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Abstract

Obstacle detection, localization and occupancy map reconstruction are essential
abilities for a mobile robot to navigate in an environment.

Solutions based on passive monocular vision such as Simultaneous Localiza-
tion And Mapping (SLAM) or Optical Flow (OF) require intensive computation.
Systems based on these methods often rely on over-sized computation resources
to meet real-time constraints. Inverse Perspective Mapping allows for obstacles
detection at a low computational cost under the hypothesis of a flat ground
observed during motion. It is thus possible to build an occupancy grid map by
integrating obstacle detection over the course of the sensor.

In this work we propose hardware/software system for obstacle detection, lo-
calization and 2D occupancy map reconstruction in real-time. The proposed
system uses a FPGA-based design for vision and proprioceptive sensors for
localization. Fusing this information allows for the construction of a simple
environment model of the sensor surrounding. The resulting architecture is a
low-cost, low-latency, high-throughput and low-power system.
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Chapter 1

Introduction

Making a robot see was something in higher difficulty levels at the mid-twentieth
century. After fifty years, researchers have achieved outstanding theoretical and
practical successes. A broad field, called Computer Vision, has emerged as a
discipline strongly affiliated to mathematics and computer science. Great progress
has been achieved in the description of the way the appearance of objects changes
when viewed from different viewpoints, and the expression of these changes as
functions of objects shape and camera parameters. In the field of geometric
computer vision, good math methods were introduced to explain the relations
between objects in images and objects in world. On the practical side, we can
cite the possibility of guiding a car through regular roads, recognition of road
signs, pedestrian detection, forward collision warnings, vision guided robots (VGR)
system, and many other applications demonstrated around the world. These
achievements wouldn’t be realized without sophisticated mathematical methods.

Not only are computer vision realizations grateful to mathematical algorithms,
but also to the emergence of powerful, low-cost, and energy-efficient electronics.
Every day we interact with many tiny computers. These small chips are the
infrastructure of our modern world. An embedded system merges different kinds of
devices (mechanical, electrical, chemical, ...etc) into one small computer in order
to perform dedicated functions. Embedded systems are every where, in our homes,
our phones, our cars, our cities, and even embedded in our bodies [Harris 2015].
Hence, these small devices are shaping our world today. Nowadays, embedded
systems solutions become more useful and cost effective, and growing consumer
interest in robotics.

With these tiny chips, it has become possible to integrate practical com-
puter vision capabilities into embedded systems. The term "Embedded vision"
refers to the use of computer vision in embedded systems [Dipert 2014b]. This
topic is the subject of intensive ongoing research and development. The main
purpose of embedded vision research is to adequate between desktop prototyping
of vision algorithms and operational embedded systems environments.

Today, embedded vision creates a lot of opportunities in the markets in which it
is used [Bier 2013], [Alliance 2016]. For example, Kinect video game controller
is considered one of the fastest-selling electronic products. This product takes
advantage of embedded vision to track users movements without the need for
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hand-held controllers, makes video games accessible to all people [Bier 2013],
[Bier 2011]. Another interesting application of embedded vision is video content
analysis which can generate and organize video contents.

In robotics, the most of successful applications are based on embedded vi-
sion technology. It is commonly used to guide robots during navigation tasks,
perform quality control, assemble automotive, to name a few [Quevedo 2012],
[Dopplinger 2012]. Another interesting application is the use of embedded vision
in surgery and healthcare [Hartford 2013]. Through mobile phone applications,
functions like monitoring skin lesions for danger signs can be successfully performed.

Embedded vision based security applications is considered as a promising
technology in the security market [Dipert 2014b], [Fularz 2015]. Vision systems
are deployed in airports for surveillance tasks. The improvements in hardware
platforms (processors, sensors) and algorithms allow to perform sophisticated
surveillance applications, such as alert generation when an object is leaved or
removed, reading vehicle license plate, .....etc.

In automotive area, automotive safety becomes one of the most exciting
topic today. ADAS (Advanced driver assistance systems) systems based on
embedded vision are mainly used to provide different technologies, including
objects (pedestrian and vehicle) detection, lane detection and traffic sign recog-
nition [Dipert 2014a],[Toyota 2016]. One of the promising implementations of
embedded vision is the driver monitoring. The purpose of this technology is
to monitor the driver’s condition to ensure alerts while driving, by analyzing
head, eye, and body movements [Dipert 2014c], [Routray 2011]. Parking assistance
is another embedded vision application which is widely deployed in modern vehicles.

Let’s cite Augmented reality which uses embedded vision technology to view
computer-generated graphics in physical real world [Meier 2014], [Wilson 2014].
Due to the emergence of powerful embedded platforms, complex vision algorithms
can be performed by mobile devices providing a sufficient processing performance
at low cost and power consumption.

Embedded vision technology can touch every aspect of daily lives. The inte-
gration of vision capabilities (incorporating gesture recognition, face detection,
facial recognition and eye tracking, ....etc) into existing products will make these
products more responsive and easier to use. The market research of embedded
vision is highly grown during last years. Research departments of large companies
predict a good annual revenue growth due to embedded vision applications.
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Figure 1.1: A typical transport robot, and an indoor environment model taken from
[Neobotix 2016]

1.1 Thesis Context

The general context of this thesis is autonomous visual navigation of mobile robots
in indoor environments. Intended applications are transport robots in factories
or logistics centres. In research, the focus is in the exploration of unknown
areas of buildings, and static environments modeling. For this purpose, different
methods have been developed to achieve time-efficient exploration [Wettach 2016],
[Arndt 2016]. For example, large ground floors in an office building can be detected
and mapped, thus making easy to accomplish transport or monitoring tasks
automatically. Autonomous robots navigating in such environments can be used to
produce reliable exploration systems with reduced total cost, providing a complete
description of the environment. Figure 1.1 shows a robot kit mainly used as a
transport system for different scenarios in indoor environments. Such robots could
react to the changes of its surrounding without danger of collision. Additionally,
they are capable to autonomously explore unknown areas and build an occupation
map. This latter serves as a reference for transport tasks.

Another important application is the use of indoor mobile robots for the
care of elderly. For example, when an emergency situation is detected, a fast
navigation (reduced latency, high throughput) in a typical apartment environment
is required to perform emergency procedures or to support specific household tasks.
Hence, the response time of a robot in such situations is a an important problem.
With the help of visual navigation methods, the implementation of service tasks
can be more efficient.

LAAS has participated to several projects devoted for indoor navigation.
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Figure 1.2: On the left, Robot’s and eldercare’s future taken from [Smith 2013].
On the right taken from [Aging 2015]

Different hardware-software designs and implementations of well-known vision-
based obstacle detection and identification have been developed. For example,
an obstacle detection system was developed in the PhD of M.Ibarra Manzano
[MANZANO 2011]. The system is performed using a belt of micro-cameras
mounted on a robot. Obstacle detection task is accomplished by a method based
on pixel classification from color and texture descriptors.
One of the key aspects of development is hardware prototyping on FPGAs (Field
Programmable Gate Arrays) for which the algorithm-level and hardware-level
optimizations are prevalent. As throughput and latency are regarded as limiting
factors for the reactivity of robots, hardware prototyping on FPGAs is used to
produce high throughput and low latency architectures. Different algorithms and
architectures based on FPGA were developed in the PhD of D.Botero Galeano
[Botero-Galeano 2012] for obstacle detection, and to perform localization using
multi-spectral cameras.

This thesis is developed in the context of CAMERA BELT project. The
project aims to build an embedded vision system multi-camera for obstacle
detection and localization of a robot navigating in indoor environments. In this
project, the hardware architecture will include 8 camera sensors mounted on a
robot and connected to FPGAs. The 8 images acquired from different viewpoints
allow to build a 2D occupancy map, thus making easy to accomplish navigation
task in indoor environments. The complexity resulting from the use of an FPGA
target to process multiple images acquired at the same instant imposes different
constraints about the choice of obstacle detection method. This latter must be
simple and reliable when it is implemented in a hardware architecture.
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1.2 Thesis Objectives

The objective of this thesis is to design a real time vision system for a robot
navigating in indoor environments. The proposed system is devoted to the
obstacle detection and localization problems. Additionally, the designed system
must facilitate navigation task by building a 2D occupancy map that represents
obstacles localization in the ground plane.

In this thesis, we will propose the system parts, and design a hardware module for
each part of the system (for image acquisition, distortion correction, homography
transformation, Inverse Perspective Mapping, obstacles segmentation, obstacles
localization and 2D occupancy map reconstruction).

In order to perform our system, we set the following objectives:

• Development and validation of an obstacle detection method based on visual
information. A hardware module is then designed and implemented on FPGA.

• Development and validation of a method for obstacles segmentation. The
method is then modelled in a hardware design and implemented on FPGA.

• Proposing a method for obstacles localization in the ground plane.

• Development and validation of the proposed method. A hardware module is
then designed to accomplish the localization task.

• Development and validation of a method for free space detection based on
localization module results. A hardware module is then deigned and imple-
mented on FPGA.

• Development and validation of a method to build a 2D occupancy map that
represents obstacles localization in the ground plane.

So, Our contributions are as follows:
In methodology level:

• Proposing a method for obstacles localization in the ground plane.

• Building a 2D occupancy grid map based on obstacles localization module
results.

In hardware level:

• the hardware design of homography transformation is optimized, distortion
correction and homography transformation are merged in one hardware mod-
ule.

• A hardware architecture is designed for obstacles segmentation task. Differ-
ent hardware modules are developed to perform Gaussian filter, binarization
based on Otsu’s algorithm, and morphological operations.
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• Two hardware modules are proposed for obstacles localization in the ground
plane. The first module is an implementation of a method proposed in the
state of art while the second module is an implementation of our proposed
method.

• A hardware architecture is designed for free space detection based on a method
that exists in the state of art.

• For rapid system prototyping, a co-design hardware/software is developed
using Xillybus core for 2D occupancy grid map reconstruction.

1.3 Document Organisation

The thesis is composed of six main chapters introduced as follows:

• Chapter 2 introduces a brief presentation of obstacle detection methods that
exist in the state of art. We present sensor types which can support obstacle
detection methods. We then present a summary of obstacle detection methods
based on visual informations.

• Chapter 3 presents the theoretical background for the different algorithms
evaluated during this thesis.

• Chapter 4 explains, by and large, different embedded systems types. A brief
presentation is introduced for different embedded systems platforms. Then,
we explain in detail the embedded systems based on FPGAs architecture as
our proposed architectures are based on FPGAs targets.

• Chapter 5 introduces our contribution to the system methodology. Obstacles
localization method, and 2D occupancy grid map reconstruction are described.

• Chapter 6 presents the three proposed architectures and the hardware mod-
ules of each proposed system. We describe the design properties for each
hardware module coded in VHDL, and the modules integration in the FPGA
architecture.

• Chapter 7 presents the results of the proposed architectures. Comparison
to the state of art and the software implementation of the methodology are
included in this chapter.

Finally, we present a conclusion and the perspective of thesis work.
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Obstacles Detection Methods

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Obstacle Detection based on Sonar and Radar sensors . . . 8

2.3 Obstacle Detection based on Lidar sensors . . . . . . . . . . 9

2.4 Obstacle Detection based on vision sensors . . . . . . . . . . 10

2.4.1 Methods based on Optical Flow . . . . . . . . . . . . . . . . . 10

2.4.2 Methods based on Stereo vision . . . . . . . . . . . . . . . . . 12

2.4.3 Methods based on Pattern Recognition . . . . . . . . . . . . 15

2.4.4 Methods based on Inverse Perspective Mapping . . . . . . . . 16

2.4.5 Methods based on active vision sensors . . . . . . . . . . . . 17

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1 Introduction

Obstacle detection is a fundamental ability for a mobile robot to operate in a
cluttered indoor environment and is essential to perform basic functions like
obstacle avoidance and navigation. Traditionally, autonomous navigation systems
are equipped with a set of sensors. By interpreting sensors readings, the required
informations about obstacles distances in the environment around the robot are
extracted. This allows to build a map that represents the occupied and free space
of the environment around robot. This is a long studied problem in robotics and a
lot of different methods are used to perform this task.

In this chapter, the existing architectures used for obstacle detection and 2D
occupancy grid maps reconstruction are introduced. The first part presents
obstacle detection systems based on SONAR (SOund Navigation And Ranging),
RADAR (RAdio Detection And Ranging), and LIDAR (LIght Detection And
Ranging) sensors. The second part will introduce obstacle detection methods
based on vision sensors.



8 Chapter 2. Obstacles Detection Methods

Figure 2.1: Detecting parking space using a system based on Radar sensors (taken
from [Schmid 2011]).

2.2 Obstacle Detection based on Sonar and Radar sen-
sors

Sonar based methods were used in very early research. Thanks to the low cost
of ultrasonic sensors, and their good sensing range they have been widely used
for obstacle detection and avoidance systems. Sonar methods are based on the
computation of time differences between the emission and reception of a ultrasonic
signal to compute the distance to a reflective surface. However, data measurements
based on ultrasonic sensors are affected by air temperature and humidity. In
addition, spatial position detection for obstacles edges is limited by obstacle
distances and the angle between obstacle surface and the acoustic axis. Therefore,
they prove to be unreliable and give imprecise depth information with low spatial
resolution.

Radar based systems works by measuring properties of the reflected radio
signals. In [Schmid 2011], a system based on three standard short range radar
sensors is used in order to determine parking space in an indoor environment as
pictured in 2.1. The drawbacks of Radar systems are that they provide noisy
data with low-accuracy. In addition, the high angular uncertainty of radar sensors
leads to decrease the accuracy in produced maps. So, Radar systems alone are
insufficient to produce accurate terrain traversability maps. Recently, many
researches focus in the fusion between these sensors and other active sensors in
order to produce 2D occupancy grid maps with high resolution as depicted in
[Ahtiainen 2015].
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Figure 2.2: Argo robotic platform equipped with Radar and Lidar sensors in
[Ahtiainen 2015].

2.3 Obstacle Detection based on Lidar sensors

Using Lidar devices for obstacle detection and reconstruction of 2D free space
maps has been a standard in robotics for many years. LiDAR works by analyzing
the reflected light when objects are illuminated by a laser beam. LiDAR sensors
compute the distance from an obstacle by measuring the round-trip time of flight
of an emitted pulse (or modulated wave) of light.

LiDAR sensors provide an accurate information, works independent of the
ambient light, and offer detailed high rate data of the sensor proximity. This type
of sensor gives a 2D information when used in planar or can be used to generate
a 3D cloud in scanning mode. Compared to data received from vision sensors,
data received from LiDAR scanners is less noisy, more accurate, long range,
and precisely show the free space of a robot’s environment. However, LiDAR
scanners are generally expensive which makes them not suitable for low-cost robotic.

These sensors are also prone to mechanical damages because of their mirror
assembly, and provide a performance with low level of vertical resolution. LiDAR
may also generate a wrong estimate for black and shiny surfaces [Boehler 2003],
and can’t be compared to photogrammetric data when a high level of accuracy is
required.
Beside, LiDAR measurements suffer from the lack of a rich information about an
obstacle due to the sparse nature of data. Compared to vision sensors, LiDAR
grids are less informative and more ambiguous.

A simple and practical system based on the 2-D LIDAR LMS511 from SICK is



10 Chapter 2. Obstacles Detection Methods

Figure 2.3: 2D LiDAR SICK LMS511 taken from [Peng 2015].

introduced in [Peng 2015] and shown in figure 2.3. The proposed system uses an
algorithm designed for obstacle detection and avoidance.
3D LIDAR scanners allow to build 3D maps of a robots environment. In
[Shinzato 2014], a sensor fusion-based solution is proposed for obstacle detection.
The proposed approach is based on perspective images acquired from a single
camera and a 3D LIDAR.

2.4 Obstacle Detection based on vision sensors

Vision-based methods are becoming increasingly popular due to the dramatic cost
reduction of cameras and associated computing architecture. Camera sensors also
provide a rich information that can be used for a variety of heterogeneous tasks
(obstacle identification, localization, tracking ...). A good vision-based obstacle
detection system must be capable of detecting and localizing obstacles at high
speed and low latency, avoiding false positive, and minimizing impact on overall
system performance (system speed and power consumption).

Vision based algorithms like Optical Flow or SLAM have been widely adopted in
robotic applications for obstacle detection task. However, these aforementioned
algorithms are regarded as computational intensive methods. The low-cost and
richness of the sensor comes with the needs of complex algorithms to extract
information from the scene which can make them impractical.

In this section, a brief summary is given for obstacle detection techniques
based on optical flow, stereo vision, pattern recognition, and inverse perspective
mapping (IPM). These methods are performed using passive vision sensors. Then,
techniques based on active vision sensors are introduced.

2.4.1 Methods based on Optical Flow

Optical Flow (OF) is a popular technique which is used in many areas
[Beauchemin 1995] such as : object detection and tracking, image dominant
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Figure 2.4: Obstacle detection approach based on optical flow method (taken from
[Enkelmann 1991]).

plane extraction, motion detection, robot navigation and visual odometry. OF
is based on the local motion of image elements in image sequences. It aims at
computing the motion between two sequential frames. The estimation of optical
flow vectors can be done using different approaches divided in two classes: features
based methods [Horn 1980], [Smith 1997], [Hildreth 2003], [Castelow 1988] and
analytical methods [Enkelmann 1991], [Nagel 1987], [Nagel 1983], [J.Heeger 1988].

The figure 2.4 illustrates the obstacle detection procedure based on the estimation
of optical flow vectors. This approach consists of three steps [Enkelmann 1991].

1. The local motions (OF vectors) for each pixel of a given grid are measured
from the image sequence.

2. The prediction of the optical flow model from the measured camera motion is
performed.

3. The detection of the obstacles is then performed by comparing the optical
flow vectors extracted from the images and the optical flow vectors estimated
from the motion.

The obstacle detection based on optical flow requires a great computational
effort because of the dense sampling it assumes. There is a large work in the
literature presenting new solutions for efficient computation and high accuracy.
The presented methods are compared to other approaches in terms of computing
complexity and accuracy [Silar 2013]. As these methods aim at solving accuracy
and computation complexity, the overall performance of a system based on such
approaches tends to be lower in terms of real time requirements(frame-rate, laten-
cies). In most cases, OF is a primary phase in more complex vision algorithms.
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Figure 2.5: Epipolar Geometry [Hartley 2004] [Hoiem 2012]
.

Many considerations must be taken into account for the available computing
resources.

Recent improvements of the computation efficiency have been proposed for
optical flow methods by using newly available powerful computing platforms.
Because software implementations of this kind of algorithms are not effective
enough, some studies have proposed solutions based on dedicated hardware
architectures. In [Bako 2015], a real time hardware implementation of the optical
flow computation is proposed using an embedded FPGA based platform.

2.4.2 Methods based on Stereo vision

Thanks to the low cost of passive vision sensors, it is possible to integrate two
camera to produce stereo vision systems. A system based on stereo vision sensors
can extract 3D features from the perceived scene given some requirements on its
texture and lighting.
Each camera provides a 2D representation of the environment. By processing two
2D images, one can map each 2D point represented in image coordinate systems
to its correspondence in the 3D world coordinate system. The epipolar geometry
provides some constraints on the 2D observations given the two camera poses.

Let us introduce some basic notations used in epipolar geometry as shown in
figure 2.5.

• The baseline is a line connecting the two camera centers O and Ò.

• The epipoles are the intersections of the baseline with the image planes in (e)
and (è).
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• An epipolar plane is a plane containing the baseline OÒ and a given 3D point
X.

• The epipolar lines are the intersections of a given epipolar plane with the
image planes in (l) and (l̀).

The camera matrices containing the intrinsic parameters of the two cameras are
supposed known (K and K̀). A 3D scene point (expressed in camera coordinate
systems) X (resp. X̀) is projected to the first (resp. second) camera to 2D pixel
coordinates x (resp. x̀) as follows:

x = K.X ; x̀ = K.X̀ (2.1)

The first camera’s coordinate system is chosen as the world coordinate system.
R and T being the rotation and translation between the two camera frames, the 3D
scene point X represented in the first camera coordinate system is related to X̀ in
the second camera system as follows:

X = RX̀ + t (2.2)

The epipolar constraint enforces that the points X, X̀ and the camera optical
centers O and Ò lie in the same plane:

X.[t× (RX̀)] = 0 (2.3)

This is rewrote in Eq. 2.4 introducing the Essential matrix E [Hoiem 2012]:

XTEX̀ = 0 (2.4)

This relation can then be expressed in terms of image coordinates using the
Fundamental matrix F :

F = K−TEK̀−1 (2.5)

xTFx̀ = 0 (2.6)
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Figure 2.6: Results of the obstacle detection system based on V-disparity in
[Labayrade 2002]. The disparity (resp. V-disparity) map is shown on the left (resp.
right). The 3D points on the ground lie in a line in the V-disparity map whereas
the 3D points on the obstacle (car) do not.

The stereovision configuration allows to constraint possibly matching points be-
tween the two images. It reduces the correspondence problem from two dimensions
to one. The images from the two cameras can be rectified to obtain synthetic images
that would have been acquired in a particular configuration where the epipolar lines
are aligned with the horizontal lines of the image planes. In theese rectified images,
the matching between pixel can be achieved individually on each line and a single
value for each pixel indicates the matching pixel on the same lie in the other image.
This value d is named disparity and is related to the depth of the corresponding
3D points in the scene[Miled 2007]. A disparity map is an image where each pixel
encodes the corresponding disparity value.
The obstacle detection based on stereo vision has been studied in recent years. In
this class of methods, one can cite "The V-disparity" approach in [Labayrade 2002]
(see figure 2.6). A detection based on disparity map is performed to extract verti-
cal objects on the scene. In [Ganoun 2009] (see figure 2.7), the authors propose to
segment the ground plane and remove it from the disparity map. In [Tarel 2007],
the ground is segmented using 3D reconstruction methods.

Different obstacle detection systems were developed in occupancy grid maps
framework. In[Badino 2007], three models for occupancy grid map representation
based on stereo measurements are presented.
In[Oniga 2010], Digital Elevation Map (DEM), a height based representation, is
performed by transforming 3D stereo data measurements into a rectangular digital
grid. The authors make use of two classifiers in order to mark DEM cells as road
or obstacles. The proposed system is supposed to allow for real time execution due
to specific optimizations applied to the software implementation.
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Figure 2.7: Tracking multiple targets using a system based on stereo vision (taken
from [Ganoun 2009]).

In [Oniga 2015], a method based on a fusion between laser range finder and stereo
vision is introduced. The authors claim that the proposed approach is simple and
efficient in terms of computational resources, but the performance is limited by the
accuracy of the intra-sensor calibration.

2.4.3 Methods based on Pattern Recognition

In the field of computer vision, the problem of linking semantics between high level
concepts and low level features has been studied. Pattern recognition is a branch
of machine learning that focuses on the recognition of patterns and regularities
in data [Bishop 2006]. Classification methods used in computer vision are often
based on the extraction of features that may include color, texture, shape, or
spatial relation informations. Recently, different sophisticated feature extraction
techniques have been proposed. An obstacle detection system based on color
and/or texture feature algorithms requires an important amount of calculations.
Some optimizations have been proposed in [Cervantes 2008] in order to reduce
computation time by performing a color-based segmentation before applying a
region based classification. The proposed approach is however not suitable for
all applications. In [Manzano 2010], a hardware based architecture based on
texture-color classification is proposed in order to detect specific objects on the
scene. Classifier parameters are learnt offline from ground examples. Hence, the
proposed system is able to detect obstacles on indoor environment as shown in
figure 2.8.

Image features based on HOG (Histogram of Oriented Gradient) [Dalal 2005] and
SIFT (Scale Invariant Feature Transform) [Lindeberg 2012], [Lowe 1999] have been
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Figure 2.8: Obstacle detection based on terrain classification (taken from
[Manzano 2010]).

widely used. Support vector machine (SVM) classifier [Shawe-Taylor 2000] with
these features becomes one of the popular techniques used for obstacle detection. In
[Lee 2015] an approach is introduced in order to reduce computing time of (SVM)
by reducing the dimension of HOG feature. Authors claim that they can speed-up
SVM classifier for vehicle detection by about three times while maintaining the
original detection performance [Lee 2015].

2.4.4 Methods based on Inverse Perspective Mapping

Inverse perspective mapping IPM is a geometrical transformation where an initial
image is used in order to produce a new image for the same scene from a different
position. This method is essentially based on the angle of view of the objects in
the scene and their distances from camera due to the perspective effect.

IPM transformation is influenced by the camera extrinsic parameters (posi-
tion and orientation) and intrinsic parameters (focal, principal point and optical
distortions). This transformation is computed for the ground plane in the scene.
A subtraction is performed for each pixel between the transformed previous and
current (acquired at the new position) images.

The obstacle detection based on IPM approach is proposed by [Bertozzi 1998b].
This method can be performed either by two cameras (Stereo IPM: SIPM) or one
camera (Mono IPM: MIPM).The figure 2.9 shows results of obstacle detection
based on IPM in [Bertozzi 1998b] where SIPM is performed. The two acquired
images (a), (b) are transformed to remapped views of the scene (c), (d). Subtraction
and threshold segmentation are performed between remapped images in (e) and
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Figure 2.9: IPM method for obstacle detection in [Bertozzi 1998b]. The two ac-
quired images (a), (b) are transformed to remapped views of the scene (c), (d). Sub-
traction and threshold segmentation are performed between remapped images in
(e) and detected obstacle are shown in (f) (taken from [Bertozzi 1998b]).

detected obstacle are shown in (f).

2.4.5 Methods based on active vision sensors

Systems based on 3D active sensors have been adopted to solve traditional
problems in vision systems such as tracking, recognition and feature extraction.
An RGB-D sensor like Kinect produces synchronized color images and depth
images [Totilo 2010]. Kinect makes use of an infrared (IR) projector which emits a
textured light pattern. The disparities measured between expected and observed
patterns acquired by a monochrome IR camera permit the estimation of the depth
value for each pixel.

Another way of obtaining the depth image is to use Time-of-Flight (TOF)
sensors [Castaneda 2011]. Their principle is to measure directly the distance from
the camera to the scene for each pixel through the duration of the light round trip
travel, the light being emitted by a source located on the camera.

In [Lee 2012], an obstacle detection system based on 3D-sensor includes two
stages pictured in figure 2.10:

• Edge detection is firstly performed in the depth image in order to distinguish
different objects. This process allows to segment objects in the scene as similar
values of intensities in depth image may belong to the same object.

• The detection of the obstacles is performed by using the properties of the
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Figure 2.10: Obstacle detection system based on active vision sensor in [Lee 2012].
The system is composed of two stages. The first stage is object segmentation (Edge
detection and depth layers analyzation). The next stage is obstacle extraction
(taken from [Lee 2012]).

detected objects. The mean and standard deviation of depth values is com-
puted for each object. As the distribution of pixels corresponding to floor in
the depth map is scattered, its standard deviation is larger than those of the
other objects, hence the floor object can be removed from the other detected
objects.

2.5 Conclusion

In this chapter, different methods for obstacle detection were presented. A robot
that uses optical flow based methods can find features (corners and edges) of ob-
stacles. However, the algorithms that use optical flow encounter difficulties in large
non-textured areas and for edges that suffer from the aperture problem. Obsta-
cle detection based on stereo vision methods is widely used in robotics. However,
stereo vision methods suffer from the long computation time required to compute
stereo correspondences. In addition, the 3D reconstruction is also computationally
prohibitive. Classification methods become increasingly popular. However, these
methods need a prior knowledge about the environment. In addition, obstacle de-
tection based on classification methods require a great computational load. Vision
approaches based on IPM allow the detection of obstacles under the hypothesis of
flat ground, this method is based on the perspective effect perceived from a scene
when observed from two different points of view. This method is simpler in terms
of computation load when it is compared to other methods. IPM method does not
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require textured areas when it is compared to optical flow. IPM method doesn’t
need the computation correspondences between two sequential images for detecting
obstacles. In addition, it doesn’t require a prior knowledge about the environment
when it is compared to classification methods. However, IPM method requires an
accurate camera calibration. Additionally, the method could encounter problems
with shiny surfaces and objects shadows.
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3.1 Introduction

In this chapter, the concepts and operators to define a vision-based obstacle detec-
tion method are introduced.
The proposed system is based on inverse perspective mapping for obstacle detec-
tion proposed in [Bertozzi 1998b] (see Figure 3.1). Since this method is based on a
geometric transformation for the ground plane, the pinhole camera model is firstly
introduced. Then a brief overview of the theory behind IPM is given. IPM only
allows to compute a pixel-level classification of the image, hence a method for ob-
stacle segmentation and post-processing operators are then presented. An obstacle
localization method proposed by the authors of IPM method [Bertozzi 1998b] is
finally described in this chapter.
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Figure 3.1: General overview of the proposed approach.

3.2 Pinhole camera model

A camera projects a 3-D environment to a 2-D image. The pinhole camera model
achieves a central projection to a 2-D plane through an optical center (pinhole
aperture). This model is widely used in computer vision due to its simplicity as
discussed below. Some definitions of the different coordinate frames follows:

Let ωim be a 2D Euclidean coordinate frame attached to the image plane of
the camera with the culumn and line axes respectively denoted ωimu and ωimv.

Let ωcam be a 3D Euclidean coordinate frame whose origin is the center of
projection of the pinhole camera. Let ωcamx and ωcamy be the first 2 axes of this
coordinate frame respectively parallel to the ωimu and ωimv axes of the image
plane. The ωcamz axis is thus orthogonal to the image plane.

Let p̃i =
[
pu pv pw

]T
be a projective point in projective space P 2. In

that projective space, points can either represent positions or directions in the
euclidian space R2 using the coordinate frame ωim, depending on the value of
its last component pw. If pw is equal to 0, p̃i represents a direction

[
px py

]
.

Oppositely, if pw is not equal to 0, p̃i represents a position
[
pu/pw pv/pw

]
.

Considering that p̃i defines a position
[
u v

]
, it is possible to express it up to a

scale factor as:

p̃i =

s.us.v
s

 (3.1)
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Let ˜Pcam =
[
Pcamx Pcamy Pcamz 1

]T
be a point in projective space P 3

corresponding to the position
[
Pcamx Pcamy Pcamz

]
in euclidian space R3 using

the coordinate frame ωcam.

3.2.1 Intrinsic parameters

As pictured in figure 3.2, the center of projection is known as the camera or optical
center. The line from the camera center perpendicular to the image plane is known
as the principal axis or principal ray of the camera. The point where the principal
axis meets the image plane is known as the principal point. Let K be the camera
calibration matrix as defined in equation 3.2. This matrix contains the different
intrinsic parameters: fu and fv are the focals in pixel unit and pu and pv are the
principal point coordinates in the image plane in pixel unit.

K =

fu 0 pu

0 fv pv

0 0 1

 (3.2)

The focal parameters in pixel unit are obtained from the focal f (in metric unit)
and the dimensions of the pixel in u and v directions eu and ev (in metric unit per
pixel), thus fu and fv differ if the pixels are not square:

fu = f.e−1
u fv = f.e−1

v (3.3)

The projection of a 3D point ˜Pcam to the image plane of the camera is obtained
by the equation 3.4. The 3×4 matrix [I|0] is used to ensure size consistency between
K and ˜Pcam and its effect is to omit the last component of ˜Pcam. This omission
renders the fact that all the 3D points along a line passing through the optical center
(even at infinity) are projected to the same location in the image plane. Thanks to
the homogeneous parametrization of the points, the central projection is expressed
as a linear mapping between the homogeneous coordinates. This simplicity is the
main cause of the wide use of the pinhole camera model.

p̃i = K.[I|0]. ˜Pcam (3.4)

3.2.2 Extrinsic parameters

In practice, the 3D points in space are often expressed in a different Euclidian
coordinate frame known as the world coordinate frame ωω. These two coordinate
frames are related via a rigid transform composed of a rotation and a translation
as pictured in figure 3.3.

Let Pω be the coordinates of a 3D point in the world coordinate frame, and Pcam

denotes the same point in the camera coordinate frame. C being the coordinates
of the camera center in the world coordinate frame, and R being a 3 × 3 rotation
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Figure 3.2: Pinhole camera model.

matrix which denotes the orientation of the camera coordinate frame. The equation
3.5 relates Pω and Pcam:

Pcam = R.(Pω − C) (3.5)

Considering homogeneous coordinates, the equation 3.5 can be rewritten as:

˜Pcam =
[
R −R.C
0 1

]
.P̃ω (3.6)

The Eq. 3.4 and Eq. 3.6 can be combined to obtain directly the projection of a
3D point expressed in the world coordinate frame:

p̃i = K.R.[I| − C].P̃ω (3.7)

The projection matrix P̃ is used to express the projection of P̃ω to p̃i:

p̃i = P̃ .P̃ω (3.8)

If one writes t = −R.C, the projection matrix expression is:

P̃ = K.[I|0].
[
R t

0 1

]
= K.[R|t] (3.9)

3.2.3 Radial Distortion

The pinhole camera model assumes that a world point, its image and the optical
center are collinear. Also, the world lines are mapped to lines in the images
[Hartley 2004]. For real cameras made of lenses, this linear model may not hold.
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Figure 3.3: Extrinsic transformation.

The most important deviation is induced by radial distortions. They can induce
"barrel" or "pincushion" distortion as pictured in figure 3.4. The modeling of the
distortions aims at being able to correct the images in order to obtain images that
would have been acquired without distortions, ie. where straight lines of the scene
are imaged to straight lines.

Different models exist to model the distortions. A sixth order model is used
in the next equations. This model is the one used in camera calibration with
OpenCV [OpenCV 2014].

This model applies in the normalized image plane, which is a plane located
at ωcamz = 1 using metric unit for its axes ωnx and ωny.

A point location
[
xdistorted ydistorted

]
is mapped to

[
xcorrected ycorrected

]
using

the following equations:

xdistorted = xcorrected(1 + k1r
2 + k2r

4 + k3r
6) (3.10)

ydistorted = ycorrected(1 + k1r
2 + k2r

4 + k3r
6) (3.11)

r2 = x2
corrected + y2

corrected (3.12)

k1, k2, k3 are the radial distortion coefficients. Higher-order coefficients are not
considered in the implementation of the proposed hardware architectures because
the added computational complexity is not justified.

In order to apply the radial distortion correction to the image, it is necessary
to:

• Sample each pixel location of the corrected image to generate[
ucorrected vcorrected 1

]T
.
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Figure 3.4: Example of the "barrel" distortion correction.

• Get the corresponding location in the normalized image plane by multiplying
by the inverse of the K matrix (see Eq. 3.13).

xcorrected

ycorrected

1

 = K−1.

ucorrected

vcorrected

1

 (3.13)

• Apply Eq. 3.10 and 3.11 to obtain the location of the corresponding point
with distortion.

• Get the corresponding location in the image plane by multiplying by the K
matrix (see Eq. 3.14).

udistorted

vdistorted

1

 = K.

xdistorted

ydistorted

1

 (3.14)

• To determine the pixel value associated to the non integer position[
udistorted vdistorted

]T
, one can achieve different kind of interpolation (nearest

neighbor, bilinear...).

3.3 Inverse Perspective Mapping

The Inverse Perspective Mapping is a technique based on a geometric trans-
formation applied on frames acquired with different point of view (either using
multiple camera, or frames acquired at different time). This method belongs to the
resampling effect family; an initial image is transformed to generate a view from a
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Figure 3.5: IPM method applied to robot.

different position.

Taking advantage of the perspective effect, this generated image is compared
to a real image acquired from the new position, this comparison generates high
differences for object sticking out of the ground plane. Detecting and localizing
these differences in the ground plane allows to compute the object position relative
to the camera.

In Mono Inverse perspective mapping [Botero 2012], a single camera is used,
two frames are acquired at distinct instants tn and tn+1, as the robot moves.
Odometry sensors are used as input to compute the homography matrix.

Homography matrix encodes the effect on the images of the relative motion
of the robot between the two positions for a given plane in the scene which is the
ground plane in our case. The camera is considered already calibrated; i.e., it’s
intrinsic parameters (focal, principal point and distortion coefficients) have been
determined off line. Thanks to this knowledge, optical distortions can be removed
and it is possible to consider the simple Pinhole camera model to perform IPM.
A 3D point of the scene (Pcamx, Pcamy, Pcamz) in the world frame is projected to
pixel coordinates (u ,v) in the pinhole image as already shown in the equation 3.9.
It can be rearranged as follow:

susv
s

 = KR

Pcamx

Pcamy

Pcamz

 +Kt (3.15)
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K is camera intrinsic matrix and (R, t) encodes the rotation and translation from
the world frame to the camera frame. These former are named the camera extrinsic
parameters. As IPM is intended to detect the ground pixels, the world frame which
is the robot frame (see figure 3.5) is chosen such as the PcamxPcamy plane is the
ground plane. Therefore, for 3D points in the world frame laying in the ground
plane, Pcamz = 0 is applied to Eq. 3.15:

susv
s

 = K(R

Pcamx

Pcamy

0

 + t) (3.16)

Applying Algebraic properties to Eq. 3.16:

susv
s

 = K
[
r1 r2 t

] Pcamx

Pcamy

1

 (3.17)

In the first acquisition, the robot frame is considered as the world frame. Therefore,
each pixel coordinates are represented Eq. 3.18:

s1u1
s1v1
s1

 = K
[
rc

r1 rc
r2 tcr

] Pcamx

Pcamy

1

 = H1

Pcamx

Pcamy

1

 (3.18)

In the second acquisition, the position of the robot frame origin in the second
acquisition is represented in the robot frame of the first acquisition Eq 3.19:

s2u2
s2v2
s2

 = K
[
rc

w1 rc
w2 tcw

] Pcamx

Pcamy

1

 = H2

Pcamx

Pcamy

1

 (3.19)

The transformation (Rc
w, t

c
w) is computed from Eq. 3.20 as shown in the figure 3.5:

[
Rc

w tcw
0 1

]
=

[
Rc

r tcr
0 1

] [
Rmvt tmvt

0 1

]
(3.20)

From Eq. 3.18 and Eq. 3.19:



3.4. Obstacle segmentation 29

s2u2
s2v2
s2

 = H2H
−1
1

s1u1
s1v1
s1

 = Tipm

s1u1
s1v1
s1

 (3.21)
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Therefore, each ground point represented in the camera frame I1 and represented
with the coordinates (u1, v1) in the image frame will be presented in the camera
frame I2 with the coordinates (u2, v2) in the image frame. From Eq. 3.22:

H = Tipm = K
[
rc

w1 rc
w2 tcw

] [
rc

r1 rc
r2 tcr

]−1
K−1 (3.23)

The transformation Eq. 3.23 is only correct for ground points. Therefore, the
subtraction between Tipm[I1] and I2 will remove the ground points.

3.4 Obstacle segmentation

3.4.1 Gaussian filter

In the resulting image after IPM transformation, pixels of the ground plane have
low absolute intensity values while pixels of objects sticking out of the ground plane
have high intensity absolute values. Such image has a bimodal histogram; pixels
intensities will be clustered around two well-separated values(peaks). Hence, a
good threshold for separating these two groups can be found somewhere in between
the two peaks in the histogram. Thanks to Otsu’s algorithm which computes
threshold value from a histogram of bimodal image.

Before Otsu’s binarization is performed, Gaussian filter is applied to the re-
sulting image after IPM transformation in order to remove noise. As segmentation
methods are sensitive to noise, applying Gaussian Blur filter before Otsu’s bina-
rization aims to reduce noise and improve the results of Otsu’s algorithm.

Gaussian Blur is a type of image-blurring filter that uses a Gaussian func-
tion. The equation of a Gaussian function in two dimensions is:

G(x, y) = 1
2πσ2 e

−x
2+y2

2σ2 (3.24)
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Figure 3.6: Gaussian kernel coefficients. Reprinted from Gaussian kernel calcula-
tor. Retrieved November 2015, from http://dev.theomader.com/gaussian-kernel-
calculator/.

x denotes the distance from the origin in the horizontal axis, y denotes the distance
from the origin in the vertical axis. σ being the standard deviation of the Gaussian
distribution. This equation produces a surface whose contours are co-centric circles
representing the Gaussian distribution from the center point.

Gaussian smoothing is done by convolution. Since the image is stored as a
collection of discrete pixels, a discrete approximation kernel to the Gaussian
function is produced before executing the convolution. The kernel weights are
renormalized. Thus, the sum of all weights is one. The heaviest weight having the
highest Gaussian value is given to the original pixel while smaller weights are given
to neighbouring pixels.

The kernel used in the proposed system is a 3 × 3 kernel whose standard
deviation is σ = 0.8. Figure 3.6 shows the weights of such kernel.

3.4.2 Otsu’s binarization

In obstacle detection system, one of the important steps to extract obstacle pixels
is the segmentation of binary image and thresholding is a fundamental tool for
segmentation. Otsu’s thresholding [Otsu 1979] is known as a good method, this
method finds the optimal threshold by minimizing the mean square errors between
original image and the resultant binary image. In order to segment obstacle points,
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the image resultant from the Gaussian smoothing is segmented into two regions:
obstacle objects and background region. In general, the gray-level histogram is
normalized and regarded as probability distribution Eq. 3.25:

pi = ni

N
(3.25)

where N is the total number of pixels and ni is the number of pixels at level i, the
total number of gray levels is L. Pixels are classified into two classes background
and obstacle objects by a threshold at level k. The class probability ω0,1 is computed
as follows:

ω0 =
k∑

i=1
pi, ω1 =

L∑
i=k+1

pi (3.26)

The class mean µ0,1 is then expressed as follows:

µ0 =
k∑

i=1

ipi

ω0
, µ1 =

L∑
i=k+1

ipi

ω1
(3.27)

A threshold based on Otsu’s algorithm is computed from Eq. 3.26 and Eq. 3.27:

σ2
0(t) =

k∑
i=1

[i− µ0(t)]2 pi

ω0
(3.28)

σ2
1(t) =

L∑
i=k+1

[i− µ1(t)]2 pi

ω1
(3.29)

The desired threshold corresponds to the minimum value of the weighted within
class variance produced by Eq. 3.28, and Eq. 3.29. In practice, this problem of
searching the optimal threshold can be reduced to search a threshold that maximizes
the between-class variance which is computed as follows:

σ2
B = ω0ω1(µ1 − µ0)2 (3.30)

For quicker calculation and optimal performance in hardware implementation the
equation 3.30 is used to find Otsu’s threshold from the histogram extracted from
gray-level image.
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3.4.3 Morphological operators

In morphological image processing, erosion is one of two basic operators which are
typically applied to binary images. When erosion operator is applied to a binary
image, the boundaries of regions of foreground pixels (i.e. white pixels) are eroded
away. Hence, areas of foreground pixels shrink in size, and holes within those areas
become larger. Erosion operation is mathematically defined as follows [Fisher 2000]:

"Suppose that X is the set of Euclidean coordinates corresponding to the
input binary image, and that K is the set of coordinates for the structuring
element. Let Kx denote the translation of K so that its origin is at x. Then
the erosion ofX byK is simply the set of all points x such thatKx is a subset ofX".

The erosion operator takes two inputs. The first input is the image which is
to be eroded. The second input is a set of coordinate points known as a structuring
element. The precise effect of the erosion on the input image is mainly determined
by the structuring element.
Let the structuring element to be a 3 × 3 square with the origin at its center.
Foreground pixels are represented by 1, and background pixels by 0.
To compute the output image by this structuring element, the structuring element
is superimposed on top of the input image for each foreground pixel so that the
origin of the structuring element corresponds to the input pixel coordinates. For
every pixel in the structuring element, if the corresponding pixel in the image
underneath is a foreground pixel, then no change is applied to the input pixel. On
the other hand, if any of the corresponding pixels in the image is background, the
input pixel is set to background value.

In our system, erosion is applied to the binarized image resulting from Otsu’s
algorithm. it uses a kernel of 3 × 3. Figure 3.7 shows the erosion operator impact
using the 3× 3 structure element [Fisher 2000].

3.5 Bird’s eye transformation

This transformation is used in the state of art of IPM method for obstacle detection
[Bertozzi 1998b]. Bird’s eye transformation allows the distribution of obstacle
information in all pixels and leads to an efficient implementation of polar histogram
in order to localize obstacles.

The binarized image is projected on the ground plane in the robot frame as
depicted in figure 3.8, up to a rotation around the vertical axis and a translation
in XY . C1 and C2 represent camera frame as shown in figure 3.8. Any point on
the ground plane P has a 3D position represented with respect to the camera C1is
rC1 [Hartley 2004] Eq. 3.31:
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Figure 3.7: Erosion effect using a kernel of 3× 3. Reprinted from [Fisher 2000].
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Figure 3.8: Bird’s eye view transformation.
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Figure 3.9: Relationships between obstacle and cameras position. Reprinted from
"GOLD: Real time Stereo vision system for generic obstacle and lane detection"
[Bertozzi 1998a]

nT
C1
.rC1

dC1
= 0 (3.31)

nC1 is the ground plane normal represented in camera C1 coordinates and dC1 is
the distance of the ground plane from the origin of camera C1,the position vector
rC2 of the same point represented in camera C2 Eq. 3.32:

rC2 = RC2C1(rC1 − t
C2C1
C1

) (3.32)

where RC2C1 is the rotation matrix from C1 to C2 and tC2C1
C1

is the translation from
C1 to C2 presented in C1 coordinates.

The required transformation from the original Camera C1 to the virtual camera
C2 presenting bird’s-eye view is Eq. 3.33:

rC2 = HC2C1 rC1 (3.33)

HC2C1 = RC2C1 −
1
dC1

tC2C1
C2

.nT
C1 (3.34)



3.6. Obstacle localization 35

By using Eq. 3.34, the homography matrix of bird’s-eye view for the cameras is
calculated. To use this matrix in image coordinates(pixels), camera intrinsic matrix
K is required as shown in the equation (15):

Hbird = K(RC2C1 −
1
dC1

tC2C1
C2

.nT
C1)K−1 (3.35)

and the bird’s eye image of the ground plane is generated.

3.6 Obstacle localization

Obstacles localization using stereo IPM is introduced in [Bertozzi 1998b]. The
goal of this process is to determine the free space around robot without a complete
recognition of obstacles. As depicted in figure 3.9, bird’s eye operation transforms
vertical edges of obstacles to lines passing through the projection Cx,y = (l, d, 0) of
the camera center on the road plane z = 0.

As the system used in [Bertozzi 1998b] is based on stereo IPM, two projec-
tion centers are obtained in the plane z = 0. The resulting image after IPM
transformation in [Bertozzi 1998b] produces two triangle shapes of obstacle
projected on the ground plane as depicted in figure 3.9. The triangle prolongation
edges intersect at the projections CL

x,y, CR
x,y.

The midpoint point namely focus is halfway between the two projections
CL

x,y, CR
x,y. As polar histogram is used to detect the triangles in the produced

image after applying IPM method in [Bertozzi 1998b], focus point is used as the
origin of polar histogram beam. The polar histogram is performed by a beam of
lines originating from focus and counting the number of over-threshold pixels per
line.

As IPM method produces two triangle shapes of one obstacle as shown in
figure 3.9, two peaks are produced in polar histogram. The position of peaks in
the produced polar histogram refers to the bearing of obstacles. Peaks also have
other characteristics such as width, amplitude, and sharpness.

3.7 Free space detection

From bearing measurements already performed, a polar histogram is produced.
Peaks in this histogram represent the detected obstacles with respect to its
orientation. An ideal obstacle shape with quasi vertical edges must produce two
peaks. In real conditions, an obstacle produces two or more disjointed peaks.
The goal of free space detection process is to address the detected peaks to their
obstacles.
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In practice, gaps are produced between peaks in the polar histogram. Some
of these gaps represent a free space of a robot environment, while others rep-
resent the occupation of obstacle object in the space. Therefore, if two or
more peaks are mapped to the same obstacle, the gaps between these peaks rep-
resent the occupation of obstacle in the space, while other gaps represent free space.

In figure 3.10, A1 and A2 are computed for every two sequential peaks in
polar histogram. The ratio between A1 and A2 represents the depth of the valley
between two sequential peaks. In most cases, the deeper is the valley between two
peaks, the higher certitude that these two peaks belong to two obstacles and vice
versa. Therefore, the ratio between A1 and A2 is compared to a threshold in order
to determine whether these two peaks belong to one obstacle or not.

In algorithm 1, polar represents the extracted polar histogram (one-dimensional
array of size l). Matrix indexes represent the bearings while matrix values represent
the number of over-threshold pixels in a specific bearing.

Data: polar[l]
Result: A1, A2
dens1 = polar[0] ;
i1 = 0 ;
for i = 0→ l − 1 do

if polar[i] > polar[i− 1] and polar[i] > polar[i+ 1] then
i2 ← i;
dens2 ← polar[i];
step← (i2 − i1)/2;
for j = i1 → (i1 + step) do

A21 ← A21 + (dens1 − polar[j]);
A11 ← A11 + polar[j];

end
for j = i2 → (i2 − step) do

A22 ← A22 + (dens2 − polar[j]);
A12 ← A12 + polar[j];

end
A1← A11 +A12;
A2← A21 +A22;
i1 ← i;
dens1 ← polar[i];

else
end

end
Algorithm 1: Free space detection based on an extracted polar histogram
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Figure 3.10: A1, A2 presentation in Polar histogram.

3.8 Obstacle distance

Polar histogram computed in section 3.6 and free space detection results are used
to compute the distance of detected obstacles. Peaks produced in polar histogram
are analysed in order to determine the localization of obstacle in the ground plane.
For each peak detected in a specific bearing of the polar histogram, a radial his-
togram is computed by scanning this specific bearing in the resulting image from
IPM. This computed histogram presents the number of over-threshold pixels with
respect to distance from focus. As pictured in figure 3.11, the width ai of the sector
is determined as the width of the polar histogram peak. The radial histogram is
normalized. A threshold is applied to the result, thus allowing the determination
of the obstacle distance through a simple threshold.

3.9 Conclusion

In this chapter, the methodology of the proposed system was presented. The dif-
ferent algorithms that will be used to design the proposed system are introduced.
These algorithms were already presented in the state of the art. Some of these
works were done in the RAP team of LAAS. IPM method is adopted for obstacle
detection. A Binarization based on Otsu’s algorithm is used for obstacle segmenta-
tion. The state of the art of obstacle localization was also introduced. The proposed
system is based on these algorithms to achieve the objectives of this thesis; a real-
time system with a reduced computational time and a high frame-rate with low
consumption of power.
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Figure 3.11: Steps for the Computation of normalized radial histogram for a peak
(Reprinted from [Bertozzi 1998a]).
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4.1 Introduction

Most computers in use today are General-Purpose computers. These computers
are expected to perform a wide variety of tasks and must run a large number of
different programs to accomplish these tasks. In contrast to a general-purpose
computer, special-purpose computers are designed to meet specific requirements
and most of the times their job is to solve one particular problem. The capability
to solve a particular problem depends not only on the stored program but also on
the design of the computer system [Harris 2015].

Embedded systems, special-purpose systems, are dedicated to perform single
task over and over again and they are designed in order to meet only the needs of
task. The design of this type of systems includes not only the software methodology
but also the hardware architecture. An embedded system designer can control both
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hardware and software development, including processor architecture, memory
system design, compiler, and operating systems. Hence, great improvements (in
terms of cost, size, and performance) can be made due to this flexibility in system
design [Lutkebohle 2008] [Barr 2003].

Embedded systems often face real-time constraints. However, maintaining
an efficient real time performance when executing complex algorithms is a tradi-
tional problem in embedded systems. This issue can be addressed using parallel
programming methods and parallel computing platforms. Parallelism has been
widely employed, mainly in high performance computing. Different options are
available in order to build HPEC (High Performance Computing) systems using
parallel computing platform. One can find General-purpose computing on graphics
processing units (GPGPU), Application-specific integrated circuits (ASICs), multi-
core processing systems, and Reconfigurable computing with field-programmable
gate arrays (FPGAs).

In this chapter, an insight is given into parallel processing platforms which
can be used to optimize the embedded performance when implementing image
processing algorithms. As our proposed architectures are based on FPGAs targets,
the common architecture of FPGAs and its properties are described.

4.2 General purpose Processing on Graphical Process-
ing Unit (GPGPU)

Graphics processing units (GPUs) were introduced as special purpose accelerators
for video games. These units are now used for high performance computing (HPC)
applications in systems ranging from embedded systems to massive supercomput-
ers. This has led to the emergence of GPGPUs field (General purpose Processing
on Graphical Processing Unit).

In GPUs architecture the ALUs silicon area is expanded and the scheduling
logic area that is used for instruction-level parallelism in CPUs is removed in
GPUs. A thread-level parallelism is used to hide latency in GPUs, executing up to
hundreds threads at once with each CPU. Threads execute in batches. Each batch
consists of 32 threads called a warp. Each thread within a warp can be enabled
or disabled independently, allowing to execute different parts of the program. The
number of operations which are executed per cycle depends on the number of
threads in an active warp. That is why GPU batching induces an important cost
in terms of minimising thread divergence, which means that all threads take the
same branch of conditional statements, and execute loops the same number of
times. [Thomas 2009].

The use of multiple GPUs has different advantages [Fung 2004]:



4.3. Multi-Core CPUs 41

  

Figure 4.1: GPU architecture. Reprinted from "A Comparison of CPUs, GPUs,
FPGAs, and Massively Parallel Processor Arrays for Random Number Generation"
in [Thomas 2009].

• Each graphic card has its own RAM. Thus, they can access their memo-
ries in parallel which increases the overall memory bandwidth of the system
[Fung 2004].

• GPUs do not contend with each other for access to a shared memory area.
The fragment programs are stored locally on each graphics card, thus they
can run relatively independently, requiring little supervision from the CPU.

GPU cores are native hardware floating-point processors. A GPU core can run hun-
dreds of floating-point math operations every clock cycle, making GPUs a natural fit
for floating-point-intensive signal and image processing applications [Adams 2014].
In addition, GPUs also provide good backward compatibility. If an algorithm
changes, the new software can run on older chips [Adams 2014]. On the other
hand, GPUs are regarded as power hogs. In contrast to hardware architecture
based on FPGAs, GPUs execute algorithms in software. Instructions have to be
fetched, results must be sent to memory...etc. GPUs based architectures need few
inter-thread data dependencies and little data-dependent control.

4.3 Multi-Core CPUs

A multi-core processor is a processor including multiple processing units (at-
tached for enhanced performance, reduced power consumption, and more efficient
simultaneous processing of multiple tasks) on the same die. As single-core
processors rapidly reaches the physical limits of possible complexity, the multi-core
processing trends grows. The main difference between a single-core processor and
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Figure 4.2: CPU architecture (taken from [Thomas 2009]).

multi-core processor is that a multi-core processor can execute multiple instruc-
tions at a time instead of executing one instruction stream in a single-core processor.

Most multi-core CPUs operate in the same way as single-processor. These
cores communicate via a shared memory with a synchronization performed using
a cache memory as shown in figure 4.2. One thread is executed by each core.
The state of thread is stored using a set of registers [Thomas 2009]. A dedicated
ALU is devoted to each thread, containing a number of functional units. A large
unit is used for scheduling tasks, such as branch prediction, instruction ordering,
speculative execution.

Multi-core processors are widely used across many applications in embedded
systems. The improvement in performance produced by the use of a multi-core
processor depends very much on the software algorithms used and their implemen-
tation. In particular, possible gains are limited by the fraction of the software that
can run in parallel simultaneously on multiple cores. In the best case, speedup
factors may be achieved near the number of cores. Even if the algorithm is split
up to fit within each core, most applications are not accelerated so much.

The ARM Cortex A9 (a multi-core processor [ARM 2016]) is a popular choice for
low-power cost-sensitive applications. Cortex-A9 processors are proven to offer
highly effective outcomes in embedded systems. Additionally, they are able to
implement multi-core designs that further scale the performance increase.
Compared to other processors, Cortex-A9 processor has different advantages
[ARM 2016]:

• scalable performance and power efficiency for a wide range of applications.
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Figure 4.3: ARM Cortex A9 architecture. Reprinted from "Cortex-A9 Processor"
in [ARM 2016].

• As Cortex-A9 is based on ARMv7-A architecture, the following benefits can
be obtained:

1. Dynamic length pipeline (8-11 stages).

2. Highly configurable Level-1 (L1) caches.

3. NEON technology can be implemented.

4. Scalable multi-core configuration with up to 4 coherent cores.

• Support the wide 32-bit software eco-system.

4.4 Application-Specific Integrated Circuit

An ASIC is a microchip that is customized for a special application, rather than
intended for general-purpose use. Mixed signal ASIC designs can incorporate both
analog and logic functions. These mixed signal ASICs are particularly useful
to build a complete system on chip (SoC). ASIC chips are designed in the fol-
lowing conceptual stages, although these stages overlap significantly in practice
[Kommuru 2009]:

• To design a chip, an idea is required, and the first step to make the idea into
a chip is to come up with the Specifications.

• The next step in the flow is to come up with structural and Functional
Description, which means that a designer has to decide what kind of archi-
tecture to be used for the design.
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Figure 4.4: ASIC vs FPGA design flow (taken from [XILINX 2012a]).

• The sub systems are implemented using logic representation, finite state ma-
chines, combinatorial and sequential logic, schematics. This step is called
Logic Design Register Transfer Level.

• Logic/RTL synthesis is done by synthesis tools such as Design Compiler (Syn-
opsys), Blast Create (Magma). which takes an RTL hardware description and
a standard cell library as input and produces a Gate-Level Netlist as out-
put.

• The next step is the Physical Implementation. The Gate-Level Netlist is
converted into geometric representation.

• The file produced by the previous step is the GDSII file which is used by the
foundry to fabricate the chip.

Product cost can be reduced when ASIC technology is used. For low volume
production, ASIC solutions are not efficient in terms of price. That’s why ASICs
are dedicated to meet special requirements of applications such high-performance
or a high volume production.

An ASIC design needs more time to market and a harder design cycle when
it is compared to FPGA design flow (Field Programmable Gates Array). In
addition, ASICs are not reprogrammable while FPGA based products are recon-
figurable designs. The ASIC design flow requires an important time-consuming
floor-planning, place and route, and timing analysis On the other hand, an FPGA
design flow can eliminate the previous cycles.
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4.5 Field Programmable Gate Array (FPGA)

Field programmable gate arrays (FPGAs) are digital integrated circuits (ICs) that
include configurable blocks of logic along with configurable interconnects between
these blocks (as pictured in figure 4.5). The field programmable portion of the
FPGA’s name denotes that the programming is done “in the field” in contrast to
devices whose internal functionality is hard-wired by the manufacturer.
An FPGA can be used to solve any problem which is computable. FPGAs
advantage lies in that they are significantly faster for specific applications due to
their parallel nature and optimality in terms of the number of gates used for a
specific process.

The core logic block from Xilinx is called a logic cell (LC) (shown in figure
4.6). An early LC is composed of : a 4-input LUT (Look Up Table), a multiplexer,
Digital Flip-Flop (DFF) [Max-Maxfield 2004] (see Figure 4.6). The main role of
the LUT is to design combinatorial functions. In addition, some vendors allow the
cells forming LUT to be employed as a block RAM. This is referred as distributed
RAM. LUT can sometime be formed implement shift registers. Hence, LUTs may
be regarded as multifaceted. Most FPGAs also embed additional functions such as
memory blocks or DSP blocks.

Nowadays, FPGA structure differs from a vendor to another. The most
popular vendors of FPGAs are Xilinx, Altera, Lattice, Actel and Atmel. In Xilinx
FPGA family, a slice includes two logic cells. A CLB (Configurable Logic Block)
is divided into two slices [XILINX 2014a]. Each slice can be of two types :

• A SLICEL(L= logic) logic slice contains four 6-input LUTs, four D-latches,
four DFF/D-latches and eight muxes with a strong local interconnect.
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Figure 4.6: Left: Early structure of LC in Xilinx, Right: Slice having two LCs
(taken from [Max-Maxfield 2004])

• SLICEM (M= memory) logic slices contains 6-input LUTs whose behavior
can be configured to implement distributed memory or shift registers instead.

As many applications require the use of memory, FPGAs now contain relatively
large chunks of embedded RAM called block RAM. In most architectures, these
blocks are located at the periphery of the chip, scattered across the face of the chip
in relative isolation, or organized in columns as shown in figure 4.8.
Multiple blocks of RAM can be combined together to implement larger blocks, or
each block can be used independently. These blocks are implemented as standard
single- or dual-port RAMs, first-in first-out (FIFO) functions, state machines etc...

Since some functions, like multipliers are required by a lot of applications, FP-
GAs incorporate special hard-wired multiplier blocks. These are typically located
in close proximity of the RAM blocks.

The FPGA configuration is specified using a Hardware Description Language
(HDL). This description is then translated into a connected set of logic elements
(LUT, Mux, DFF) that is then placed on the FPGA existing structure and routed
using the FPGA interconnect matrix. This process is usually refered-to as synthesis
and result in a bitstream that can be loaded in the FPGA configuration memory.

4.6 FPGA Designs Properties

A circuit implemented on a FPGA has different characteristics such as latency,
frequency, area, and power. FPGA designs are compared to other designs in terms
of:

• Frequency
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Figure 4.7: CLB containing two slices. Reprinted from [XILINX 2014a].

  

Figure 4.8: Top-down view of an FPGA chip with columns of blocks RAM.
Reprinted from [Max-Maxfield 2004].
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Figure 4.9: Simple Dual port RAM (taken from [XILINX 2014b]).

• Latency

• Cost and size

• Power consumption

4.6.1 Pipelined Designs

A pipeline is a systolic array where all data flow goes in one direction and there
is no feedback [SCHMIT 2000]. In signal processing, a pipeline is a set of stages
which are connected sequentially, the output of one stage is an input of the next.
In synchronous circuits, a pipeline is characterized by a register-to-register delay
path. This determines the maximum clock speed of a circuit. As pictured in
figure 4.10, the normal design is implemented by connecting 3 multipliers in a
cascaded fashion with a flip flop at the end stage while each multiplier output
is connected to a flip flop in the pipelined design. The additional DFFs reduce
the delay through the combinatorial logic. As result, pipelined design can op-
erate at a higher frequency than the normal design at the cost of computing latency.

When one wants a design to reach the maximum speed, it requires to write
a pipelined code. Pipelined code is harder to write since the designer must
take into account synchronization between stages and may rethink the original
application structure. In large projects, pipelined designs are required to optimize
blocks that are considered as a bottleneck for the performance of the whole design.
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4.6.2 Designs with reduced latency

Latency is defined as time elapsed to generate the output data for a given input
data. In the context of an electronic system, latency is the time (clock cycles) it
takes for a data to work its way through a device, or system. This parameter is
computed by the product of the cycle time by the number of pipeline stages.
FPGAs are considered as a popular choice for applications that requires reduced
latency [Morris 2009]. In practice, putting an algorithm in an FPGA based archi-
tecture shortens the trip of a signal to be produced. While latency takes a range
between microseconds and many seconds in a software development, it is in the
range of hundreds of nanoseconds in the hardware fabric.

4.6.3 Power consumption consideration

Power consumption is becoming an increasingly important variable, and it has
always been a design consideration. FPGAs are a popular choice for reducing power
consumption, and they can significantly aid the designer in reducing the challenges
associated with power consumption. An FPGA design is impacted by four power
components introduced as follows [Lattice 2009]:

• Pre-programmed static (Quiescent) device power consumption is the power
consumed when a FPGA device is in a non-programmed state, already been
powered.

• Inrush Programming Current represents the required power in order to pro-
gram the FPGA device.

• Post-Programmed Static Power Consumption represents the power consumed
with ’zero Mhz’ frequency.
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• Dynamic power consumption is the power consumed by a non-zero frequency
module.

FPGAs vendors provide software tools to estimate the power consumption of
a design. For example, Xilinx Power Estimator (XPE) tool can provide a detailed
power and thermal information [XILINX 2016c], including estimated power break-
down between static and dynamic power, power consumption by device resource
type (I/O, logic), and the total power consumption.

4.6.4 Cost and Size Requirements

FPGAs offer cost-effective designs due to their generic nature with different
advantages of short time-to-market, no NRE (No Recurring Engineering) costs,
reduced bill of materials (BOM) costs [Parnell 2004]. Nowadays, FPGAs have
driven down die size and package costs in order to produce convenient custom
processor alternative. The advanced capabilities of modern FPGAs allow designers
to integrate discrete component functions into an FPGA reducing board and total
component costs.

The Zynq-7000 All Programmable SoCs (Z-7010, Z-7015, and Z-7020) is a
member of Xilinx Low-end Portfolio [XILINX 2015b]. This devices family is
dedicated to meet cost-sensitive market requirements. The main advantage of
Zynq-7000 is that it integrates the software programmability of an ARM-based
processor with the hardware programmability of an FPGA, enabling hardware
acceleration while integrating mixed signal functionality on a single device.

4.7 Zynq-7000 all programmable SoC

One challenge of today’s technology is the capability to provide a design that
combines different requirements, including low total cost, higher performance,
flexible, low system power, and short time-to-market. Zynq based kits become
a popular choice to achieve programmable systems integration where hardware
and software (ARM Programmability + FPGA Flexibility in a Single Chip)
can be programmed, creating a custom flexible SoC to meet the exact project
requirements.
The system performance of a design based on Zynq kit can be increased due
to the dual Core ARM Cortex A9’s with NEON and vector floating point, the
programmable logic with massive DSP processing, and the high throughput
AMBA-4 AXI interconnect for fast data transfers. Hence, a hardware acceleration
scales software performance in order to address different functionalities.

Another advantage of choosing Zynq based kit is the BOM cost reduction
(as pictured in figure 4.12). As processors, PLDs, DSPs are all available on Zynq
kit, one can reduce the number of devices per board and the PCB complexity
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Figure 4.11: Zynq-7000 architecture. Reprinted from [XILINX 2015c].

Table 4.1: Some features of the Zynq-7000 [XILINX 2016b]

Zynq-7020
Part Amount

Processing System

Processor Core Dual core ARM Cortex-A9
Processor Extension NEON
Maximum Frequency 667 Mhz
L1 Cache 64 KB
L2 Cache 512 KB
On chip Memory 256 KB
External Memory Support DDR3, DDR2
Peripherals UART, CAN, I2C, SPI

Programmable Logic

LUTs 53200
Flip-Flops 106400
Extensible Block RAM 560 KB
Programmable DSP Slices 220
AXI Master 2× 32− b
AXI Slave 2× 32− b
AXI Memory 4× 64− 32b
Interrupts 16
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Figure 4.12: BOM cost reduction of Zynq-7000. Reprinted from [XILINX 2012b].

[XILINX 2012b]. In terms of power requirments, a Zynq based design is considered
as flexible/tunable power envelope, adjusting the ARM processor speed, enabling
low power states of ARM, and partial reconfiguration to reduce the amount of
hardware resources.

4.8 Xillybus IP Core

Xillybus [Xillybus 2016c] is a DMA-based end-to-end turnkey solution for trans-
porting signals between FPGA and a host running operating system (Linux,
Microsoft Windows). Hardware and software designers interact with Xillybus
through defined interfaces. In the hardware interface, the FPGA logic application
is connected to Xillybus core through standards FIFOs [Xillybus 2016b]. In the
software interface, the user performs file I/O operations using device files. Hence,
the data is transferred between FIFOs in the FPGA logic and a device file in the
host operating system. As depicted in figure 4.14, A logic module implemented on
FPGA only needs to communicate with FIFOs. When data is written to one FIFO,
Xillybus reads this data and sends it to the host. On the other side, Xillybus
transmit the data through AXI bus, using DMA requests on the ARM core’s bus.
An application running in the software side interacts with device files that operate
like pipes.

To transmit signals from the application logic to the host, the main signals
are:

• user-data is an input signal which contains data during read cycles. the
signal’s width can be 8, 16 or 32 bits.

• rd− en is a read enable signal
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Figure 4.13: Power efficiency of Zynq-7000. Reprinted from [XILINX 2012b].

  

Figure 4.14: Xillybus IP Core. Reprinted from [Xillybus 2016c].
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• empty is an input signal which informs the Xillybus core that no more data
can be read.

To transmit signals from the host to the application logic, we mainly use:

• user-data is an output signal which contains data during write cycles. the
signal’s width can be 8, 16 or 32 bits.

• wr − en is a write enable signal

• full is an input signal which informs the Xillybus core that no more data
can be written to FIFO.

Xillybus IP Core can be customized in order to satisfy application requirements
[Xillybus 2016a]. Hence, designers can determine data transmission rate by fixing
the number of streams to be sent. Also, data direction and other specs can be
characterized. On the software side, Xillinux, a linux kernel, is a development
platform used to run software applications in the ARM processing system. With
basic programming skills, a complete co-deign Hw/Sw can be made due to the
capabilities provided by Xillinux with its Xillybus core and driver.

4.9 Conclusion

In this chapter , different processing platforms used in embedded systems were
introduced. Multi-core processor-based systems are widely used in embedded sys-
tems. However, the improvement in performance is limited by the fraction of the
software that can run in parallel simultaneously on multiple cores. Architectures
based on GPU platform provide a good pipeline performance but they don’t meet
power requirements. An FPGA solution can provide the best trade-off between
power-consumption and pipeline for an embedded platform. As our objective is
to build a real time system with reduced computational time, and high frame-rate
with low consumption of power, an FPGA based solution is used in this work.
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5.1 Introduction

In this thesis, the main contribution is the design of hardware accelerators for
machine vision applications. However, we propose some optimizations to the
system methodology shown in figure 5.1. These improvements stand for obstacle
localization, and the reconstruction of 2D occupancy map.

Bird’s eye view transformation was used in the state of art for obstacles lo-
calization. The hardware implementation of this transformation induces a heavy
cost in terms of latency time and hardware resources. Therefore, we propose to
remove this module from the system architecture. Instead, we optimize polar
histogram structure, and build a method for extracting contact points between
obstacles objects and ground plane. By detecting quasi triangle shapes produced
by IPM method, the vertex of these triangles represent contact points between
obstacles and ground plane.

In the state of art, obstacle distance is measured by computing a radial his-
togram applied to specific bearings in the image (see 3.8). The implementation
of this method induces a high level of noise, and it can not precisely determine
obstacles localization in the ground plane. Additionally, the performance of the
hardware implementation is costly due to the high latency induced by histogram
computation. Therefore, when contact points are extracted and free space detection
task is accomplished, we propose to select best points among extracted contact
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Figure 5.1: General overview of the system methodology.

points. The selected points are mapped and projected to a 2D occupancy grid
map.

5.2 Obstacle bearings based on polar histogram

Obstacle clusters are produced in binarized images (see Obstacle segmentation 3.4
for details). An obstacle’s vertical edges produces two quasi triangular shapes in
the resulting images from IPM method [Bertozzi 1998b]. In real conditions, these
disjointed shapes remain recognizable. Detecting these shapes and determining its
localization in binarized images are accomplished using a polar histogram beam.
This latter is defined as a beam of lines originating from a point called focus. The
computed histogram denotes the density of obstacles with respect to orientation.

As already mentioned, typical obstacles have quasi vertical edges. These
latter are straight lines perpendicular to ground plane. As these lines are parallel in
the world frame, they have an intersection point at infinity plane called vanishing
point. This vanishing point can be found and represented in the image frame.
The intersection point between a ray parallel to vertical lines in the world frame
(this ray is originating from camera center) and the image plane represents the
vanishing point in the image frame as pictured in figure 5.2. π∞ denotes infinity
plane for vertical lines. This plane is represented using camera coordinate frame.
X∞ represents the intersection point of vertical lines at infinity plane. This point
is also represented in the camera coordinate frame. In order to find the image of
X∞ in the image frame namely v Eq. 5.1:

v = PX∞ (5.1)
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Figure 5.2: Conception of focus.

P denotes projection matrix from camera coordinate frame to image coordinate
frame. Eq. 5.2:

P = K
[
I|0

]
(5.2)

X∞ is represented in the camera frame using homogeneous coordinates Eq. 5.3:

X∞ =
[
d

0

]
(5.3)

Hence, v is computed from Eq. 5.2 and Eq. 5.3 as follows:

v = K
[
I|0

] [
d

0

]
(5.4)

v = Kd (5.5)

v represents the vanishing point coordinates in the image frame. From focus (the
vanishing point), a beam of lines is made in order to compute polar histogram. Each
line that exists in this beam represents a defined bearing. This latter is mapped
to a specific sector in the scene. The density of obstacles located in a specific
bearing is evaluated by computing the number of over-threshold pixels located in
every line as shown in figure 5.3. Therefore, the peaks existing in a polar histogram
represent obstacles density with respect to bearings. Hence, free space detection
can be determined by identifying the available bearings where a robot can move.
Bearings measurements process is a preliminary step in the proposed system and it
is followed with other operations in order to maintain obstacles localization task.
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Figure 5.3: Bresenham’s method implemented for a specific octant.

Data: u0,v0
Result: Dens
dv = v0, du = −u0, D = 2du− dv, v = v0 ;
for v = v0 → 0 do

if D > 0 then
u← u+ 1;
D ← D + 2du− 2dv;

else
D ← D + 2du;

end
if I(u, v) > 0 then

dens← dens+ 1 ;
end
Algorithm 2: Bresenham’s method implemented for a specific octant

As Bresenham algorithm determines the pixels that could be selected in order to
form a close approximation to a straight line between two points, polar histogram
beam can be made. In practice, two points coordinates are required to perform
a line equation. Bresenham algorithm keeps track of one of the coordinates by
maintaining an error bound. If this error becomes greater than zero, the concerned
coordinate is incremented and the error is readjusted.

Each line that belongs to polar histogram beam is represented using two
pixels coordinates. The first pixel exists in the first image row while the end pixel
is focus. In addition, it is mandatory to define the octant drawer when applying
Bresenham algorithm.
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Algorithm 2 shows how to track pixels that belong to a line that exists in
polar histogram beam. I(u, v) is pixel value at the coordinates (u, v). (u0, v0) being
the coordinates of a pixel that exists in the first image row. This pixel represents
the first point of a line that exists in the octant (u0 < 0, v0 > 0); the vertical
projection |v0| is greater than the horizontal projection |u0| as depicted in figure 5.3.

The difference D computed in algorithm 2 is used to assess the error. Eval-
uating this latter allows to compute pixel coordinates. For example, if I(u, v) is a
pixel that located in a line that belongs to polar histogram beam, we can compute
the next pixel coordinates as follows:

• If difference D is positive, the pixel (u+ 1, v + 1) is selected.

• If difference D is negative, the pixel (u, v + 1) is selected.

This process is repeated until arriving focus. Dens being the number of over-
threshold pixels located in line. The implementation of the algorithm is generalized
in order to produce and track all polar histogram lines in different octants.

5.3 Obstacles localization in the ground plane

The goal of this process is to extract contact points between obstacle objects and
ground plane. These points represent the localization of obstacles on the ground
plane. Obstacle shapes produced by IPM and binarization methods often have
an isosceles triangular shape where the vertex corresponds to the contact point
between ground plane and obstacle object. Detection of these points is done while
polar histogram is calculated. As bearings measurements method aims to find
over-threshold pixels and compute the number of these pixels located in each
line that belongs to polar histogram beam, contact points extraction method is
executed to find isosceles triangles crossed by polar histogram beam and extract
the vertex of each isosceles triangle.

For each pixel I(u, v) located in a defined line tracked by Bresengham’s al-
gorithm, a factor a is defined as a sum of neighbouring pixels located in the same
image row r as shown in Eq. 5.6:

ar =
l∑

k=−l

I(u+ k, v) (5.6)

f(ar, ar+1) =

ar+1 if ar+1 ≤ ar

max otherwise
(5.7)
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Figure 5.4: The proposed method for contact points extraction.

Sc =

0 if ar+1 > ar

Sc+ 1 otherwise
(5.8)

max is the maximum possible value of a. l represents window width, and Sc is
a score referring to the probability of the existence of an isosceles triangle. The
computed score is compared to a threshold value. If the score is greater than
the threshold, we decide that the line (which belongs to polar histogram beam)
is crossing an isosceles triangle, and the pixel which has the minimum value of a
is considered as the contact point between ground plane and obstacle object as
depicted in figure 5.4.

We proposed this method in [Alhamwi 2015]. It works perfectly when over-
threshold pixels form an ideal triangle as shown in figure 5.4. However, in real
conditions, obstacle patterns produced by IPM method don’t have a regular
shape. In addition, binarized images may include some noise, false obstacles are
segmented, especially when an indoor environment has floor tiles. Tiles edges don’t
disappear completely after binarization. Hence, if some tiles edges are parallel to
the lines (that belong to polar histogram beam), false contact points are induced.
Therefore, an optimization is proposed to contact points extraction method in
order to deal with real cases.

ar =
l∑

k=−l

I(u+ k, v) (5.9)
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Figure 5.5: The optimized method for contact points extraction.

f(ar, ar+1) =

ar+1, if ar+1 ≤ ar

max, otherwise
(5.10)

Sr+1 = f(Sr, ar+1, ar) (5.11)

f(Sr, ar+1, ar) =

Sr + ar+1, if ar+1 ≤ ar

Sr, otherwise
(5.12)

hr+1 = f(hr, ar+1, ar) (5.13)

f(hr, ar+1, ar) =

hr + 1, if ar+1 ≤ ar

hr, otherwise
(5.14)

wr+1 = Sr+1
hr+1

(5.15)

Sc =

Sc− 1, if ar+1 > ar

Sc+ 1, otherwise
(5.16)

In the optimized method, S represents triangle surface, it computes the sum of
over-threshold pixels which are detected over multiple rows and exists in a specific
width l. h denotes the triangle height. Hence, the computed value w represents the
width of the detected triangle as pictured in 5.5. Width value is used to evaluate
detected triangles. The two computed values Sc and w are compared to thresholds.
Hence, a decision can be made in order to discriminate between obstacle objects
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and noise induced in binarized image.

Contact points produced by this method are not always perfect because the
percentage of pixels that located in lines (which belong to polar histogram beam)
is 45% of all image pixels. However, it extracts the closest point to the real point.

5.4 2D Occupancy Grid Map Reconstruction

5.4.1 Contact Points Selection

Contact points extracted by the previous method may include several points that
belong to the same obstacle object. Therefore, we need to select best contact
points which can represent the localization of obstacle in the 2D occupancy map.
The presented method is mainly composed of two steps:

• Contact points are grouped into clusters. Each cluster is mapped to an ob-
stacle object that exists in the scene.

• For each cluster, nearest contact points to robot are chosen as selected points.

In practice, occupied and free space are already determined from 3.7. Hence, se-
lected contact points must be located in occupied bearing. Because of the perspec-
tive effect, an occupied bearing may represent one or more obstacles. The goal is
then to determine nearest points to robot.

Data: P [m, 2],C[n, 3]
Result: S[q, 2]
Temp[r, 3] , max = 0 , q = 0 , k = 0 ;
for i = 0→ m− 1 do

if (P [i, 0] <> 1)|(P [i, 1] <> 1) then
for j = 0→ n− 1 do

if |P [i, 0]− C[j, 0]|〉 th then
Temp[k :]← C[j :];
k ← k + 1;

end
else

for l = 0→ k − 2 do
if Temp[k, 2] > max then

max← Temp[k, 2];
S[q :]← Temp[k :];
q ← q + 1;

end
end

end
Algorithm 3: Selection of best contact points method
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P [m, 2] is peaks matrix which denotes occupied bearings in the scene. This matrix is
produced by free space detection module. The first column represents the bearing of
the occupied space while the second column represents the density of obstacles that
exist in this bearing. C[n, 3] is contact points matrix produced in 5.3. Similarly,
first column denotes the bearing from which contact point is extracted. Second
and third columns are the coordinates u and v of the contact point respectively.
th is a threshold by which we decide that a contact point (that belongs to C[n, 3])
converges to an occupied bearing (in matrix P [m, 2]). Temp[r, 3] is a temporary
matrix in where candidates of best contact points are temporally stored.

5.4.2 Map Reconstruction

Selected contact points produced by the aforementioned method are represented in
the image coordinate system. Below we describe how these points are mapped and
projected to the 2D occupancy map.

Our camera is already calibrated for a given plane in the scene (ground
plane). As contact points belong to ground plane, the coordinates of a contact
point in the world frame are computed as follows:

susv
s

 = K
[
rc

r1 rc
r2 tcr

] Xr

Yr

1

 = H

Xr

Yr

1

 (5.17)

sXr
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]−1
K−1

uv
1

 = H−1

uv
1

 (5.18)

Eq. 5.17 was presented in 3.3. K being intrinsic matrix and [Rc
r, T

c
r ] represents

transformation matrix from camera coordinate frame to robot coordinate frame.
Eq. 5.18 allows us to compute the coordinates of these points in the robot coordinate
frame. Finally, world coordinates (which is the coordinate system of the occupancy
map) are computed in order to be projected in the occupancy map.

sXw

sYw

s

 =
[
Rmvt Tmvt

0 1

] Xr

Yr

1

 (5.19)

By Eq. 5.19, all selected contact points are represented in the world coordinate
frame.Figure 5.6 illustrates the mapping from robot coordinate system to world
coordinate system. Rmvt, Tmvt represent rotation and translation from robot coor-
dinate frame to world coordinate frame respectively. Xw , Yw are the world axis (in
the world coordinate system).
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Figure 5.6: Occupancy map reconstruction and mapping of contact points.
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6.1 Introduction

Two Hardware architectures are proposed for obstacle detection and localization
(pictured in figures 6.1, 6.2), and a hardware architecture is proposed for the re-
construction of 2D occupancy grid map (pictured in figure 6.3). In this chapter,
we describe the design of each part of the hardware architecture. The proposed ar-
chitectures are implemented using two different platforms Virtex6 and Zynq-7020.1
Figure 3.1 shows the system methodology blocks. The proposed hardware modules
are designed to perform this methodology. The three architectures are presented as
follows:

• A hardware system is proposed for obstacle detection and localization.
The proposed system is an implementation of IPM method proposed by
[Bertozzi 1998b]. This system is named First hardware architecture.

• Some optimizations are proposed to IPM methodology in order to improve the
performance of the hardware system. This system is named second hardware
architecture.

• A hardware system is proposed for 2D occupancy map reconstruction. This
system is composed of the aforementioned hardware system and some addi-
tional hardware/software modules to accomplish the map reconstruction task.

6.1.1 Obstacle Detection and Localization Systems

Figures 6.1, 6.2 show the general design of the two systems (namely: First and
Second hardware architectures). We propose these systems in [Alhamwi 2015]. As
already mentioned, first hardware architecture is an implementation of the IPM
method introduced in the state of art. Figures 6.4, 6.5 show the differences between
the two proposed systems. As depicted in these figures, bird’s eye transformation
is applied to eroded image in the first architecture while this transformation is not
used in the second architecture.

Bird’s eye transformation is excluded from the second architecture. In the
case where this transformation is implemented, many constraints are imposed:

• Many block RAMs must be used to store a specific number of eroded image
rows before bird’s eye image is generated.

• A heavy cost of latency is induced by bird’s eye transformation because many
image rows must be stored in the memory before executing this transforma-
tion.

• As this transformation is regarded as a homography transformation, an im-
portant amount of hardware resources is required to design the module.

1Available resources are provided in [XILINX 2015a] and [XILINX 2016b]
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6.1.2 2D occupancy Grid Map System

Figure 6.3 illustrates the proposed system for the reconstruction of 2D occupancy
grid maps. We propose this system in [Alhamwi 2016]. The system is performed
using an FPGA-based vision sensor and odometry sensors for obstacles detection,
localization, and mapping. The fusion of these two sources of complementary
information results to an enhanced model of robots environment. The proposed
system has a reduced computational time, high frame-rate and low consumption of
power.

When the proposed system is compared with the obstacle detection and lo-
calization system already introduced, specific differences are noted:

• In terms of methodology:

– In this proposed system, an optimized method for extracting contact
points (already introduced in 5.3) is implemented.

– A method is also proposed for selecting the best contact points.
– A mapping operation is required to represent the contact points in the

coordinate system of the occupancy map (already introduced in 5.4).

• In terms of architecture:

– A hardware implementation of the optimized contact points extraction
method is presented in this system.

– A hardware implementation of the free space detection method is pre-
sented.

– A hardware implementation is presented for selecting the best contact
points.

– An embedded software module is proposed to map and project these
selected points into the occupancy grid map.

For each part of the proposed architectures, an IP core is proposed in order to
accomplish its task. The description of each module includes the following notes:

• An external view of each module is shown. This view illustrates input and
output signals connected to this hardware module.

• An internal overview of each hardware module is shown. This view illustrates
the internal hardware components of this hardware module.

• Hardware design and interconnections are then introduced. Each design de-
scribes how to perform arithmetic operations. Additionally, the proposed
architectural designs may show delays, state machine design, and memory
organisation.2

2Flip-flops are not shown in the figures
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Figure 6.1: First Hardware Architecture.

• For each hardware module, a synthesis report is provided. This synthesis
illustrates the performance of each hardware module in terms of hardware
resources and the required latency to accomplish the task of the proposed
module.

6.2 Homography transformation

Homography transformation is a pixel-level operation. The input image must be
stored in the memory because image coordinates are changed after transformation.
To produce the image after the transformation, two methods could be used:

• In the first method, sequential reads of the input image and non sequential
writes of the output image are performed. The drawback of this method is
that it produces holes (pixels coordinates without pixels intensity values) in
the output image. Therefore, not all pixels have intensity value in the output
image.

• In the second method, non-sequential reads of the input image and sequential
writes of the output image are executed. Each output pixel is mapped to an
input pixel.

An approximation is done for the non integer output coordinates. A null pixel value
is assigned to the output coordinates that map input coordinates located outside of
the image borders. The second method is adopted to perform the transformation.
The drawback of this method is that it requires the computation of the inverse ma-
trix produced by the equation 3.23. This inverse matrix is calculated in the software
part. Figure 6.6 shows the external view of homography transformation module.
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Figure 6.2: Second Hardware Architecture.
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Figure 6.3: Hardware Architecture for the reconstruction of 2D occupancy grid
maps.
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Figure 6.6: External view of homography transformation module.

Figure 6.7 illustrates the components of homography transformation module and
the interconnections between these components. The homography transformation
architecture includes coordinates generator , homography, and Adress generator
components. These modules are presented in the sections below.

6.2.1 Coordinates Generator

The proposed hardware architectures are implemented for images of VGA resolu-
tion. Hence, this hardware component generates the pixel’s coordinates (x, y) in
the output image from (0, 0) to (639, 479). Pixel coordinates are represented using
fixed point format. 10 bits are used to represent the decimal part, and 6 bits are
used to represent the fractional part. Hence, the output signal of this module is 32
bits wide.

6.2.2 Distortion correction and Homography transformation

The coordinates produced by ccordinates generator goes to the homography

module that computes the output coordinates (xh, yh) in the input image. This
transformation includes two operations: distortion correction and the homography
of an image stored in the memory. Therefore, this module also takes two com-
ponents as two other inputs. The first component provides the intrinsic matrix
and distortion coefficients while the second component provides the homography
matrix. The homography matrix is updated in software and holds the change in
pose between two frames.
In the processing pipeline pictured in figure 6.8,3 the correction of radial distortion
is performed first. In this case, the camera intrinsic matrix is required to transform

3DFFs are not shown in Fig 6.8
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Figure 6.9: The pipelined design of homography transformation.

the coordinates represented in the image coordinate system to the camera frame
system. Since a division operation is performed between the stream of coordinates
and the focal distance, a 34 clock cycles latency is induced. The resulting values are
then used to compute undistorted coordinates. Distortion coefficients K1, K2, K3
are represented by 14 bits as a fixed point format; 11 bits are used for the fractional
part of distortion coefficients. The representation of fractional part of distortion
coefficients requires a high precision. Therefore, logic vectors of large width are
required to represent these coefficients. In addition, the distortion correction
process requires to perform complex arithmetic operations such as exponential
functions. Hence, distortion correction operation requires an important amount of
hardware resources. The whole process of distortion correction requires about 43
clock cycles in order to produce the first undistorted coordinates.

Homography transformation is executed after the distortion correction is
computed. The homography matrix has 9 elements and each element is represented
using 18 bits. The elements of the first and second columns in this matrix use
11 bits for the fractional part while the elements of the third column use 7 bits
for the fractional part. This transformation is applied to undistorted coordinates
represented in the image coordinate system using homogeneous coordinates. Figure
6.9 shows the pipeline stages of the proposed design.4 This process requires about
42 clock cycles to output the first transformed coordinates.5
In the implementation of homography transformation, the division operation is the
most critical operations; a 36 clock cycles latency is induced. The produced coordi-
nates (xh, yh) refer to the pixel’s coordinates in the input image (already stored in
the memory). These coordinates are 32 bits wide. In some cases, these computed

4DFFs are not shown in Fig 6.9
5SRG in the figures denotes the shifting right or left of the input signal by n bits
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coordinates (xh, yh) refer to pixels located outside of the image boundaries. In this
case, we use an additional bit in order to label these coordinates, thus allowing to
discriminate between the image pixels coordinates and other coordinates that have
no correspondence in the input image.

6.2.3 Address Generator

The stream of transformed coordinates (xh, yh) pass to Adress Generator compo-
nent to compute the memory addresses of theses coordinates. These addresses are
expressed by the following equations:

xh = xh + 0.5 (6.1)

yh = yh + 0.5 (6.2)

adress = yh × w + xh + adressoffset (6.3)

with w being the image width. adressoffset denotes the first pixel address of the
stored image in the memory. An approximation is applied to the coordinates xh,
yh as depicted in equations 6.1, 6.2. Thus, we remove the fractional part of these
coordinates. As the resolution of our image is 640 × 480, 19 bits are used for
the representation of the computed addresses. The memory takes these computed
addresses as input in order to read the stored image.

6.2.4 Software part of Homography transformation

The software implements the computation of the homography matrix produced by
equation 3.23. To compute this matrix, the following matrices are required: the
intrinsic matrix and its inverse matrix, the extrinsic matrix (from robot coordinate
frame to camera coordinate frame) and its inverse matrix, and the inverse matrix of
the movement matrix. Intrinsic and extrinsic matrices are constant matrices, thus
allowing to compute these matrices and their inverse matrices offline. Movement
matrix is computed from odometry data produced by odometry sensors. In the
experiment introduced in section 7.3, TurtleBot robot is used to provide odometry
data. This includes x, y, θ. Hence, the inverse matrix of movement matrix can be
expressed as follows:

rxy = 2
√
x2 + y2 (6.4)

cos(θ) sin(θ) 0 rxy

−sin(θ) cos(θ) 0 0
0 0 1 0
0 0 0 1

 (6.5)

with x, y being the translation in the ground plane between two sequential frames. θ
is the variation of the rotation angle around Z-axis between two sequential frames.

As shown in equations 6.4, 6.5, trigonometric and square root functions are
used to produce the movement matrix. Two multiplications operations are per-
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Table 6.1: Software part of homography module.

Execution time
Movement matrix composition 55µs

The produced matrix by equation 3.23 74µs

Table 6.2: Comparison of the proposed homography module to [Botero 2012]

LUTs Slice Reg Latency Frame rate Target
[Botero 2012] 3469 5907 1.237µ s 100 fps Virtex-6

Ours 3897 6802 1.383µ s 200 fps Zynq-7020

formed between matrices. Table 6.1 shows the execution time needed to produce
homography matrix. These results are produced using Zedboard platform where a
dual-core ARM, Cortex -A9 processor, is integrated with Zynq-7020.

6.2.5 Performance and Comparison with homography module in
[Botero 2012]

Table 6.2 shows the comparison between our proposed homography module and
the homography module proposed in [Botero 2012]. As illustrated in this table,
the homography module in [Botero 2012] executes only homography transformation
while our module merges two operation: homography transformation and distortion
correction. The homography module presented in [Botero 2012] introduces two
models for implementation:

• Homography module without cache memory, the proposed module uses
SDRAM memory in order to store the input image. The frame rate is about
30 frame per second.

• Homography module with cache memory. The input image is written to a
cache memory. The produced frame rate is about 100 frame per second.

Even if our hardware module consumes a greater amount of hardware resources,
the frame rate of our proposed design is better than the frame rate achieved in
[Botero 2012]. Since the pipeline stages are increased in our design to improve the
frame rate, an additional cost in terms of hardware resources is induced.

6.3 Bird’s eye transformation

Bird’s eye transformation (already introduced in 3.5) is regarded as a homography
transformation. The hardware design (pictured in figure 6.11) of this module is
similar to the proposed design of homography transformation already presented
in the previous section. Hence, the three components coordinates generator,
homography, and adress generator are required to do the transformation.
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Figure 6.10: Hardware components of bird’s eye module.

Table 6.3: Resources required for bird’s eye transformation

LUTs Slice Reg Latency Target
Bird’s eye transformation 3262 5491 2.108 ms Virtex-6

Bird’s eye transformation is only implemented in the first hardware architec-
ture pictured in figure 6.1. This transformation was used in the literature as a
preliminary step for obstacle localization in IPM method [Bertozzi 1998b]. As
shown in figure 6.10, this transformation is applied to the binarized image. Before
activating this module, a specific number of image rows must be stored in the
memory. As a pixel of binarized image is 1-bit wide, BRAMs can be used for the
storage of binarized image.

Bird’s eye matrix is a constant matrix for a camera that does not rotate
along its y or z axis. As a result, bird’s eye matrix can be precomputed offline. The
drawback of this transformation in hardware implementation is the high precision
required to represent the fractional part of bird’s eye matrix elements.

6.3.1 Resource Utilization and Latency

Table 6.3 illustrates the amount of hardware resources to perform bird’s eye trans-
formation. In the implementation of the first architecture (pictured in figure 6.1),
14 bits are used to represent the fractional part of each element in the bird’s eye
matrix. Each element of the third column in this matrix is 25 bits wide. Two
division operations are executed in this transformation. Because of the high pre-
cision required for the representation of bird’s eye matrix values, logic vectors of
large width are used. Hence, this transformation consumes an important amount of
hardware resources. Additionally, a heavy cost in terms of latency is induced when
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Figure 6.11: Hardware design of bird’s eye transform.

this transformation is implemented on FPGA. In our implementation, a 122287
clock cycles latency is induced; 90 image rows must be stored in BRAM before
activating this transformation.

6.4 IPM and Subtraction

The input signals of this module, as depicted in figure 6.12, are the stream of the
transformed image H[In] read from the memory and the stream of real image In+1.
Each pixel in the two streams is represented using 8 bits. The output signals of
this module are the resulting IPM image (|H[In] − In+1|) and the image stream
In+1 with its memory addresses as In+1 will be written to the memory replacing
In.

This module performs the absolute difference between the transformed im-
age stream H[In] and the image stream In+1. The critical operation in this
module is the synchronization between the two streams In+1, H[In]. A FIFO
component is used to synchronize the two streams. A careful attention is paid
to the design of the FIFO component to perform real time image acquisition of In+1.

When a new frame is acquired, vsync is a control signal referring to a new
valid frame, goes HIGH. In this case the homography module is activated. While
homography module takes about 85 clock cycles in order to output the first pixel
of the stream H[In] from the memory, the new image frame In+1 is written to the
FIFO component.
hsync, a control signal that indicates a new image row, controls the writing of
image stream In+1 to the FIFO component. As depicted in figure 6.13, when hsync
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Figure 6.12: External view of IPM module.

goes HIGH, the writing of image stream In+1 to FIFO component is deactivated.
Rd-en is a read enable signal that outputs from FIFO component. As shown
in 6.13, writing process is slower than reading process in the FIFO component.
Therefore, a careful attention is being paid to ensure that the process doesn’t
attempt to read from an empty FIFO and write to a full FIFO. If the same clock
(Pixel Clock PCLK) is used for both reading and writing, the required depth of
the FIFO component is computed as follows:

h× a ≤ FIFO − depth (6.6)

with a being the number of clock cycles where hsync is HIGH. h represents the
image height which is 480 for a VGA image.

The FIFO depth can be also adjusted using two different clocks for reading
and writing. In this case, the frequency of writing clock to FIFO must be a bit
greater than the frequency of reading clock from FIFO module. The FIFO depth
is necessary for the design of IPM module in order to avoid reading from empty
FIFO or writing to full FIFO. On the other hand, no FIFO component is used to
control the stream of the transformed image H[In].

In particular, adress generator component in the homography module (al-
ready introduced in section 6.2.3) generates the physical addresses in order to
read the transformed image H[In] from the memory. These addresses are also an
input of the IPM module in order to recognize whether the address is mapped to a
valid pixel in the input image stored in the memory or not. When the address is
assigned to an invalid pixel (outside of the image boundaries), the pixel is assigned
a value of 0 in the resulting IPM image.
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Figure 6.14 illustrates the hardware design that permits to output the stream of
IPM image. An absolute subtraction is performed between the two streams In+1,
H[In]. 9 bits are used for the representation of pixel value; the subtraction result is
8 bits wide. As 0 intensity pixel value is assigned to pixels having no correspondence
in the input image, this 0 value can be also produced by a subtraction performed
between two pixels having the same intensity value. Therefore, the MSB bit is
used in order to know whether this pixel represents a subtraction value or a pixel
having no correspondence in the transformed image.

The stream of image In+1 is written to the memory replacing the image In.
Reading operation of H[In] and writing of In+1 are carried out simultaneously. So,
we have to pay attention when accessing the memory. If the same clock is used for
both reading from and writing to the memory in which there are at least 50 image
rows as a difference between reading and writing pointers, simultaneous reads-from
and writes-to the same memory location will never occur.
The memory occupation space is composed of two parts:

• A major part contains the image In acquired at tn.

• A minor part includes some image rows of In+1 acquired at tn+1.

The size of the major part is equal to the image size while the size of the minor part
depends on the movement information encoded in the homography matrix. The
longer is the distance performed between two sequential frames, the larger is the
amount of memory needed to store the minor part.
A signal called offset address denotes the first memory location of the major part
In. This signal is used by the component adress−generator (introduced in section
6.2.3) in order to access the memory location of In, and it is also required for the
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Table 6.4: Hardware resources for both IPM module and homography module

Resources
Luts 3948

Slice Registers 6930
Target Zynq-7020
Latency 6 clock cycle (Only IPM module)
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Figure 6.14: Hardware design of IPM module.

computation of the physical addresses of In+1 when this stream is written to the
memory.

6.4.1 Resource Utilization and Latency

Table 6.4 shows the amount of hardware resources to produce IPM image (|H[In]−
In+1|). The two modules, homography module and IPM module, are required to
produce this image. 91 clock cycles are induced as latency to produce IPM image;
IPM module takes 6 clock cycles to output the first pixel of IPM image whenever a
pixel of the transformed image is available on the input of IPM module. The other
clock cycles are induced by the homography module.

6.5 Gaussian Filter

The resulting image after IPM module forwards to a Gaussian filter in order to
remove noise and to ensure a good performance of Otsu’s binarization. The input
signal of this module is the stream of IPM image. The output signal is a blurred
image of the IPM image.
Figure 6.15 illustrates the hardware components required to perform the filter. The
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3 × 3 block transforms the input stream of pixels into a stream of 3 × 3 blocks. A
BRAM Block is needed in order to store three image rows (two image rows and two
pixels). The stream of 3 × 3 blocks forwards to Convolution component where a
convolution is performed between the stream of 3× 3 block and a Gaussian kernel.
The convolution process produces the output pixel. Delay component outputs an
enable signal which is set to 1 whenever a valid pixel is available on the output.

6.5.1 Memory organization

An important cost of latency is paid before the first 3×3 block is produced. As the
image resolution is 640× 480, 1282 clock cycles are needed in order to produce the
first block. The BRAM Block is divided into 3 parts. Each part stores one row of
the input image. Hence, reads-from and writes-to memory can be easily performed.
A state machine architecture with 3 states is implemented. As depicted in figure
6.16, I0, I1, and I2 represent 3 image rows stored in the memory. The 3 states aim
to produce the 3 × 3 blocks in good order. Each resulting block is composed of 9
pixels. Each pixel is 8 bits wide. en0, en1, and en2 are used to recognize the order
of image rows in the memory. The switch between these 3 states is done when a
new image row is acquired.

6.5.2 Convolution and Delay

Figure 6.17 illustrates the hardware design of the convolution component where a
convolution is performed between the Gaussian kernel and the 3×3 blocks resulting
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Table 6.5: Hardware resources for Gaussian filter implementation

Resources
Luts 160

Slice Registers 249
BRAMs 2 %
Target Zynq-7020
Latency 1282 clock cycle

from the previous process. The Gaussian kernel used in this implementation is:
1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16

 (6.7)

Gaussian kernel values are carefully selected. The proposed values allow to avoid
critical arithmetic operations like division operation in hardware implementation.
Hence, the shifting right by n bits on each signed signal of the 3 × 3 block will
have the effect of dividing the values of a 3 × 3 block by (4, 8, 16). The input
pixels are represented by 9 bits where the MSB bit denotes the identity of this pixel
(already introduced in section 6.4). This MSB bit is delayed by 4 clock cycles and
concatenated with the computed pixel resulting from convolution operation.
Delay component produces a valid signal referring to valid output pixels. 4 clock
cycles are induced as latency in the convolution component, and 3 clock cycles are
used in order to produce the 3× 3 blocks.6 Table 6.5 illustrates required hardware
resources for Gaussian filter.

6Without taking into consideration the time required to store the first two rows of the image
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Figure 6.19: Hardware architecture for obstacle segmentation.

6.6 Binarization

The resulting image after Gaussian filter is binarized by Otsu’s threshold. The
binarization process aims to segment obstacle objects. As pictured in figure 6.18,
the input signals of this module are the pixel stream and an enable signal which
goes HIGH whenever a valid pixel is available on the input. Each pixel in the
input stream is 9 bits wide. The output signals of this modules are the pixel stream
of the binary image and an enable signal which is set to 1 whenever a valid pixel is
available on the output.

Figure 6.19 illustrates the proposed hardware components for obstacle seg-
mentation. Ign,n+1 represents the produced stream from Gaussian filter. Indices
(n, n + 1) denote the frame index (because IPM method needs two sequential
images acquired at distinct moments (tn, tn+1)). Also, Ibn,n+1 denotes the pixel
stream of the binary image. Each pixel is represented by one bit. The threshold
thn−1,n used to binarize Ign,n+1 is already computed from the stream Ign−1,n. As
histogram computation requires a heavy cost in terms of latency. This thresholding
remains valid and allows to save on processing latency if there is not a high
variation in intensities between two sequential frames. Figure 6.20 illustrates the
hardware architecture for thresholding and histogram extraction. The hardware
design in this figure is described as follows:

• The MSB bit of each input pixel is checked in order to recognize the identity
of pixel. If the MSB bit is 0, the pixel value (represented by 8 bits) forwards
to thresholding step. Otherwise, the pixel value is assigned a value of 0.

• In thresholding step, a comparison is performed between Otsu’s threshold and
the pixel stream (as pictured in figure 6.20). If Otsu’s threshold is less than
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Figure 6.20: Hardware architecture for binarization and histogram extraction.

the pixel’s intensity, the output pixel is set to 1. Otherwise, the output pixel
is set to 0.

• Each input pixel also forwards to another hardware component in order to
compute the histogram of the input image. Histogram is represented by a
vector. Vector size is 256. Each element in the matrix is 19 bits wide. A 8:256
decoder is implemented for extracting the histogram. In this decoder, the
input signal is 8 bits wide. This signal represents the index of the histogram
value. Hence, the decoder output at this index is set to 1. A sum is then
performed between the histogram value and this decoder output.

6.6.1 Hardware implementation of Otsu’s method

The computed histogram forwards to Otsu threshold component which executes
Otsu’s algorithm in order to compute Otsu’s threshold. Figure 6.21 shows the
essential components to execute this algorithm in the hardware architecture; the
proposed architectural design aims to perform the calculation of Eq. 3.30 already
introduced in the theoretical background.
Otsu’s algorithm is applied to the extracted histogram, and it is implemented as
follows:

• The gray− level generator is a 9-bit counter. The lower 8 bits of the counter
are used to generate pixel intensity values from 0 to 255. The MSB bit of
the counter output is used to control other components.

• Each pixel value resulting from gray − level generator is used as an address
in order to read the histogram value at each gray-level value.
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Figure 6.21: Hardware components for Otsu’s algorithm implementation.

• The gray-level value and its histogram value are used to compute the class
probabilities ω0 and ω1.

• These latter are then used in order to compute the class means µ0 and µ1.

• Finally, the computation of the between-class variance in Eq. 3.30 is per-
formed.

A state machine design is implemented to execute the required computations
(pictured in figure 6.21) in the good order. Figures 6.22, 6.23, and 6.24 illustrate
the general hardware designs to perform the computation for each component
shown in figure 6.21.7

Figure 6.22 illustrates the hardware design for the computation of ω0 and
ω1. As illustrated in this figure, Address Generator component operates in like
manner as gray − level generator (pictured in figure 6.21). S1 is the sum of the
products of gray level values and its histogram values. When S1 computation
is done, the MSB bit of Address Generator is used to trigger gray − level

generator (illustrated in figure 6.22). LSB bit of gray − level output enables the
accumulation of histogram values which are mapped by the addresses from 0 to the
current value of gray − level counter, thus allowing to produce ω0. tot is an input
signal of Otsu Threshold module.8 It represents the total number of valid pixels in
the resulting image from IPM module. As already mentioned in section 6.4, the
MSB bit of pixel value is used to recognize valid pixels. Hence, tot represents the
number of pixels whose MSB bit is set to 0. A subtraction is performed between
tot and ω0 in order to compute ω1.

7The figures show only the main operations
8tot signal is not shown Fig 6.20, but illustrated in Fig 6.22
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Figure 6.23 illustrates the hardware design for the computation of µ0 and
µ1. As already noted, gray − level generator outputs gray levels in order to pro-
duce its histogram values. The product of histogram value and its correspondent
gray level value is computed. This product is 28 bits wide. The sum of the product
values is then performed to compute sub. A subtraction is performed between sub

and S1 to produce suf . The two computed values sub and suf are each represented
by 28 bits. Two division operations are then executed. 39 clock cycles are induced
as latency to perform the two division operations.

• The first division operation is performed between sub and ω0 in order to
produce µ0

• The second division operation is performed between suf and ω1 in order to
produce µ1

Figure 6.24 illustrates the hardware design for threshold Decision component. Be-
cause of the latency induced by the two division operations, ω0 and ω1 are delayed
by 39 clock cycles as shown in figure 6.23. A subtraction is performed between µ1
and µ0. The square of the subtraction result is then computed. This latter is 54
bits wide. The product of ω0 and ω1 is computed and delayed by 1 clock cycle.
Finally, σ2

B in Eq. 3.30 is produced.
For each gray level value generated by gray− level component, σ2

B is computed and
compared to its previous value in order to find the maximum value of σ2

B. The gray
level by which the maximum value of σ2

B is produced represents Otsu’s threshold.



6.7. Erosion operator 89

Table 6.6: Hardware resources for binarization implementation on Zynq-7020

Binarization module Otsu algorithm
Luts 5233 3295

Slice Registers 15934 5320
Latency 2 clock cycle 12032 clock cycle

6.6.2 Resource Utilization and Latency

Table 6.6 illustrates required hardware resources for the binarization module, in-
cluding the required resources for Otsu’s algorithm implementation on Zynq-7020.
A high consumption of hardware resources is induced because histogram is stored
using slice registers. Additionally, division operations are performed between logic
vectors of wide bits width. 2 clock cycles are needed for image thresholding. This
doesn’t include the clock cycles required for Otsu’s algorithm implementation be-
cause thresholding uses an Otsu’s threshold already computed. Otsu’s algorithm
implementation requires an large number of clock cycles since Otsu’s algorithm is
an iterative method that tries to find the optimal threshold.

6.7 Erosion operator

Erosion operation is applied to the binarized image produced by the previous pro-
cess in order to remove noise resulting from binarization. The proposed hardware
architecture in this process is similar to the hardware design of the Gaussian filter.
Figure 6.15 illustrates the general hardware components. In the case of erosion op-
eration a 3× 3 block is used to transform the binarized stream pixels into a stream
of 3× 3 blocks since the binarized image is eroded by a 3× 3 structuring element.
Then, the produced blocks are convoluted with the structuring element.Delay com-
ponent produces enable output signals referring to valid output pixels.
The memory organization is similar to that already described for the Gaussian filter
(see 6.5.1 and figure 6.16 for more details). Table 6.7 shows the required hardware
resources for erosion module. The produced latency is identical to Gaussian filter
module latency. BRAM block size is an eighth of the memory size used for Gaussian
filter, since erosion operation is applied to binarized images (1 bit per pixel).

1 1 1
1 1 1
1 1 1


If any of the neighbouring pixel in the 3×3 block is a background pixel, the output
pixel is set to a background pixel. The Delay component produces a valid enable
signals for valid output pixels after 4 clock cycles.
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Table 6.7: Hardware resources for erosion filter implementation

Resources
Luts 97

Slice Registers 75
BRAM 1 %
Latency 1282 clock cycle
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Figure 6.25: External View of Localization module.

6.8 Obstacles localization

The aforementioned operations aim to segment obstacle objects in the image frame.
However, no information is produced about obstacles localization in the world frame.
The proposed module in this section is devoted to accomplish the localization task.
The module performs two functions:

• Obstacles bearings computations

• Contact points extraction

Figure 6.25 illustrates an external view of the localization module, including the
main components of the hardware architecture. The input signals of this module
are the pixel stream of binary image, an enable signal, and focus point coordinates.
Each input pixel is 1 bit wide. Focus point coordinates are represented by 28 bits.
The output signals are Bear and Cor. Bear denotes bearings measurements. It is
one-dimensional array of 80 elements. Matrix indices denote defined bearings in
the image while matrix values represent the number of over-threshold pixels per
bearing. Cor is also one-dimensional array of 80 elements. Matrix values denote
extracted contact point coordinates that exist in a defined bearing. Similarly,
matrix indices in Cor represent defined bearings in the image.



6.8. Obstacles localization 91

Focus point coordinates are represented using 14 bits for each coordinate.
The choice of the bit width is based on the fact that focus point is usually located
outside image borders. As polar histogram beam is originating from this point,
the localization of this point is an important issue. As already mentioned, IPM
image is produced from two images: first image is a transformed image acquired
at tn, and second image is a real image acquired at tn+1. The second image has a
focus point called f1. This latter can be precomputed offline from Eq. 5.5 because
it depends on the orientation of camera with respect to the ground plane. The
transformed image has a focus point called f2. This point can be computed as
follows using homogeneous coordinates:

f2 = T−1
ipm × f1 (6.8)

f = f1 + f2
2 (6.9)

T−1
ipm represents the inverse matrix of IPM matrix (Computed from Eq. 3.23).
f is the midpoint between f1 and f2. Polar histogram beam is originating
from f . Since IPM matrix is updated in real time on the embedded software
part, the computations of f2 and f are performed in the software part of the system.

Buffering component stores the input stream while the other two compo-
nents (namely Left/Right scan modules) perform the computations of Bear and
Cor.
These two components (Left/Right scan) operate independently. Each component
scans a part of the image. As already mentioned in the theoretical background,
polar histogram is performed using a beam of lines originating from focus. The
number of lines depends on the image resolution. For VGA resolution used in our
implementation, 80 lines are adopted in order to perform polar histogram beam.
The choice of lines number is an important issue. The greater is the number of
lines used to perform polar histogram, the higher is the accuracy of the results
produced by this module. However, adopting a polar histogram beam with a great
number of lines requires a huge amount of hardware resources. So, the number
of lines in the histogram beam is a trade off between the amount of hardware
resources and the accuracy of results.
Left scan module tracks 40 lines in the left side of image. Also, Right scan module
does in the right side. The choice of the number of modules (which is two in our
implementation) to track polar histogram beam depends on two criteria:

• Image resolution.

• The number of clock cycles required to compute the coordinates of each pixel
by Bresenham’s algorithm for a line in the polar histogram beam.
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Figure 6.26: General hardware architecture of localization module.

Figure 6.26 shows the hardware architecture overview. It illustrates how the input
stream is connected to the two components (Left/Right scan). Pixel in this figure
denotes a pixel in the input stream of the binary image. Two line buffers are used
to control the flow of the input stream to the two components (Left/Right scan).
In details, these two buffers are operating as follows:

• One line buffer stores one image row.

• The other buffer is handled by the two components (Left/Right scan).

Line buffer width is 1 bit, and line buffer depth is 640. Each line buffer is
switched between storing an image row and being read by the two components
(Left/Right scan) when a new image row is received. u Coordinate Genrator

is a 10-bit counter which produces u image coordinate from 0 to 639. Counter
value is compared to a selected threshold (639). When the counter value is
equal to 639, a control signal is generated in order to switch the storage of
the input stream from one line buffer to the other line buffer as depicted in
figure 6.26. v Coordinate Genrator is a 9-bit counter. This counter is used to
count the number of received image rows. Therefore, this counter is enabled by
the output of comp. This comparator outputs 1 when receiving 640 pixel. The
counter value forwards to the components (Left/Right scan) for further processing.

The outputs of the two components, (Left/Right scan), are the parts of
Bear and Cor. These parts represent bearings measurements for Bear and
detected contact points for Cor. Each part is one-dimensional array of 40 element.
A concatenation of these parts is done to produce Bear and Cor outputs.
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6.8.1 Left and Right Scan

As pictured in figure 6.26, the input signals are focus point coordinates, two line
buffers, a control signal, and the output of V Coordinate Generator. Each module
performs the following functions:

• Computing the coordinates of each pixel for each line in the polar histogram
beam by the algorithm 2 (introduced in section 5.2).

• Performing bearings measurements, also included in algorithm 2.

• Extracting contact points between obstacles and the ground plane by the
method already introduced in section 5.3.

The control signal (Comp output shown in figure 6.26) is used to select the good line
buffer to be read. Line buffer and focus point coordinates forward to Bresenham’s
algorithm component (pictured in figure 6.27) which produces u coordinate for
each line in polar histogram beam (named uL in figure 6.27 ). The produced uL

coordinates with its pixel values Pix(uL) read from the line buffer forward to the
two components Bearings Measurements, and Contact Points Extraction. This
latter component takes V Coordinate as input in order to be concatenated to the
computed u coordinate of detected contact points.
A state-machine design of 4 main states is implemented. The use of state machine
design aims to organise the flow of data from Bresenham’s algorithm implementation
to contact points extraction and bearings measurements components.
Figure 6.28 illustrates the designed state machine for the proposed architecture.
The functionality of these 4 states is described as follows:

• In state IDLE, Bresenham’s parameters (du, dv, D, u0, and u) are initial-
ized for a defined line generated by Line Counter (pictured in figure 6.29),
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thus allowing to compute uL coordinate for a generated line. uL coordinate
forwards to state A.

• In state A, contact points extraction method is implemented with bearings
measurements. If any contact point is detected in this state, its coordinates
(uL,V ) output in this state.

• In state B, the parameters D and u are updated in order to compute the
next pixel coordinates uL when a new image row is received. The updated
values are stored in Mem9. In addition, some parameters used in contact
point extraction process are updated in this state.

• In state C, Line Counter is enabled to generate all lines of the polar his-
togram, thus allowing to apply all previous operations to all these lines (from
0 to 39) for one image row stored in the line buffer. This state will be later a
wait state until it is triggered by comp output signal (pictured in figure 6.26)
which denotes an available image row in the other line buffer.

6.8.1.1 Bearing measurements

Figure 6.29 illustrates the hardware design of state IDLE. Bresenham’s algorithm
parameters (These parameters already introduced in 5.2) are initialized. Focus
point is represented by 28 bit. Coordinate Generator (pictured in figure 6.29)
generates the first coordinate (called u) of each line in the polar histogram beam.
The upper 14 bits of focus point represent the parameter dv. A subtraction is

9Mem denotes that the values can be stored either in an array of storage elements such as
individual registers or in RAMs
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Figure 6.29: Hardware design in state IDLE.

performed between the lower 14 bits of focus point and Coordinate Generator

output, thus allowing to produce I2 represented using 16 bits. The absolute value
of this subtraction is also computed, thus allowing to produce the parameter du
using 16 bits.

I2 is a signed logic vector which is compared to 0 in order to select the
good sign of parameter u0. This latter parameter is 16 bits wide. Parameter D is
computed from the two parameters (du and dv). First, du is multiplied by 2 by
shifting left by 1 bit. Then, a subtraction is performed between 2du and dv, thus
allowing to initialize the parameter D by 19 bits. A multiplexer is implemented
in order to choose the suitable value of D because this parameter is updated
under specific conditions, it will be evaluated by another method. The parameters
(du, u0, and D) are stored in Mem whose depth is equal to the number of lines
which is 40 in our implementation. The addresses are computed in Address

Generator. In State IDLE, parameter uL is computed and delivered to state A.
This coordinate is computed from 3 parameters: u0, u, and the lower 13 bits of
focus point coordinates. u is initialized to 0 for each line in polar histogram beam.
u0 represents the coordinate of the first point of of each line in the polar histogram
beam where the origin is focus point. Hence, the parameter u is the shifting from
the first point of each line in the beam. This signal denotes the changes of the
coordinate u when a line in the beam is tracked from the first point until focus point.

As depicted in figure 6.30, uL is the sum of u0, u, and the lower 13 bits of
focus point with respect to the sign of u0. This is because focus point is the origin
(as shown in figure 6.25). As the left side of V axis represents negative values
of u coordinates, the sign of uL is functional to the localization of the line. If
this line is in the left side, uL is negative. Otherwise, it is positive. Therefore, a
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multiplexer is designed in order to choose the good value of uL. Co controls the
multiplexer output. uL forwards to state A, and it is stored in Mem for each line
in the histogram beam.

Figure 6.30 also shows the hardware design in state B. When a new image
row is received, the parameters (uL and D) are updated for each line in the
histogram beam. Parameter D represents the evaluation of error in Bresenham’s
algorithm ( already presented in section 5.2). D is compared to 0 in order to
compute the shifting u. D itself is also updated in this state with respect to the
sign of D as pictured in figure 6.30.

Figure 6.31 illustrates how obstacles bearings are produced in state A. uL

(which denotes the coordinate of a pixel that belongs to a line in the polar
histogram beam) is used in order to read the pixel value from the line buffer.
The pixel value (namely Pix(uL) in the same figure) is compared to 0 because
each pixel assumes one of only two discrete values: 1 or 0 in the binary image. If
the pixel value is equal to 1 (which means an obstacle pixel), Comp generates an
enable signal in order to pass Line Counter value (represented using 6 bits) to a
decoder (from 6 to 40). Hence, the correspondent value of element in the bearings
matrix is incremented.

6.8.1.2 Contact points extraction

In state A, contact point extraction method is performed. Figure 6.32 illustrates
the hardware implementation of the method. The following parameters (Sc, S,
A, B, and h) are already introduced in the theoretical presentation (section 5.3).
In the line buffer, each pixel is addressed using (uL, V ) coordinates. A decision is
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Figure 6.31: Hardware design for bearings measurements in state A.

made for the extraction of coordinates. A decision positive means that En3 and
En2 signals enable the passing of the coordinates to be an extracted contact point.
Otherwise, the coordinates are not extracted.

A sum is performed between a pixel in the line buffer and its neighbouring
pixels. In the VGA implementation, 5 is selected as the window width. Hence, 10
pixels are set to the sum operation. The sum result is controlled by another signal
called En1. This signal represents the An1 gate output. An1 gate outputs 1 when
a pixel value and all its neighbouring pixels values in a selected width are set to 1.
Otherwise, An1 gate output is 0 and the sum result is not valid.

The sum result represents the parameter A. This latter is compared to an-
other signal B (another parameter used in the method). Parameter A is 4 bits
wide. Similarly, B is represented using 4 bits. B is initialized to the maximum
value of sum operation. If the computed value of A is less than B, Comp outputs
1. Hence, B is updated to the actual value of A and stored in Mem. In like
manner, S and Sc parameters are updated. The decreasing of A of a defined line
in the histogram beam will increase the likelihood of the existence of a triangular
shape. In this case, Sc value is increased and the parameter S encodes the triangle
surface by computing the number of over-threshold pixels of the defined histogram
line across multiple image rows.

Once An1 outputs 0, an enable signal En2 is set to 1. This enables the
second passing of coordinates. Before this step, another control signal En3 must
be set to 1 in order to output the extracted coordinates. En3 is An2 output. This
gate is controlled by the outputs of two comparators. The first comparator output
is set to 1 when the computed Sc is greater than a constant threshold defined for
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Figure 6.32: Hardware design for contact points extraction method in state A.

a specific environment. The second comparator outputs 1 if S is greater than a
defined value computed by multiplying the computed h with a threshold. In this
implementation, 4 is selected as a threshold.

Figure 6.33 illustrates the composition of extracted contact points. For a
contact point of size 26 bits, 7 bits encodes the bearing, and 19 bits are used to
represent contact point coordinates.

6.8.2 Resource Utilization and Latency

Table 6.8 shows the required hardware resources for the localization module im-
plementation. Latency estimate relies on many constraints which must be defined.
Generally, latency computation is impacted by the image resolution, the number of
lines in the histogram beam, and the parameter h used in extraction contact points
method. One image row must be stored in a line buffer before activating (Left and
Right) scan module. Hence, latency linearly increases with horizontal resolution.
The latency computation in table 6.8 is defined as follows:

• As the image resolution is 640 × 480, 640 clock cycles are required to store
one image row.
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Table 6.8: Hardware resources for localization implementation

Resources
Luts 10433

Slice Registers 5642
Target Zynq-7020
Latency 3646 clock cycle

• If the parameter h takes 5 as value, 5 × 640 = 3200 clock cycles are induced
since it represents the minimal valid height of a detected triangle.

• After receiving 5 image rows, the first possible contact point could be produced
after 6 clock cycles. So, total computed latency is 3646 clock cycles.

6.9 Free space detection module

Localization module takes Bear and Cor as outputs. Polar histogram matrix
(namely Bear) is one-dimensional array of 80 elements mapped to the 80 selected
bearings in our VGA image. Each matrix element is 8 bits wide. Bear matrix
could be either stored in a block memory BRAM or in slice registers. If a block
BRAM is chosen for storage, an additional cost is induced in terms of latency time.
On the other hand, if slice registers are selected, an additional cost is paid in terms
of hardware resources. In our design, slice registers have been selected in order to
store the polar histogram Bear because the priority is given to reduce latency of
the total system.

As pictured in figure 6.34, Free space detection hardware module takes po-
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lar histogram matrix Bear as input and peaks matrix Peak as output. Peak

matrix is one dimensional matrix composed of 32 elements. Each matrix element
is 16 bits wide. The MSB bit among these 16 bits is used for mapping between
peaks and obstacles. In other words, if MSB bit of a peak element in the peaks
matrix is set 1, the peak element and the previous peak element in the peaks
matrix belong to two different obstacles. On the other hand, if this bit is set to 0,
the peak element and the previous peak element belong to the same obstacle object.

Figure 6.38 shows a peak vector decomposition. For a peak of size 16-bits,
7-bits are used in order to represent defined bearings in our image. As already
noted, polar histogram beam is composed of 80 lines. These 80 lines are mapped
to 80 bearings in a specific vision champ. The other 8-bits represent the peak
amplitude. In other words, it represents the number of over-threshold pixels of a
detected peak in a specific bearing.

As pictured in figure 6.35, the architecture of a 3-state machine is proposed
in order to extract peaks from polar histogram. The state machine operates as
follows:

• In the first state IDLE, Bear matrix elements are checked in order to seek
peaks in this matrix

• state A is triggered when two sequential peaks are detected. A loop is executed
to compute the two values A1 and A2(introduced in section 3.7).

• In state B, the two computed values (A1, A2) are compared to a threshold.
Then a decision is made in order to decide whether the two sequential peaks
are derived from the same obstacle object or not.

The output peak encodes the relation to neighbouring peaks by MSB bit. Addition-
ally,This output includes peak bearing and amplitude. Figure 6.36 shows hardware
design of state IDLE. Count2, and Count1 are bearings indices generator. Each
generator value is represented using 8 bits. They are used to read the bearings
measurement stored in polar histogram matrix. As state IDLE outputs every two
sequential peaks, Count1 and Count2 values denote these two sequential detected
peaks. Among these two peaks, the first peak detected is addressed using Count1.
Peaks are basically detected by comparing each bearing measurement Pol(count2)
to its neighbouring bearings measurements (Pol(count2 + 1), Pol(count2− 1)). If
a new peak is detected, An1 gate outputs 1. Hence, the peak value Amp1 forwards
to the next state. A subtraction is performed between Count1 and Count2 to
compute the bearing difference. This value (namely def) represents the distance
between the two detected peaks.

Figure 6.37 shows the hardware design of states (A, B). In state A, A1 and
A2 quantities (already presented in 3.7) are computed for each two sequential



6.9. Free space detection module 101

FREE SPACE
DETECTION

Bear

din_valid dout_valid

Peaks

Figure 6.34: External view of free space module.

peaks. Count3 is bearings indices generator. This counter allows to scan bearings
measurements values located between the two peaks (which are addressed by
Count1, and Count2). The counter Count3 counts from 0 to Step. Step represents
the middle distance between the two peaks. As the counter value of Count3 is less
than Step, bearings measurements values at u1, u2, and Count2 are read. These 3
values are used to compute the following sums:

• A2 is the accumulation of the sum of the subtraction result performed between
the two bearings measurements pol(count2) and pol(u1). A2 is 14-bits wide.

• A11 is the accumulation of the sum of bearings measurements pol(u1). A11
is 14-bits wide.

• A12 is the accumulation of the sum of bearings measurements pol(u2). A11
is 14-bits wide.

When Count3 value is equal to step. In this case, the following operations are
executed in state B:

• The sum operation A1 is performed between A11 and A12 outputs. A1 is
represented using 15 bits

• The output of the sum operation A2 is multiplied by a threshold th. The
choice of th value is critical because the decision of joining peaks (Whether
the two peaks belong to one or two obstacles) is made using th. The result of
this product is represented using 19 bits.

This result is compared to A1 output. If A1 output value is greater than the afore-
mentionnned result, MSB bit of the output peak vector is set to 1. Simultaneously,
the lower 8 bits of this peak vector are set to pol(Count2), and the other peak
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Table 6.9: Hardware resources of Free space detection module

Resources
Luts 1630

Slice Registers 723
Target Zynq-7020
Latency 16 clock cycle

vector bits are set to Count2. Peak vector is stored in the peaks matrix which is a
32-peaks wide.

6.9.1 Resource Utilization and Latency

Table 6.9 illustrates hardware resources used for the free space hardware module.
Because registers are used to store peaks matrix and polar histogram, an additional
cost in terms of hardware resources is induced. Latency cost of this block depends on
the number of detected peaks and the distance between these peaks. The minimum
detection time (latency) of the first possible free space between two sequential peaks
is 16 clock cycles. The maximum execution time is 280 clock cycles per frame.
This estimated value is computed under strict conditions such as a Bear matrix
includes 25 peaks (which represents the maximum number of detected peaks in our
implementation).

6.10 2D Occupancy Map Reconstruction

6.10.1 Contact Points selection Module

Contact points selection module takes Peaks matrix and Contacts matrix as input.
Selected Points matrix is the output of this module as pictured in figure 6.39. A
selection of best contact points is accomplished in this module. The selected points
are used to build the occupancy grid map.

As depicted in figure 6.40, a state machine design of 4 states is implemented
for this task. The functionality of this state machine is described as follows:

• In the first state IDLE, the peaks which mapped to the same obstacle object
are read from the peaks array. This process is performed by checking the
MSB bit of each peak element in the peaks array.

• In state A, we select the contact points candidates (from contact points ma-
trix) which could be assigned to one or more peaks (peaks that mapped to
one obstacle object) in the peaks matrix. The selection of contacts candi-
dates is based on bearing index, as every peak and contact point uses 7 bits
for bearings representation.
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Figure 6.39: External view of contact points selection module.

• In state C, a comparison is performed between these two 7 bits in order to
decide whether this contact point could be a candidate or not. The contact
points candidates are then stored in a temporary matrix. The 3 states IDLE,
A and C are repeated until a new obstacle peak is detected.

• When a read peak from peaks matrix refers to a new obstacle object, state D
is executed. In this state, contact points candidates matrix is called in order to
choose the best contact point. As noted in the theoretical presentation of this
method, this selection is based on the nearest point to focus. A comparison
is done between candidates points and the vanishing point focus in order to
choose the best point.

Figure 6.41 illustrates the hardware design of each state. Peaks matrix is 32
peaks wide. Each peak is represented using 16 bits. For a peak of size 16 bits, 7
bits encodes the bearing. Contacts matrix is composed of 80 point. Each contact
point is 26 bits wide. Similarly, 7 bits are used to represent the bearing. Count1
generates the addresses to read Peak matrix. Count2 also provides the addresses
to read Contacts matrix. These addresses are each 7 bits wide. Bearings values
encoded in the peak matrix and contact matrix are extracted. In state C, a
subtraction is performed between the two bearings values. The subtraction result
is then compared to a threshold. If the subtraction result is less than a selected
threshold, an enable signal is generated to store the contact point in a temporary
matrix (contact points candidates matrix).

If the MSB bit of a peak matrix value is set to 1, state D is executed. In
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Table 6.10: Hardware resources of contact points selection module

Resources
Luts 349

Slice Registers 386
Target Zynq-7020
Latency 16 clock cycle
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count <80

Diff < 6 wren < 6

Figure 6.40: State machine design of contact points selection module.

this state, Counter4 generates the necessary addresses to read the temporary
matrix. The selected contact points are produced from this state. The output
matrix of selected contact points is an array of 32 elements.

6.10.1.1 Resource Utilization and Latency

Table 6.10 illustrates the amount of hardware resources for the selection of best
contact points. The minimal latency induced to output the first possible selected
contact point is 87 clock cycles. The maximal execution time is about 2100 clock
cycles per frame. This latter time is an estimated time computed under strict
conditions such as 25 detected peaks (The maximum number of peaks)and a Cor
matrix includes 80 contact points (The maximum number of contact points).

6.10.2 Map Reconstruction

Selected contact points matrix is delivered to software part using Xillybus IP core
(introduced in 4.8). In the simplest form, the Xillybus interface with application
logic was designed for a direct connection with either a standard FIFO or RAM
memory. In this application, a FIFO component is used to interface with the
application logic. FIFO component works with data in widths of 8 bits, 16 bits



6.10. 2D Occupancy Map Reconstruction 107

Peaks

Contacts

Contacts
Candidates

Count1

Comp

Comp

Count4 Comp

Comp

Comp

Count2 Comp

16

 7
31

8

MSB

1 16
4

19

4

7 6

26

19

7
79

D

IDLE

D

A

Contact

Figure 6.41: Hardware design of state machine.



108 Chapter 6. Hardware IP Cores

Dual Core CPU

 ARM CORTEX A9

HW/SW Interface 

Xillybus

X
IL

LY
N

U
X

 K
E

R
N

E
L

X
IL

LY
N

U
X

  U
SE

R

ZYNQ-7020

Selection

FIFO

32

32 Rd

WrSelected 

Dout

AX
I B

US

Figure 6.42: Selected points forward to the software part.

or 32 bits. Because each contact point is 19 bits wide, the logic vector will be
zero-extended to 32 bits wide. The configuration of FIFO takes place during the
formation of Xillybus core. FIFO component outputs the selected contact point
(called Dout in figure 6.42). Dout is read by Xillybus core. Additionally, Xillybus
core outputs an enable read signal Rd to FIFO. When Rd is set to 1, the core
expects valid data to be present on the ARM core on the following clock. In the
embedded Linux kernel, contact points are read from a device file.

A software module is developed in order to map contact points to the coor-
dinate system of the occupancy grid. In details, the software code implements
the equations 5.17, 5.18, 5.19. The execution time of the software part is 56µs in
order to produce the coordinates of one selected point in the world frame of the
occupancy grid. The maximum number of selected points is 32 points per frame.
Hence, the maximum execution time of the software part is about 1.8ms per frame.
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7.1 Introduction

The previous chapter has introduced the three proposed architecture (Figures 6.1,
6.2, 6.3) and described the hardware design of each module in these architectures.
An external view illustrating input and output signals is shown for each module.
An internal view that represents the structural design of the component is shown.
The architectural designs are analyzed and synthesized in terms of hardware
resources, latency, and overall performance.

Two platforms are used to validate thesis work:
• Virtex-6 is used to implement first and second hardware architectures because
the two architectures have consumed a huge amount of hardware resources.

• Zynq based kit (Zedboard) is used to implement the proposed architecture
for the 2D occupancy map reconstruction.

In this chapter, we present the results of the tests done to validate the proposed
systems. An experiment is presented to validate the proposed architecture for ob-
stacle detection and localization with a comparison between hardware and software
implementation. Another experiment is also presented for the reconstruction of
2D occupancy grid map. Finally, we present the integration of this later in the
camera-belt platform.
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Figure 7.1: Overhead view of test environment.

7.2 Obstacle Detection and Localization System Exper-
iment

The primary focus of this experiment is to test and validate the proposed system
model (The following results and comparisons are produced by the second archi-
tecture except the comparison of the bird’s eye transformation between software
and hardware implementation). Figure 7.1 shows the general overview of the
environment of test. As pictured in this figure, camera positions are preselected to
draw a given trajectory. The selected indoor environment includes floor tiles which
could be a source of noise in the resulting binary images.

A webcam camera is used for image acquisition. The acquired images are of
VGA resolution. As pictured in figure 7.2, images (b),(c),(d) and (e) show selected
obstacles objects. The dimensions of tested obstacles are as follows:

• Width : between 1.5 cm and 60 cm.

• Height : between 5 cm and 55 cm.

Figure 7.3 shows the acquired images and IPM results at 2, 3, 4, 5, positions. Figure
7.4 also shows the resulting binarized images, and detected contact points at these
positions.
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Figure 7.2: Camera and selected obstacles in the test.

7.2.1 Comparison of the results between hardware and software
implementation

In this section, we compare the hardware implementation results with the software
implementation of the proposed system. Figure 7.11 shows two images acquired at
two distinct instances. Three obstacles are pictured at these two instances. Figures
(7.5) (7.6) illustrate the image resulting after IPM method in the hardware and
software implementation.

Figure 7.7 illustrates the resulting images from gaussian filter. The same
Gaussian kernel is used for hardware and software implementation. In the
hardware implementation, all arithmetic operations are executed by shifting
because kernel values are divided by 2, 4, and 8. In the software implementation,
double-precision floating-point representation is used for kernel values.
Figure 7.8 shows the produced binary images. As depicted in this figure, an
important difference is observed in the results due to the difference of the Ots’s
threshold value between hardware implementation and software implementation.
In practice, fixed point format is used to store and manipulate the signals in
arithmetic operations in the hardware implementation. When Otsu’s algorithm is
implemented, complex arithmetic operations are performed between logic vector of
large width. Additionally, an approximation is done after each arithmetic operation
(by removing a specific number of the least significant bits from the resulting
signal). Rounding numbers during signal processing naturally yields quantization
error, the deviation between actual values and quantized digital values. Since
the gaps between adjacent numbers can be much larger with fixed-point format
when compared to floating-point processing, round-off error can be much more
pronounced.
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Figure 7.3: Acquired images and IPM results.
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Figure 7.4: Results binarized images and contact points.
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Figure 7.5: Transformed image (Left: Hw result, Right: Sw result) .

  

Figure 7.6: IPM image (Left: Hw result, Right: Sw result) .



7.2. Obstacle Detection and Localization System Experiment 115

  

Figure 7.7: Gaussian output image (Left: Hw result, Right: Sw result) .

  

Figure 7.8: Binarized image (Left: Hw result, Right: Sw result) .
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Figure 7.9: Eroded image (Left: Hw result, Right: Sw result) .

  

Figure 7.10: Bird’s eye image (Left: Hw result, Right: Sw result) .
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Figure 7.11: Acquired images at tn and tn+1.

Figure 7.10 shows bird’s eye transformation results. The transformation ma-
trix used in the hardware implementation is a an approximated matrix of the
matrix used in the software implementation. Because a fixed-point format with
14 bits is used to represent the fractional part of bird’s eye matrix values, an
important difference is observed between hardware and software implementation.
Since division operation is executed between two logic vectors of large width in
bird’s eye transformation, this produces less precise values. In order to produce
higher precise values, a representation with 20 bits is required to represent the
fractional part of bird’s eye matrix values in the hardware implementation.

7.2.2 Comparison to the state of art

All the subsystems composing each proposed system (the first and second ar-
chitecture) to validate are executed on the simulation environment (ISim) using
Virtex-6 platform. The estimation of power consumption in our architecture is
around 3.9 watt. This value is produced using Power Analyzer tool in ISE software
(Integrated Synthesis Environment). The computational latency time is about
4610 clock cycles for the second architecture while 126897 clock cycles are required
to perform the first architecture. Table 7.1 illustrates the comparison between our
implemented system using the second architecture and other obstacle detection
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systems that exist in the state of art.

In [He 2012], authors proposed a method to detect obstacles around vehicles
by optical flow computation based on inverse perspective mapping. Authors claim
that their method can produce good optical flow values with any type of trajectory.
The presented system is a GPU-based implementation (Intel core i5-2400, NVIDIA
GeForce GTX 550 Ti platform). Compared with our proposed system, we’ll find:

• Optical flow is computationally intensive method when it is compared to the
IPM method.

• Because of the heavy cost of the computation load, the system in [He 2012]
is performed using a GPU-based architecture. The power consumption of the
employed GPU platform is 12 watt (only GPU card) in idle state (No load)
and the maximum power consumption value is 116 watt [Geforce 2016b]. It is
clear that the power consumption of such platform is greater than the power
consumption of an architecture based on FPGA.

In [Yankun 2011], a rear obstacle detection system was proposed using a single rear
view camera. A hierarchical detecting strategy is used to achieve high detection
rate and low false positives. Coarse detection is based on inverse perspective map-
ping method, and fine detection is based on a multi-scale integral image algorithm.
Compared with our system, we’ll find:

• In [Yankun 2011], three sequential frames are needed to perform the system
while two frames are required in our system.

• The proposed system is limited to vertical edges of obstacles.

• The frame rate achieved in our system is better than the frame rate in
[Yankun 2011] as depicted in table 7.1.

In [Cesar 2013], a GPU-based implementation of a method based on the
height difference and “slope” between three-dimensional points (introduced in
[Talukder 2002]) was proposed. The proposed implementation was performed using
a stereo camera and an RGB-D sensor. Authors claim a significant gain in compu-
tational performance, reaching a speedup of almost 80 times in a specific instance.
Compared with our system, we’ll find:

• The proposed implementation requires a stereo camera and a RGB-D sensor
while our proposed system requires only one monocular vision sensor.

• The obstacle detection method in [Talukder 2002] is a method based on 3D
reconstruction where a higher computational cost is induced when it is com-
pared to the IPM method.

• Because of the complexity of such method, GPU-based architecture was pro-
posed in [Cesar 2013] to meet real time requirements. However, no power con-
sumption analyse is reported. The GPU platform employed in [Cesar 2013]
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Table 7.1: Other implementations of obstacle detection system

platform OD method Frame rate
[He 2012] CPU + GPU optical flow 25 fps 640× 480

[Yankun 2011] PC 1.73 GHz IPM coarse detection 30 fps 720× 480
[Cesar 2013] GPU 3D reconstruction 45.8 fps 640× 480

[Bendaoudi 2012] FPGA stereovision 180 fps 640× 480
ours FPGA IPM 201 fps 640× 480

is the Intel i7 3770 CPU and the AMD RADEON 7950 GPU. The power
consumption of GPU card in idle state (No load) is about 11 watt. This value
can be increased up to 179 watt with maximum load [Techpowerup 2012]. As
already noted, the estimation of power consumption of our design is about
3.9 watt.

• The frame rate achieved in our system is better than the frame rate produced
in [Cesar 2013] as depicted in table 7.1.

In [Bendaoudi 2012], a hardware architecture is proposed for obstacle detection
using stereo vision. The proposed system combines stereo vision algorithms to
compute the disparity map, V-disparity image, and Hough transform for obstacle
detection. The proposed architecture is implemented using Virtex-II FPGA based
prototyping board. Compared with our system, we’ll find:

• Hardware resources amount in [Bendaoudi 2012] is less than the hardware
resources amount used in our architecture.

• The proposed system requires two cameras to perform a stereo vision system
while one camera is needed in our system.

• The maximum frame rate achieved in our system is a bit better than the
frame rate achieved in [Bendaoudi 2012].

• Latency time in [Bendaoudi 2012] (minimum detection time) is 5.5 ms while
latency time (computed to produce contact points between obstacles and
ground plane) of our architectures is 7.49 µs for the second architecture and
2.05 ms for the first architecture.

7.3 2D Occupancy Grid Map Reconstruction Experi-
ment

In this experiment, TurtleBot (pictured 7.12), a low-cost personal robot kit, is used
to carry the image acquisition. This robot consists of Yujin Kobuki base, a battery
pack, a kinect sensor, an Asus 1215N labtop dual core, and a hardware mounting
kit. Turtlebot combines all these aforementioned components into an integrated
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Figure 7.12: TurtleBot kit [ROS 2016a]. Reprinted from "TurtleBot 2, Open-source
robot development kit for apps on wheels", from http://www.turtlebot.com/.

development platform for ROS applications.

Turtlebot is provided with a Kinect sensor. This latter is composed of an
RGB camera and a depth sensor. In our experiment, the RGB camera is only used
for the image acquisition.
Basic software configurations must be loaded to ROS-based Turtlebot in order to
make our data-set [ROS 2016b]:

• We start up the turtlebot using roslaunch package by which all processes can
be controlled.

– roslaunch turtlebotbringup minimal.launch.

• roslaunch tool is then used to launch remotely multiple ROS nodes via SSH
application.

• Turtlebot is initialized to take the first position as the origin of the occupancy
map.

– roslaunch currentposition tf.launch

• rosbag package, a command line tool [ROS 2015], is used for working with
bag files as well as code APIs for reading/writing bag files. Here, it is used to
record odometry data during navigation.

– rosbag record /odom

• Similarly, rosbag package is used for the storage of image stream via a bag
file.
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– rosbag record /camera/rgb/imageraw

The simulation is performed using ISIM tool from XILINX to validate the hardware
architecture. The tested indoor environment is selected with strict conditions such:

• a reflective floor where objects shadows could be observed in the ground plane.

• a strong source of light which could produce shiny spots on the floor because
of shiny surface.

Obstacles dimensions and shapes tested in this experiment (shown in figure 7.13)
are introduced as follows:

• in terms of dimensions:

– obstacles height between: 2 cm, 100 cm.
– obstacles width between: 3 cm, 110 cm.

• in terms of shapes nature:

– vertical and quasi vertical shapes (ob1, ob2,ob7).
– objects with a large surface area, which comes into contact with ground

plane (ob4).
– objects having multiple contact points with ground plane(ob3, ob5).
– objects having no uniform shape (ob6).

Figures 7.14, 7.15 show some example results. These figures are introduced as
follows:

1. The first column presents the images acquired at different positions. These
images represent the second image acquired at tn+1. Images acquired at tn
are not shown in these figures.

2. The second column presents the resulting binarized images. As pictured in
these images, polar histogram beam is shown. The distance between detected
contact points and the origin of the robot coordinate system should not exceed
2 meters.

3. The third column presents the field of view and the robot trajectory. Arrows
represent robot translation in the ground plane while curves represent the
rotation of robot about Z axis which is perpendicular to the ground plane.

4. The fourth column presents detected contact points and its localization in the
image.

As depicted in these figures, good contact points are extracted even if the floor is
reflective and contains shiny spots. The world is represented in the occupancy map
pictured in figure 7.16 by Cartesian model. The point at which the two axes (Xw,
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Ob5 Ob6 Ob7 Ob8
Figure 7.13: Obstacles objects used in experiment 2.

Yw) intersect represents the origin of the occupancy map. This origin corresponds
to the first position of the robot. Detected contact points in the image frame
are mapped to and projected on the occupancy map. Projected points are each
coloured with black circles whose diameter is 5 cm in the world coordinate system.
This value also denotes the resolution of the resulting map.

The resulting map pictured in figure 7.16 is produced after hundreds of frames.
The real occupancy of objects is coloured with red. Points circled in green represent
false detected points. When analysing the results, we find:

• For ob5 and ob1, some detected points are located close to the objects be-
cause of the odometry errors. These sensors are subject to many sources of
measurement error including wheel slip and gyro drift.

• For ob5, not all detected points in the upper side belong to this object. Some
of these detected points belong to the cables located behind the object ob5.

• Similarly for ob6, detected points belong to these cables that exist in the
indoor environments. Because cables have no quasi triangular shape, these
objects produce some false points in some cases as pictured in this map.



7.3. 2D Occupancy Grid Map Reconstruction Experiment 123

  

1

2 1

2

3

3
4

Figure 7.14: Examples of results 1.
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Figure 7.15: Examples of results 2.
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Figure 7.16: Map results.
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Table 7.2: False detected points evaluation

All false points shiny surface objects shadows
Hard conditions 16% 7% 9%

Normal conditions 8% 2% 6%

Table 7.3: Comparison to other architectures

PLatform Frame rate
[Peasley 2013] CPU + GPU 30 FPS
[Benacer 2015] FPGA 122 FPS
[Mattoccia 2014] FPGA+ embedded ARM 20 FPS

• The false point detected between ob2 and ob1 is produced by the shadows of
object on the reflective floor.

Figure 7.17 illustrates examples of false detected contact points. Two reasons lie
behind these noisy points:

• Shiny surface such as the first image on the left side shown in figure 7.17

• Objects shadows on the floor such the other images in figure 7.17

7.3.1 Comparison to the state of art

Table 7.3 shows the comparison of the system implementation to other architectures
in the literature. In [Peasley 2013], an approach is introduced for obstacle detection
task based on 3D sensor. A 2D occupancy map is generated to determine the
presence of obstacles. Compared with our system, we’ll find:

• The proposed system is able to update the occupancy map at 30 FPS, while
our system can update the occupancy map at 148 FPS.

• The platform used in [Peasley 2013] is Intel Core i7 processor with an EVGA
GeForce 9800 graphics card. The power consumption of the GPU card is
105 watt (Full load) [Geforce 2016a] without considering the system power
requirements while the estimation of power consumption in our design imple-
mented on Zynq-7020 is 0.412 watt.

• An active 3D sensor is used to perform the system while a monocular passive
vision sensor is used in our system.

In [Benacer 2015], an FPGA based architecture is introduced for obstacle and free
space detection. The proposed method is based on stereo vision method. Authors
claim the high efficiency and accuracy of the proposed system. Compared with our
proposed system, we’ll find:
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• The proposed system runs at 122 frame per second while the hardware part
of our system runs at 203 fps for the same resolution.

• The amount of LUTs resources used in [Benacer 2015] is less than the amount
used in our system.

• The proposed system in [Benacer 2015] doesn’t produce an occupancy map
for the presence obstacles.

In [Mattoccia 2014], an embedded system based on 3D vision sensor is introduced
for autonomous navigation task. Compred with our system, we’ll find:

• The system requires two components: a stereo vision camera with FPGA
processing and an embedded quad-core ARM board while our proposed system
uses one board (Zynq based kit).

• A 3D camera is needed to perform the stereo vision system while one monoc-
ular vision sensor is used in our design.

• Obstacle detection task results in [Mattoccia 2014] seem to be more robust.
However, the approaches used in [Mattoccia 2014] are more complex, thus
resulting in 20 FPS as frame rate.

7.4 Camera-Belt Prototype

The thesis work is scheduled in the Camera-belt project. The goal of this project
is to propose an embedded vision system, multi camera for obstacle detection task.
An embedded development platform is made to test and implement the IP cores
realized during this thesis. The heart of this platform is the Zedboard, a Zynq
based kit. The hardware architecture of the occupancy map system is implemented
on this platform using XILINX tools. The system prototype includes two levels
of work: hardware level, and firmware level. The hardware level is achieved by
LAAS-CNRS staff.

7.4.1 Hardware Level

Figure 7.18 shows the platform hardware parts. The platform is composed of:

1. The board of the vision sensor (Aptina MT9v034 [Aptina 2008] [Piat 2016]).

2. The interface card between the sensor and Zedboard [Piat 2016].

3. Zedboard card, the Zynq based kit [Avnet 2012].

The vision sensor is Aptina VGA CMOS image sensor. The camera board is made to
output the pixel stream using LVDS interface. LVDS mode allows data transmission
as a serial LVDS stream.
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Figure 7.17: False contact points.
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Figure 7.18: Hardware boards.
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Figure 7.19: Interface to Zedboard [Piat 2016].

The interface card aims to convert a 3.3V input signal to a 2.5V output signal. In
addition, this interface is used to transmit camera sensor signals from HDMI port
to FMC port on Zedboard. Figures 7.19, 7.20 illustrate the input signals to the
interface card and Zedboard. The following signals are connected to Zedboard:

• Shft-CKOUT -N , Shft-CKOUT -P are LVDS signals which represent clock
signals transmitted from the camera sensor.

• SER-DATAOUT -N , SER-DATAOUT -P are LVDS signals which represent
data signals transmitted from the camera sensor.

• SDATA-2V 5, SCLK-2V 5 are two wire serial interface for each clock and
data (I2C signals). These signals are used for the configuration of camera
registers.

7.4.2 Firmware Level

Figure 7.21 illustrates the general overview of firmware level. The top-level module
is named Top Cam Firm. The input signals are the output signals of the hardware
level (already mentioned in the previous section). The output signal is the selected
contact points coordinates which forward to the software part of the reconstruction
of 2D occupancy map.
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Figure 7.20: Input signals to the interface card [Piat 2016].

Figure 7.22 shows the parts of the top level module. As depicted in this fig-
ure, the first component is Deserialization which is implemented using SelectIO
interface wizard from XILINX tools [XILINX 2016a]. This core assists in instanti-
ating and configuring the components within the I/O interconnect block. Here, it
is mainly used to deserialize the datapath (from 1 bit to 4 bit).
The second component is Camera Signals Generator. This component generates
pixel data stream, and the control signals (hsync, vsync) line and frame valid
signals respectively. The input signal data-deser is buffered and grouped into
a packet of size 12 bit. In 8-bit pixel mode, the packet consists of a start
bit, 8-bit pixel data, the line valid bit, the frame valid bit and the stop bit.
This configuration is done to test the system in stand-alone mode. The con-
figuration must be changed in stereoscopy mode when a second camera is connected.

Figure 7.23 illustrates the embedded system design. Most system functions
are executed in the hardware fabric using the modules already explained in the
previous chapter. Homography matrix, Focus point computations and projecting
contact points on the 2D occupancy map are scheduled on ARM under Xillinux.
The hardware modules are connected to Xillinux through Xillybus FIFOs. These
FIFOs are accessed in the user space of the Xillinux kernel through device files.
The software component Config includes the registers values which are used for
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Table 7.4: Breakdown hardware resources

Hardware Module LUTs Slice Reg BRAM
IPM + Homo 8% 6% 87%
Binarization 10% 15% 3%
Localization 20% 5% 0%
Free space 3% 1% 0%

Selected contacts 1% 1% 0%
Total hardware architecture 41% 28% 90%
Zynq-7020 available resources 53200 106400 560 KB

the camera configuration using I2C controller. Table 7.4 shows the amount of
hardware resources for each module in the architecture. The produced system
consumes a high percentage of BRAM blocks because an image is completely
stored in BRAM memory in order to perform homography transformation. The
hardware process can run at 203 frame per second for VGA resolution. The
estimated latency of the hardware architecture is about 4.98 ms. The estimated
power consumption of the hardware architecture is about 0.412W . This value is
computed using power analyse tool in VIVADO.

7.5 Conclusion

In this chapter, we have presented the results of the proposed architectures. These
architectures are fully pipelined designs with a high frame-rate. The proposed ar-
chitectures have advantages for power consumption and total system cost compared
to other systems that exist in the state of the art. The proposed architectures fully
implement the processing pipeline for obstacle detection and localization and the
reconstruction of 2D occupancy grid maps. However, the detected contact points
are not very accurate due to the use of odometry sensors for the movement informa-
tion. In addition, the proposed system could produce false contact points induced
by shiny surface, or shadows. Using stochastic methods could help improve the
reconstructed occupancy map accuracy.
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Chapter 8

Conclusion

The main interest of this thesis is the evaluation of vision based algorithms for
robotic applications in indoor environments, and the design of application-specific
architectures to meet strict constraints (such as low-priced, limited resources, low
power consumption ...). The main problem discussed in this thesis is often refeered
to as Algorithm Architecture Matching or hardware/software co-design.

The context of this work is the autonomous navigation of mobile robots in
indoor environments. The main applications are transport robots in factories
and logistics, exploration systems in buildings by producing a 2D occupancy grid
map. For this latter task, we propose a hardware architecture that can update
the occupancy map at 148 Hz. Another important application is fast navigations
in emergency cases where low latency response and high throughput of detection
is mendatory. In this case, the estimated latency of the hardware architecture is
about 4.98 ms for the map update. If there is no need to build an occupancy map,
obstacle detection latency induced by the hardware architecture is 7.49 µs and the
achieved frame rate is as high as 201 FPS.

Taking advantage of parallelism of an FPGAs, efficient designs can be im-
plemented to execute vision tasks. Let us cite our contributions and the future
works for this thesis.

8.1 Proposed System Methodology

Since our objective is to build a real-time vision system for obstacles detection,
localization, and mapping, we started by defining the system tasks flow.The
obstacle detection task is performed using a geometric approach (namely Inverse
Perspective Mapping). This method was well treated in the existing state of the art
and was partially implemented on an FPGA-based architecture in [Botero 2012].
The obstacles segmentation, uses a binarization based on Otsu’s algorithm.
Gaussian filter and morphological operations are prerequisites to this task.
The obstacles localization is implemented using a polar histogram beam. This
method allows to compute obstacles bearings relative to the camera. Additionally,
an original method is introduced in order to extract contact points between
obstacles and ground plane.
For free space detection, authors in [Bertozzi 1998a] proposed a method to perform
this function using bearings measurements results.
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Finally, an original method is proposed for the selection of contact points. these
latter points are mapped and projected in a 2D occupancy grid

We introduced briefly the methodology of our proposed system. Let us re-
call our contributions to the system methodology in details:

1. We propose a method for obstacles localization. The approach takes binarized
images produced by IPM method (which is used for obstacles detection) as
input. The localization module produces obstacles bearings measurements,
and contact points between obstacles and ground plane. Bresenham algo-
rithm is implemented to track pixels that belong to polar histogram beam.
The simplicity of Bresenham’s algorithm allows to produce an efficient per-
formance in the hardware implementation. While the pixels that belong to
polar histogram beam are tracked, another method is performed to detect
contact points between obstacle objects and ground floor. Taking advantage
of quasi triangle shapes produced by IPM method, our proposed method for
extracting contact points aims to find these triangles, and searches their heads
which considered as the contact point.

2. We propose an approach to build 2D occupancy grid map. After contact
points are extracted and free space is detected, a selection of best contact
points is accomplished. These selected points are mapped and projected to
a 2D occupancy grid. The method takes free space detection results and
extracted contact points as input. A search operation is done to find the best
points, and determine the nearest points to robot.

8.2 Proposed Hardware Architectures and Designs

Chapters 5-6 describe the positioning, design specifications, and advantages of the
proposed hardware modules based on FPGA. Let us recall our contributions in
terms of hardware modules:

• For obstacle detection.

1. A hardware module is proposed for homography transformation. We op-
timize the homography module proposed by [Botero 2012]. our proposed
component accomplishes distortion correction and homography transfor-
mation in single pass. The produced frame rate is 200 FPS for images
of VGA resolution. Induced latency is 1.383µs. The main disadvantage
of this module is the high consumption of BRAMs to accomplish this
transformation.

2. A hardware module is proposed for the generation of IPM image. A
subtraction is performed between a transformed image (produced by the
previous module) acquired at tn and a real image acquired at tn+1, thus
allowing to remove the ground plane. Additionally, the image acquired
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at tn+1 must be written to the memory replacing the image acquired
at tn. Induced latency is 6 clock cycles. The main disadvantage of this
module is the configuration of the FIFO depth. FIFO component is used
to synchronize the stream of real image to the stream of transformed
image.

• For obstacle segmentation

1. Gaussian filter is implemented in a hardware design. This filter is a
prerequisite to perform Otsu’s binarization. Latency induced by this
module is 1282 clock cycles. Two image rows are minimally required
before the module runs.

2. A hardware module is proposed to perform Otsu algorithm. This latter
is used to compute Otsu’s threshold which is employed to binarize the
filtered image. 2 clock cycles of latency are induced by this module. An
important amount of hardware resources is employed to execute Otsu
algorithm. The critical point of this binarization is that Otsu’s thresh-
old is correct if there is not a high variation in intensities between two
sequential frames.

3. Erosion operator, a morphological operation, is implemented using a
hardware module. This hardware accelerator aims to remove noise pro-
duced in some indoor environments which contain floor tiles. 1282 clock
cycles of latency are induced in this module.

• For obstacle localization:

1. Bird’s eye transformation is implemented in a hardware design. This
transformation was used by authors in [Bertozzi 1998b] as a preliminary
step for obstacles localization. Due to the heavy cost of latency produced
by the hardware implementation of this transformation, we propose an-
other methodology for obstacles localization.

2. Our proposed method for obstacles localizations is implemented in a
hardware design. This module produces bearings measurements and
contact points between obstacle objects and ground plane. 3646 clock
cycles of latency are induced by this accelerator. An important amount
of LUTs is also employed.

• For free space detection, a hardware accelerator is proposed. This module is
an implementation of a method that exists in the state of art.

• For 2D occupancy grid map reconstruction:

1. A hardware module is proposed for selecting best contact points. These
latter are mapped and projected to the occupancy grid. 16 clock cycles
are minimally required to produce the first selected point.
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2. A software module is developed in order to map the selected points to
the 2D occupancy map. The execution time of this software module
is 56µs. This is an estimated time to produce the coordinates of one
selected point in the world frame.

These aforementioned hardware modules are employed to build 3 architectures sum-
marized as follows:

8.2.1 Obstacles detection and localization architecture with bird’s
eye view transformation

The first architecture is an implementation of an obstacle detection method that
exists in the state of art [Bertozzi 1998b], [Bertozzi 1998a]. This architecture com-
bines Mono IPM method for detection and Otsu’s method for segmentation, plus
Bird’s eye view transformation and Bresenham’s algorithm for localization. Because
bird’s eye transformation is implemented in this architecture, the required latency
time is about 2.05ms. 126897 clock cycles of latency are induced. Hence, this is
disadvantageous in hardware implementation; bird’s eye transformation requires a
high latency time, many BRAMs to store a specific number of eroded image rows,
and a large amount of hardware resources. Therefore, a large FPGA platform (such
as Virtex-6) is needed to implement the architecture. On the other hand, polar his-
togram beam implemented in this architecture is simpler than the beam used in
other architectures.

8.2.2 Obstacles detection and localization architecture with our
localization method

We propose a second architecture for obstacles detection and localization. This
architecture combines Mono IPM method for detection and Otsu’s method for seg-
mentation, plus our proposed method for localization. Bird’s eye transformation
is not implemented. Hence, latency induced by this architecture is about 7.49µs
which is clearly less than one induced by the first architecture. 4610 clock cycles
are minimally required to output the first contact point. The resulting power con-
sumption is about 3.9 watt. This value is estimated using Power Analyze tool in
ISE tool. The architecture produces a pipelined design with a high frame rate. This
latter is about 201 for images of size 640× 480.

8.2.3 2D occupancy grid map reconstruction architecture

We propose an architecture for 2D occupancy map reconstruction. This architec-
ture combines the second architecture (already mentioned), free space detection
accelerator, plus a module for building the occupancy grid. This latter combines
a method for selecting the best contact points and a developed approach to map
and project selected points to the 2D occupancy map. This architecture is imple-
mented on Zynq target which is tightly coupled to ARM processing system. This
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implementation can build the 2D map at high frame rate,148 FPS for images of
VGA resolution. This is an estimated value without taking into consideration the
delay induced by Xillybus FIFOs which are used to interface hardware cores with
software part. Induced latency by this architecture is about 4.98ms where 1.8ms is
induced by the software part. The architecture can maximally produce 32 contact
points per frame. The resulting power consumption of the hardware architecture
is about 0.412 watt. This value is computed using power analyse tool in VIVADO.
The main disadvantage of this implementation and the two previous implementa-
tions is the high consumption of BRAMs because an image is completely stored in
BRAMs to perform homography transformation.

8.3 Future Works

Due to the limited time of the thesis, we did not widely contribute to method-
ologies. We only propose some optimizations to existing methods. Here are some
short-term perspectives:
Concerning IPM method which is adopted for obstacles detection, the main
hypothesis of this latter is the flat ground. Hence, the applications are limited
to indoor environments. IPM method can be improved to work with uneven
ground. For example, a valid auto-calibration of the camera can help to determine
the orientation of ground plane with respect to camera position. The problem
could be also simplified to compute the slope of ground plane in the horizontal
direction. This improvement will permit to extend thesis applications to outdoor
environments. Hence, our architectures can support ADAS systems (Advanced
driver assistance systems).

Concerning obstacles localization method which is dedicated to IPM method, the
efficiency of this localization approach depends on the existence of quasi vertical
edges. As polar histogram beam is originating from one point focus which is the
vanishing point of vertical lines represented in the world frame, we can use two
or more beams originating from two or more focus points if we know obstacles
edges orientation. This improvement allows to localize obstacle objects which do
not have quasi vertical edges. As a result, false contact points percentage will be
reduced.

Concerning the hardware architecture, an external memory (SDRAM) will
be devoted for the storage of acquired image instead of using BRAMs. In this case,
a lower frame rate of the pipelined design is delivered because of the high latency
induced by read/write access to external memory. Additionally, adopting external
memories permits to implement high resolution images to our architectures.
In this thesis, a hardware accelerator is designed to perform bird’s eye view
transformation. The number of bits used to represent the fractional part of bird’s
eye matrix elements is not sufficient. Because bird’s eye view transformation
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is a coarse case of homography transformation, higher resolution is required to
represent the fractional part.

Now let us present some long-term perspectives, mainly inspired from the
context of Camera-belt project. The proposed system will be extended to multi-
camera system in order to build the occupancy grid map in all directions.
LAAS participated to a work package devoted to ADAS systems. An application of
a hw/sw co-design methodology on visual 3D EKF SLAM application is developed
in the PhD of Daniel Tortei and Francois Brenot. Our proposed architectures for
obstacle detection and localization will be integrated to the SLAM application,
resulting to an embedded application which can support ADAS systems and meet
their requirements.
In this thesis, odometry sensors were adopted to provide movement informations.
The estimation of robot’s pose can not be produced without errors as the robot
slips. We will exploit visual odometry methods to compute the robot position
instead of relying on odometry sensors.
In our research team in LAAS, PhD students must study obstacles identification
based on classification approaches. For example, human detection based on HOG
(Histograms of Oriented Gradients) descriptor and SVM (support vector machine)
classifier could be efficiently coupled to our architecture. The advantage of such
implementation is that the region of interest will be widely reduced due to obstacles
localization results delivered by our architecture.
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Résumé :
La Détection, localisation d’obstacles et la reconstruction de carte d’occupation 2D
sont des fonctions de base pour un robot navigant dans un environnement intérieure
lorsque l’intervention avec les objets se fait dans un environnement encombré. Les
solutions fondées sur la vision artificielle et couramment utilisées comme SLAM (
Simultaneous Localization And Mapping) ou le flux optique ont tendance à être
des calculs intensifs. Ces solutions nécessitent des ressources de calcul puissantes
pour répondre à faible vitesse en temps réel aux contraintes. Nous présentons une
architecture matérielle pour la détection, localisation d’obstacles et la reconstruc-
tion de cartes d’occupation 2D en temps réel. Le système proposé est réalisé en
utilisant une architecture de vision sur FPGA (Field Programmable Gates Array)
et des capteurs d’odométrie pour la détection, localisation des obstacles et la car-
tographie. De la fusion de ces deux sources d’information complémentaires résulte
un modèle amélioré de l’environnement autour des robots. L’architecture proposé
est un système à faible coût avec un temps de calcul réduit, un débit d’images élevé,
et une faible consommation d’énergie.

Mots clés :
Implementation FPGA, Détection d’obstacles, Traitement d’images en temps réel,
accéleration hardware, vision robotique.


	Abstract
	Chapter 1
Introduction
	1.1 Thesis Context
	1.2 Thesis Objectives
	1.3 Document Organisation

	Chapter 2 Obstacles Detection Methods
	2.1 Introduction
	2.2 Obstacle Detection based on Sonar and Radar sensors
	2.3 Obstacle Detection based on Lidar sensors
	2.4 Obstacle Detection based on vision sensors
	2.4.1 Methods based on Optical Flow
	2.4.2 Methods based on Stereo vision
	2.4.3 Methods based on Pattern Recognition
	2.4.4 Methods based on Inverse Perspective Mapping
	2.4.5 Methods based on active vision sensors

	2.5 Conclusion

	Chapter 3 Theoretical Background
	3.1 Introduction
	3.2 Pinhole camera model
	3.2.1 Intrinsic parameters
	3.2.2 Extrinsic parameters
	3.2.3 Radial Distortion

	3.3 Inverse Perspective Mapping
	3.4 Obstacle segmentation
	3.4.1 Gaussian filter
	3.4.2 Otsu's binarization
	3.4.3 Morphological operators

	3.5 Bird's eye transformation
	3.6 Obstacle localization
	3.7 Free space detection
	3.8 Obstacle distance
	3.9 Conclusion

	Chapter 4 Embedded Systems Platforms and Design
	4.1 Introduction
	4.2 General purpose Processing on Graphical Processing Unit (GPGPU)
	4.3 Multi-Core CPUs
	4.4 Application-Specific Integrated Circuit
	4.5 Field Programmable Gate Array (FPGA)
	4.6 FPGA Designs Properties
	4.6.1 Pipelined Designs
	4.6.2 Designs with reduced latency
	4.6.3 Power consumption consideration
	4.6.4 Cost and Size Requirements

	4.7 Zynq-7000 all programmable SoC
	4.8 Xillybus IP Core
	4.9 Conclusion

	Chapter 5 Proposed Optimizations to System Methodology
	5.1 Introduction
	5.2 Obstacle bearings based on polar histogram
	5.3 Obstacles localization in the ground plane
	5.4 2D Occupancy Grid Map Reconstruction
	5.4.1 Contact Points Selection
	5.4.2 Map Reconstruction 


	Chapter 6 Hardware IP Cores
	6.1 Introduction
	6.1.1 Obstacle Detection and Localization Systems
	6.1.2 2D occupancy Grid Map System

	6.2 Homography transformation
	6.2.1 Coordinates Generator
	6.2.2 Distortion correction and Homography transformation
	6.2.3 Address Generator
	6.2.4 Software part of Homography transformation
	6.2.5 Performance and Comparison with homography module in [Botero 2012]

	6.3 Bird's eye transformation
	6.3.1 Resource Utilization and Latency

	6.4 IPM and Subtraction
	6.4.1 Resource Utilization and Latency

	6.5 Gaussian Filter
	6.5.1 Memory organization
	6.5.2 Convolution and Delay

	6.6 Binarization
	6.6.1 Hardware implementation of Otsu's method
	6.6.2 Resource Utilization and Latency

	6.7 Erosion operator
	6.8 Obstacles localization
	6.8.1 Left and Right Scan
	6.8.2 Resource Utilization and Latency

	6.9 Free space detection module
	6.9.1 Resource Utilization and Latency

	6.10 2D Occupancy Map Reconstruction
	6.10.1 Contact Points selection Module
	6.10.2 Map Reconstruction


	Chapter 7 Results and Experiments
	7.1 Introduction
	7.2 Obstacle Detection and Localization System Experiment
	7.2.1 Comparison of the results between hardware and software implementation
	7.2.2 Comparison to the state of art

	7.3 2D Occupancy Grid Map Reconstruction Experiment
	7.3.1 Comparison to the state of art

	7.4 Camera-Belt Prototype
	7.4.1 Hardware Level
	7.4.2 Firmware Level

	7.5 Conclusion

	Chapter 8 Conclusion
	8.1 Proposed System Methodology
	8.2 Proposed Hardware Architectures and Designs
	8.2.1 Obstacles detection and localization architecture with bird's eye view transformation
	8.2.2 Obstacles detection and localization architecture with our localization method
	8.2.3 2D occupancy grid map reconstruction architecture

	8.3 Future Works

	Bibliography
	Résumé

