Y.-W. A Fast Learning Algorithm for
Deep Belief Nets. Neural Computation, 2006. 18(7): 1527–1554. ISSN
0899-7667. doi:10.1162/neco.2006.18.7.1527.

125. Hinton, G. E. Training Products of Experts by Minimizing Contrastive
Divergence. Neural Computation, 2002. 14(8): 1771–1800. ISSN 0899-
7667. doi:10.1162/089976602760128018.

126. Hinton, G. E. and Salakhutdinov, R. R. Reducing the Dimensionality of Data
with Neural Networks. Science, 2006. 313(5786): 504–507. doi:10.1126/
science.1127647.

127. Lee, H., Grosse, R., Ranganath, R. and Ng, A. Y. Convolutional
Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical
Representations. Proceedings of the 26th Annual International Conference

on Machine Learning. New York, NY, USA: ACM. 2009, ICML ’09. ISBN
978-1-60558-516-1. 609–616. doi:10.1145/1553374.1553453.

128. Fukushima, K. Neocognitron: A Self-organizing Neural Network Model
for A Mechanism of Pattern Recognition Unaffected by Shift in Position.
Biological Cybernetics, 1980. 36(4): 193–202. ISSN 0340-1200. doi:10.
1007/BF00344251.

129. Lovell, D., Downs, T. and Tsoi, A. C. An Evaluation of the Neocognitron.
Neural Networks, IEEE Transactions on, 1997. 8(5): 1090–1105. ISSN
1045-9227. doi:10.1109/72.623211.

130. Kong, S., Jiang, Z. and Yang, Q. Learning Mid-Level Features and Modeling
Neuron Selectivity for Image Classification. CoRR, 2014. abs/1401.5535.

131. Lin, M., Chen, Q. and Yan, S. Network In Network. CoRR, 2013.
abs/1312.4400.

132. Zeiler, M., Taylor, G. and Fergus, R. Adaptive Deconvolutional Networks
for Mid and High Level Feature Learning. Computer Vision (ICCV), 2011

IEEE International Conference on. 2011. ISSN 1550-5499. 2018–2025.
doi:10.1109/ICCV.2011.6126474.

133. Sermanet, P., Chintala, S. and LeCun, Y. Convolutional Neural Networks
Applied to House Numbers Digit Classification. Pattern Recognition (ICPR),

220

2012 21st International Conference on. 2012. ISSN 1051-4651. 3288–3291.

134. Zeiler, M. D. and Fergus, R. Stochastic Pooling for Regularization of Deep
Convolutional Neural Networks. CoRR, 2013. abs/1301.3557.

135. Mamalet, F. and Garcia, C. Simplifying ConvNets for Fast Learning. In: 22nd

International Conference on Artificial Neural Networks (ICANN). Springer
Berlin Heidelberg, Lecture Notes in Computer Science, vol. 7553. 58–65.
2012. ISBN 978-3-642-33265-4. doi:10.1007/978-3-642-33266-1_8.

136. Masci, J., Giusti, A., Ciresan, D., Fricout, G. and Schmidhuber, J.
A Fast Learning Algorithm for Image Segmentation with Max-pooling
Convolutional Networks. Image Processing (ICIP), 2013 20th IEEE

International Conference on. 2013. 2713–2717. doi:10.1109/ICIP.2013.
6738559.

137. Giusti, A., Cireşan, D. C., Masci, J., Gambardella, L. M. and Schmidhuber,
J. Fast Image Scanning with Deep Max-pooling Convolutional Neural
Networks. CoRR, 2013. abs/1302.1700.

138. Dai, X. A Convolutional Neural Network Approach for Face Identification.
Machine Learning, 30th International Conference on. 2013, vol. 28.

139. Mrazova, I. and Kukacka, M. Hybrid Convolutional Neural Networks.
Industrial Informatics, 2008. INDIN 2008. 6th IEEE International

Conference on. 2008. ISSN 1935-4576. 469–474. doi:10.1109/INDIN.
2008.4618146.

140. Tivive, F. H. C. and Bouzerdoum, A. Efficient Training Algorithms for
A Class of Shunting Inhibitory Convolutional Neural Networks. Neural

Networks, IEEE Transactions on, 2005. 16(3): 541–556. ISSN 1045-9227.
doi:10.1109/TNN.2005.845144.

141. Phung, S. and Bouzerdoum, A. A Pyramidal Neural Network For Visual
Pattern Recognition. Neural Networks, IEEE Transactions on, 2007. 18(2):
329–343. ISSN 1045-9227. doi:10.1109/TNN.2006.884677.

142. Fernandes, B. J. T., Cavalcanti, G. D. and Ren, T. I. Lateral Inhibition
Pyramidal Neural Network for Image Classification. Cybernetics, IEEE

Transactions on, 2013. 43(6): 2082–2092. ISSN 2168-2267. doi:10.1109/
TCYB.2013.2240295.

143. Fernandes, B. J., Cavalcanti, G. D. and Ren, T. I. Autoassociative Pyramidal
Neural Network for Face Verification. Neural Networks (IJCNN), The 2011

International Joint Conference on. 2011. ISSN 2161-4393. 1612–1617.
doi:10.1109/IJCNN.2011.6033417.

221

144. Sun, Y., Wang, X. and Tang, X. Hybrid Deep Learning for Face Verification.
Computer Vision (ICCV), 2013 IEEE International Conference on. 2013.
ISSN 1550-5499. 1489–1496. doi:10.1109/ICCV.2013.188.

145. Sermanet, P. and LeCun, Y. Traffic Sign Recognition with Multi-scale
Convolutional Networks. Neural Networks (IJCNN), The 2011 International

Joint Conference on. 2011. ISSN 2161-4393. 2809–2813. doi:10.1109/
IJCNN.2011.6033589.

146. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V. and Rabinovich, A. Going Deeper with Convolutions. CoRR,
2014. abs/1409.4842.

147. Baldi, P. and Chauvin, Y. Neural Networks for Fingerprint Recognition.
Neural Computation, 1993. 5(3): 402–418. ISSN 0899-7667. doi:10.1162/
neco.1993.5.3.402.

148. Bromley, J., Bentz, J. W., Bottou, L., Guyon, I., LeCun, Y., Moore,
C., Säckinger, E. and Shah, R. Signature Verification using a
"Siamese" Time Delay Neural Network. International Journal of Pattern

Recognition and Artificial Intelligence, 1993. 7(4): 669–688. doi:10.1142/
S0218001493000339.

149. Baraldi, L., Grana, C. and Cucchiara, R. A Deep Siamese Network for Scene
Detection in Broadcast Videos. Proceedings of the 23rd ACM International

Conference on Multimedia. New York, NY, USA: ACM. 2015, MM ’15.
ISBN 978-1-4503-3459-4. 1199–1202. doi:10.1145/2733373.2806316.

150. Mobahi, H., Collobert, R. and Weston, J. Deep Learning from Temporal
Coherence in Video. Proceedings of the 26th Annual International

Conference on Machine Learning. New York, NY, USA: ACM. 2009, ICML
’09. ISBN 978-1-60558-516-1. 737–744. doi:10.1145/1553374.1553469.

151. Nair, V. and Hinton, G. E. Rectified Linear Units Improve Restricted
Boltzmann Machines. FÃŒrnkranz, J. and Joachims, T., eds. Proceedings

of the 27th International Conference on Machine Learning (ICML-10).
Omnipress. 2010. 807–814.

152. Yi, D., Lei, Z., Liao, S. and Li, S. Deep Metric Learning for Person
Re-identification. Pattern Recognition (ICPR), 2014 22nd International

Conference on. 2014. ISSN 1051-4651. 34–39. doi:10.1109/ICPR.2014.16.

153. Ghiassirad, H. and Teshnehlab, M. Similarity Measurement in Convolutional
Space. Intelligent Systems (IS), 2012 6th IEEE International Conference.
2012. 250–255. doi:10.1109/IS.2012.6335144.

222

154. Hoffer, E. and Ailon, N. Deep Metric Learning using Triplet Network. CoRR,
2014. abs/1412.6622.

155. Cireşan, D., Meier, U., Masci, J. and Schmidhuber, J. Multi-column Deep
Neural Network for Traffic Sign Classification. Neural Networks, 2012. 32:
333–338. ISSN 0893-6080. doi:10.1016/j.neunet.2012.02.023.

156. Fan, H., Cao, Z., Jiang, Y., Yin, Q. and Doudou, C. Learning Deep Face
Representation. CoRR, 2014. abs/1403.2802.

157. Sun, Y., Wang, X. and Tang, X. Deep Convolutional Network Cascade for
Facial Point Detection. Computer Vision and Pattern Recognition (CVPR),

2013 IEEE Conference on. 2013. ISSN 1063-6919. 3476–3483. doi:10.
1109/CVPR.2013.446.

158. Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H. and Ng, A. Y. Multimodal
Deep Learning. Getoor, L. and Scheffer, T., eds. ICML. Omnipress. 2011.
689–696.

159. Seide, F., Fu, H., Droppo, J., Li, G. and Yu, D. On Parallelizability of
Stochastic Gradient Descent for Speech DNNs. Acoustics, Speech and Signal

Processing (ICASSP), 2014 IEEE International Conference on. 2014. 235–
239. doi:10.1109/ICASSP.2014.6853593.

160. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,
D. and Riedmiller, M. A. Playing Atari with Deep Reinforcement Learning.
CoRR, 2013. abs/1312.5602.

161. Peteiro-Barral, D. and Guijarro-Berdiñas, B. A Survey of Methods for
Distributed Machine Learning. Progress in Artificial Intelligence, 2013. 2(1):
1–11.

162. Jin, L., Wang, Z., Gu, R., Yuan, C. and Huang, Y. Training Large Scale
Deep Neural Networks on the Intel Xeon Phi Many-Core Coprocessor.
Proceedings of the 2014 IEEE International Parallel & Distributed

Processing Symposium Workshops. Washington, DC, USA: IEEE Computer
Society. 2014, IPDPSW ’14. ISBN 978-1-4799-4116-2. 1622–1630. doi:
10.1109/IPDPSW.2014.194.

163. Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A. and Hellerstein,
J. M. Distributed GraphLab: A Framework for Machine Learning and Data
Mining in the Cloud. Proc. VLDB Endow., 2012. 5(8): 716–727. ISSN 2150-
8097. doi:10.14778/2212351.2212354.

164. Arora, A., Candel, A., Lanford, J., LeDell, E. and Parmar, V. Deep Learning
with H2O, 2015.

223

165. Bechini, A., Marcelloni, F. and Segatori, A. A MapReduce Solution for
Associative Classification of Big Data. Information Sciences, 2016. 332:
33–55. ISSN 0020-0255. doi:10.1016/j.ins.2015.10.041.

166. Chilimbi, T., Suzue, Y., Apacible, J. and Kalyanaraman, K. Project Adam:
Building An Efficient and Scalable Deep Learning Training System. 11th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI 14). 2014. 571–582.

167. Wang, Y., Dou, Y., Liu, X. and Lei, Y. PR-ELM: Parallel Regularized
Extreme Learning Machine based on Cluster. Neurocomputing, 2016. 173:
1073–1081. ISSN 0925-2312. doi:10.1016/j.neucom.2015.08.066.

168. Deng, L., Yu, D. and Platt, J. Scalable Stacking and Learning for Building
Deep Architectures. Acoustics, Speech and Signal Processing (ICASSP),

2012 IEEE International Conference on. 2012. ISSN 1520-6149. 2133–
2136. doi:10.1109/ICASSP.2012.6288333.

169. Scherer, D., MÃŒller, A. and Behnke, S. Evaluation of Pooling Operations
in Convolutional Architectures for Object Recognition. In: Diamantaras, K.,
Duch, W. and Iliadis, L., eds. 20th International Conference on Artificial

Neural Networks (ICANN). Springer Berlin Heidelberg, Lecture Notes in

Computer Science, vol. 6354. 92–101. 2010. ISBN 978-3-642-15824-7. doi:
10.1007/978-3-642-15825-4_10.

170. Li, M., Andersen, D. G. and Smola, A. Distributed Delayed Proximal
Gradient Methods. NIPS Workshop on Optimization for Machine Learning,
2013.

171. Dettmers, T. 8-Bit Approximations for Parallelism in Deep Learning. CoRR,
2015. abs/1511.04561.

172. Miranda, C. S. and Zuben, F. J. V. Reducing the Training Time of Neural
Networks by Partitioning. CoRR, 2015. abs/1511.02954.

173. Zinkevich, M., Weimer, M., Li, L. and Smola, A. J. Parallelized Stochastic
Gradient Descent. In: Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel, R.
and Culotta, A., eds. Advances in Neural Information Processing Systems 23.
Curran Associates, Inc. 2595–2603. 2010.

174. Shokri, R. and Shmatikov, V. Privacy-preserving Deep Learning.
Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security. New York, NY, USA: ACM. 2015, CCS ’15.
ISBN 978-1-4503-3832-5. 1310–1321. doi:10.1145/2810103.2813687.

175. Li, M., Zhang, T., Chen, Y. and Smola, A. J. Efficient Mini-batch

224

Training for Stochastic Optimization. Proceedings of the 20th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. New
York, NY, USA: ACM. 2014, KDD ’14. ISBN 978-1-4503-2956-9. 661–
670. doi:10.1145/2623330.2623612.

176. Zhang, S., Choromanska, A. and LeCun, Y. Deep learning with Elastic
Averaging SGD. CoRR, 2014. abs/1412.6651.

177. Butenhof, D. R. Programming with POSIX Threads. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc. 1997. ISBN 0-201-63392-2.

178. MPICH: High-Performance Portable MPI. http://www.mpich.org/,
2015. Accessed November 4, 2015.

179. Forum, M. P. I. MPI : A Message-Passing Interface Standard. Technical
report. Knoxville, TN, USA. 2015. URL http://www.mpi-forum.

org/docs/docs.html.

180. MATLAB. Version 8.1 (R2013a). Natick, Massachusetts: The MathWorks
Inc. 2013.

181. Gebali, F. Algorithms and Parallel Computing. vol. 84. John Wiley & Sons.
2011. ISBN 0470934638.

182. (OMG), O. M. G. Unified Modeling Language (UML). Version 2.5, 2015.
URL http://www.omg.org/spec/UML/2.5/.

183. Hughes, C. and Hughes, T. Parallel and Distributed Programming Using

C++. Prentice Hall Professional Technical Reference. 2003. ISBN
0131013769.

184. Qu, Y., Shi, C., Liu, J., Peng, L. and Du, X. Single Image Super-Resolution
via Convolutional Neural Network and Total Variation Regularization. In:
Tian, Q., Sebe, N., Qi, G.-J., Huet, B., Hong, R. and Liu, X., eds.
MultiMedia Modeling. Springer International Publishing, Lecture Notes in

Computer Science, vol. 9517. 28–38. 2016. ISBN 978-3-319-27673-1. doi:
10.1007/978-3-319-27674-8_3.

185. Yang, Y. and Hospedales, T. M. Deep Neural Networks for Sketch
Recognition. CoRR, 2015. abs/1501.07873.

186. Simard, P. Y., Steinkraus, D. and Platt, J. C. Best Practices for Convolutional
Neural Networks Applied to Visual Document Analysis. Proceedings of the

Seventh International Conference on Document Analysis and Recognition.
Washington, DC, USA: IEEE Computer Society. 2003, ICDAR ’03, vol. 2.
ISBN 0-7695-1960-1. 958–963.

http://www.mpich.org/
http://www.mpi-forum.org/docs/docs.html
http://www.mpi-forum.org/docs/docs.html
http://www.omg.org/spec/UML/2.5/

225

187. LeCun, Y. Modeles Connexionnistes de l’apprentissage (Connectionist

Learning Models). Ph.D. Thesis. Université P. et M. Curie (Paris 6). 1987.

188. Yu, N., Jiao, P. and Zheng, Y. Handwritten Digits Recognition Base on
Improved LeNet5. The 27th Chinese Control and Decision Conference (2015

CCDC). 2015. 4871–4875. doi:10.1109/CCDC.2015.7162796.

189. Wiesler, S., Richard, A., Schluter, R. and Ney, H. A Critical Evaluation
of Stochastic Algorithms for Convex Optimization. Acoustics, Speech and

Signal Processing (ICASSP), 2013 IEEE International Conference on. 2013.
ISSN 1520-6149. 6955–6959. doi:10.1109/ICASSP.2013.6639010.

190. Mercan, C. and Celebi, M. An Approach for Chest Tube Detection in Chest
Radiographs. Image Processing, IET, 2014. 8(2): 122–129. ISSN 1751-9659.
doi:10.1049/iet-ipr.2013.0239.

191. Hudjakov, R. and Tamre, M. Ortophoto Analysis for UGV long-range
Autonomous Navigation. Estonian Journal of Engineering, 2011. 17(1): 17–
27. ISSN 1671-9719.

192. Chumerin, N. From Multi-channel Vision towards Active Exploration. Ph.D.
Thesis. Katholieke Universiteit Leuven. 2011.

193. Yu, J., Rui, Y. and Tao, D. Click Prediction for Web Image Reranking Using
Multimodal Sparse Coding. Image Processing, IEEE Transactions on, 2014.
23(5): 2019–2032. ISSN 1057-7149. doi:10.1109/TIP.2014.2311377.

194. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I. J., Harp,
A., Irving, G., Isard, M., angqing Jia, Józefowicz, R., Kaiser, L., Kudlur,
M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D. G., Olah,
C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker,
P. A., Vanhoucke, V., Vasudevan, V., Viégas, F. B., Vinyals, O., Warden, P.,
Wattenberg, M., Wicke, M., Yu, Y. and Zheng, X. TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems, 2015.

195. Khalil-Hani, M. and Liew, S. S. A-SDLM: An Asynchronous Stochastic
Learning Algorithm for Fast Distributed Learning. Javadi, B. and Garg, S.,
eds. 13th Australasian Symposium on Parallel and Distributed Computing

(AusPDC 2015). Sydney, Australia: ACS. 2015, CRPIT, vol. 163. 75–84.

196. Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S. and Lew, M. S. Deep
Learning for Visual Understanding: A Review. Neurocomputing, 2016. 187:
27–48. ISSN 0925-2312. doi:10.1016/j.neucom.2015.09.116.

197. Rose, N. Facial Expression Classification using Gabor and Log-Gabor

226

Filters. Automatic Face and Gesture Recognition, 2006. FGR 2006. 7th

International Conference on. 2006. 346–350. doi:10.1109/FGR.2006.49.

198. Roli, F. and Marcialis, G. Semi-supervised PCA-Based Face Recognition
Using Self-training. In: Yeung, D.-Y., Kwok, J., Fred, A., Roli, F. and
de Ridder, D., eds. Structural, Syntactic, and Statistical Pattern Recognition.
Springer Berlin Heidelberg, Lecture Notes in Computer Science, vol. 4109.
560–568. 2006. ISBN 978-3-540-37236-3. doi:10.1007/11815921_61.

199. Song, F., Zhang, D., Wang, J., Liu, H. and Tao, Q. A Parameterized Direct
LDA and Its Application to Face Recognition. Neurocomputing, 2007. 71(1):
191–196. ISSN 0925-2312. doi:10.1016/j.neucom.2007.01.003.

200. Patel, V., Wu, T., Biswas, S., Phillips, P. and Chellappa, R. Dictionary-Based
Face Recognition Under Variable Lighting and Pose. Information Forensics

and Security, IEEE Transactions on, 2012. 7(3): 954–965. ISSN 1556-6013.
doi:10.1109/TIFS.2012.2189205.

201. Jiang, Z., Lin, Z. and Davis, L. S. Learning a Discriminative Dictionary for
Sparse Coding via Label Consistent K-SVD. Computer Vision and Pattern

Recognition (CVPR), 2011 IEEE Conference on. 2011. ISSN 1063-6919.
1697–1704. doi:10.1109/CVPR.2011.5995354.

202. Han, S., Mao, H. and Dally, W. J. Deep Compression: Compressing Deep
Neural Network with Pruning, Trained Quantization and Huffman Coding.
CoRR, 2015. abs/1510.00149.

203. Chandra, B. and Sharma, R. K. Fast Learning in Deep Neural Networks.
Neurocomputing, 2016. 171: 1205–1215. ISSN 0925-2312. doi:10.1016/j.
neucom.2015.07.093.

204. Yu, Q., Tang, H., Tan, K. C. and Li, H. Rapid Feedforward Computation by
Temporal Encoding and Learning with Spiking Neurons. Neural Networks

and Learning Systems, IEEE Transactions on, 2013. 24(10): 1539–1552.

205. Fu, J., Luo, H., Feng, J. and Chua, T.-S. Distilling Reverse-mode Automatic
Differentiation (DrMAD) for Optimizing Hyperparameters of Deep Neural
Networks. arXiv preprint arXiv:1601.00917, 2016.

APPENDIX A

PUBLICATIONS

This appendix lists downs the papers written based on the findings from the
work done in this thesis. It also includes publications that are related to the work done
in this thesis. The following is a summary of these papers:

1. Liew, S. S., Khalil-Hani, M. and Bakhteri, R. An Optimized Second Order
Stochastic Learning Algorithm for Neural Network Training. Neurocomputing,
2016. 186: 74–89. ISSN 0925-2312. doi:10.1016/j. neucom.2015.12.076. (ISI,
IF 2.392 (Q1)).

2. Liew, S. S., Khalil-Hani, M. and Bakhteri, R. Bounded Activation Functions
for Enhanced Training Stability of Deep Neural Networks on Visual Pattern
Recognition Problems. Neurocomputing, 2016. ISSN 1300-0632. (ISI, IF 2.392
(Q1)). Under revision.

3. Liew, S. S., Khalil-Hani, M., Syafeeza, A. and Bakhteri, R. Gender
Classification: A Convolutional Neural Network Approach. Turk J Elec Eng &

Comp Sci, 2016. 24: 1248–1264. ISSN 1300-0632. doi:10.3906/ elk-1311-58.
(ISI, IF 0.518 (Q4)).

4. Syafeeza, A. R., Khalil-Hani, M., Liew, S. S. and Bakhteri, R. Convolutional
Neural Networks with Fused Layers Applied to Face Recognition. International

Journal of Computational Intelligence and Applications, 2015. 14(3): 1550014.
ISSN 1469-0268. doi:10.1142/S1469026815500145. (Scopus).

5. Syafeeza, A. R., Khalil-Hani, M., Liew, S. S. and Bakhteri, R. Convolutional
Neural Network for Face Recognition with Pose and Illumination Variation.
International Journal of Engineering and Technology (IJET), 2014. 6(1): 44–57.
ISSN 0975-4024. (Scopus).

6. Khalil-Hani, M., Liew, S. S. and Bakhteri, R. Distributed B-SDLM: Accelerating
the Training Convergence of Deep Neural Networks through Parallelism.

228

PRICAI 2016: Trends in Artificial Intelligence. Phuket, Thailand: Springer
International Publishing. 2016, Lecture Notes in Artificial Intelligence, vol.
9810. (Scopus). Accepted.

7. Khalil-Hani, M., Liew, S. S. and Bakhteri, R. Distributed Learning on Multi-
Core Platform for Neural Network in Visual Pattern Recognition. Embedded

Multicore/Many-core Systems-on-Chip (MCSoC-16), IEEE 10th International

Symposium on. Lyon, France. 2016. (Scopus). In review process.

8. Khalil-Hani, M., Liew, S. S. and Bakhteri, R. An Optimized Second Order
Stochastic Learning Algorithm for Neural Network Training. Arik, S., Huang,
T., Lai, W. K. and Liu, Q., eds. Neural Information Processing. Istanbul, Turkey:
Springer International Publishing. 2015, Lecture Notes in Computer Science,
vol. 9489. 38–45. doi:10.1007/978-3-319-26532-2_5. (Scopus).

9. Khalil-Hani, M. and Liew, S. S. A-SDLM: An Asynchronous Stochastic
Learning Algorithm for Fast Distributed Learning. Javadi, B. and Garg, S., eds.
13th Australasian Symposium on Parallel and Distributed Computing (AusPDC

2015). Sydney, Australia: ACS. 2015, CRPIT, vol. 163. 75–84. (Scopus).

10. Khalil-Hani, M. and Liew, S. S. A Convolutional Neural Network Approach
for Face Verification. High Performance Computing Simulation (HPCS),
2014 International Conference on. Bologna, Italy. 2014. 707–714. doi:
10.1109/HPCSim.2014.6903759. (Scopus).

