provided by University of Surabaya Institutional Repository

ISSN 1411-3465

Terakreditasi Nasional

# Jurnal PIRIFIKASI

Jurnal Teknologi dan Manajemen Lingkungan



Diterbitkan oleh:

Divisi Jurnal Purifikasi Jurusan Teknik Lingkungan FTSP-ITS

bekerja sama dengan

Ikatan Ahli Teknik Penyehatan dan Teknik Lingkungan Indonesia (IATRI) Jawa Timur

Jurnal Purifikasi

Vol. 12

No. 1

Hal. 1-100

Surabaya Juli 2011 ISSN 1411-3465

## **JURNAL PURIFIKASI**

Terbit 2 kali setahun pada bulan Juli dan Desember. Memuat artikel teknologi dan manajemen di bidang ilmu Teknik Lingkungan dan ilmu lain yang terkait dengan bidang Teknik Lingkungan. ISSN 1411-3465

### **Ketua Penyunting**

Prof. Dr. Yulinah Trihadiningrum, MAppSc

### Penyunting Pelaksana

Prof. Dr. Ir. Wahyono Hadi, MSc Prof. Ir. Joni Hermana, MScEs, PhD Prof. Dr. Ir. Sarwoko Mangkoedihardjo, MScES I. D. A. A. Warmadewanthi, ST, MT, PhD Welly Herumurti, ST, MEng

### Mitra Bestari:

Prof. Dr. Ir. Djatmiko Ichsani, MEng (Jurusan Teknik Mesin, FTI-ITS), Dr. Ir. Puji Lestari, MSc (Jurusan Teknik Lingkungan, FTSL-ITB), Ir. Mohammad Razif, MM (Jurusan Teknik Lingkungan, FTSP-ITS), Prof. Dr. Ir. Udisubakti Ciptomulyono, MEngSc (Jurusan Teknik Industri, FTI-ITS), I D A A Warmadewanthi, ST, MT, Ph.D (Jurusan Teknik Lingkungan, FTSP-ITS), Dr. Ali Masduqi, ST, MT (Jurusan Teknik Lingkungan, FTSP-ITS), Prof. Dr. R. Y. Perry Burhan, MSc (Jurusan Teknik Kimia, FTI-ITS), Dr. A. A. Masroeri, M Eng (Jurusan Teknik Sistem Perkapalan, FTK-ITS), Prof. Ir. Renanto Handogo, MS, PhD (Jurusan Teknik Kimia, FTI-ITS), Dr. Maya Shovitri (Jurusan Biologi, FMIPA-ITS), Dr. Ing. Drs. Mohammad Isa Irawan, MT (Matematika, FMIPA-ITS).

### Administrasi dan Sirkulasi:

Yuli Triastuti, ST, Sujito, Masupar.

### Alamat Penyunting:

Ruang Divisi Jurnal Purifikasi Jurusan Teknik Lingkungan

Kampus ITS Sukolilo Surabaya 60111

Telepon: (031) 5948886 Faksimil: (031) 5928387

Website: http://purifikasi.org/ dan e-mail: purifikasi@its.ac.id

**Jurnal Purifikasi** diterbitkan sejak Januari 2000 oleh Divisi Jurnal Purifikasi Terakreditasi B berdasarkan Keputusan Direktur Jenderal Pendidikan Tinggi

No. 26/DIKTI/Kep/2005, 30 Mei 2005 dan No. 43/DIKTI/Kep/2008, 8 Juli 2008

Jurusan Teknik Lingkungan Fakultas Teknik Sipil dan Perencanaan

Institut Teknologi Sepuluh Nopember Surabaya

Bekerja sama dengan Ikatan Ahli Teknik Penyehatan dan Teknik Lingkungan Indonesia

(IATPI) Jawa Timur

Penyunting menerima sumbangan tulisan yang belum pernah diterbitkan dalam media lain. Naskah diketik di kertas HVS ukuran A4 spasi ganda sepanjang kurang lebih 15 halaman, dengan format seperti tercantum pada halaman kulit dalam-belakang ("Pedoman Penulisan"). Naskah yang masuk dievaluasi dan disunting untuk keseragaman format, istilah, dan tata cara lainnya.

### Kata Pengantar

Jurnal Purifikasi merupakan jurnal berkala dalam bidang Ilmu Rekayasa dan Manajemen dalam bidang Teknik Lingkungan dengan akreditasi B. Akreditasi tersebut didasarkan pada keputusan Direktur Jenderal Pendidikan Tinggi Departemen Pendidikan Nasional Republik Indonesia Nomor:43/DIKTI/Kep/2008 tentang Hasil Akreditasi Berkala Ilmiah (Periode I Tahun 2008). Akreditasi berlaku sejak Juli 2008 sampai dengan Juli 2011.

Artikel yang dimuat pada Jurnal Purifikasi Volume 12 No. 1 Edisi bulan Juli tahun 2011 membahas tentang aspek-aspek teknologi dan manajemen lingkungan yang meliputi: hasil-hasil studi penelitian tentang pengendalian kebisingan lingkungan, pengolahan limbah cair industri, pengendalian emisi gas mesin motor, absorpsi, aplikasi pupuk alami, bioremediasi lahan, pengelolaan sampah, dan pengelolaan air bersih. Dengan terbitnya Jurnal Purifikasi edisi ini, diharapkan dapat memberikan manfaat kepada para peneliti, dosen, mahasiswa, maupun pengguna ilmu teknologi dan manajemen lingkungan.

Selain itu diharapkan kepada para ilmuwan yang berasal dari lembaga pendidikan tinggi, lembaga penelitian, dan industri untuk memberikan kontribusi ilmiahnya, baik berupa hasil penelitian, maupun hasil kajian/review mengenai teknologi atau permasalahan yang terkait dengan teknologi dan manajemen lingkungan.

Penyunting berharap artikel-artikel ilmiah yang termuat dalam Jurnal Purifikasi ini bermanfaat bagi para akademisi, peneliti, dan profesional yang berkecimpung dalam bidang teknologi dan manajemen lingkungan.

Ketua Penyunting

### KINERJA BENTONIT TERINTERKALASI HDTMA DAN KOMPOSIT BENTONIT KITOSAN SEBAGAI'ADSORBEN UNTUK FENOL DAN METILEN BIRU

# PERFORMANCE OF HDTMA INTERCALATED BENTONITE AND BENTONITE-CHITOSAN COMPOSITE FOR PHENOL AND METHYLENE BLUE ADSORBENTS

Yunus Fransiscus\*, Emma Savitri, Agustinus Yuriko, dan Burhan Uray Jurusan Teknik Kimia, Universitas Surabaya Jl. Ngagel Jaya Selatan 169, Surabaya 60284 \*e-mail: yunus@ubaya.ac.id

#### Abstrak

Serangkaian proses modifikasi bentonit telah dilakukan untuk mendapatkan bentonit terinterkalasi HDTMA dan komposit bentonit-kitosan. Kedua bahan diaplikasikan sebagai adsorben metilen biru dan fenol. Larutan surfaktan HDTMA-Cl 1% dan suspensi bentonit disiapkan dengan rasio bentonit/air 20g/100mL melalui proses pengaturan pH, pemanasan, pengendapan, dan pencucian. Sebanyak 5 g bentonit tersebut dicampur dengan 1% v/v asam asetat dan ditambahkan kitosan yang sudah dideasetilasi. Setelah diaduk 12 jam, campuran tersebut dicuci, disaring, dan dikeringkan. Adsorbat fenol dan biru metilen disiapkan sebagai larutan stok dari pengenceran larutan induk fenol dan biru metilen dengan akuades. Larutan umpan dari stok dibuat sesuai konsentrasi yang dikehendaki. Percobaan dilakukan secara batch dengan kolom adsorpsi OMNIFIT. Aliran dari kolom adsorpsi diresirkulasi ke tanki penampung. Laju larutan umpan dan banyaknya adsorben diatur konstan pada kecepatan 1 mL/menit. Konsentrasi awal fenol dan biru metilen divariasikan dari 10 hingga 250 mg/L. Sampling dilakukan setiap 5 menit pada 30 menit pertama, diikuti dengan tiap 15 menit, hingga sistem mencapai kondisi setimbang. Analisis sampel dilakukan dengan menggunakan spektrofotometer UV. Hasil penelitian menunjukkan bahwa komposit bentonit-kitosan memiliki kemampuan adsorpsi yang lebih besar, yaitu 65 mg/g dan 95 mg/g untuk adsorbat fenol dan metilen biru. Sedangkan, bentonit terinterkalasi HDTMA memiliki kemampuan adsorpsi 35 mg/g untuk fenol dan 38 mg/g untuk metilen biru. Aplikasi model adsorpsi yang paling sesuai adalah model Freundlich. Model adsorbsi tersebut menjelaskan interaksi antara adsorben dan adsorbat dipengaruhi oleh reaksi fisik.

Kata kunci: adsorpsi, bentonite terinterkalasi, fenol, komposit bentonite-chitosan, metilen biru.

### Abstract

A series of modification process to bentonite was done to obtain HDTMA intercalated bentonite and bentonite-chitosan composites. These two materials were applied as adsorbent for methylene blue and phenol removal. Suspension of 1% HDTMA-Cl surfactant and bentonite was made from bentonite/water ratio of 20g/100mL, with pH adjustment, warming, precipitation, and washing processes. About 5 g of bentonite was mixed with 1% v/v acetic acid and deacetilated chitosan. After being stirred within 12 hours, the solution was washed, filtered, and dried. Phenol and methylene blue adsorbates were prepared as stock solution. The required concentrations were prepared by diluting the mother liquors with aquadest. The experiment was conducted in batch system using OMNIFIT adsorption column. The solution was recirculated from the adsorption column to the reservoir tank. The feeding flow rate and the amount of adsorbent were set constant at a flow rate of 1 mL/min. Initial concentrations of phenol and methylene blue were varied from 10 to 250 mg/L. Sampling was done every 5 minutes in the first 30 minutes, and continued every 15 minutes, until the system reached equilibrium state. Sample analyses were carried out by using UV-spectrophotometer. The results showed that the bentonite-chitosan composite had higher phenol and methylene blue adsorption capacity than that of the HDTMA intercalated bentonite. The adsorption capacities of bentonite-chitosan

composites were 65 mg/g and 95 mg/g for phenol and methylene blue respectively. Whereas, HDTMA intercalated bentonite showed adsorption capacities of 35 mg/g for phenol and 38 mg/g for methylene blue. Freundlich model was most appropriate with the obtained data. This model explained that interaction between adsorbent and adsorbate were mainly influenced by physical reaction.

Keywords: adsorption, bentonite-chitosan composite, intercalated bentonite, methylene blue, phenol.

### 1. PENDAHULUAN

Indonesia memiliki banyak sekali hasil alam yang dapat dimanfaatkan untuk berbagai macam proses industri, khususnya industri kimia. Bentonit adalah salah satu material alam yang dapat ditemukan di beberapa daerah di Indonesia seperti Sumatera, Jawa, dan Nusa Tenggara. Khusus di Pulau Jawa, bentonit banyak terdapat di Cirebon, Boyolali, Pacitan, Tulungagung, dan Ponorogo. Salah satu kegunaan bentonit yang dapat diaplikasikan di skala industri adalah sebagai material adsorben untuk proses eliminasi kontaminan di pengolahan limbah dan untuk proses pemurnian produk di proses utama.

Lempung bentonit (bentonite clay) merupakan polimer silika alumina yang memiliki kemampuan sebagai cationic adsorbent. Bentonit memiliki struktur yang berlapis-lapis tanpa sistem pori sehingga memiliki sifat swelling (sifat mudah mengembang ketika proses hidrasi dan mengempis ketika proses dehidrasi) yang menyebabkan kemampuan adsorpsinya tidak stabil. Selain itu, karena jumlah bagian aktif yang terbatas kemampuan adsorpsinya juga cenderung terbatas. Beberapa usaha yang telah dilakukan oleh peneliti untuk meningkatkan kemampuan adsorpsi lempung adalah dengan melakukan modifikasi lempung melalui proses interkalasi dan pilarisasi. Proses tersebut dilakukan dengan menggunakan polioksi kation logam maupun surfaktan. Modifikasi ini bertujuan untuk membentuk struktur pori dan struktur material yang stabil sehingga material yang dihasilkan memiliki kemampuan adsorpsi yang tinggi terhadap ion logam. Namun material yang dihasilkan memiliki kemampuan adsorpsi terhadap molekul organik yang relatif masih rendah dibandingkan terhadap ion logam

(Bowman et al., 2000; Fan et al., 2007; Fuierer et al., 2001; Gunister, et al., 2007; Matsumiya et al., 2003). Fenomena ini disebabkan pada lempung terpilar logam sifat polaritas permu-kaan lempung masih negatif, sedangkan mole-kul organik cenderung memiliki polaritas se-dang sampai non-polar sehingga interaksi ke-duanya cenderung lemah.

Pada penelitian ini dilakukan modifikasi dengan interkalasi terhadap bentonit pem-buatan komposit bentonit-kitosan. Kitosan adalah material yang tersusun atas polimer acetil-D-glukosamin dan diperoleh dari kulit hewan Crustacea sp. seperti udang dan kepiting. Material ini memiliki kemampuan untuk mengadsorpi logam pada gugus amin (NH2) dan mampu mengikat molekul organik pada sisi organik (non-polar). Interaksi yang terjadi biasanya adalah interaksi polar pada gugus amina dan gugus hidroksi sedangkan pada bagian gugus alkil (-R) biasanya molekul organik dapat mengalami interaksi lebih kuat. Adapun kation diserap oleh kitosan melalui proses pembentukan kompleks logam dengan gugus aminnya (Bassi et al., 2000; Christidis dan Kosiari, 2003). Dengan adanya kemam-puan adsorpsi terhadap molekul organik ini, kitosan banyak digunakan dalam bidang kedokteran dan farmasi. Dengan melakukan sintesa komposit bentonit-kitosan, hasil yang diharapkan adalah meningkatnya kemampuan adsorpsi bentonit modifikasi terhadap adsorbat, khususnya molekul. Setelah melalui proses modifikasi, kinerja Bentonit Terintekalasi HDTMA dan komposit bentonit-kitosan seba-gai adsorben diuji secara batch. Adsorbat yang dipakai adalah fenol dan biru metilen, yang juga dikenal sebagai polutan mayor dari industri cat/tinta dan tekstil.

Data hasil uji adsorpsi akan dianalisis dengan menggunakan model isotermal Langmuir dan Freundlich. Persamaan Langmuir dinotasikan sebagai berikut:

$$q_{eq} = \frac{Q^0 b C_{eq}}{1 + b C_{eq}} \tag{1}$$

dimana:

q<sub>eq</sub> = jumlah ikatan adsorbat per gram adsorben pada kondisi setimbang

C<sub>eq</sub> = konsentrasi adsorbat pada larutan pada kondisi setimbang

Q<sup>0</sup> = jumlah maksimum adsorbat per gram adsorben untuk membentuk lapisan monolayer

b = Konstanta afinitas binding sites

Sementara model Freundlich ditunjukkan pada persamaan berikut ini :

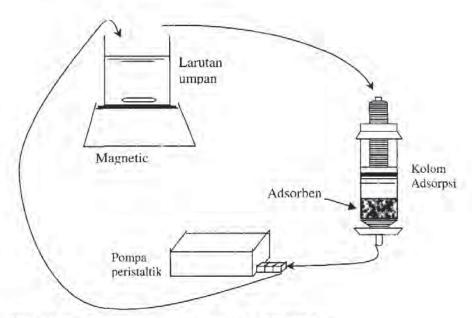
$$q_{eq} = K f C_{eq}^{\sqrt{n}}$$
 (2)

dimana:

K<sub>f</sub> dan n = konstanta yang berhubungan dengan kemampuan dan intensitas sorpsi adsorben.

Konstanta-konstanta dari persamaan tersebut di atas didapatkan dari linierisasi C<sub>eq</sub>/q<sub>eq</sub> vs C<sub>eq</sub> untuk Langmuir dan ln q<sub>eq</sub> vs ln C<sub>eq</sub> untuk Freundlich. Adsorpsi isotermal yang didapatkan dipakai untuk menjelaskan karakteristik ikatan yang terjadi antara adsorbat dan adsorben yang terlibat.

### 2. METODA


Interkalasi dilakukan dengan cara mencampurkan larutan surfaktan HDTMA-Cl 1% dan suspensi bentonit (100 mesh) dengan rasio bentonit/air sebesar 20g/100mL pada pH interkalasi 11-12. Larutan diaduk dan dipanaskan dengan suhu larutan dijaga antara 75-80°C selama 5 jam. Larutan tersebut kemudian didinginkan, dibiarkan sampai mengendap dan dicuci dengan akuades hingga bebas kandungan Cl<sup>-</sup>. Pencucian dihentikan apabila saat uji kandungan Cl<sup>-</sup> dengan AgNO<sub>3</sub> tidak

terbentuk lagi endapan AgCl. Kemudian padatan dipisahkan dari filtratnya menggunakan pompa yakum dan dikeringkan dalam oven pada suhu 100°C. Hasil interkalasi dikarakterisasi dengan menggunakan alat Fourier Transform Infra Red (FTIR) BRUKER Tensor 27.

Bentonit 5 g dicampur dengan 1% v/v asam asetat. Selanjutnya, kitosan yang sudah NaOH 80% (b/v) dengan didesetilasi ditambahkan ke dalam bentonit yang sudah dicampur dengan asam asetat sebanyak 1 g/1000mL. Aduk campuran larutan tersebut pada suhu kamar dalam waktu 12 jam. Setelah itu, campuran tersebut dicuci sampai netral dan disaring dengan kertas saring kemudian dioven pada suhu 60°C sampai kering. Hasil komposit dikarakterisasi dengan menggunakan alat FTIR BRUKER Tensor 27. Larutan fenol dan biru metilen sebagai adsorbat disiapkan dalam bentuk larutan stok yang dibuat dengan cara mengencerkan sejumlah (volume) larutan induk fenol dan sejumlah (berat) biru metilen ke dalam akuades 1000 mL. Dari larutan stok ini kemudian dibuat larutan umpan sesuai dengan konsentrasi yang dikehendaki.

Seluruh percobaan dilakukan secara batch menggunakan sistem "close loop" dengan kolom adsorpsi OMNIFIT (Gambar 1). Pada sistem ini aliran yang keluar dari kolom adsorpsi dipompakan kembali/diresirkulasi ke tanki penampung dengan tidak ada penambahan larutan selama proses. Laju larutan umpan dan banyaknya adsorben diatur konstan yaitu masing-masing pada kecepatan 1 mL/menit dan sebanyak 5 g.

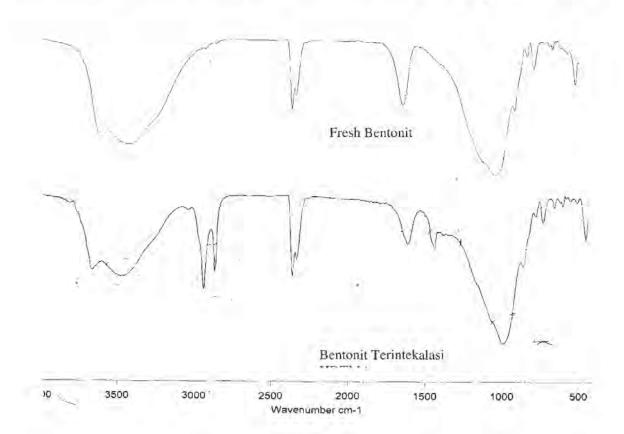
Konsentrasi awal fenol dan biru metilen divariasikan pada rentang yang sama yaitu 10, 25, 50, 100, 150, dan 250 mg/L. Pengambilan sampel dilakukan setiap interval waktu 5 menit pada 30 menit pertama kemudian diikuti dengan tiap 15 menit sampai sistem mencapai kondisi setimbang (konsentrasi adsorbat di dalam tanki penampung sudah konstan).



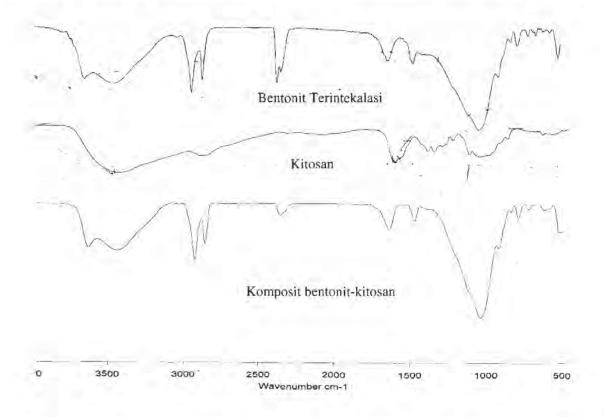
Gambar 1. Skema Percobaan Adsorpsi Dengan Kolom OMNIFIT

Analisis sampel dilakukan dengan menggunakan UV-Spektrofotometer (Hewlett Packard 8453). Seluruh percobaan dilakukan dengan duplikasi. Hasil analisa ditampilkan dalam bentuk grafik kesetimbangan untuk menerangkan proses adsorpsi yang terjadi.

### 3. HASIL DAN PEMBAHASAN


Berdasarkan Gambar 2, terlihat adanya perbedaan dari hasil FTIR terhadap *fresh bentonit* dan bentonit yang sudah diinterkalasi. Pada Gambar tersebut terlihat adanya beberapa puncak serapan yang berbeda seperti puncak serapan pada daerah 3446,12 cm<sup>-1</sup> menandakan adanya vibrasi antara gugus hidroksil yang berikatan dengan lapisan oktahedral (-OH *stretching*). Pada Bentonit Terinterkalasi HDTMA, bilangan gelombang 2919,88 cm<sup>-1</sup> menandakan adanya gugus -CH<sub>3</sub> yang bervibrasi *streching asymmetric* dan 2851,09 cm<sup>-1</sup> menandakan gugus -CH<sub>2</sub> yang bervibrasi *streching symmetric* dimana keduanya dimiliki oleh surfaktan.

### CH3-(CH2)15-N-(CH3)3


Puncak tersebut menunjukkan adanya HDTMA yang telah masuk dalam struktur interlayer bentonit dimana pada hasil FTIR fresh bentonit kedua puncak tersebut tidak muncul. Sedangkan puncak pada daerah 1030–1040 cm<sup>-1</sup> merupakan vibrasi tipe bending menun-jukkan adanya gugus O–Si–O dan O-Al-O pada bentonit maupun bentonit terinterkalasi HDTMA dan adanya struktur tetrahedral TO<sub>4</sub> sebagai bentuk molekul dari SiO<sub>4</sub> dan AlO<sub>4</sub>.

Selain itu, pada puncak serapan 794,06 cm<sup>-1</sup> dan 522,53 cm<sup>-1</sup> memperlihatkan bahwa puncak serapan *fresh* bentonit lebih dalam. Hasil ini menunjukkan bahwa penambahan molekul HDTMA telah mengubah pori dari *fresh bentonit*. Pada puncak serapan tersebut terjadi vibrasi *bending* Si-O yang berasal dari bentonit yang mengalami perubahan dalam bentuk serapan. Perubahan ini mengindikasi-kan adanya pori-pori bentonit yang lebih terbuka dibandingkan dengan *fresh* bentonit.

Gambar 3 menunjukkan perbedaan spektra FTIR antara kitosan setelah dideasetilasi, Bentonit Terintekalasi HDTMA dan komposit bentonit-kitosan. Dari hasil analisa FTIR, penambahan molekul kitosan mampu memperbesar pori yang terbentuk. Hal ini dipertegas puncak serapan pada daerah 793,55 cm<sup>-1</sup> dan 521,90 cm<sup>-1</sup> yang terlihat lebih lebar dan lebih dalam setelah penambahan molekul HDTMA dan kitosan.

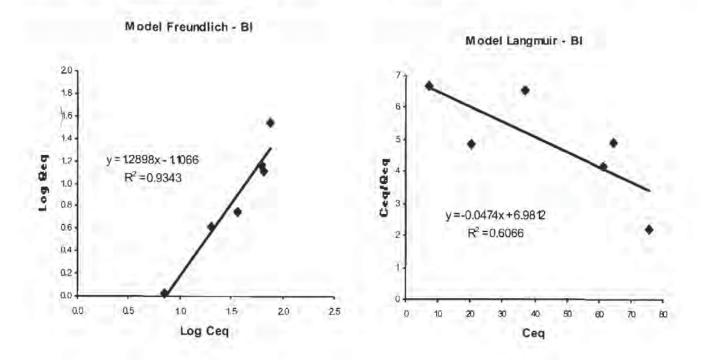


Gambar 2. Spektogram FTIR Bentonit Terinterkalasi HDTMA dan Fresh Bentonit

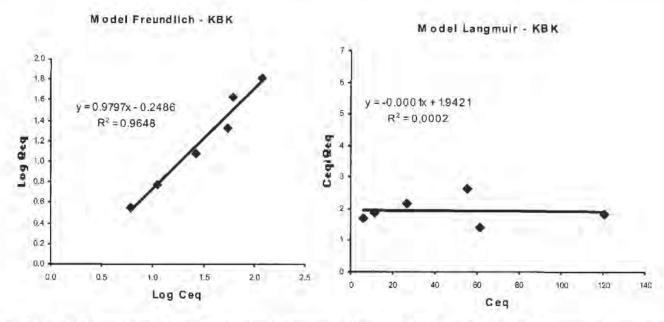


Gambar 3. Spektrogram FTIR Bentonit Terinterkalasi HDTMA, Kitosan yang Dideasetilasi dan Komposit Bentonit-Kitosan

Gambar 4. Ilustrasi Struktur Komposit Bentonit-Kitosan (Longhinotti et al., 1998)


Perbedaan kemampuan adsorpsi ini dimungkinkan karena properti yang dimiliki oleh kedua adsorben berbeda. Bentonit terinterkalasi HDTMA memiliki muatan permukaan yang lebih homogen dengan gugus hidroksil (OH) dominan. Sementara pada media komposit bentonit kitosan (Gambar 4) muatan permukaan lebih bersifat heterogen, selain itu gugus hidroksil (OH) juga terdapat gugus amino (NH<sub>2</sub>, NH<sub>3</sub><sup>+</sup>) yang berasal dari kitosan (Longhinotti et al., 1998). Fenol yang memiliki gugus hidroksil bermuatan negatif dapat terikat pada media komposit bentonit kitosan secara elektrostatis pada gugus amin yang bermuatan positif. Sementara metilen biru yang bermuatan positif, sebaliknya akan memanfaatkan bagian aktif hidroksil dari komposit bentonit kitosan untuk melekat.

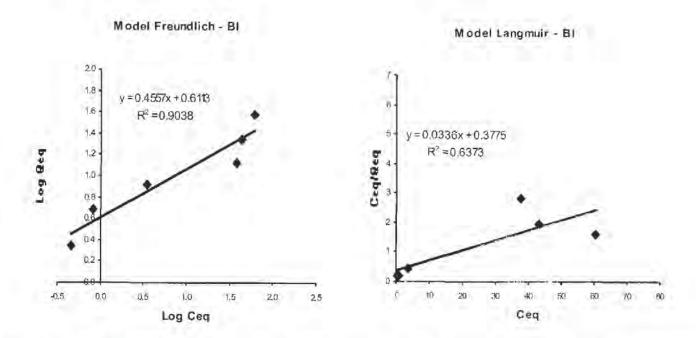
Pada Bentonit Terinterkalasi HDTMA, fenol akan terikat secara tidak langsung dengan permukaan adsorben yang memiliki muatan sejenis. Mekanisme yang mungkin adalah melalui ikatan hidrogen atau yang lebih umum dengan interaksi Van Der Walls pada secondary minima (lapisan double layer dari media kolektor). Sebaliknya, karena memiliki muatan positif, metilen biru akan terikat langsung secara elektrostatis dengan permukaan Bentonit Terintekalasi HDTMA yang memiliki muatan berlawanan.


Selain peranan bagian aktif pada permukaan masing-masing adsorben, keberadaan HDT-MA (surfaktan kationik) dan kitosan sebagai bahan modifikasi untuk bentonit juga menyebabkan perubahan sifat kehidrofobikan dari media. Dengan adanya organik kationik dari HDTMA dan kitosan yang masuk ke properti bentonit, sifat bentonit akan menjadi lebih organophilic atau semakin hidrofobik (Ceyhan and Baybas, 1999). Kondisi ini juga menjadi faktor penting yang menyebabkan molekul organik, dalam hal ini fenol dan biru metilen, dapat terikat pada media bentonit terin-tekalasi HDTMA dan komposit bentonit kitosan. Kinetika adsorpsi fenol dan biru metilen dimodelkan dengan menggunakan persamaan Freundlich dan Langmuir.

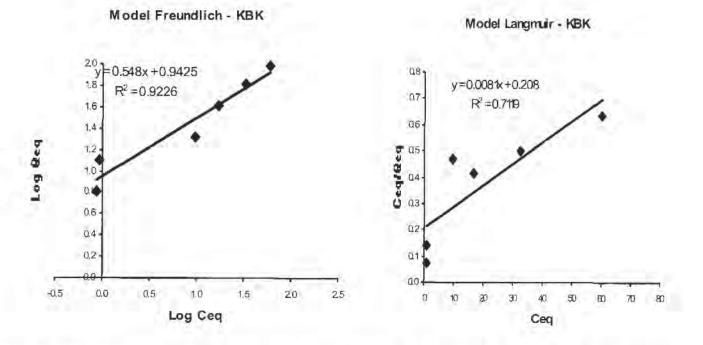
Berdasarkan Gambar 5 sampai dengan Gambar 8, dapat dilihat bahwa semua proses adsorpsi yang terjadi lebih bagus untuk dimodelkan dengan persamaan Freundlich. Tingkat kesesuaian (R<sup>2</sup>) fenol dan metilen biru pada model Freundlich lebih tinggi dibandingkan pada model Langmuir. Hal ini berlaku baik pada adsorben bentonit terinter-

kalasi HDTMA maupun komposit bentonit kitosan. Hasil pemodelan ini memberikan informasi bahwa selain pengaruh properti dari adsorben yang digunakan, karakteristik adsorbat juga berpengaruh dalam kemampuan adsorpsi.

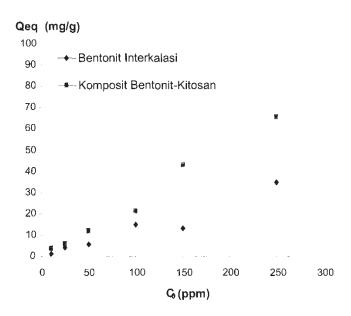



Gambar 5. Pemodelan Freundlich dan Langmuir Untuk Fenol Pada Media Bentonit Terinterkalasi HDTMA (BI)

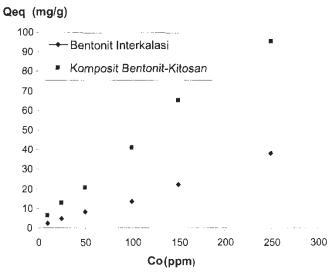



Gambar 6. Pemodelan Freundlich dan Langmuir Untuk Fenol Pada Media Komposit Bentonit Kitosan (KBK)

Dengan mengikuti persamaan Freundlich, menegaskan bahwa ikatan yang terjadi disebabkan karena perbedaan afinitas antara ad-sorbat dan adsorben, yang berlangsung secara fisika. Selain itu karakteristik adsorbat juga diidentifikasi menyebabkan terjadinya


proses adsorpsi lanjutan (setelah kontak antara adsor-bat dengan adsorben). Ikatan antar adsorbat dimungkinkan karena fenol dan metilen biru lebih bersifat non-polar dibandingkan air sehingga cenderung hidrofobik.




Gambar 7. Pemodelan Freundlich dan Langmuir untuk Metilen Biru pada Media Bentonit Terintekalasi HDTMA (BI)



Gambar 8. Pemodelan Freundlich dan Langmuir untuk Metilen Biru pada Media Komposit Bentonit Kitosan (KBK)



Gambar 9. Perbandingan Kesetimbangan Adsorpsi Bentonit Terintekalasi HDTMA dan Komposit Bentonit Kitosan Terhadap Fenol



Gambar 10. Perbandingan Kesetimbangan Adsorpsi Bentonit Terinterkalasi HDTMA dan Komposit Bentonit Kitosan Terhadap Metilen Biru

Fenomena ikatan multilayer ini juga dapat dilihat pada Gambar 9 dan Gambar 10, dengan nilai konsentrasi awal  $(C_0)$  adsorbat yang bertambah besar, nilai kemampuan adsorpsi juga bertambah. Berdasarkan nilai konstanta Freundlich yang didapatkan, maka dapat dilihat konstanta adsorpsi  $(K_f)$  untuk komposit bentonit kitosan selalu lebih besar

dibandingkan dengan nilai K<sub>f</sub> bentonit terintekalasi HDTMA, untuk fenol dan biru metilen. Hal ini memberikan konfirmasi terhadap hipotesis bahwa dengan mengkompositkan kitosan pada bentonit alam akan memperkuat sisi non-polar material ini sehingga mampu menyerap molekul organik lebih banyak. Meskipun demikian, jenis molekul organik yang diserap juga mempengaruhi kemampuan adsorpsi masing-masing adsorben. Berdasarkan nilai K<sub>f</sub> untuk semua adsorben, metilen biru lebih banyak terserap dibandingkan fenol. Hal ini dimungkinkan karena interaksi antara metilen biru dengan permukaan adsorben bersifat langsung oleh perbedaan muatan permukaan (lebih bersifat favourable). Aksu et al. (2002) menyatakan bahwa nilai n yang lebih besar dari 1 mengindikasikan bahwa ikatan yang terjadi antara adsorbat dan adsorben berlangsung secara favourable. Hal ini sesuai dengan nilai n untuk biru metilen sebagaimana ditunjukkan pada Tabel 1. Selain itu, ukuran partikel dan sifat kepolaran juga memiliki peran penting yang menyebabkan biru metilen teradsorp lebih banyak dibandingkan fenol. Dengan sifat yang lebih non-polar, metilen biru akan lebih mudah terserap pada sisi non-polar adsorben. Hal ini kemudian diikuti dengan adsorpsi lanjutan karena interaksi antar adsorbat, dalam hal ini dengan semakin nonpolar dan lebih besar ukurannya, biru metilen akan lebih mudah membentuk lapisan multilayer.

Tabel 1.Perbandingan Nilai Konstanta
Freundlich untuk Fenol dan Metilen Biru pada Bentonit Terinterkalasi HDTMA dan Komposit
Bentonit-Kitosan

|                | Fenc                            | ol                        |
|----------------|---------------------------------|---------------------------|
|                | Bentonit Terintekalasi<br>HDTMA | Komposit Bentonit-Kitosan |
| K <sub>f</sub> | 0,078                           | 0,564                     |
| n              | 0,775                           | 1,021_                    |
|                | Metilen                         | Biru                      |
|                | Bentonit Terintekalasi<br>HDTMA | Komposit Bentonit-Kitosan |
| K <sub>f</sub> | 4,086                           | 8,76                      |
| n              | 2,194                           | 1,825                     |

### 4. KESIMPULAN

Bentonit terintekalasi HDTMA dan komposit bentonit kitosan memiliki kinerja yang baik sebagai adsorben untuk fenol dan metilen biru. Secara keseluruhan, komposit bentonit kitosan memiliki kemampuan adsorpsi yang lebih besar, yaitu masing-masing 65 mg/g dan 95 mg/g untuk adsorbat fenol dan metilen biru dibandingkan bentonit terinterkalasi HDTMA yang memiliki kemampuan adsorpsi 35 mg/g untuk fenol dan 38 mg/g untuk metilen biru. Kinetika reaksi untuk proses adsorpsi fenol dan metilen biru dengan menggunakan adsorben bentonit terintekalasi HDTMA dan komposit bentonit kitosan lebih cocok dimodelkan dengan persamaan Freundlich.

### DAFTAR PUSTAKA

- Aksu, Z., Aćikel, Ü., Kabasakal, E., Tezer, S. (2002).b Equilibrium Modelling and Simultaneous Biosorption of Chromium (VI) and Nickel (II) onto Dried Activated Sludge. Water Research. 36. 3063-3073.
- Bassi, R., Prasher, S.O.; Simpson, B.K. (2000). Removal of Selected Metal Ions From Aqueous Solutions Using Chitosan Flakes. Separation Science and Technology. 35, 547–560.
- Bowman, R.S., Sullivan, E.J., Li, Z. (2000), Uptake of Dations, Anions, and Nonpolar Organik Molecules by Surfactant-Modified Clinoptilolite-Rich Tuff. In C. Colella and F.A Mumpton (eds.) Natural zeolites for the third millenium. De Frede Editore. Naples. Italy. 287-297.
- Ceyhan, O., Baybas, D. (1999). Adsorption of Some Textile Dyes by Hexadecyltrime-

- thylammonium Bentonite. Turki Journal Chemistry. 25. 193-200.
- Christidis G.E., Kosiari, S. (2003). Decolorization of Vegetable Oils: A Study of The Mechanism of Adsorption of β-Carotene by An Acid-Activated Bentonite From Cyprus. Clays and Clay Minerals, 51, 327–333.
- Fan, Q., Shan, D., Xuea, H., Hea, Y., Cosnier, S. (2007). Amperometric Phenol Biosensor based on laponite clay-kitosan Nanocomposite Matrix. *Journal of Bio*sensor–Bioelectronics. 22, 816–821.
- Fuierer, M., Bowman, R.S., Kieft, T.L.. (2001). Biodegradation of Toluene Sorbed to Surfactant-Modified Zeolite, *Proc. Sixth International Symp. on In Situ and On-Site Bioremediation*. 4-7 June 2001. San Diego, CA.
- Günister, E., Pestreli, D., Ünlü, C.H., Atıcı, O., Güngo'r, N. (2007). Synthesis and Characterization of Kitosan-MMT Biocomposite Systems. *Carbohydrate polymers*. 67, 358-365.
- Longhinotti, E., Pozza, F., Furlan, L., Sanchez, M.N.M., Klug, M., Laranjeira, M.C.M., Favere, V.T. (1998). Adsorption of Anionic Dyes on the Biopolymer Chitin. *Journal Braz. Chem. Soc.* 9 (5). 435–440.
- Matsumiya, H., Masai, H., Terazono, Y., Iki, N., Miyano, S. (2003). Chelating Adsorbent for Heavy Metal Ions Prepared by Loading Anion-Exchange Resin with Thiacalix (4) arenetetrasulfonate. Bulletin of the Chemical Society of Japan. 76.133-136