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Résumé

Malgré une longue histoire de développement, l'hémodialyse (rein artificiel) possède

encore quelques limitations, telles que la perte des propriétés initiales de la membrane

en cours de traitement à cause du colmatage et la mauvaise élimination des toxines

urémiques de taille moyenne.

La présente étude fait partie d'un projet européen nommé BioArt dont le but est

d'apporter des solutions à ces limites. Dans cet objectif, l'un des partenaires du

projet a proposé le développement d'un nouveau concept de membrane double

couche au sein de laquelle sont incorporées des particules adsorbantes. Une

caractérisation complète de cette nouvelle membrane était alors nécessaire, plus

précisément l'impact de la matrice mixte sur l'élimination des toxines urémiques de

divers groupes devait être évalué, ainsi que la propension du matériau membranaire

à se colmater.

Les études des phénomènes de colmatage sont classiquement menées à l'échelle

macroscopique (faisceau de fibres creuses) sans analyse à l'échelle d'une fibre

isolée. Le but premier de la présente thèse a alors été de proposer un dispositif

permettant une étude du colmatage membranaire induit par la protéine à l'échelle

microscopique. Un dispositif microfluidique transparent dans lequel la membrane

polymère est insérée a été élaboré et mis en œuvre pour la filtration des protéines

modèles : l'albumine de sérum bovin (BSA) et l'α-lactalbumine. Grâce au couplage

avec la microscopie de fluorescence, différents modes d'adsorption des protéines sur

la surface de la membrane ont été observés et liés aux variations des conditions

hydrodynamiques à l'intérieur de la puce. Il a été constaté, sous certaines

conditions, une différence dans l'accumulation de protéines entre l'entrée, le centre

et la sortie du canal tandis que dans d'autres conditions cet effet s'annule. En outre,

un phénomène inattendu, l'agrégation de l'α-lactalbumine, a été observé au cours de

la filtration. La localisation dans le canal et la forme des agrégats dépendent

également des conditions hydrodynamiques et de la pression transmembranaire

appliquée.

Dans le but d'optimiser la conception de la membrane vis à vis de son aptitude à

éliminer des molécules de taille moyenne de la circulation sanguine, un modèle

mathématique a été proposé. L'objectif du modèle était, en prenant en compte la

présence de particules adsorbantes à l'intérieur de la membrane double couche, de

rendre compte de la combinaison des trois mécanismes d'élimination du soluté : la
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convection, la diffusion et l'adsorption. Le modèle permet de prédire l'influence de

divers paramètres tels que la diffusivité de la molécule, l'épaisseur de la membrane,

la présence de la convection, la charge en particules adsorbantes, sur l'intensification

des flux à travers la membrane. Le modèle semble être un outil utile pouvant être

appliqué à l'optimisation de membranes pour l'élimination des toxines.

Mots-clés: Hémodialyse, Dispositif Microfluidique, Colmatage de la Membrane,

L'adsorption de la protéine, Modèle de transfert de la masse.
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Abstract

Despite a long history of development, the hemodialysis procedure (artificial kidney)

still possesses some limitations, such as loss of the initial properties of the membrane

due to fouling and poor removal of the middle sized uremic toxins.

The present study is part of an European project named BioArt the aim of which

was to overcome these limitations. In that objective, one of the partners of BioArt

project reported on the development of the novel promising concept of double layer

membrane with embedded adsorptive particles. A thorough characterization of the

new membrane was then necessary, more precisely the extent to which mixed matrix

layer can improve the removal of the uremic toxins from various groups needed to

be evaluated, as well as the propensity of the membrane material to become

fouled.

The studies of the fouling phenomena are conventionally performed at the macro

scale (bundle of hollow fibers) without insights of what is happening at the scale of

an isolated fiber. Therefore, the primary aim of the present Thesis was to transfer the

research of the protein-induced membrane fouling from the macro to the micro

scale. A novel transparent microfluidics device with the polymeric membrane inside

has been developed and applied for the filtration of model proteins: bovine serum

albumin (BSA) and α-lactalbumin. Thanks to the coupling of the microchip with the

fluorescent microscopy, different patterns of protein deposition on the membrane

surface were observed and related to the variations in the hydrodynamic conditions

inside the microchip. It was found that at certain conditions one may observe the

difference in protein accumulation in the inlet, the middle, and the outlet of the

channel while at other conditions this effect vanishes. Additionally, the unexpected

phenomena of α-lactalbumin aggregation was observed over the course of filtration.

The location and shape of the aggregates were also dependent on the hydrodynamic

conditions and the applied transmembrane pressure.

Aiming to address the problem of membrane design optimization for the

enhancement of the middle molecules elimination from the bloodstream, a

mathematical model, which accounts for the presence of adsorptive particles inside

the complex double-layer membrane, has been proposed. The objective of the model

was to understand the interplay of three solute removal mechanisms: convection,

diffusion, and adsorption. The model allows predicting the influence of various

parameters such as molecule diffusivity, membrane thickness, the presence of
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convection, content of adsorptive particles on the flux intensification across the

membrane. The developed model seems to be a useful tool, which may be applied to

design optimized membranes for the removal of toxins.

Keywords: Hemodialysis, Microfluidics Device, Membrane Fouling, Protein

Adsorption, Mass Transfer Model.
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Background and motivation

The prevalence of end stage renal disease (ESRD) is increasing steadily over last

decades. As of 2012, only in US around 571 000 people were suffering from ESRD

(and more than one million people worldwide), with the annual mortality related to

the kidney failure of more than 87 000 people [1].

The kidney failure is leading to the partial or complete loss of its natural functions

and as a result the human body starts to accumulate various compounds (uremic

toxins). In such case, the blood of patient needs to be purified through artificial

kidney (hemodialysis). This diffusion-governed therapy allows the sufficient

removal of small molecular weight toxins (<500 Da), while middle size ones

(500 Da – 60 kDa) are retained in the patient [2]. The relation between the

accumulation of middle size uremic retention solutes and morbidity and mortality

was demonstrated by several studies [3, 4]. Twenty two middle uremic solutes with

clinically significant toxicity were found, and under the condition of the kidney

failure their concentration in the blood may raise from roughly 3-fold

(retinol-binding protein (21.2 kDa)) to 40 or even 60-fold (β2-microglobulin)

(11.8 kDa) [3, 5]. Specifically, the accumulation of β2-microglobulin was found to

be related to the main long term complication, dialysis related amyloidosis (DRA)

[6]. Thus, in order to postpose the appearance of this disease the improvement of the

middle solutes removal techniques is an indispensable task. From the practical point

of view, assuming that β2-microglobulin production rate is in the range 150-300 mg

day-1 and kidney is not contributing to its catabolism, the ideal replacement therapy

should provide the daily removal of 150-300 mg (1050- 2100 mg week-1). Since,

the majority of patients undergo three hemodialysis sessions per week, its removal

per session should be of 350-700 mg [6], which is not fulfilled by conventional

hemodialysis.

One alternative to hemodialysis is the hemodiafiltration, which allows combining a

diffusive and a convective mass transfer mechanisms and, as a result, gives a

possibility to remove the major part of both small and middle molecular weight

toxins as well as the excess of water [7]. According to Tang et al. [8], one of the

main disadvantages of hemodiafiltration is its cost, which is 2-fold higher than the

price of conventional dialysis. It is possible to deduct 30% of the expenses per

session by reuse of the dialyzer 30 times; however, the process of dialyzer cleaning

is still not well-established and the optimal reprocessing agents are not standardized.

In addition, even hemodiafiltration with highly permeable dialysis membranes (so
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called high-flux membranes) is not able to provide the required middle toxin

removal per session [6].

Adsorption technique (hemoperfusion) can greatly contribute to the middle

molecules removal. Two commercially available adsorption columns (Lixelle and

BetaSorb) for selective β2-microglobulin removal were developed and demonstrated

high efficiency. Unlike membrane-based techniques, they are not able to provide

removal of the excessive water and sufficient elimination of the small molecular

weight toxins. Thus, the combination of advantages of hemodialysis and specific

adsorption seems to be wise and even demonstrated promising results when

adsorption column and hemodialyser were used in series [3, 9]. On the other hand,

the addition of adsorption column to the extracorporeal blood circuit leads to the

increase of the blood volume taken from body, which may result in adverse effects,

like temporary hypotension. Thus, the compaction of the system without the

reduction of clearance performance is desired.

Recently, the new concept of double-layer hollow-fiber membrane (standard

geometry of the modern dialyzers) combining the particle-free and adsorbent loaded

layers was introduced. This approach allows combination of the toxin removal by

means of the membrane filtration and adsorption in one step by using a mixed

matrix membrane, where the adsorbent is incorporated in the polymer matrix. In

principle, the inner (particle-free layer) prevents the blood from contacting the

adsorptive particles, which are dispersed in the outer layer. As so, the aim of

particle-free layer is to provide sufficient biocompatibility and prevent direct contact

between biological fluid and sorbent, while the presence of the adsorbent in the

second layer improves the overall toxin removal [10]. In other words, the toxin

firstly has to pass through the particle-free layer and only then be adsorbed inside

the layer with adsorbent. The viability of this concept was proven for creatinine and

some protein-bound toxins [7], which opened a new perspective in the optimization

of the blood purification technique.

However, it is still important to evaluate the validity and the efficiency of this

concept in terms of removal of the compounds belonging to the group of middle

solutes, mainly including small proteins and cytokines [5]. In addition, the extent to

which mixed matrix layer can improve the removal of the uremic toxins from

various groups remains uncertain and the optimal membrane design are still need to

be determined.

Aiming at the further advancement in the field of artificial organs the BioArt project
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(grant no.316 690, EU-FP7-PEOPLE-ITN-2012) was launched in December 2012.

It gathered 11 PhD students and 5 Post-doc researchers from 11 universities,

research institutes and companies located in 5 countries (the Netherlands, France,

Italy, Belgium, and Germany). The main objective of this project was to develop

innovative artificial and bio-artificial devices for the treatment of kidney and liver

failures. For this, all participants were split in three teams to work on so called work

packages dealing with either artificial kidney or bio-artificial kidney or bio-artificial

liver.

The present PhD thesis is a part of work package 1, the aim of which is to investigate

the solutions to achieve prolonged and complete removal of uremic toxins. This

particular thesis is focused on the approaches to control the removal and adsorption

of the middle sized uremic toxins.

On one hand, almost immediately after a synthetic membrane is brought to the

contact with blood, the protein adsorption on the surface of material starts to occur.

The impact and the extent of this process are dependent on the properties of

material, such as chemical composition, charge, morphology etc [11, 12].

Adsorption of the protein on the surface of membrane may lead to some issues with

material biocompatibility such as blood coagulation, complement activation, blood

cells adhesion [13-16] as well as to the decrease of permeation flux and changes of

selectivity due to formation of protein semi-permeable layer on the top of the

membrane [12]. Therefore, even though the adsorption of middle molecules on

dialysis membrane can be viewed as additional mechanism of their removal from

the blood stream [17], there is a need of precise control of this phenomena. In other

words, the ideal case for the blood purification with use of highlighted double-layer

membranes is to avoid an excessive protein adsorption on the surface of particle-free

layer, which faces the blood stream and to achieve a sufficient adsorption inside the

layer with adsorbent.

The studies of the fouling phenomena are normally performed based on the macro

approaches, such as the permeate flux measurements or/and control of the

transmembrane pressure [18]. These techniques are providing information about

fouling at a macroscale (entire system), while no information is available

concerning the microlevel (small part of the membrane surface). Besides,

considering the module composed of a bundle of hollow fibers, these techniques

only enable the analysis of a cumulative performance of all fibers, without insights

of what is happening in different regions of the module or at the scale of an isolated
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fiber. Thus, there is a definite need for the approaches employing direct observation

of the fouling development in time, in order to get deeper insights in the

solute-surface interactions at the microscale leading to the deterioration of the

membrane properties.

Aiming at tackling this objective, novel microfluidics device was developed. This

device enables the direct real-time observation of the fouling build-up at conditions

close to ones of the natural kidney filtration unit. Chapter 3 of the present work

discusses the characterization of the developed microfluidics device and its

application in the preliminary studies of membrane fouling during the filtration of

protein (Bovine Serum Albumin) solution. Then, Chapter 4 is dedicated to the

analysis of membrane fouling at different hydrodynamic and pressure conditions

applied for the filtration of solution of fluorescently labelled small size

protein.

Secondly, aiming at advancing the concept of double-layer membrane, a specific

effort was done in development of the mathematical model, which provides a

description of the interplay of three toxin removal mechanisms involved in such

complex membrane. Chapter 5 describes the steps of the model development and its

validation by comparison of experimental and theoretical results.

Finally, Chapter 6 summarizes the main conclusions developed in the present project

and highlights the perspectives for the further research.
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Introduction

In this chapter, the literature review concerning the state-of-the-art in the domain of

artificial kidneys is presented. Firstly, the functions of human kidney and the

reasons for its failure are discussed. The kidney malfunctioning leads to the

accumulation of various metabolism wastes, the classification and clinical

importance of which are also addressed. Due to a great shortage of available donor's

organs for transplantation, the different blood purification techniques may be

applied in order to remove harmful wastes from the blood stream of the patient.

These techniques are based on usage of semi-permeable barriers (membranes)

or/and adsorbents. The pros and cons of these procedures are discussed in details.

Finally, the key issues, which are still to be resolved, are highlighted along with our

vision and strategy of their tackling.

1 Renal functions and uremic solutes

1.1 Natural kidney: structure, functions, reasons for failure

Blood contains the particles of various sizes and types, including cells, proteins,

dissolved ions and products of metabolism. Some of these particles are essential for

the body, while other has to be removed (i.e. urea). The body may control the

chemical composition of the blood by various means, but the largest contribution to

this process falls to the kidneys [19].

Normally, people have two kidneys of about 11 cm long and of about 160 g weight

each [20] and are located behind the peritoneum against the posterior abdominal

wall [21]. Each kidney contains around 1.2 million filtration unit (Figure 1.1), called

nephrons [19, 22]. Each nephron has several functional regions: a cluster of blood

vessels called glomerulus, which is surrounded by Bowman's capsule connected to

renal tubules (proximal tubule, loops of Henle, distal tubule) that is ending in a

collecting duct. The bundle of collecting ducts from nephrons are connected to the

bladder. Inside the nephron, three separation mechanisms are taking place: filtration

(in glomerulus and Bowman's capsule), reabsorption and secretion (both in renal

tubules) [19, 23].

In the process of blood purification, blood passes through the membrane-lined

tubules of the kidney and some solutes are removed by diffusion and subsequently
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Figure 1.1: Structure of the nephron [24].

excreted [19]. Generally, kidneys perform several functions [21, 22]:

– Elimination of the water-soluble nitrogenous end-products of the protein

metabolism;

– Regulation of the electrolyte balance in the body fluids;

– Maintenance of the acid-base balance;

– Production and secretion of hormones.

The condition when natural kidney becomes unable to function properly is called as

kidney failure. It results in accumulation of harmful wastes and excess fluid in the

body, which leads to uremia [19, 21]. The most common causes of which

are [20, 25, 26]:

– High blood pressure (hypertension);

– High blood sugar (diabetes);

– Kidney diseases and infections, such as polycystic kidney disease,

pyelonephritis etc;

– A narrowed or blocked renal artery;

– Long-term use of medications.
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Normally, human can live with the kidneys which have at least 10% of properly

working functional units [19]. However, sometimes their performance may drop

below this level. Based on the duration, the renal function losses may be classified

as: acute (short period), subacute and chronic (long period); and only the first one is

often reversible. As the kidney disease progresses the filtration rate is steadily

falling down, ultimately leading to the end-stage renal disease (ESRD) [23]. As

soon as ESRD is diagnosed, the renal replacement therapy should be started and it

can be provided in two manners: transplantation of the donor's organ or with use of

an artificial substituent, which is called artificial kidney or hemodialysis. Definitely,

the former approach is the optimal one; however, the main problem is the great

mismatch between the required and the available donor organs. According to US

statistics as of January 2014, the number of available organs may cover only around

10% of the needed quantity (14 029 transplanted in 2013, against 120 990 currently

required) [27]. Moreover, the essential requirement for the successful kidney

transplantation is the genetic compatibility between donor and recipient, which

brings an additional complication to immediate realization of this ESRD treatment

[23]. It is for these reasons the need of implementation of the artificial function

substituent emerges aiming at the removal of the potentially harmful metabolic

compounds.

1.2 Uremic toxins

Uremic solutes, which are excreted by a healthy kidney and are getting retained and

accumulated in the body of patients with uremia, are called uremic retention solutes.

Some of these solutes may negatively interact with normal biological functions of

organism causing adverse effects; they are referred as uremic toxins [5, 28]. Uremic

retention solutes are subdivided into three groups: small molecules (<500 Da)

without protein binding, middle solutes (>500 Da and up to 60 kDa), and solutes

capable of protein binding [5].

The small uremic solutes are the most common and are found in the human body in

higher concentration. Urea (Molecular weight (MW) = 60 Da) and creatinine (MW

= 113 Da) are the main representatives of this group. These two solutes are typically

used as markers for evaluation of the kidney functionality [5]. Not all the compounds

belonging to this group are toxic [29]; however, the evidences of toxicity of some

compounds was demonstrated. For instance, the guanidines were initially considered
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to be neurotoxic [30], but more recent research also revealed their impact on vascular

damage [31].

The class of the middle molecular weight solutes includes mainly peptides and

cytokines [5]. In some studies, it was demonstrated that several compounds, which

belong to this category, have a negative effect on the different types of cells. For

instance, β2-microglobulin (∼12 kDa) may affect leukocytes, endothelial cells,

smooth muscle cells [29] and was proven to be related to mortality of patients with

kidney disorders [32-34]. In addition, it was found out that such solutes as Ig-light

chain and advanced glycation end product of β2-microglobulin have a negative

influence on leukocytes [29]. The general toxicity of middle solutes and methods of

their removal are discussed in more details in the following section.

The solutes capable of protein binding are typically called protein-bound toxins.

These molecules tend to associate with high molecular weight proteins like albumin

(∼66 kDa) and, depending on the affinity between solute and protein, different

ratios of their free fraction to the bound one may be detected in the human blood

[35]. Some of the protein-bound toxins were reported to be associated with

cardiovascular and chronic kidney diseases [36, 37]. For example, it was

demonstrated that indoxyl sulfate is likely to affect cardiac cells [38] and lead to the

leukocyte adhesion [39]. One of the proposed methods to decrease the serum levels

of some of protein-bound toxins is dietary changes or consumption of specific

sorbents [40]. However, the greater attention in the field of the blood purification

and blood toxin removal was attracted by the membrane-based techniques.

1.3 Importance of removal and clinical toxicity of middle size uremic
toxins

1.3.1 Middle size uremic toxins in ESRD

The mortality and morbidity are still issues of high importance in ESRD. Number of

studies demonstrated the relation between these problems and the accumulation of

the middle size uremic retention solutes by conventional hemodialysis treatment [6,

9, 41, 42]. Recently, twenty two middle uremic solutes with clinically significant

toxicity (Table 1.1) were identified [5, 43]. While the level of these compounds in

healthy people is controlled by catabolism in the renal tubules [3], their

concentration in the serum of patients with ESRD may increase from roughly 3-fold

(retinol-binding protein) to 40 or even 60-fold (β2-microglobulin) [3, 9, 43].
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Table 1.1: List of middle size uremic toxins in ESRD [43].

Interleukin-1β Complement factor D Adrenomedullin

(32 kDa) (23.7 kDa) (5.7 kDa)

Cystatin C Atrial natriuretic peptide Neuropeptide Y

(13.3 kDa) (3 kDa) (4.2 kDa)

Leptin Degranulation inhibiting

protein

λ-Ig and κ-Ig light

chains

(16 kDa) (14.1 kDa) (25 kDa each)

β-endorphin Delta-sleep inducing

peptide

Tumor necrosis factor-α

(3.4 kDa) (848 Da) (26 kDa)

Cholecystokinin Methionine-enkephalin β2-microglobulin

(3.8 kDa) (555 Da) (11.8 kDa)

Endothelin Retinol-binding protein Clara Cell Protein

(4.2 kDa) (21.2 kDa) (15.8 kDa)

Interleukin-6 Parathyroid hormone Hyaluronic acid

(24.5 kDa) (9.2 kDa) (25 kDa)

For example, the elevated concentration of leptin is related to malnutrition [44] and

it was demonstrated that there is an inverse dependency of its concentration and

protein catabolic rate [4]. Some of other compounds were found to interfere with

specific cell functions [45-47]. Thus, there is an evidence of clinical toxicity of the

middle size compounds, which implies the need to control their concentration in the

patients, who undergo renal replacement therapies. Due to the simplicity in the

detection and clinical relevance, the most studied toxin from the category is

β2-microglobulin [6, 48]. Currently The European Best Practice Guidelines

considers β2-microglobulin as the best marker of middle molecules for the

hemodialysis dose quantification [49].

1.3.2 Beta2-microglobulin as a key marker of middle molecules removal

Beta2-microglobulin (β2m) is a poly peptide of 99 amino acids and has molecular

weight of 11 729 Da and pI=5.5. It is present on the surface of most nucleated cells
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and biological fluids (serum, urine, and synovial fluid). Its elimination occurs in the

kidney via glomerular filtration with subsequent tubular catabolism; however,

kidney failure leads to the accumulation of β2-microglobulin in the body of patient.

While the normal serum β2-microglobulin concentration is 1.5-3 mg L�1, under

condition of ESRD it can raise up to 20-50 mg L�1 [6, 50]. Additionally, for the

patients with kidney failure, β2-microglobulin is not just retained in the blood

stream, but is also accumulated in the tissue, where it undergoes some chemical and

conformational transformations, and is polymerized to form amyloids. First

amyloids may be observed after two years of the hemodialysis ESRD treatment

[51], however, the main long term complication, dialysis related amyloidosis

(DRA), is diagnosed for patients treated with hemodialysis only after 6-10 years [6].

DRA is characterized by joint stiffness, joint osteoarthropathy, pain, swelling etc.

Patients often present carpal tunnel syndrome (CTS), shoulder pain, and flexor

tenosynovitis in hands [9]. Advanced glycation end-products were also identified in

β2m amyloids, meaning that they contribute to the disease progression and that they

should also be precisely controlled in ESRD patients [9, 52].

2 Membrane technology for blood purification

2.1 Basics of membrane technology

Membrane is defined as the semi-permeable barrier that controls the permeation of

chemical species by favoring the transport of ones, while hampering the penetration

of others. Due to the versatility of properties and the possibility of their control,

membranes are occupying an important place in the area of chemical technology and

are being used in numerous applications [53, 54].

In principle, all membranes can be classified according to the size of the pores on

ones for: reverse osmosis, ultrafiltration and microfiltration. The range of pore sizes

determining the application of a membrane as well as their comparison with

conventional filtration are depicted in Figure 1.2.

As it could be initially concluded, the reverse osmosis membranes possess pores

of the size smaller than 2 nm (20 Å), however in real membranes no pores could

be observed (membrane is dense) and the transport occurs through the free volume

areas, while ultrafiltration and microfiltration membranes possess pores of the ranges

2 – 100 nm and 100 nm – 10 µm, respectively [55].
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During the separation process by means of membrane, the permeation of the

chemical compounds is governed by difference in chemical potential between the

both sides of the membrane. The driving force may be generated by the gradients of

temperature, pressure, concentration (dialysis) or/and electrical potential. In

addition, the transport across the membrane may be characterized by the different

mechanisms depending on membrane morphology (dense or porous). For dense

membranes, the generally accepted theory describing the solute transport is

“solution-diffusion model”. With respect to this model, the permeability P of a

certain molecule is defined as a product of its diffusivity D and solubility S

(Equation 1.1) in the membrane material [53, 54].

P = DS (1.1)

Both solubility and diffusivity are the inherent properties of pair molecule-material,

meaning that a certain molecule is interacting in a different manner with different

material and vice versa. Consequently, the permeability of every chemical compound

is strongly related to the properties of the membrane material.

In contrary, the transport through the porous membranes occurs mainly by means of

pores. This implies that the permeability is not dependent solely on the membrane

material (although the molecule-material interactions are still playing a significant

role), but mostly on the pore sizes, pore size distribution, and general membrane

porosity. For such transport description, the model of liquid flow through the set of

capillary pores of diameter d is used (Equation 1.2):

J =
∆pε

32µl
d2 (1.2)
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where J is flux through the membrane, ∆p is transmembrane pressure (TMP), ε is

the membrane porosity, µ is the viscosity of the permeating fluid, l and d are the pore

length and diameter, respectively [54]. Characterization of the porous membranes

is conventionally done by such parameters as retention R towards certain compound

and molecular weight cut-off (MWCO). The retention represents the extent to which

the compound may be rejected by the membrane. This parameter may vary in the

range from 0 (no retention and solute freely passes through) to 1 (compound is fully

retained) and is defined by Equation 1.3:

R = 1− cperm
cfeed

(1.3)

where cperm and cfeed are the concentrations of compound in the permeate (fluid,

which crossed the membrane) and in feed solution, respectively. The membrane

retention is directly related to the sieving coefficient, which represents the fraction

of compound permeated through the membrane and is defined as (1 - R). The

MWCO parameter shows the molecular weight of compound, 90% of which is

retained by the membrane. For the determination of this parameter such compounds

as polyethylene glycol, dextrans or proteins are used. Practically, the method of

MWCO is not standardized and sometimes may differ among industrial

manufacturers. However, knowing the retention and MWCO of particular

membrane, one can estimate its separation performance [53].

The measurements of the membrane permeability with use of molecules of different

molecular weight provides the rejection versus molecular weight curve

(Figure 1.3).

Figure 1.3: Schematic representation of the rejection versus molecular weight curve [56].
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It has to be point out that the MWCO serves as one of parameters of a membrane

quality. In fact, the sharper the curve is, the better separation of compounds with

similar molecular weight it provides. Therefore, one of objectives in the membrane

optimization is the obtainment of a curve, which is as sharp as possible. It should be

also emphasized that the shape of this curve is dependent on the operational

conditions (temperature, pressure, cross-flow velocity) used during the membrane

characterization [56].

2.2 Membrane geometry and operation conditions

From the fabrication point of view, all membranes may be categorized as flat and

tubular. Flat membranes are then assembled in the plate-and-frame or spiral-wound

modules. The plate-and-frame module normally contains 20–30 plates arranged in

stack. A typical height of feed channel is in the range of 0.5–1.0 mm, and the

system is operated in high-shear conditions. The family of the tubular membranes

includes [55]:

– hollow fiber membranes (diameter: <0.5 mm);

– capillary membranes (diameter: 0.5 – 5 mm) ;

– tubular membranes (diameter: >5 mm).

Depending on the application and a particular case each of these module types may

provide some advantages and disadvantages. For example, tubular and

plate-and-frame modules are used for the filtration of highly fouling solutions. The

plate-and-frame modules can withstand higher pressures than tubular or capillary

modules. In contrary, the high cost limits the usage of tubular and plate-and-frame

modules in case of relatively non-fouling applications (filtration of solutions with

lower concentration), where the use of spiral-wound and capillary modules is more

cost-effective. Spiral-wound and capillary modules are often selected in some food

applications, such as ultrafiltration of cheese whey and clarification of apple

juice [54].

Hollow fiber modules were introduced in the early 1970s. A typical module contains

several thousands of fibers and is around 30 cm long and several cm in diameter.

Each module has a membrane area of 2–10 m2, meaning that the hollow fiber

geometry provides the best filtration area-to-volume ratio. For these modules,

operating pressures are quite low and normally do not exceed 2 bar in order to avoid
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the breaking of the fibers, which may be considered as a disadvantage for the

processes where higher pressures are required. Nevertheless, under mild pressure

conditions hollow fiber modules allow the achievement of good throughputs with

many solutions [54]. As blood purification does not require high pressures, the

hollow fiber membranes are widely used for this application. In addition, good

area-to-volume ratio inside the module allows to minimize the priming volume of

blood that is crucial in hemodialysis (details in the following section).

The filtration process with use of membranes may be performed in dead-end and

cross flow modes (Figure 1.4).

Figure 1.4: Schematic representation of dead-end and cross flow filtration [57].

As it can be understood from Figure 1.4, in the dead-end filtration, the flow of liquid

to be filtered is directed perpendicularly to the membrane surface. This approach

is more effective for the filtration of solutions with low concentration. However,

in case of feed with high concentration, dead-end becomes less effective as filtered

solutes accumulate on the membrane surface, which leads to a reduction of filtration

rate. Therefore, cross flow filtration is more applicable in such cases, because the

flow directed tangentially to the membrane surface creates a sweeping effect, which

allows to keep more stable filtration rate [57].

Cross flow filtration process can be also modified in the way that the tangential

movement in the permeate side is initiated. In this case, two different modes are

distinguished: co-current, when the feed and the permeate flow in the same direction

along the membrane and counter-current, when feed and permeate flow in the

opposite directions along the membrane.
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2.3 Membrane materials for medical applications

Membranes for medical application occupy the huge part of the membrane market.

Their production is at least equivalent to the production of membranes for all other

applications combined and is much larger in terms of dollar value [54]. Membranes

for medical purposes differ in chemical composition, transport properties and

biocompatibility. An ideal blood-contacting membrane should be highly

biocompatible (not be recognized as foreign object the by organism of the patient),

allow the transfer of the uremic toxins of different sizes and be resistant to all

chemical and sterilizing agents applied [58].

Today, there are several commercially available hemodialysis membranes of different

materials (Table 1.2).

Table 1.2: List of commercial synthetic hemodialysis membranes [59].

Material Manufacturer

Polyacrylonitrile (PAN) Pan-DX Asahi, PAN AN69 Hospal,

SPAN Akzo

Polysulfone (PS) Asahi, Fresenius, Helbio, Minntech,

Toray

Polyester polymer alloy Nikkiso

Polyarylethersulfone (Arylane R
) Gambro-Hospal

Polyethersulfone (Diapes R
) Membrana

Polyamide (PA) Gambro

Polymethylmethacrylate (PMMA) Toray

Ethylene vinyl-alcohol copolymer Kuraray

Polycarbonate polyether copolymer

(PPC Gambrane R
)

Gambro

It is clear that the separation performance of hemodialysis membranes should mimic

the one of natural kidney. Figure 1.5 demonstrates the schematic sieving curves of

low-flux (conventional dialysis) and high-flux membranes in relation to the one of

a natural kidney. The detailed information about properties and advantages of these

membrane types are discussed in the subsequent section.
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Figure 1.5: Comparison of sieving coefficients of two types of dialysis membranes and
natural kidney [60].

As it can be concluded from the curves presented in Figure 1.5, the low-flux

membrane allow the free passage only of the molecules with the molecular weight

up to 1000 Da, while the compounds with molecular weight from 1000 Da to

10 kDa are only partially transmittable. The larger molecules are fully retained. In

parallel, the sieving curve of high-flux membranes is much closer to the one of a

kidney. Apart from small molecules, the compound with molecular weight up to

60 kDa can be removed at least partially.

The hemodialysis membrane or more precisely hemodialysis module (dialyzer) is

conventionally operated at counter-current mode. This means that the blood (feed)

and the solution called dialysate flow in the opposite direction on the different sides of

the membrane (this process is discussed in more details in the Section 2.6.1).

2.4 Mass transfer mechanisms in membrane filtration

The membrane for hemodialysis contains pores that allow the passage of small

molecules as water, urea, creatinine etc., while larger blood components as white

cells, red cells and majority of plasma proteins are retained. The driving force for

the permeation of uremic toxins through the dialyzer membrane may be generated

by solely diffusion (hemodialysis) or convection (hemofiltration) or by both

mechanisms in the same time (hemodiafiltration) [20].
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2.4.1 Diffusion

Diffusion is the mechanism of solute transport across the membrane, which is driven

by the solute concentration difference between two compartments. This transfer will

continue until the moment when the concentration of solutes, which are able to

permeate, is equalized. The schematic representation of diffusion is depicted in

Figure 1.6.

Figure 1.6: Schematic representation of diffusive transport. Initial state (left): the mixture of
solutes is present only in one compartment. Final state (right): the equilibrium concentration
is achieved only for smaller solutes, due to their ability to permeate through the membrane.

The flux of a solute across the membrane is governed by the Fick's law

(Equation 1.4):

Jdiff = −DdC
dx

(1.4)

Where Jdiff is the solute flux driven by the diffusion (in mol m�2 s�1), D stands

for diffusivity of solute inside the membrane (in m2 s�1), dC
dx is the solute

concentration gradient across the membrane. The sign minus is demonstrating that

solute transport occurs from the zone with higher concentration to the one with

lower concentration. The integration of Equation 1.4 with boundary layers set at

blood and dialysate sides of the membrane leads to the standard form of solute flux

driven by diffusion (Equation 1.5):

Jdiff =
D

l
(Cb − Cd) (1.5)

where l is the thickness of membrane,Cb andCd are concentrations of the permeating

solute in the blood and dialysate side, respectively.

Due to the fact that diffusion coefficient decreases with the increase of the compound

molecular weight [61], this mechanism is more significant for the removal of small
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solutes as urea and creatinine. Thus, the separation of larger compounds (i.e, small

proteins) by diffusion is hampered and requires application of another mechanism,

convection.

2.4.2 Convection

The convective transport through the membrane results from the presence of the

pressure gradient across the membrane. By applying the excessive pressure from

one side, the transport of water and solutes of sizes inferior to the membrane pore

size starts to occur (Figure 1.7).

Figure 1.7: Schematic representation of convective transport.

In case, when a certain concentration of solutes is present in both blood and dialysate

sides, the transmembrane pressure (TMP) is defined as the difference between the

hydrostatic pressure and the oncotic pressure (∆Π) as in Equation 1.6 [23]:

∆p =
Pbin − Pbout

2
− Pdin − Pdin

2
−∆Π (1.6)

Where Pbin , Pbout , Pdin , Pdout are the pressures in the inlet and outlet of the blood

and dialysate sides, respectively.

In order to explain the concept of the oncotic pressure, it is important to point out

that the concentration of the large solutes with sizes superior to the size of the

membrane pores increases from the “initial” to the “final” state depicted in

Figure 1.7. Keeping in mind that water tends to move from the less concentrated

region to a more concentrated one to make them equilibrated, in the “final” state it

“prefers” to move from the right-hand to the left-hands side across the

semi-permeable barrier. Consequently, the applied hydrostatic pressure is partially

counter-balanced by the pressure generated by water in the right-hand side, which is

known as oncotic pressure. In principle, oncotic pressure is also called colloid

osmotic pressure, which indicates that this pressure has a similar nature with
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osmotic one, but is generated by the species of different nature. Particularly, the

term “osmotic pressure” is used for solutions of salts, while the term “oncotic

pressure” is applicable for solutions of the proteins or colloidal matter.

The solute flux Js across the membrane is directly proportional to its local

concentration Cs, the flux of solvent Jv and Staverman reflection coefficient σ

(Equation 1.7) [20]:

Js =
(
1− σ

)
JvCs (1.7)

Where (1− σ) term represents the fraction of Jv permeating through the membrane

in pores large enough to allow passage of a given solute [62]. Thus, for small solutes

like urea this term is close to 1, meaning that all pores contributing to the transfer of

solvent participating in the transport of solute as well. In contrary, for larger

molecules like proteins this term is approaching 0 due to steric hindrances.

In order to characterize the performance of hemodialyzer the parameter called

ultrafiltration coefficient KUF in units of mL h�1 mbar�1 is used and is defined as

in Equation 1.8:

KUF =
JvA

TMP
(1.8)

Where A is the total surface area of membrane inside the dialyzer. According to the

Equation 1.8 the relation between JvA and TMP is linear; however, it's valid only at

relatively low values of TMP and is changing at higher values due to the deposition of

protein and fibrin on the membrane in the blood side of the hemodialyser [23].

2.4.3 Clearance and dialysance

The clearance and dialysance are two parameters which demonstrate how much blood

in mL was purified from particular substance per unit of time. In order to describe

these parameters let us consider the dialyzer as shown in Figure 1.8.

Where Q stands for the flow rate in mL h�1 or mL min�1 and C is concentration in

mg mL�1, subscripts b and d represent blood and dialysate sides, while in and out

refer to inlet and outlet, respectively.
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Figure 1.8: Schematic representation of flows inside the hemodialyser.

Now, let us write a mass balance for the dialyzer Equation 1.9:

Qb,inCb,in +Qd,inCd,in = Qb,outCb,out +Qd,outCd,out (1.9)

Assuming that the mass transfer occurs both by diffusion and convection, and,

logically, some part of solution is transferred from the blood to the dialysate with the

flow rate Qv, one may substitute Qb,out and Qd,out as Qb,out=Qb,in–Qv and

Qd,out=Qd,in+Qv to get mass balance in a new form (Equation 1.10):

Qb,inCb,in +Qd,inCd,in =
(
Qb,in −Qv

)
Cb,out +

(
Qd,in +Qv

)
Cd,out (1.10)

After rearrangement of Equation 1.10:

Qb,in
(
Cb,in − Cb,out

)
+QvCb,out = Qd,in

(
Cd,out − Cd,in

)
+QvCd,out (1.11)

In such form of the mass balance, the left part is describing the amount of solute

leaving from the blood, while the right side expresses the quantity of solute

transferred to dialysate. In addition, the first term in each side represents the

diffusive contribution to the transfer, while the right term is the convective

component [33].

The dialysance Dl expresses the amount of solute leaving from the blood or

appearing in the dialysate over the concentration driving force Equation 1.12:

Dl =
Qb,inCb,in −Qb,outCb,out

Cb,in − Cd,in
(1.12)



2 Membrane technology for blood purification
2.5 Concentration polarization

25

C
ha

pt
er

1

By application of a condition that the concentration of toxin in the dialysate before

entering the dialyzer is equal to 0 (Cd,in = 0) the definition of clearance K is

obtained (Equation 1.13):

K =
Qb,inCb,in −Qb,outCb,out

Cb,in
(1.13)

Moreover, in case when convection is not involved in the solute transfer (Qv = 0),

meaning that the flow rate in the inlet and outlet of each compartment is the same,

the expressions of clearance and dialysance are reduced and are turned into diffusive

forms:

Kdiff =
Qb,in

(
Cb,in − Cb,out

)
Cb,in

(1.14)

Dldiff =
Qb,in

(
Cb,in − Cb,out

)
Cb,in − Cd,in

(1.15)

Thus, the general forms of dialysance and clearance with separated convective and

diffusive terms are (Equation 1.16 and Equation 1.17):

K =
Qb,in

(
Cb,in − Cb,out

)
Cb,in

+Qv
Cb,out
Cb,in

(1.16)

Dl =
Qb,in

(
Cb,in − Cb,out

)
Cb,in − Cd,in

+Qv
Cb,out

Cb,in − Cd,in
(1.17)

Where the first term in both equations reflects the diffusive part and the second term

expresses the convective component. Finally, the clearance of dialyzer is normally

defined only by its diffusive component and with use of such components as urea,

creatinine, phosphate, and vitamin B12 [23].

2.5 Concentration polarization

As the filtration process progresses, the components of the feed solution start to move

towards the membrane. However, since the permeation of solute with sizes close or

greater than the size of membrane pore is hindered, concentration gradients form in

the proximity of the membrane surface (Figure 1.9).
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Figure 1.9: Schematic representation of concentration polarization. (Cb and Cp stand for the
solute concentrations in the bulk solution and the permeate, C0 – solute concentration in the
proximity to the membrane) [54].

As it can be seen from Figure 1.9, the concentration polarization is located only in

the feed side. However, if the membrane module is operated in co- or counter-current

mode, the variation of concentration from membrane surface to bulk solution may be

also observed in the permeate side.

One of approaches to describe the effect of concentration polarization is to model

this phenomenon by using an assumption that a thin layer of unmixed fluid, with

thickness δ, exists between the membrane surface and the well-mixed bulk solution

[54]. The thickness of this layer is dependent on the different parameters such as

properties of the solution (viscosity, concentration), intensity of flows towards and

along the membrane, dimensions of the filtration module etc. In order to quantify the

thickness of this boundary layer the specific hydrodynamic correlation collected in

textbooks should be used. Finally, aiming at reducing the concentration polarization,

different strategies may be applied, the main of which is the increase of the fluid flow

velocity along the membrane surface.

2.6 Concept of membrane- and adsorbent-based renal replacement
therapies

2.6.1 Hemodialysis

Hemodialysis is the most wide-spread membrane-based treatment for ESRD, and

only in 2011 it was provided for about 1.9 million patients worldwide [63].

Hemodialysis procedure comprises the pumping of blood through the extracorporeal

dialyzer, where its purification occurs. Modern dialyzer (Figure 1.10) contains

hollow fiber membranes of different quantity (up to 15 000) and total filtration area
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(up to 2.5 m2) [20, 64] and the blood priming volume ranges from 75 mL to

200 mL [65].

Figure 1.10: Modern hemodialyser [20].

Inside the dialyzer the blood is conventionally flowing inside the fiber, while the

dialysate solution is passing in the shell side in the counter-current direction

(Figure 1.11).

Figure 1.11: Schematic representation of flows in hemodialysis.

The composition of the dialysate is similar to the normal body fluid in terms of

electrolyte composition, but is completely toxin-free. As so, the diffusive transport

of toxins across the membrane is generated by the difference in their concentrations.

Such approach allows the removal of toxins, and prevention of changes in the salts

content in the blood stream [20].

As it was already discussed, at counter-current operation mode, the concentration

polarization takes place on both sides of the membrane. In order to partially

overcome its influence, the augmentation of the mass transfer is achieved by the

increase of the dialysate flow rate up to 2 times higher value than that of the blood

flow [66]. During hemodialysis the hollow fiber membrane plays the role of a

barrier for some species, while allowing the passage of other ones. Which blood
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components and to which extent are able to be removed is mainly dependent on the

molecular weight of solute: the higher molecular weight is, the lower propensity to

be transferred. Additionally, the type of membrane is a second key factor in the

blood purification process. Dialysis membranes are categorized as: low-�ux (LF)

with water permeability in the range 0.03-0.09 mL h�1 m�2 Pa�1 and high-�ux

(HFl) with water permeability higher than 0.15 mL h�1 m�2 Pa�1. Membranes

belonging to the former type possess smaller pores, thus allowing passage of small

solutes, while the latter ones have larger pores, which results in possibility to

remove some part of larger compounds (middle size uremic toxins) [20]. Some

research groups reported that high-flux membranes may contribute to such

undesired side effect, as albumin loss [67]. Thus, the basic requirement for

membranes of this type is narrow pore size distribution (sharp selectivity curve, see

Figure 1.3), allowing the passage of middle solutes and retaining larger compounds.

This property of dialysis membrane is still to be developed and optimized.

Apart from larger pores size feature of HFl membrane, the second important

parameter is the internal �ltration rate. Since there is no convection in dialysis, the

volume of the blood and the dialysate compartment remain unchanged, meaning that

the net filtration rate is 0. However, due to pressure drop along the fibers and,

consequently, pressure gradient across the membrane, the local internal filtration

occurs. Some part of water with some toxins may be transferred from blood and

then permeate back (backfiltration) from the dialysate side (Figure 1.12).

Figure 1.12: Schematic representation of internal filtration inside the dialyzer [68].
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As it can be seen from Figure 1.12 at the beginning of dialyzer (blood inlet), the blood

pressure is superior to the pressure in the dialysate compartment. Thus, the local

convective transfer from the blood to the dialysate occurs in this region. In contrary,

as blood moving forward along the dialyzer the pressure inside this compartment

reduces, while the pressure in the dialysate side increases as we get closer to the

dialysate inlet. Hence, at some point along the length of the dialyzer the pressures

in both compartments equalize and then the pressure in dialysate start to dominate

over the one in the blood side. As so, the local convective backflow starts to take

place and it compensates the blood volume reduced at the beginning of the dialyzer.

Consequently, in order to preclude a blood contamination by backflowing liquid, the

specific additional requirements to the dialysate composition and purity should be

met (details in the following section).

HFl dialysis seems to be advantageous to the low-flux dialysis in terms of the

possibility to remove some part of middle molecules; however, their removal is still

limited by much smaller diffusivity in comparison to small uremic retention solutes

[48]. Thus, in addition to diffusion-based dialysis, the artificial kidney may be

operated in two other modes: hemofiltration and hemodiafiltration, the most

important feature of which is the presence of convective term in the mass transfer.

Thus, these procedures are also referred as convective therapies.

2.6.2 Hemofiltration

In hemofiltration (HF) the movement of solutes across a semi-permeable membrane

is governed solely by convection (Figure 1.13), generated by hydrostatic pressure

difference, because no dialysate is used, and consequently, there is no concentration

gradient across the membrane [20].

Figure 1.13: Schematic representation of flows in hemofiltration.
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Due to the convection, solutes of different sizes, but smaller than the membrane pore

size, are dragged through the membrane along with the flow of water. While the

blood components with sizes larger than the membrane pores remain inside the

blood and their concentration increases as water is removed through the membrane.

To maintain the flux and to avoid excessive rise of blood viscosity, the replacement

fluid should be injected, before or after the filtration unit, in the quantity equal to

removed water volume minus its desired removal. Normally, solutes of the

molecular weight up to 15 kDa can be removed from the blood by HF, meaning that

larger important blood components as cells and large proteins are retained. The

small toxins in this case are able to pass freely through the membrane pores, while

only some part of middle sized molecules is able to be filtered out [69]. Thus, the

application of convection provides a better solution for poor removal of the

middle-sized solutes compared to the hemodialysis. However, it still does not allow

the complete elimination of these toxins. On the other hand, hemofiltration offers

less effective removal of small molecular weight toxins, because of the limitations in

the maximal volume of water, which can be removed from the blood [33]. Thus, it

seems to be beneficial and reasonable to combine the positive features of

hemodialysis that is sufficient removal of small toxins together with the strength of

hemofiltration, namely facilitated elimination of the middle-sized uremic retention

solutes.

2.6.3 Hemodiafiltration

Practically, hemodiafiltration (HDF) is the combination of hemodialysis and

hemofiltration, because both diffusion and convection contribute to the uremic

retention solutes removal (Figure 1.14) [33].

Figure 1.14: Schematic representation of flows in hemodiafiltration.

During HDF a toxin-free dialysate is passing in the shell side of dialyzer counter

currently to the blood stream, which results in the generation of the concentration

gradient responsible for the diffusive component of the mass transfer, which is of



2 Membrane technology for blood purification
2.6 Concept of membrane- and adsorbent-based renal replacement
therapies

31

C
ha

pt
er

1

higher importance for smaller molecules. On the other hand, the difference in

hydrostatic pressure applied (up to 0.4 bar [70]) between the blood and dialysate

side governs the convective transport (ultrafiltration), which contributes to the

removal of excessive water and solutes with higher molecular weights [71, 72].

Normally, the amount of removed water is far greater than it is required; hence, an

external fluid infusion is an important aspect. The substitute fluid should be

ultrapure with the content of bacteria and endotoxins lower than 0.1 colony forming

units per mL and 0.05 endotoxin unit per mL, respectively [72]. Initially, the

substitution fluid was supplied in the costly disposable plastic bags, which limited

the available volume (around 4 L) per session of treatment called conventional HDF.

But then, the new approach of the infusion fluid preparation was developed. The

dialysis machine was equipped with a purification unit, which allows to purify the

spent dialysate and use it again for the water replacement. This approach allowed

the commencement of so called online-HDF [48], which may be performed in one

out of two generally-accepted manners of the substitution fluid infusion: before and

after dialyzer. The former technique is called predilution HDF, while the latter is

referred as postdilution HDF. In some cases, both techniques are combined,

resulting in mixed-dilution HDF [73]. Theoretically, the predilution hemodialysis

seems to be advantageous from the point of view that it prevents the critical increase

of the blood viscosity and, consequently, clotting inside the dialyzer. On the other

hand, the predilution results in the reduction of toxins concentration just before the

entrance of dialyzer resulting in the decrease of their clearances that, in turn, reduces

the efficiency of the overall process [74]. Numerous studies were conducted in order

to compare pre- and postdilution HDF modes with each other [75-78], as well as

with low-flux dialysis (LFD) and high-flux dialysis (HFD) [79], and demonstrated

the better outcomes of HDF.

However, there are still some limitations remaining in all blood purification

techniques. The main of which is necessity of constant quantification of endotoxins

present in the system, while this analysis is regularly performed by the external

laboratories [80].

2.6.4 Hemoperfusion

Hemoperfusion is an alternative blood purification technique, in which the column

filled with adsorbent capable of toxin removal is used instead of the semi-permeable

membrane. There are two types of sorbents, which may be used: sorbents with
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hydrophobic properties (activated carbon, nonionic resins), and those that remove

molecules by chemical affinity (ion exchange resins) [81]. In 1964 Yatzidis [82] has

demonstrated that the effective removal of various toxins is possible by using

uncoated activated carbon. However, such approach possesses several threats, as

platelet depletion, hemolysis, hypertension, possible release of the particles to the

blood stream [81, 83, 84]. One possible way to overcome these issues introduced by

Chang [85] is to cover sorbent with the layer of coating material. However, this

leads to the decrease of the filtration efficiency due to the presence of an additional

barrier which has to be passed by the toxin before it reaches the adsorbent [43].

Moreover, unlike convective therapies hemoperfusion is not able to remove excess

of water and provide balancing of the blood composition. Thus, some researchers

suggested to apply the principles of hemoperfusion together with other blood

purification techniques [84, 86, 87].

3 Middle molecules removal by renal replacement

therapies

As it was already discussed, β2-microglobulin is responsible for the undesired side

effect as dialysis related amyloidosis and is currently considered as the best marker

for middle molecules for dialysis dose quantification. Due to such undesired side

effects of dialysis treatment, the great effort in development of other blood

purification techniques, which would allow the simultaneous removal of small and

middle uremic toxins (especially, β2-microglobulin) was done. As it was discussed

in the Section 2.6, based on the manner of the toxin elimination applied, these

techniques are categorized as membrane-based and adsorbent-based strategies.

Therefore, Section 3 is devoted to the analysis and comparison of the clinical

efficiencies of the various methods.

3.1 Membrane-based techniques

Number of old and recent studies revealed that the low-flux dialysis (LFD)

membranes do not enable the removal of middle solutes to a significant extent.

Beta2-microglobulin accumulation progresses in patients treated with such

membranes [2, 88, 89]. Thus, the one part of research was redirected to the

high-flux dialysis (HFD), which showed promising results even for patients
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switched from LFD [90-92]. The effect of HFD use on the risks of CTS and

mortality were evaluated by Koda et al. [93] based on the results collected during

26 years from 819 patients. Shifting from LFD to HFD reduced these risks to 0.503

and to 0.613, respectively. Within the frame of another clinical study [94] the

comparison of HFD with LFD demonstrated that former technique provides 42%

lower CTS risks and almost 28% reduction of plasma β2m concentration.

The second alternative to LFD is hemofiltration (HF), where solutes are exclusively

removed by means of convection, generated by the pressure difference. High blood

flow rates and high-flux membranes with high hydraulic permeability are essential

for this treatment strategy. However, due to aforementioned reasons, there are very

few reports about its clinical trials [48, 79]. For example, Kramer et al. [95] studied

the clearances of various compounds (including β2m) using three different

membranes. These membranes exhibited different sieving properties, which is

reflected by the sieving coefficients for β2m: 0.5 (AN69 R
), 0.54 (Polysulfone), and

0.35 (Polyamide), while all three membrane allowed the free passage of creatinine.

As so, the clearance of creatinine was 90 mL min�1 for AN69 R
, and

105 mL min�1 for Polysulfone and Polyamide membranes. The average β2m

clearances were 33 mL min�1 for polyamide, 44 mL min�1 for AN69 R
 and

54 mL min�1 for polysulfone membrane. Santoro with coworkers [92] clinically

compared online-HF with LFD by monitoring the conditions of 64 patients, equally

separated for each treatment type. Significant improvement in survival in HF (78%)

in comparison to LFD (57%) was observed. In the same time, HF provided superior

to LFD removal of β2m, leading to its blood levels of 24 mg dL�1 versus

37 mg dL�1.

Hemodiafiltration is the process in which high flux membrane efficiency is

additionally improved by the presence of convection (ultrafiltration). As a result, the

maximal clearance for both small and middle size molecules is achieved [96, 97].

The important role in the HDF outcome plays the place of replacement fluid

infusion, before or after the filtration unit (pre- or post-dilution). Ahrenholz et al.

[98] demonstrated that postdilution mode is more efficient than predilution. This

finding was attributed to the observed thicker protein boundary layer in case of

postdilution, which was formed because the convective forces were applied to the

blood with the relatively higher proteins concentration [43].

The volume of substitution fluid provided per session of treatment is also of high

importance. The shift from conventional HDF to online-HDF enable use of larger
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quantities of replacement solution and, as a result, improves the outcomes of the

treatment. Maduell et al. [99] compared the β2m reduction ratio achieved by both

conventional and online-HDF. The increase of substitution volume from 4 to 22.5 L

per session resulted in augmentation of β2m reduction ratio from 56.1 to

71.1 %.

Number of studies demonstrated superior removal characteristics provided by HDF

in comparison to other renal replacement strategies [8, 100]. Ward et al. [101]

analyzed the difference between 21 L substitution volume HDF and HFD in terms

of removal of both small (urea and creatinine) and middle (β2-microglobulin and

complement factor D) uremic retention solutes and came to conclusion that the

removals of all analyzed compounds were greater for HDF. Recently, Cornelis et al.

[102] investigated the influence of treatment duration on the outcome of the

conventional dialysis and hemodiafiltration. The results revealed that removal of

small molecules (urea, creatinine, uric acid and phosphate) were equally increased

in prolonged HD and HDF treatments. In the same time, the increased removal of

middle molecules (β2-microglobulin and fibroblast growth factor 23) was also

observed for both extended modalities, but in this case, the extent of improvement

was more significant for HDF. The positive influence of the treatment duration on

the removal of β2-microglobulin may be attributed to its intracellular distribution in

the organism during ESRD [103]. This implies that before removal from organism,

β2m has to transfer into the intravascular compartment across the capillary wall,

which is not rapid (transcapillary transfer rate is approximately 100 mL min�1),

which, in turn, provides an explanation for the frequently observed

β2-microglobulin concentration rebound after the end of treatment [104].

Despite all the discussed advantages of the convective renal replacement therapies,

the financial constrain is still crucial limiting factor, which prevents their spreading

and extensive use [89]. According to Tang et al. [8], the cost of one treatment session

by HDF is slightly higher than that of HFD and 2-fold higher than the price of the

low-flux dialysis. Authors also emphasized that it is possible to deduct 30% of the

expenses per session by reuse of the dialysis module 30 times. However, the process

of dialyzer cleaning is still not well-established and optimal reprocessing agents are

not standardized.
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3.2 Adsorbent-based techniques

Hemoperfusion (HP), unlike convective therapies does not enable removal of the

excess of water and balancing of blood composition. In contrary, HP may increase

the middle solutes removal capacity when it is used in combination with

membrane-based techniques. Several commercially available adsorbent columns

were developed (Lixelle and BetaSorb) and other were tested in small

scale [9, 43].

One of the main adsorbents tested for the blood purification is activated carbon

(charcoal). Its high adsorptive capacity is achieved by a specifically designed

surface porosity and large surface areas. Optimal size of pores aiming at the removal

of middle uremic retention solutes should be in the range of 2-20 nm (mesopores)

[105]. In these pores solutes are trapped by means of physical Van der Waals forces,

and this adsorption is frequently described by Langmuir or Freundlich

isotherms [9].

The therapeutic column Lixelle was developed by Japanese company Kaneka

Corporation for a selective adsorption of β2m. The column is filled with

biocompatible cellulose beads with the average diameter of 460 µm and with

covalently bound hexadecyl groups, as hydrophobic ligands for hydrophobic

compounds removal. The beads porosity was designed in the manner that allowed

adsorption of the small proteins (middle solutes) and exclusion of larger protein

albumin. Two sizes of Lixelle column are available: larger S-35 with volume of

350 mL and smaller S-15 of 150 mL. These single-use columns are used in

combination with dialyzer (Figure 1.15) and allows blood flow rates up to

250 mL min�1 [3].

It was found that the β2m adsorption capacity is more than 1 mg per 1 mL of

beads [106]. In addition, the total β2m removal by Lixelle in combination with a

dialyzer is in the range 200- 300 mg, which resulted in great reduction of β2m

post-treatment level [107]. Other studies demonstrated that not just β2m is adsorbed

by Lixelle, but also other proteins, including such molecules as retinol-binding

protein, interleukin-1β, and interleukin-6, which also have to be removed from the

blood stream [108, 109].

BetaSorb is a second commercially available adsorption column intended to improve

the poor performance of conventional dialysis in middle solutes elimination. The

device contains tissue-compatible small beads of hypercrosslinked polymer [110].
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Figure 1.15: Schematic representation of dialysis line with integrated Lixelle column [3].

As Lixelle column, BetaSorb is also used in combination with a dialyzer. In one of

studies HFD was compared with combined HFD/BetaSorb treatment. The removal of

several middle molecules (β2m, angiogenin, interleukin-18, retinol-binding protein,

leptin) was significantly higher in the combined therapy. For example, combination

of two strategies enable β2m removal of around 400 mg per session [9]. Despite the

highlighted advantages, there are also some significant drawbacks. One of which, the

combination of two methods results in the increase of blood priming volume, which

may lead to adverse effects as temporary hypotension.

3.3 Novel approach in combination of membrane- and adsorption-based
techniques

Aiming to overcome the aforementioned complication, the new elegant concept of a

double-layer membrane combining the particle-free and adsorbent loaded layers was

proposed (Figure 1.16).

The aim of the particle-free top layer is to provide sufficient biocompatibility and

prevent direct contact between biological fluid and sorbent (this need was discussed

in Section 2.6.4), while the presence of adsorbent in the second layer improves the

overall toxin removal [11]. Hence, this approach allows the toxin removal by means

of membrane filtration and adsorption in one step. It was demonstrated that such

membrane design provides perfect adsorbent particles distribution without cluster

formation and their sufficient accessibility for the toxins. Moreover, the viability of
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this concept was proven for creatinine and some protein-bound toxins under both

convective and diffusive experiments [7].

Nevertheless, the extent to which mixed matrix layer can elevate the elimination of

the uremic toxins from various groups remains uncertain and the optimal membrane

design still has to be determined. Therefore, there is a need of the mathematical

model, which would provide the description of the interplay of three toxin removal

mechanisms involved in such complex membrane. Which, in turn, would serve as a

tool for the membrane design and for the prediction of its performance.

4 Protein-related fouling of blood-contacting membranes

Almost immediately after a synthetic membrane is brought in contact with blood,

the protein adsorption on the surface of material starts to occur. The extent of this

process is dependent on the properties of the membrane material, such as chemical

composition, charge, morphology, roughness etc [11, 12]. Besides, the membrane

for the blood purification application is intended to allow removal of the toxins of

defined molecular weight range and provide a minimal harmful effect on the patient.

However, adsorption of protein may lead to some issues with material

biocompatibility such as blood coagulation, complement activation, blood cells

adhesion [13-16]. In addition, the accumulation of the protein on the membrane

surface leads to a formation of a deposit layer, which alters the selective properties

of the virgin membrane. Besides, the formation of such layer creates an additional

resistance to a transfer of toxins through the membrane, which leads to a decrease of

the overall efficiency of the blood purification [12].

Taking into account that the patient's blood is contacting large surface areas of
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membranes during around 150 blood purification treatments per year, the

investigation of hemodialysis material in terms of its propensity to protein

adsorption is essential [111]. Some researches were performed to analyze the total

protein adsorption on different membrane materials. Mares et al. [112] evaluated

the total protein adsorption on the hemodialysis polysulfone membranes after the

clinical treatment of 5 patients. In the probes of eluate 153 proteins were detected,

84 of which were common for all the patients and 57 of them were identified by

mass spectrometry. Moreover, authors found out that the molecular weights of 95%

of detected proteins were in the range of 18-85 kDa. In addition, Bonomini et al.

[42] performed the laboratory study of total protein adsorption on two commercially

available dialysis membranes made of cellulose diacetate (CDA) and ethylenevinyl

alcohol (EVAL). For both membranes the number of detected proteins was almost

the same, 284 and 280, respectively. However, the mass of proteins eluted by 1 mL

of specific buffer was significantly higher in case of CDA membrane: 1.2 mg vs

2.4 mg, which clearly justifies the impact of the membrane material on the

protein-surface interaction.

The one of generally accepted strategies to reduce the protein adsorption is

balancing of hydrophilic and hydrophobic polymer regions distribution on the

surface. Two approaches are used to combine hydrophilic and hydrophobic

properties in one material: copolymerization of monomers with different properties

and blending of hydrophilic polymer with the hydrophobic one [111, 113-115]. For

instance, Ward et al. [116] fabricated membranes from the blend of polysulfone

(PS) and polyvinyl pyrrolidone (PVP) dissolved in dimethylacetamide. The

resulting membrane was more hydrophilic in comparison to simple PS based, which

resulted in a lower protein adsorption, which in turn resulted in the improved

biocompatibility. In another research, Su et al. [117] performed an in vitro and in

vivo characterization of hollow-fiber polyethersulfone (PES)/PVP blend membrane.

Fabricated membrane demonstrated promising results in terms of urea, creatinine

and β2-microglobulin removals without visible changes in blood biochemistry and

only with a small loss of albumin.

Despite the negative effects of protein adsorption, it also can have the beneficial

function. Since the class of middle uremic toxins is mainly represented by proteins,

their adsorption on dialysis membrane can be viewed as additional mechanism of

removal from the blood stream [17]. The effect of membrane type and charge on the

amount of adsorbed small proteins, especially β2-microglobulin, was investigated

by some research groups [118-120]. It was demonstrated that for some materials,
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like polysulfone or acrylonitrile/methallyl sulphonate copolymer, this phenomena is

less significant, while in case of some other materials (polyacrylonitrile,

polymethylmetacrylate), small protein adsorption can provide an important

improvement in total removal capacity [119, 121]. On the other hand, even though

the protein adsorption may be considered beneficial in some regard, it should be

closely controlled in order to reduce the possibility of various side effects

occurrence (blood coagulation, complement activation, blood cells adhesion

etc).

Optical methods of protein fouling analysis are the most straightforward

non-invasive techniques, which allow “truly real-time” and sensitive observation of

phenomena taking place on the membrane surface. The fluorescence labeling

provides an important improvement in terms of contrast enhancement [122]. There

are a lot of fluorophores which may be used for the protein labeling. Some of the

most common ones are: fluorescein (FITC-green), tetramethyl rhodamine

(TRITC-red), sulphorhodamine sulphonylchloride (Texas Red) and Rhodamine B

(RITC-red). In case of multi-labeling experiments (more than one compound is

stained), the selection of dyes should avoid the overlapping of excitation/emission

wavelengths [123]. For instance, Crespo et al. [124] performed the experiment with

FITC and Texas Red dyes for staining of three different proteins (BSA,

β-lactoglobulin and γ-globulin) and experimentally proved the absence of emission

spectra overlapping. As an alternative approach, the fluorescent image acquisition

should be made separately for each component of mixture with subsequent

superimposition in order to gather the signals from all proteins in a single

picture [125].

5 Microfluidics – as a tool to shift research from macro to a

microscale

Recently, a lot of scientific effort was devoted to the miniaturization of devices used

in the field of chemistry, biology, engineering etc [126, 127]. Over last decades, the

significant interest was attracted by the microfluidics devices, due to the fact that in

comparison to the conventional engineering facilities they provide several

advantages, such as ease in portability, integration of process and instrumentation,

micro quantities of reactants, shortened processing time, better control and

reliability, reduced energy demand etc [128]. Moreover, it was demonstrated that
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there is a possibility of integration of the membrane functionality into a microfluidic

devices [129, 130] or even placement of the membrane itself in the microchip

[131, 132]. Both these approaches were used to down-scale standard membrane

function, such as separation, purification, dialysis, sample pre-treatment [53]. As so,

it became possible to perform membrane-based separation at the micro scale. In

particular, it was demonstrated that such devices can be successfully used for the

extraction of sulfide from water and oil [132], glucose recovery [133] and other

biomedical applications [131, 134, 135].

The main representative of materials used for the fabrication of the microchips is

polydimethylsiloxane (PDMS), due to its relatively low price, optical transparency,

chemical inertness, non-toxicity and because it is easily molded [136-138].

However, despite these advantages, PDMS possesses significant drawbacks which

limits its use in some conditions and applications. Firstly, PDMS is a hydrophobic

material, which means that to work with aqueous solutions the additional pumping

system is required or the complex hydrophilization procedures have to be applied to

overcome this limitation [136]. Secondly, PDMS absorbs small molecules into its

matrix and is gas permeable [139], which means that PDMS itself possesses the

properties of a membrane. Finally, PDMS is easily deformable which can become

an issue for application requiring elevated pressures, because it may lead to the

changes in device geometry [139] and/or integrity [135]. Therefore, other materials

with properties allowing to overcome highlighted limitations were proposed. One of

such materials is Norland Optical Adhesive (NOA), which is optically transparent,

inherently hydrophilic [140], and possesses greater Young's modulus than one of

PDMS [136]. It means that NOA has a better mechanical strength and is less prone

to the deformations under the applied pressure. Moreover, several studies revealed

the superior long-term biocompatibility of NOA compared to PDMS [139], which

makes this material more attractive from the biomedical viewpoint. Finally,

Bartolo et al. [141] demonstrated the 4 times smaller autofluorescence of NOA than

of PDMS, indicating that NOA is a suitable material for application where the

fluorescence-based detection is used.

One of aforementioned advantages provided by the microfluidic devices over the

conventional macroscale devices is better control (possibility of a rapid sample

collection and analysis), which may be achieved by coupling of a microchip with

other analytical tools. For example, Gao et al. [142] connected the microchip with

electrospray ionization mass spectrometry (ESI-MS) aiming at protein identification

from the mixture obtained in the microreactor. In another study, Perozziello et al.
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[143] integrated the microchip with Raman spectroscopy in order to detect small

peptides filtered out from the mixture with larger proteins. In order to perform the

direct real-time observation of the fouling build-up on the membrane surface,

Ngene et al. [18] coupled the microchip, made of microstructured membrane, with

the camera attached to magnifying lenses. All these examples indicate that coupling

of microfluidics devices with other tools is extensively used for the in-depth

investigation of membrane processes at the microscale.

In the view of aforementioned reasons and aiming at transferring the research of the

membrane-protein interactions from a macro to a micro scale, there is an interest in

development of microchip, which would:

1. Be made of NOA material;

2. Consist of two different, but perfectly aligned, systems of microchannels

(retentate and permeate sides);

3. Allow easy and direct placement of the polymeric membrane between the

systems of microchannels;

4. Enable the integration of fluorescent microscopy for the real-time observation

of membrane fouling.

6 Bottlenecks and selected strategy of their resolution

The first blood treatment issue which has to be addressed is absence of a precise

control over protein adsorption on the membrane surface. Aiming at tackling this

bottleneck it was decided to develop a method of real-time microscopic observation

of the membrane surface during its contact with protein solution. For this, the

investigation of the membrane-based protein filtration should be transferred from the

macroscale (Amicon cell/module of hollow fibers) to the microscale. Hence,

Chapter 3 of this work is dedicated to the development and characterization of a

novel microfluidics device, with membrane inside. In principle, this device

resembles the micro cross flow filtration unit, which, in combination with

fluorescent microscopy, allows not only the real-time observation of the protein

accumulation on the membrane surface, but it also provides a possibility to transfer

the membrane-based filtration from the macro to the microscale. Then, Chapter 4

discusses the membrane fouling induced by a fluorescently labelled small size
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protein at the different hydrodynamic conditions and applied transmembrane

pressures.

The second problem, which hinders the further efficient development of the double

layer membrane concept for the blood purification is the absence of a tool to

optimize the membrane design and the process conditions. Hence, Chapter 5 of

present thesis is dealing with the development and validation of a mathematical

model, which accounts for the presence of three solute removal mechanisms:

diffusion, convection, and adsorption. This model allows to predict the influence of

various parameters such as molecule diffusivity, membrane thickness, presence of

convection, content of adsorptive particles on the flux intensification across the

membrane.
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This chapter summarizes the materials and methods used in the present project.

Firstly, the list of used solutions and membranes is presented with respective

suppliers. Then, the microfluidics device development and fabrication are shown

with essential details. After this, the microfluidics device characterization

techniques as well as the filtration and image analysis protocols are

summarized.

1 Solutions

1.1 Solutes and solvents

Phosphate buffer solution (PBS) was prepared from the concentrated 10x PBS bulk

solution purchased from Fisher BioReagents, France. Ultrapure water used in the

experiments was purified from the osmotic water obtained from an ELGA PURELAB

Classic water purification system (final minimum resistivity of 18 MΩ cm).

Alpha-lactalbumin (LALBA) from bovine milk (Type III, calcium depleted), Atto

647N Protein Labeling Kit, Bovine Serum Albumin (BSA), and Bovine Serum

Albumin–fluorescein isothiocyanate conjugate (BSA-FITC) were purchased from

Sigma-Aldrich, France.

Cibanon green BF dye was purchased from CIBA Specialty Chemicals Inc, Basel,

Switzerland and was used for the leakage testing of the microfluidics devices.

1.2 Protein-conjugate preparation

The commercially available α-lactalbumin was supposed to be used for the real-time

observation of the membrane fouling. Since, the fluorescent microscopy was selected

as a detection method, the protein needed to be labeled with a fluorescent tag.

1.2.1 Labeling procedure

The protein (α-lactalbumin) labeling procedure was performed according to the

protocol, which was suggested by the supplier [1].

1. Protein was dissolved in sodium bicarbonate buffer solution to obtain the

concentration of 10 mg mL�1.
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2. The reactive dye was dissolved in 20 µL DMSO (present in the labeling kit).

In order to minimize the chance for hydrolysis before coupling to the protein,

this step was done right before the addition of the solution of native protein.

3. The protein solution was transferred to the vial containing the reactive dye.

4. The reaction mixture was incubated for 2 hours at gentle stirring.

1.2.2 Separation of protein-dye-conjugates from free dye

The gel filtration columns were used in order to achieve good separation of the

protein-dye-conjugates from excess free dye (size exclusion limit: 5 kDa). Solvent

flow in the columns was achieved by gravity only, there's no need to apply

pressure.

1. Before use, the column first was equilibrated with 10 mL water, then with

15 mL phosphate buffer.

2. The labeling mixture was added to the column and left for infiltration.

3. To start the elution, 5 mL of phosphate buffer was added.

4. The dye-protein conjugate (first band) was collected, the free dye (second

band) was trapped inside the column.

1.2.3 Determination of dye/protein (D/P ) ratio

The obtained solution of conjugate was characterized by calculations of dye to

protein ratio (D/P ) and the final protein concentration. For this, the absorbance of

the conjugates at 280 nm and 647 nm was measured at a cuvette with 1 cm

thickness and with use of Libra S12 UV Spectrophotometer (Biochrom, UK). Prior

to the measurements the conjugate was diluted (10x), so that the maximum

absorbance is in the range from 0.5 to 1.

The D/P molar ratio was calculated according to the formula provided by the

supplier of the labeling kit [1]:

D/P =
A647εprotein[

A280 − 0.05A647

]
εdye

(2.1)
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A647 – absorbance of the conjugate at 647 nm;

A280 – absorbance of the conjugate at 280 nm;

εprotein – molar extinction coefficient of protein (27 400 cm�1 M�1) at 280 nm;

εdye – molar extinction coefficient of dye (150 000 cm�1 M�1) at 647 nm;

0.05 – correction factor due to the fluorophore's absorbance at 280 nm.

The final protein concentration was calculated with use of Equation 2.2:

cprotein[mg mL�1] =
A280 − 0.05A647

εprotein
MWproteinDilutionfactor (2.2)

MWprotein – molecular weight of the protein (g mol�1).

Dilutionfactor – dilution of the labeled conjugate prior to measurement by

spectrophotometer (we used 10).

The final conjugate solution was diluted with PBS in order to achieve a concentration

of 50 mg L�1. This concentration is clinically relevant as it is very close to the

mean/median uremic concentration of β2-microglobulin [2].

2 Membranes

Two types of membranes were used. The commercially available polyethersulfone

(PES) membrane (product code: 14 650-47-D) with 50 kDa cut-off and thickness of

120 µm was purchased from Sartorius AG, France. The homemade SlipSkinTM

membrane with thickness of 75 µm and clean water permeability of

56±12 L m�2 h�1 bar�1 was fabricated by our partners in University of Twente and

the fabrication procedure was presented elsewhere [3].

3 Microfluidics device

3.1 Materials

For the fabrication of the microfluidics device the following materials were used:

dry film photoresist (WBR2100, DuPont, USA), hydrophobic agent NovecTM (3M,

USA), NOA 68 (Norland Optical Adhesive 68, Norland Products, USA),

Polydimethylsiloxane (PDMS, Sylgard R
 184 silicone elastomer, Dow Corning,

USA), HSW Fine-Ject hypodermic needles (Sigma-Aldrich, France), K2CO3 with
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purity over 99% (Fisher Scientific, France). The connective Teflon tubings with

internal diameter of 250 µm were purchased from Cluzeau Info Labo, France.

3.2 Development and fabrication: details, pitfalls, and tips.

3.2.1 Designing step

The primary step of a microfluidics device development is the creation of proper

design. In the present study, the design of the microchip was dictated by the idea of

constructing a transparent device composed of two systems (retentate and permeate)

of microchannels with membrane sandwiched in between. For this, three schemes

(Figure 2.1) were designed with use of CleWin4 software [4], which enables the

drawing of high precision (up to 1 µm).

Figure 2.1: 2D structure of the retentate (a) and the permeate (c) microchannel systems along
with membrane layer (b).

In the designs Figure 2.1 (a) and Figure 2.1 (c) one may distinguish two types of

channels: three parallel wide ones (in the center) and narrow (at the top and the

bottom). The wide channels will be further referred as “retentate windows” or

“permeate windows” depending on whether they are in the retentate or the permeate

microchannel system. Retentate and permeate layers are intended to be aligned with

each other (Figure 2.2 (B)) so that “retentate windows” and “permeate windows”

will overlap to form specific areas (“permeation windows” or simply “windows”)

where permeation through the membrane may occur (Figure 2.2 (C)). Four sets of
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crosses placed in the corners of each design are used for the alignment of the layers

of the ultimate device (Figure 2.2 (A)).

Figure 2.2: Schematic representation of the alignment of a retentate and a permeate sides.
(A – the zoom of crosses for the alignment, B – aligned permeate and retentate sides of the
chip, C – zoom of “permeation windows”).

As it can be seen from Figure 2.2 (C) and Figure 2.1, the width and the length of the

“permeate window” are slightly greater than the ones of the retentate. This is done

in order to increase the chances of good manual alignment between the permeate

and the retentate side, which would be almost impossible in case of the equality of

their dimensions. Moreover, the sets of crosses are “equipped” with small rectangles

(Figure 2.2 (A)), which serve as the limits of the alignment imperfection. In practice,

the crosses of the permeate and the retentate sides may not be perfectly overlapped,

but the edge of the cross in the retentate layer should not lay over the rectangle of the

respective cross in the permeate layer and vice-versa.

The structure of retentate side (Figure 2.1 (a)) is designed to mimic the

hydrodynamic conditions of an individual hollow-fiber membrane of the

hemodialysis module inside the “retentate window”. The parameter to evaluate

similarity in conditions is Reynolds number (Equation 2.3).

Re =
ρϑdh
µ

(2.3)

where ρ stands for the viscosity of the flowing liquid, ϑ is the mean velocity of the

flow inside the fiber, dh hydraulic diameter of the fiber (or the microchannel) and µ

is the dynamic viscosity of the fluid.
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The conventional commercially available hollow-fiber membranes for the

hemodialysis have the internal diameter of approximately 200 µm and are gathered

in the bundle of 7000-14 000 fibers to form a hemodialysis module [5]. Taking into

account that the generally accepted optimal blood flow rate (Qb) during dialysis is in

the range 200-400 mL min�1 [6] and that the blood viscosity is around 3 to 4 times

higher than that of water [7] it becomes possible to define the range of standard Re

in the individual fiber in the module. All the data and results of calculations are

presented in Table 2.1.

Table 2.1: Data used for the evaluation of Re in individual fiber in hemodialysis module.

Blood and �ber properties

dh, [m] ρ, [kg m�3] η, [Pa s]

0.0002 1060 0.003

Hemodialysis conditions [4]

Q, [mL min�1] 200 400 200 400

Q, [cm3 s�1] 3.33 6.67 3.33 6.67

Q, [m3 s�1] 3.33× 10�6 6.67× 10�6 3.33× 10�6 6.67× 10�6

Number of fibers 7000 14000

Q, [cm3 s�1fiber-1] 4.76× 10�10 9.52× 10�10 2.38× 10�10 4.76× 10�10

Re 1.1 2.1 0.5 1.1

According to the Table 2.1, the clinical hemodialysis treatment is performed at small

Re (laminar conditions). Thus, the achievement of the similar conditions in a

“retentate windows” of the microfluidic device is desired. Moreover, since it is

planned to use the flat membrane in the microchip instead of the hollow-fiber, it was

decided that the width of the filtration zone should be equal to the internal

circumference of unfolded fiber (approximately 630 µm), while its length was

restricted by the technical limitations of the chip fabrication and can be 2 cm at

most. On the other hand, due to the aforediscussed reasons, the width of the

“permeate window” is 930 µm, which allows a 150 µm deviation from the ideal

alignment of the layers. Besides, the width of the small channels adjacent to the

edge of the retentate and permeate designs is equal to 300 µm and they are used for

the placement of a “world-to-chip” connectors.

In order to place the membrane inside the microchip the special cavity of the height

approximately equal to the membrane thickness has to be introduced in the
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microfluidic device design. For this purpose the additional 2D design for the

membrane layer (Figure 2.1 (b)) was developed. Here, for the simplicity of

fabrication, the width of the small channels is 400 µm, which allows a 50 µm

deviation from the ideal alignment. The addition of the membrane layer to the

structure of the ultimate microfluidics device is presented in Figure 2.3 “Retentate

part fabrication”.

Developed designs were printed on the transparent film with use of a high resolution

printer (TecPhotoGravure, France).

3.2.2 Microfluidics device fabrication

Each microfluidics device consists of a permeate and a retentate side with a

membrane in the middle, imitating a real cross flow membrane filtration system.

The fabrication of such microchips involved several steps and use of the standard

soft lithography procedure. The resulting microchip has a multilayer structure,

where a membrane is sandwiched between two monoliths with embedded channels

prepared from the novel UV-curable adhesive NOA 68. A schematic representation

of the manufacturing process is shown in Figure 2.3.

Figure 2.3: Schematic representation of microfluidic device fabrication process.
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The fabrication starts with the lamination of the dry film photoresist at temperature of

85�C on the top of a glass slide with size of 80 x 50 mm (Figure 2.3 (A)), which was

used as a substrate. Three dry film photoresist layers of 100 µm each were laminated

one over another to obtain the final thickness of 300 µm. It is important to allow the

substrate to cool down to the room temperature after the lamination of each layer.

This approach leads to a better adhesion between the dry film material and the glass

substrate, and reduces the occurrence of detachment of the laminated layers.

The structure of the microchannel system was patterned through the high-resolution

printed mask under a continuous UV treatment for 30 s (Figure 2.3 (B)). A drop

of water may be placed on the substrate in order to achieve a good contact with

the mask. Figure 2.4 demonstrates the change of dry film appearance after the UV

exposure. It is crucially important to make sure that there are no white objects in the

UV chamber, as they reflect the light and may induce partial curing of dry film under

the mask.

Figure 2.4: The changes of the dry film photoresist under the UV exposure. (Image A –
untreated dry film photoresist, B – UV-treated with the mast of the retentate side, C – UV-
treated without the mask).

The laminated and treated substrate was subjected to a 1 min baking at 100 �C on

the hotplate to achieve better fixation between the glass and the laminate. The post-

baking cooling has to be slow in order to give enough time for the relaxation of

dry film material and to avoid cracking. For this, the substrate has to be places on

surface with poor thermal conductivity. One of the ideal choices is wrapped sheet

of paper, which, thanks to air between layers, enables moderate rate of the dry film

cooling.

In case of the fabrication of the retentate side, the cooled down system, was used as

new substrate. As so, it was subjected to the second lamination-treatment-fixation

process aiming to the formation of a hierarchical structure with a cavity for the

membrane placement. For this, one layer (100 µm) of the dry film photoresist was
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laminated on top of UV-treated substrate (Figure 2.3(C)). The UV treatment of 10 s

with use of the second mask (Figure 2.1 (B)) was then applied.

Figure 2.5: The membrane layer mask placed on top of the prepared substrate.

As it can be seen from Figure 2.5, the second mask is perfectly aligned with the

substrate and covers all the untreated parts visible on Figure 2.3 (C). Therefore, there

is no risk of undesirable exposure of the unprotected zones.

After UV exposure and backing, the cooled down single layer permeate and the

double layer retentate systems were immersed in 1%wt KCO3 at 28�C for 10 min to

remove the untreated part of the dry film photoresist. The resulting systems with

engraved channels were used as the dry film molds (Figure 2.3 (C)).

Then, a 10:1 wt mixture of polydimethylsiloxane (PDMS) prepolymer and curing

agent was used to get a replica of the mold. Prior to pouring of the prepolymer, the

mold was silanized by immersion in NovecTM for 20 min and dried overnight in order

to ensure an easier PDMS detachment. The prepolymer-agent mixture was poured

on the dry film master mold and degassed under vacuum for 45 min, and then it was

heat-cured for 4h at 80�C (Figure 2.3 (D)). After PDMS replica (Figure 2.3 (E)) is

ready, it was again slowly cooled down to the room temperature, peeled off from the

mold, and placed under vacuum for degassing before further use.

In order to ensure a good adhesion between layers on the step of the final

assembling of the device, different substrates were used for fabrication of retentate

and permeate side layers. The retentate layer was prepared on the glass slide, while

for the fabrication of the permeate layer the flat film of NOA 68 (S) was used. For

this, approximately 2 g of NOA 68 were placed between two flat degassed PDMS
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forms and cured for 3 min under the UV light. Then, the respective substrate was

used for permeate and retentate sides fabrication. At this step, liquid NOA 68 was

poured on top of the substrate, covered by the degassed PDMS replica and kept for

30 min at room temperature, so that the trapped air bubbles would be absorbed by

PDMS.

The degassed permeate system was exposed to UV light for 12 s to achieve partial

solidification of NOA 68, after which the PDMS replica could be safely peeled off

(F). The metal capillaries with external diameter of 300 µm and internal one of

150 µm were placed inside the small channels. These capillaries were obtained by

dissolving of HSW Fine-Ject hypodermic needles in laboratory grade chloroform

(Fisher Scientific, France). Since the capillaries are circular in a cross section and

the channels are squire, the remaining space has to be filled in order to achieve

leak-free system. For this the small drops of NOA 68 were added in the locations,

where the membrane, the metal capillary and NOA 68 housing would be in contact

(indicated by dashed ovals in Figure 2.6). In order to achieve a better fixation of the

capillaries inside the channels, the additional 2 s UV treatment was applied. The

resulting permeate side is presented on Figure 2.7.

Figure 2.6: Schematic representation of location, where the additional reinforcement of
metal/membrane/NOA68 connection is required.

Besides, the degassed retentate system was UV treated for 14 s. At this condition, it is

possible to achieve the state of NOA 68, which is solid enough to keep the shape and

is still sufficiently sticky to provide a fair adhesion to a membrane material.

Then, the membrane (Figure 2.3 (M)) was placed in the designed cavity in the

retentate side of the microchannel system. The metal capillaries were inserted under
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Figure 2.7: Appearance of the permeate system of microchannels with the metal capillaries.

the membrane and served as a world-to-chip connection (Figure 2.8).

Figure 2.8: Appearance of the retentate system of microchannels with the membrane inside
and placed metal capillaries.

Finally, the retentate (Figure 2.3 (R)) and permeate (Figure 2.3 (P)) sides were

brought into contact and manually aligned under the optical microscope. The

assembled chip (Figure 2.3 (H)) was finally cured by a two steps procedure:

3 minute treatment under UV light, followed by 12 h baking at 45�C.

3.2.3 Integrity testing

On the stage of a microchip development and optimization one of the crucial

parameters is the integrity of the device. To evaluate whether the microchip is

leaking the solution of the Cibanon green BF dye was manually pumped through the

retentate compartment of the device. Such testing was performed until several

consecutive chips were found to be leak-free.
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3.3 Microfluidics device characterization

In order to evaluate the internal characteristics of the microchip, the calculation of

resistances for each stream (feed, retentate and permeate) and intermediate pressure

(pressure in the retentate compartment inside the chip) are required. To obtain the

values of resistances the set of experiments with different inlet and permeate

pressures was conducted. Particularly, in different experiments the inlet pressure

was set at 400 mbar, 350 mbar or 250 mbar, while the initial permeate pressure

was selected to allow the minimal permeate flow. Then, each 10 min the permeate

pressure was reduced by 10 mbar until it ultimately reaches 0 mbar. Such approach

allowed to follow the changes in the permeate flow rate. Each reduction of permeate

pressure resulted in the increase of filtrate flux and combination of these

experimental results along with Solver function in Microsoft Excel and the least

square method, allowed us to determine the intermediate pressure (Po) and three

resistances. For this the following set of equations was used:

P0 − Pper
Qper

= Rper (2.4)
P0 − Pret
Qret

= Rret (2.5)
Pin − P0

Qin
= Rin (2.6)

where Q is fluid flow rate, the subscripts ret, per and in stand for the retentate, the

permeate and the inlet respectively.

In addition, since the developed chip has one entrance (inlet) and two outlets

(retentate and permeate), from the mass balance one may calculate the intermediate

pressure:

P0 =
RretRperPin +RretRinPper +RinRperPret

RretRper +RretRin +RperRin
(2.7)

Finally, knowing the intermediate pressure, one may calculate the transmembrane

pressure (TMP) as:

TMP = P0 − Pper (2.8)
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4 Filtration protocols

4.1 Protocol of a filtration at the macroscale (Amicon R
 cell)

The macroscale permeability of the commercial PES membrane was measured using

conventional 50 mL Amicon R
 cell. For this, membrane was initially prepressurized

at 1 bar until the stable permeate flux is reached and then tested at transmembrane

pressures of 0.25 bar, 0.5 bar, 0.75 bar bar and 1 bar, with ultrapure water. The

mass of collected permeate was recorded each 30 s.

The transfer of the native and the labeled α-lactalbumin through the commercial

PES membrane were determined using small 10 mL Amicon R
cell in order to

reduce the required volume of feed solution. For this, 9 mL of protein solution with

concentration of 50 mg L�1 were placed in the Amicon R
 cell and the pressure of

1 bar was applied. Three samples of permeate 1 mL each were separately collected

one after another, meaning that the total withdrawn volume in each experiment was

3 mL. The separate collection of sample also allowed to analyze whether the

permeate composition varies over the filtration process. The duration of each

experiment did not exceed 5 min. After the filtration, the permeate samples along

with the feed and the retentate were analyzed by Libra S12 UV Spectrophotometer

(Biochrom, UK) at the wavelength range 200 – 800 nm.

4.2 Protocol of a filtration at the microscale

4.2.1 Filtration without fluorescence

In order to evaluate the possibility to monitor the reduction of a membrane

permeability inside the microchip, the filtration of 0.5 g L�1 BSA solution in

phosphate buffer (PBS) was performed. The procedure was analogous to the one

applied for the microchip characterization. The inlet pressure was set at 400 mbar,

while the initial permeate pressure was set in the way to allow minimal permeate

flow. Then, each 10 min the permeate pressure was reduced by 10 mbar. Obtained

results were compared to the pure PBS filtration in order to quantify the membrane

fouling at the microscale.
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4.2.2 Filtration with the application of the fluorescent microscopy

The filtration experiments were followed with two systems: a Zeiss Axio

Observer.Zlm inverted microscope equipped with a HXP 120C power supply, a filter

set 38 (to be able to detect the fluorescence of used proteins: BSA-FITC and

α-lactalbumin-Atto-647N), and an automated stage. The microscope is controlled

by the Zeiss Axio Vision Software. The other used equipment was the Fluigent

MFCS-Flex pressure controller, combined with a FLOWELL flow-controller. There

are a total of 3 pressure and flow controllers. Two pressure controllers can supply a

pressure of up to 1000 mbar, while the other one goes up to 350 mbar. As for the

flow controllers, one can operate at a maximum flow of 7715 nL min�1, the other

one at maximum flow of 55 µL min�1, and the last one at a maximum flow of

1100 µL min�1. The pressure-flow system is controlled by the MAESFLO software.

The microfluidic chips are connected to the tubes of the pressure-flow controller and

placed on the microscope stage to start the experimental protocol

(Figure 2.9).

Figure 2.9: Schematic representation of the experimental set-up used combining the
fluorescent microscopy and the microchip.

Before starting with the filtration process, the membrane was compacted for 1 hour.

For this, the pure PBS was flown through the microchip at 130 µL min�1 and no

pressure was applied from the permeate side (these conditions correspond to the TMP

of 90 mbar). In addition, in case of PES membrane, this step was used to remove the

preservative (glycerol) from the pores of the membrane.



4 Filtration protocols
4.2 Protocol of a filtration at the microscale

75

C
ha

pt
er

2

The filtration process inside the microchip was performed at a single pass mode,

meaning that the feed solution after reaching the retentate reservoir was not

resupplied to the system. The control over the cross flow velocity and

transmembrane pressure was done by adjustment of the pressures at the inlet, the

retentate, and the permeate reservoirs. Due to the limitations brought by flow

controllers, only the inlet and permeate flow rates were constantly measured with

data acquisition step of 10 s, while the retentate flow rate was calculated from the

flow balance.

The fluorescence on the membrane surface at the retentate compartment of the

microchip was also followed; images of the whole channel were acquired every

5 min with the GFP or Cy5 filter (depending on protein used). Since the length of

analyzed channel is superior to the area, which can be captured by the camera, the

camera was sliding along the channel to collect the set of images.

Then, the gray value as a unit of a fluorescence intensity was measured by the ImageJ

software.

After the filtration procedure the pure PBS was again supplied to the system for at

least 15 min in order to evaluate the permeability of a fouled membrane and the

possible changes in the fluorescent signal.

The schematic protocol of the filtration procedure is summed up in

Figure 2.10.

Figure 2.10: Schematic representation of different steps involved in the microfluidics device
testing along with main data acquired on each step.

In case, the process was performed at transmembrane pressure (TMP) equal to zero,

the post-fouling flux was compared to the clean water flux through a virgin

membrane. For this a permeability reduction index (PRI) was introduced

(Equation 2.9)

PRI = 1− Jpost
J0

(2.9)
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Where Jpost and J0 stand for the post-experimental and initial permeate fluxes.

4.2.3 Characterization of permeate flow reduction profile

For the analysis of experiments, where the permeate flow reduction was constantly

monitored (TMP>0), the zones of its pattern are distinguished in the following

manner. The first zone represents the steep linear decrease of the permeate flow and

takes place in the beginning of the filtration process. The third zone is observed in

the end the of the filtration experiment and is characterized by linear decline of the

filtrate flow with the minimal slope. Consequently, the second (“transition”) zone is

located between the first and the third ones and may vary in duration and shape

depending on the experimental conditions.

5 Image analysis protocol

The images obtained from the microscope were exported as .tiff files and analyzed

using ImageJ software [8]. The fluorescence was measured in gray values, so that

the greater fluorescence is reflected by the whiter pixel, which in turn results in the

higher gray value. In order to evaluate the spatial distribution of fouling along the

membrane, the analysis of gray values was performed at different positions in the

channel: the inlet, the middle, and the outlet (Figure 2.11).

Figure 2.11: Different positions for the gray values measurements along the microchannel.

The software measures the gray value on each pixel along the vertical line (red line

in Figure 2.11), yielding an average gray value with its respective standard

deviation.

For the cases, when over the course of filtration the dark zones were formed against

the bright background (as in Figure 2.13 (A)), the modified protocol was established.

The analysis of the gray values at the inlet, the middle, and the outlet was performed

not along the line, but inside the rectangular zone, as depicted in Figure 2.12.
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Figure 2.12: Different positions for the gray values measurements along the microchannel,
when dark zones were formed.

For each rectangular image the specific threshold gray value was applied to

discriminate the bright background zones (gray value above the threshold) and the

dark regions (gray value below the threshold). As the membrane fouling progressed

during the experiment, for each individual image the intensity of background is

different. Therefore, the threshold value was individually selected so that the most

accurate separation of the bright and the dark regions would be achieved

(Figure 2.13).

Figure 2.13: Image processing for the determination of the surface coverage by dark zones
and evaluation of the fluorescent intensity of the background. (A – the original image, B –
image converted into a binary system, C – result of subtraction of image B from A).

Once the threshold value is selected, the image is converted into the binary blank

and white system, where the black parts represent the zones below the threshold and

the white once – above the threshold. Using such approach, one may determine the

percentage of the black regions. Then, the original (Figure 2.13 (A)) and the binary

(Figure 2.13 (B)) images are superimposed in order to subtract the dark zone from
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the original image. The resulting image (Figure 2.13 (C)) possesses the initial

background with white zones (subtracted part), which provides a possibility to

calculate the mean gray value of the background. However, ImageJ considers the

white zones as maximal gray value (255) for the calculation, while in practice they

should not be taken into account, and as a result, it provides an overestimated mean

gray value. Practically, the equation used by ImageJ in such case may be presented

as in Equation 2.10.

MeanGVinitial = MeanGVwsr(1− f) + 255f (2.10)

where MeanGVinitial is the mean gray value determined by ImageJ, f – fraction

of surface covered by dark zones, and MeanGVwsr – the mean gray value without

subtracted regions.

Thus, to eliminate the mean gray value of the area without subtracted parts the

Equation 2.10 may be rearranged to obtain Equation 2.11:

MeanGVwsr =
MeanGVinitial − 255f

1− f
(2.11)

Finally, since in the ImageJ software it is not possible to make calculations without

considering the white zones, it becomes impossible to identify reasonable standard

deviation. Therefore, the gray value measurement for the experiments, where dark

zones were detected, are presented without error bars.

6 SEM imaging

The microfluidics device after the fouling experiment was dissected (separation of the

glass substrate from the NOA68 part) and the part with membrane inside was dried at

40�C overnight. Dry sample was gold spattered at 20 mA for 80 s by K550X Sputter

Coater, (Quorum Technologies Ltd, UK) and analyzed using Phenom XL Scanning

Electron Microscope (Fondis Bioritech, France).

Now that the used materials and methods are summarized, let us proceed with

experimental part of the present project.
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Introduction

In this chapter, the characterization of a developed membrane-based microfluidics

device (MMD) as well as its coupling with the fluorescent microscopy are

presented.

Firstly, the hydrodynamic and the flow distribution inside the MMD are

characterized. This is done in order to understand the flow conditions at which the

filtration process occurs. Such information is valuable, because it provides a

possibility to compare the filtration throughput at the macro scale (Amicon cell) and

the micro scale (MMD). In addition, estimation of filtration conditions is important

for the interpretation of the protein filtration process outcome.

A model to determine the pressure conditions inside the retentate compartment of a

MMD is developed and used for the calculation of the transmembrane pressure. The

set of resistances was evaluated in order to estimate the membrane permeability at

the micro scale and to compare it to the macroscale one in order to check the good

working of the MMD (absence of leakage).

In the second part, the main objective is to investigate how it is possible to combine

the developed MMD with fluorescence microscopy. The influence of various

operating parameters on the fluorescent measurements was investigated.

Particularly, the position of focus, the exposure time, the noise fluorescent signal

from the bulk solution and the upper wall of the microchannel were evaluated with

respect to the potential of real-time observation of the membrane fouling.

In the third part, in order to have a first analysis of the membrane fouling by

measuring fluorescence, the microscale cross flow filtration of the protein (Bovine

Serum Albumin) solution was performed. Various hydrodynamic conditions along

with different transmembrane pressures were tested to analyze their impact on the

membrane fouling.

1 Membrane-based microfluidics device characterization and

resistance modelling

Once the membrane-based microfluidics device (MMD) was developed and

manufactured, the integrity testing was performed in order to demonstrate that the

device is leak-free and is able to withstand elevated pressures, at which the
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microchip is supposed to be used. For this the solution of dye (Cibanon green BF)

was pumped through the microchannel. Figure 3.1 demonstrates the top view of the

microchip after the leak-proof testing of channel 1 (upper part of the MMD), while

two other channels remain virgin.

Figure 3.1: Photo of MMD after filtration of solution of dye in one of the microchannels.

As it can be seen from Figure 3.1, during the testing, the solution of dye was kept

inside the designed channel without any apparent lateral spreading along the

membrane. However, such integrity of the device and stability of flow was achieved

only in case when the conditioning of the system with osmotic water was performed

before the use of solution of dye. In other words, the membrane inside the MMD

has first to be rinsed with water, so that all pores would be filled before the testing

solution is supplied. Therefore, in order to insure that the solute would flow inside

the microchannel without lateral permeation, the conditioning of the system is the

primary measure.

Since during the use of the MMD the control of experimental conditions was

realized by the remote pressure controller (the structure of the set-up is presented in

Section 4.2.2 of Chapter 2), the determination of the pressure profile inside the

MMD was required. For this, the set of pressure stepping experiments was

conducted in order to monitor the influence of the inlet, the retentate, and the

permeate pressures on the flow rates distribution inside the system. Figure 3.3 and

Figure 3.4 demonstrate the experimentally obtained flow profiles inside the retentate

and permeate compartments at constant inlet pressure of 350 mbar and varied

permeate pressure (from 0 to 140 mbar). The outlet pressure (retentate) is the

atmospheric pressure (Figure 3.2).
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Figure 3.2: Schematic representation of controlled pressures during the use of MMD. (Dash
line stands for the membrane placed inside the MMD).

It is worth-noting that the ∆P parameter on the secondary Y-axis of Figure 3.4 stands

not for transmembrane pressure (TMP), but for the difference between the inlet and

the permeate pressures. For example, the ∆P of 230 mbar means that the inlet and

permeate pressures were set at 350 mbar and 120 mbar, respectively.

Figure 3.3: Feed flow profile at constant inlet pressure of 350 mbar.

According to Figure 3.3, the feed flow rate is stable throughout the entire experiment,

while the permeate flow rate was demonstrating a step-like response to the changes

in the permeate pressure (Figure 3.4). Based on observed responsiveness one can
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Figure 3.4: Pressure stepping for the MMD at constant inlet pressure of 350 mbar.

conclude that the developed MMD coupled with the pressure and flowrate monitor

is sensitive even to the minor changes in experimental conditions. In addition to

the experiment presented in Figure 3.3 and Figure 3.4, analogous procedures were

performed at inlet pressures of 400 mbar and 250 mbar in order to have a set of

data that could help to characterize the flow distribution in the MMD. The collected

results were used to establish a model which allows to calculate the resistances of

different parts (inlet, retentate and permeate) of the MMD with use of the following

set of equations:

P0 − Pper
Qper

= Rper (3.1)
P0 − Pret
Qret

= Rret (3.2)
Pin − P0

Qin
= Rin (3.3)

where Q is fluid flow rate, the subscripts ret, per and in stand for the retentate, the

permeate and the inlet respectively.

Combined with the flow rate conservation (Qin = Qret +Qper), the solving of these

equations allows to determine the set of resistances and the pressure, P0, of the

retentate inside the MMD. The solving is realized with a least square fitting of the
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model on the whole experimental data set.

The schematic description of the system of resistances in the microfluidic device

along with its calculated values are presented on Figure 3.5.

Figure 3.5: Schematic representation of the system of resistances in the MMD with modelled
values.

According to Figure 3.5, the resistances of the inlet and the retentate (mainly due to

the tubes and connections) are in the same order of magnitude: 5.21× 1012 Pa s m�3

and 4.01× 1012 Pa s m�3, respectively. Despite the symmetrical structure of the

retentate side of the MMD small difference between obtained values for Rret and

Rin is attributed to the greater length of “inlet” tubing connecting MMD to the feed

reservoir compared to the tubes used to collect the retentate. On the other hand, the

resistance of the permeate side was found to be one order of magnitude greater than

for inlet and retentate: 56.8× 1012 Pa s m�3. This result is related to the contribution

of the membrane resistance Equation 3.4.

Rmemb =
1

LpS
(3.4)

Where Lp stands for the membrane permeability (value is presented on the next page)

and S is the filtration area inside the MMD (0.126 cm2).

Since the calculated membrane resistance is 52.9× 1012 Pa s m�3, it can be stated

that membrane provides 93% of the overall permeate resistance of the MMD.

The intermediate pressure P0 can be determined (Equation 3.5) in order to define the

theoretical transmembrane pressure (Equation 3.6) and respective permeate fluxes at
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different conditions throughout the experiment.

P0 =
RretRperPin +RretRinPper +RinRperPret

RretRper +RretRin +RperRin
(3.5)

TMP = P0 − Pper (3.6)

To evaluate the precision of the model the comparison of the experimental and the

modelled permeate fluxes is presented in Figure 3.6.

Figure 3.6: Comparison of modelled and experimental permeate flux.

According to Figure 3.6, the developed model provides rather precise theoretical

prediction of the permeate flux, since the values of the modelled transmembrane

pressures are close to the experimental ones (Figure 3.7). Thus, using the modelled

values of TMP, the comparison between the membrane water permeability in the

developed MMD and in conventional Amicon R
 cell can be performed. Based on the

macro experiment (with use of Amicon R
 cell) the membrane permeability is

562 ± 53 L m�2 h�1 bar�1, while at the microscale experiment it was determined

to be 541 ± 37 L m�2 h�1 bar�1, meaning that the membrane permeability

measured at the macro and the microscale are very close to each other.
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Figure 3.7: Permeate fluxes obtained at different TMPs calculated from the model.

From Figure 3.7 it can be seen that there is a linear correlation between the

modelled TMP and the resulting permeate flux, which is similar to the outcome of

conventional water permeability testing in Amicon R
 cell. Therefore, it can be stated

that having the model to evaluate the pressure conditions inside the MMD, it is

possible to perform membrane-based processes at the micro scale with precise

control.

2 Preliminary testing of membrane-based microfluidics device

performance during the protein filtration

Once the integrity of the MMD was demonstrated and hydrodynamic modelling was

performed, the possibility to observe the permeate flow reduction due to membrane

fouling was evaluated. For this purpose, the comparison of pure PBS permeability

with the permeate flow pattern during the filtration of protein (BSA) solution

(Figure 3.8) was performed. The BSA was chosen for this test in order to be sure to

have the protein deposition on the membrane; the protein (MW=66 kDa) is totally

retained by the membrane with molecular weight cut off 50 kDa.
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Figure 3.8: Comparison of pure PBS and BSA solution filtrations.

According to Figure 3.8, first three points on the permeate flux curve both for PBS

and BSA filtration are not on the straight line with further measurements. The

reason for such inaccuracy is that the developed model was not adjusted for every

MMD. Even despite the established fabrication process of the MMD, there are still

some parameters, which could bring a deviation from one MMD to another. For

example, the internal diameter of the metal capillaries, which were used to connect

the device to the experimental set-up, is not standard and deviates in the range of

several micrometers. Moreover, the position of each capillary is not ideally

controlled between different microdevices. It is due to this reason, there is a

possibility of slight mismatch between resistances used in the model and the ones in

every particular MMD.

The permeate flow during protein filtration (Figure 3.8) starts to deviate from the

reference curve around TMP of 60 mbar, which corresponds to the permeate flux of

20.94 L h�1 m�2. The reduced permeate flow during protein filtration may be

attributed to different mechanisms of membrane/solute interactions (concentration

polarization, pore clogging, formation of the protein deposit, gel formation etc).

However, at this point, the main conclusion from Figure 3.8 is that the developed

MMD allows to perform the membrane-based separation at the microscale and to

observe the permeate flow reduction due to the fouling.
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3 Coupling of the microfluidics device with the fluorescent

microscopy

In order to obtain detailed information about fouling on the membrane surface

throughout the experiment, the real-time observation may be employed. One of the

approaches allowing the in-situ follow-up of the membrane fouling development is a

coupling of the transparent MMD with the fluorescent microscopy. Aiming to

optimize this procedure, the impact of different microscopy-related parameters on

the experimental results has to be evaluated.

3.1 Effect of focusing on the fluorescence signal

One of parameters which may influence the result of measurement of the fluorescent

signal is the position of the focus. Figure 3.9 demonstrates the appearance of the

membrane surface (at perfect focus) with some protein adsorbed during the filtration

process, which was performed inside the MMD. The term “perfect focus” stands for

the position of the microscope objective at which the image of a membrane surface

is the most sharply defined.

Figure 3.9: The appearance of the membrane surface at perfect focus after fouling with
fluorescent BSA. (Positions 1, 2 and 3 are arbitrary selected at regions with visually different
fluorescent intensity). Magnification: x50.

In order to estimate how the deviation of the focus position is influencing the

measured fluorescent signal, the set of images at different positions along the Z-axis

(normal to the membrane surface) with a step of 50 µm was acquired, and analyzed

at three different positions (Figure 3.10) marked in Figure 3.9.

According to Figure 3.10, the fluorescent signal obtained from the zones with

different intensity is almost independent on the position of focus. In particular, the

gray value at the point 1 depending on the Z-position is varying in the range from 67

to 69. Similarly, the deviations ranges for points 2 and 3 are also rather narrow: from
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Figure 3.10: The influence of Z-position of focus on the acquired fluorescent signal. (The
focus on membrane surface is set perfectly at the sixth position).

76 to 78, and from 41 to 42, respectively. Therefore, it can be concluded that even a

significant misplacement (in the analyzed range of 250 µm) of the focus would not

lead to noticeable changes in the recorded intensity of the fluorescent signal.

3.2 Exposure time during the image acquisition

Since the intensity of the fluorescent signal is serving as a visual indicator of the

membrane fouling, the precision of its measurement is of high importance. Hence,

the duration of the collection of light (exposure time) coming from the membrane by

the camera has to be carefully adjusted. Such adaptation has to fulfil two limiting

requirements. On one hand, the selected exposure time (ET) has to allow the clear

observation of the evolution of fouling during the filtration of the fluorescent

species. In other words, the exposure time should be long enough to capture the

measurable signal coming from the surface. On the other hand, it is important to

avoid the achievement of the overexposure, the condition when collected signal is

equal to the maximal possible light intensity, which may be measured by the used

camera. The main drawback of the overexposure is that even in case of further

fouling build-up, the increasing fluorescent intensity would not be recorded.

Therefore, the exposure time should be short enough, so that the continuously
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intensifying fluorescent signal during the filtration process would not reach the

maximal measurable intensity. Several examples of how the ET influences the

fluorescent profile during the filtration of 0.1 g L PBS-based (pH=7.4) solution of

BSA-FITC are shown in Figure 3.11. All experiments were conducted at feed flow

rate of 250 µL min�1 and TMP of 180 mbar.

Figure 3.11: The schematic representation of possible gray value profiles depending on
selected exposure time.

As it could be seen from Figure 3.11, depending on the selected exposure time, the

obtained pattern of gray value evolution is different. Namely, the exposure time of

1 ms is not optimal, because with the obtained pattern it is hard to evaluate the

extent of membrane fouling since the range of the fluorescent signal variation is too

narrow. Similarly, the exposure time of 90 ms is not optimal, because the maximal

gray value (overexposure) was reached after 3000 s and, therefore, any further

increase in fluorescence cannot be monitored. On the other hand, three other

exposure times are appropriate since they allow the clear visualization of the

changes of the fluorescent signal from the beginning of the fouling build-up until the

end, without reaching the overexposure. Hence, for the selected type and

concentration of protein the exposure time has to be between 15 ms and 60

ms.
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3.3 Influence of the optical structure of the microchip

The close examination of the optical structure of the MMD in combination with the

fluorescent microscopy (Figure 3.12) would reveal that acquired fluorescent signal

may come from various sources.

Figure 3.12: The schematic depiction of microscope objective position in relation to the
MMD.

In principle, the resulting image is a sum of signals from the membrane surface,

where fouling occurs, from the solution flowing inside the microchannel, where the

labeled species are dissolved, and from the glass surface, where the adsorption is also

possible, especially dealing with the protein solutions. Therefore, the contribution of

each source has to be carefully evaluated.

3.3.1 Significance of protein adsorption on the glass surface

In order to evaluate how the protein adsorbed on the glass surface may contribute to

the intensity of fluorescent signal from the whole system, the post experimental

MMD «autopsy» was performed. It is important to point out that this test was

performed after the filtration, which was conducted with used of more concentrated

solution of BSA-FITC (1 g L− 1 vs 0.1 g L− 1) compared to other tests presented in

Section 3.

According to Figure 3.13, the images obtained from the glass surface exhibit no

significant signal at selected exposure times. In contrary, even at the exposure time

of 1 ms, the membrane surface possesses measurable fluorescence. While at the

exposure time of 30 ms the overexposure condition is achieved. Thus, it can be

postulated that the protein adsorption on the glass surface at analyzed conditions
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Figure 3.13: Comparison of fluorescence intensity of membrane and glass surfaces at
different exposure times (A – glass surface at 1 ms, B – glass surface at 30 ms, C – membrane
surface at 1 ms, D – membrane surface at 30 ms).

does not have a noticeable contribution to the overall fluorescence intensity and as a

result we can neglect this value.

3.3.2 Influence of solution flowing inside the channel

Another possible source of error in the measurement of the fluorescence intensity is

the solution of labeled species flowing inside the microchannel. Theoretically, in

addition to fluorescent light coming from the membrane surface, the camera of the

microscope may also capture some additional signal from the dissolved species. In

order to determine the extent of their influence the two-step experiment was

performed. Initially, the filtration of fluorescent BSA (0.1 g L − 1) was carried out for

60 min aiming to obtain a fouled membrane surface with significant fluorescent

signal, and then, the channel was rinsed with pure buffer solution (PBS) during 40

min to compare the gray value before and after the rinsing (Figure 3.14). In

addition, the fluorescent signal collection was performed at three different exposure

times (60 ms, 30 ms and 15 ms), which were found to be optimal in

Section 3.2.

From Figure 3.14, the substitution of BSA-FITC solution inside the retentate

compartment of the MMD with the pure PBS results in minor changes in in the gray

values. Particularly, at the exposure time of 60 ms, the switching from filtration to

rinsing results in the slight reduction of gray value from 62.6 to 60.4. While, at

30 ms and 15 ms, the effect was oppositely directed and induced an increase from

42.6 to 45.6 and from 20.9 to 21.7, respectively. Since these variations happened
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Figure 3.14: The effect of post experimental rinsing on the fluorescent signal intensity.

right after the beginning of the rinsing step and did not progress thereafter, it can be

assumed that one of the sources of these changes is simply in the replacement of

reservoirs with different solutions. Disconnection of one reservoir and its

substitution with another one is regularly associated with formation of air bubble in

the inlet tubing. As so, this air bubble passing through the MMD may induce partial

detachment of protein from the fouled membrane surface, which would lead to a

decrease of the fluorescent signal. In parallel, the air bubble may also initiate some

rearrangements of the fouling layer (displacement of protein deposits, partial

unfolding of adsorbed proteins), which may contribute to the increase of the

fluorescent signal. In order to avoid such ambiguity in the discussion of the effect of

the post-experimental rinsing, we would just conclude that the impact (if any) of the

solution inside the microchannel on the recorded fluorescence is not exceeding 5%.

Keeping in mind that all the following filtration processes are conducted at same

exposure time and concentration of the solution, we may assume that this variation

would be proportional and would not influence their comparison.

The continuous rinsing in all three cases was not inducing any reduction of

fluorescent signal. Such finding suggests that once the protein solution is flushed

away, the system, even when PBS is still flowing inside the channel, remains stable
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and the fluorescence intensity is unchanged. These observations lead us to a major

conclusion. The stability of the fluorescent signal during the rinsing may be

attributed to the formation of stable deposit layer in opposition to the concentration

polarization, which would have been removed during the protein solution washing

out.

Finally, considering the latest discussions, it can be stated that neither solution

inside the MMD nor the adsorption on the internal glass surface has a significant

influence on the precision of the acquisition of signal from the membrane surface.

Consequently, there is no need to take any measures to modify the collected images

in order to obtain the pure intensity of light coming from the membrane

surface.

4 Preliminary study. Investigation of BSA-mediated

membrane fouling

Once the MMD was coupled with the fluorescent microscopy and the process-related

parameters were optimized, the set of experimental investigations of the membrane

fouling with the fluorescent protein (BSA-FITC) with concentration of 1 g L�1 was

conducted. Both the influence of the cross-flow velocity and transmembrane pressure

(TMP) on the fouling pattern were evaluated.

4.1 Influence of cross-flow velocity on membrane fouling

4.1.1 Experiments conducted at TMP≈0 mbar

The primary experiments were conducted at the condition where no transmembrane

convection was involved. The pressure in the retentate side was counter balanced by

application of the same pressure from the permeate side in order to minimize the net

permeate flow (Figure 3.15).

From Figure 3.15, the permeate flow throughout both experiments was maintained at

the low levels of around 0.5 L h�1 m�2. It was not exactly zero, due to poor precision

of the flow meter at this range of flow rates. Nevertheless, such profiles indicate that

the TMP was negligible, meaning that the “non-convective” regime was achieved. It

should be pointed out that due to unknown reasons there was a slight reduction of
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Figure 3.15: The permeate flow profiles during the experiments with TMP≈0 at two different
cross flow velocities.

the permeate flow in case of the feed flow rate of 250 µL min�1. However, since

the baseline of “non-convective regime” is around 0.5 L h�1 m�2 and not exactly

zero, we would consider negligible the permeate reduction up to−0.5 L h�1 m�2. In

contrast, the drop of permeate flow below this range may influence the deposition of

protein as the permeate backflow may hinder its transfer from bulk solution towards

the membrane surface. However, such declines are observed only during the short

periods of time (not longer than 2 min). Hence, we may hypothesize that such short

term deviations would not induce detectable differences in the outcome of the long

process.

Therefore, it can be stated that highlighted experiments were conducted in similar

conditions of TMP≈0. In addition to the flow control, the fluorescent images were

collected every five minutes and the evolution of gray values is presented in

Figure 3.16 and Figure 3.17 for feed flow rates of 130 µL min�1 and 250 µL min�1,

respectively.

According to Figure 3.16 and Figure 3.17, in the obtained patterns it is possible to

distinguish two main zones with different rate of fluorescent signal evolution.
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Figure 3.16: Evolution of fluorescent signal from the membrane surface at cross-flow
velocity of 130 µL min−1 and TMP≈0.

Figure 3.17: Evolution of fluorescent signal from the membrane surface at cross-flow
velocity of 250 µL min−1 and TMP≈0.

The first zone spreads from the inception of the protein solution supply and during
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the next 300 seconds and is characterized by a sharp rise of the fluorescent intensity

which stands for the intense accumulation of protein chains. In principle, at this stage

the initial contact between the membrane surface and the protein solution happens.

Conventionally, this initial zone in case of TMP=0 is related to the rapid formation

of protein monolayer on the membrane surface [1-3].

Both, for the flow rates of 250 µL min�1 and 130 µL min�1, during initial 300 s

of the membrane/protein contact, the gray value increases up to 17, without apparent

differences between the inlet, the middle, and the outlet of the channel (this analysis is

discussed in Section 5 of Chapter 2). Such result suggests the uniform initial coverage

of the membrane by the protein layer. Moreover, it also suggests that the process is

not controlled by the cross flow velocity in this range of conditions. In other words, it

is not controlled by the diffusion within the boundary layer. Hence, it seems that the

process is reaction limited (heterogeneous reaction). These results are in agreement

with the work of Jones and O'Melia [4], who demonstrated that the BSA adsorption

is reaction-limited and not diffusion-limited. In addition, the Langmuir's isotherm

for reaction-controlled adsorption was proposed (Equation 3.7):

Γ(t) = Γe(1− e�k0t) (3.7)

Where Γ(t) and Γe stand for the mass of adsorbed BSA at time t and at equilibrium,

k0 (s�1) is the overall reaction rate constant.

Since in the present study we use the fluorescent microscopy to quantify the BSA

adsorption in the units of gray values (GV ) in contrast to the adsorbed mass, we

may modify the proposed Equation 3.7 to make it applicable for our case

(Equation 3.8):

GV (t) = CVe(1− e�k0t) (3.8)

Using the fluorescent signal recorded from the middle of the channel during the

process performed at 250 µL min�1 and applying Equation 3.8 along with the least

square method, the fitted parameters k0 and GVe were determined to be

7.9× 10�4 s�1 and 22.63, respectively (resulting modelled curve is presented in

Figure 3.17). The obtained result concerning the overall reaction rate constant (k0)

in our case is two orders of magnitude greater than the one determined by Jones and

O'Melia [4] that is 5.99× 10�6 s�1 for non-fluorescent BSA at pH=10 and ionic
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strength of 0.001 M . Such discrepancy is attributed to several differences in the

methodology of two experiments. Firstly, the material of used membranes is

different: we used polyethersulfone with cut off 50 kDa, while in the referenced

publication the regenerated cellulose membrane with cut off 30 kDa was tested.

Since the regenerated cellulose is a well-known material with anti-fouling

properties, it is not surprising that this membrane demonstrated lower adsorption

reaction rate. In addition, the method of adsorption quantification was not the same

in both studies. In the present project the fluorescent signal was monitored (the

signal is then relative to the accumulated protein at the membrane), while Jones and

O'Melia applied chemical desorption with sodium dodecyl sulphate. Finally, the

conditions of experiments were different: we performed the fouling process at

cross-flow (dynamic) conditions at pH=7.4, while in the referenced publication the

static conditions and pH=10 were applied. The direct measurements that we realized

in dynamic conditions (under the flow) with the fluorescence are then

complementary to the data obtained by Jones and O'Melia and, therefore, could help

to improve the knowledge on protein adsorption on membrane surface.

The second zone of gray value evolution in Figure 3.16 and Figure 3.17 embraces

the time span from end of first zone until the end of the experiment. This zone is

characterized by the lower rate of fluorescence evolution compared to the initial stage

of the process. This region may be attributed to the progression in the protein deposit

formation on the membrane surface. The slow increase of the fluorescence intensity

is clearly reflected by Figure 3.16 and Figure 3.17. In addition, one may notice that in

this zone the difference between signals recorded from the inlet, the middle and the

outlet parts of the channel becomes apparent. Particularly, within the second zone, at

feed flow rate of 250 µL min�1 the gray value grows from 17 to 24.3 at the inlet part,

to 23.1 at the middle and to 22.3 at the outlet. In parallel, in case of 130 µL min�1,

the changes of fluorescence intensity are also noticeable: from 17 to 22.6 at the inlet

and the middle, and from 17 to 21.7 at the outlet.

Such discrepancy between signals obtained at the different parts of the microchannel

may be ascribed to the pressure drop which takes place inside the MMD (concept of

the internal filtration). As so, although the net filtration rate inside the MMD

remains close to zero, the local permeation at the inlet may happen and be balanced

by the backflush occurring at the outlet part. In such case, the force which drags the

protein solution through the membrane is superior at the inlet region and leads to the

more significant fouling. In the same time, the backflushing flow at the outlet

slightly hinders the movement of protein towards the membrane surface, and



C
hapter 3

102 CHAPTER 3. CHARACTERIZATION OF MICROFLUIDICS DEVICE AND
ITS COUPLING WITH FLUORESCENT MICROSCOPY

therefore, the extent of its adsorption is notably lower. Finally, the differentiation

between fouling degree at the inlet, the middle and the outlet is more obvious at the

higher cross flow velocity. This observation is connected to the fact that according

to Bernoulli's equation (Equation 3.9) the higher flow rate leads to the more

significant local differences in the pressure drop between the inlet and the outlet of

the microchannel.

∆P =
32ρlϑ2

Redh
(3.9)

where, ρ stands for the fluid density, l – length of the microchannel, ϑ – velocity of

the fluid, Re – Reynolds number, dh – hydraulic diameter.

The Equation 3.9 implies that at greater cross flow velocity results in the higher

pressure drop along the microchannel (Table 3.1). In addition, in order to provide

more complete characterization of MMD, the residence time (volume of MMD

divided by the flow rate) of the fluid inside the retentate compartment is presented in

Table 3.1.

Table 3.1: Dependence of the calculated pressure drop and residence time inside the
microchannel on the feed flow rate.

Feed flow rate, Re Residence time, ∆ P,

µL min�1 s Pa

250 8.96 1.1 85.4

130 4.65 2.1 44.42

75 2.69 3.7 25.63

4.1.2 Experiments conducted at TMP=180 mbar

The second set of experiments aiming to evaluate the influence of the cross flow

velocity was performed with application of the transmembrane pressure of 180 mbar.

This approach allows to monitor the fouling development in real-time not only by the

observation of the fluorescent signal evolution, but also by controlling the intensity

of the permeate flow during the entire experiment. For example, Figure 3.18 presents

the changes in the permeate flow during the course of the protein filtration depending

on the cross flow velocity, while Figure 3.19 and Figure 3.20 are demonstrating the
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fouling associated increase of the fluorescence at different hydrodynamic conditions

in the retentate side.

Figure 3.18: The influence of cross flow velocity on the permeate flow reductions.

Firstly, according to Figure 3.18 one may conclude that the applied technique and

the developed MMD allows to perform continuous monitoring of permeate flow

evolution at the constant TMP conditions.

Analyzing the obtained permeate flow profiles, it can be seen that in case of higher

feed flow rate, it is possible to distinguish 3 zones, which are characterized by

different rates of the transmembrane flow reduction. As it was mentioned in the

“Materials and Methods” chapter, the zones of permeate flow decline are

distinguished in the following manner. The first zone represents the steep linear

decrease of the permeate flow and takes place in the beginning of the filtration

process. The third zone is observed in the end the of the filtration experiment and is

characterized by linear decline of the filtrate flow with the minimal slope.

Consequently, the second (“transition”) zone is located between the first and the

third ones and may vary in duration and shape depending on the experimental

conditions.

Practically, the primary contact between the membrane and the protein solution

(Figure 3.18, “250 µL min�1” case) results in the rapid (during first few minutes)
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30% drop of the membrane permeability. Such effect is observed due to the

membrane pore blockage either by the pre-existing protein aggregates [5, 6] or by

protein adsorption from the supersaturated solution close to the mouths of pores [7].

While the subsequent reduction of the membrane permeability is associated with the

“thickening” of the protein deposit on the surface either by the deposition of new

protein layers or by the formation of the “gel” layer.

As so, immediately after the initial linear permeate flow decline the flow reduction

start to occur at slower rate (second zone). During this period, which takes place

until 3700 s the permeate flow is reduced by 15%. Once this time point is reached,

it is possible to observe some perturbation of system, which is happening during

around 300 s. Such fluctuations may be related to the hypothesis that here some

rearrangements/stabilization of the fouling layer occur. Once the system is stabilized

the third zone starts to appear. It seems that this part of the filtration process has only

minor impact on the overall decline of the membrane permeability.

In contrast, even though the profile permeability at 130 µL min�1 also exhibits three

distinct zones of different fouling rates, the permeate flow reduction during the first

zone is more significant and second zone is much shorter in time. During the first

360 s, the membrane permeability undergoes a 50% reduction, which is almost twice

as high as for the reduction found for the higher cross flow velocity. This effect was

reported previously [8, 9] and is related to the different residence times of the protein

solution inside the microchannel, or more precisely to the ratio between the axial

convection and drag force which pulls the protein solution through the membrane. In

case of the slower feed flow rate this ratio becomes smaller, meaning that the protein

molecules are moving more intensively towards the membrane than in the direction of

the outlet from the microchannel. In other words, the sweeping effect, which prevents

protein from being adsorbed on the membrane surface is considerably smaller in case

of smaller cross flow velocities. This leads to the enhanced transfer of protein from

the bulk solution to the interface with the membrane and ultimately to the greater

fouling.

In principle, the concept of ratio between two convections may be applied to explain

the reason for the shortening of the second zone, which comprises the time range from

360 s up to 1000 s. During this period, the membrane permeability reduces by 10%,

which is comparable to the “transition” zone at the higher feed flow rate. Finally,

since first two zones take place rapidly, the third zone becomes the longest: from

1000 s till the end of the filtration process. The membrane permeability at this stage
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slightly reduces by approximately 5%, once again indicating its small contribution of

the overall filtrate flow decline.

Besides, the obtained results may be explained by applying the generally accepted

film theory. Mathematically, it can be represented by Equation 3.10:

Pe =
Jδ

D
= ln

cm
cb

(3.10)

where J is the permeate flux, δ is the thickness of boundary layer, D is diffusion

coefficient of the dissolved specie (protein in our case), cm and cb stand for

concentrations in the proximity of the membrane surface and in the bulk, and Pe is

Peclet number.

As it can be analyzed through Equation 3.10, the increase of permeate flux and of the

boundary layer thickness for a given compound (constant diffusion coefficient) leads

to a greater concentration (cm) and is reflected by greater Pe.

Considering the film theory, in the process conducted at 75 µL min�1 the

concentration cm and Pe are expected to be superior to the ones in “250 µL min�1”

case. In order to estimate Pe for both processes, the boundary layer thickness has

been evaluated. For this, the Leveque correlation for rectangular channel

(Equation 3.11) was applied:

Sh = 1.86(ReSc
dh
l

)0.33 (3.11)

where dh is hydraulic diameter and l is length of the microchannel.

Knowing the value of Sherwood number (Sh), one may estimate the thickness of the

boundary layer by using Equation 3.12:

δ =
dh
Sh

(3.12)

The results of Pe and δ estimations for all performed filtration experiments are

presented in Table 3.2.
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Table 3.2: Estimated values of Pe and boundary layer thickness.

Experiment Boundary layer
thickness (δ)*

Peclet number
(Pe)**

75 µL min�1 + 180 mbar 23.2 µm 11.56

250 µL min�1 + 180 mbar 15.6 µm 6.75

130 µL min�1 + 90 mbar 19.3 µm 4.19

* - for evaluation of δ the diffusion coefficient of 6.1× 10�11 m2 s�1 [10] was

used.

** - since the permeate flux (J) is changing with time, the initial permeate flux

value was used for the calculation of Pe.

As it can be seen from Table 3.2, the boundary layer thickness and Pe are greater in

75 µL min�1 case. This implies that the cm increases and, consequently, permeate

flux reduction should be more significant in this case, which is corroborated by

Figure 3.18.

Here, we have to point out that in Equation 3.10 a single average value of boundary

layer thickness was used. While, the film theory dictates that the boundary layer

thickness is not uniform along the membrane and progressively increases from the

inlet towards the outlet of the system. In the view of this concept, we may expect that

greater fouling would be observed at the outlet of the microchannel. The credibility of

this prediction may be evaluated through the analysis of fluorescent signal evolution

at different regions of MMD.

The presence of above discussed first zone can also be found in the profiles of the

fluorescence obtained during the filtration experiments (Figure 3.19 and

Figure 3.20), while the second and the third regions are hardly distinguishable in

fluorescent profiles without comparison with permeate flow profiles.

From Figure 3.19, three zones with different rates of fluorescence evolution could be

distinguished. Moreover, the location of these zones is in agreement with the ones

observed for the respective curve in Figure 3.18. Particularly, the initial drop of the

membrane permeability leads to the sharp rise of fluorescent signal up to 17. Then,

during the second period the smooth growth of fouling is reflected by the increase

of the gray values from 17 to 23.6±0.3 at all the parts of the channel. Therefore,

the comparison of changes of the fluorescence throughout the course of the filtration

process with the variation of the membrane permeability demonstrates a sufficient
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Figure 3.19: The changes on fluorescent signal from the membrane surface at the cross flow
velocity of 250 µL min−1 and TMP=180 mbar.

correlation (more details are given later), meaning that the extent of fluorescence is

a rather sensitive parameter in the evaluation of the fouling development. Finally, no

visible difference between the inlet, the middle and the outlet regions of fouling is

present on the fluorescent profile. This result suggests the uniform coverage of the

membrane surface with the foulant.

As it can be seen from Figure 3.20, the main advancement of the fouling takes place

within first 1000 s. During this time the fluorescence recorded at the inlet part rise up

to 22.1, at the middle – up to 20.1, and at the outlet – up to 19.1. As of this moment,

the subsequent increase of gray values is much slower and is in agreement with slow

permeate flux decline in Figure 3.18. Consequently, at these conditions the evolution

of the fluorescent signal is in agreement with fouling development observed by the

monitoring of the permeate flows.

In the same time, unlike the fluorescence profile recorded at higher cross flow

velocity, the one at 75 µL min�1 exhibits well-marked split between the inlet, the

middle and the outlet regions of the microchannel. The inlet part exhibited the

greatest gray value, while the outlet – the smallest. This result is counter intuitive in

the view of the film theory and still is not well understood. Probably, it is related to
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Figure 3.20: The changes on fluorescent signal from the membrane surface at the cross flow
velocity of 75 µL min−1 and TMP=180 mbar.

the hypothesis that the protein undergoes some conformational changes at the inlet

part of the microchannel and then it assumes the configuration, which is

characterized by the reduced ability to adsorb. In any case, since no clear

explanation for this result was found, the further analysis of this phenomena may be

considered as an interesting perspective.

Besides, the previously discussed concept of internal filtration, responsible for the

inequality of the fluorescent signal at the different parts of the microchannel, has to

be disregarded in this case, as the applied TMP is three orders of magnitude greater

than the pressure drop along the microchannel. This is corroborated by Figure 3.19,

where no difference in gray values is observed, while the influence of the pressure

drop has to be more apparent due to higher cross flow velocity.

4.2 Influence of transmembrane pressure on membrane fouling

One of crucial parameters determining the membrane fouling is the transmembrane

pressure. Since, the permeate flux decline in case of dialysis mode (TMP=0) cannot

be continuously monitored, the fluorescent microscopy may serve as a tool, to

follow the fouling development in the real-time. Therefore, such approach allows
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the comparison of the membrane fouling build-up during the processes with and

without the transmembrane pressure employed. Figure 3.17 and Figure 3.19 present

the fluorescence profiles recorded at the same feed flow rate and at

different TMPs.

As it can be analyzed through Figure 3.19, the fluorescent signals obtained from the

inlet, the middle and the outlet are almost identical and in the end of the filtration

process all three gray values are equal to 23.6±0.3. On the other hand, in

Figure 3.17 one may recognize some mismatch between different parts of the

microchannel. Thus, it leads to a conclusion that the presence of significant

convective flow through the membrane levels the influence of the pressure drop

along the membrane, which is apparent at close to zero TMP.

On the other hand, the comparison of total resulting fouling based on acquired

fluorescence is rather problematic. Even though, the cumulative fluorescence

(inlet+middle+outlet) at the end of experiment at no TMP is inferior to the one at the

end of experiment conducted at TMP of 180 mbar: 68.9 vs 70.8, considering the

size of error bars, it would be rather speculative to claim the greater protein

accumulation on the membrane surface at the former condition.

Figure 3.21: Evolution of fluorescent signal from the membrane surface at cross-flow
velocity of 130 µL min−1 and TMP=90 mbar.
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Similar conclusions can be drawn from the comparison of Figure 3.16 and

Figure 3.21. Firstly, the fluorescence of the inlet and the middle parts of the

microchannel recorded during the process with TMP=0 is visibly different from the

outlet one. It means that at these conditions the pressure drop along the channel has

an influence on the distribution of the fouling layer. In contrary, the fluorescence

profile in case of the filtration experiment (Figure 3.21) possesses more

homogeneous appearance. Here, the gray values of the inlet, the middle and the

outlet are overlapped and exhibit the same signal at the end of the process. This

observation is again related to the fact that the applied TMP is much greater than the

pressure drop along the microchannel, meaning that the pressure drop does not have

a noticeable effect on the fouling distribution. In addition, alike the processes

performed at 250 µL min�1, the influence of TMP on the total fouling is also

noticeable, but not leading to a clear conclusion on the extent of fouling.

Moreover, for the experiment conducted at 130 µL min�1 and TMP=90 mbar, the

evolution of the fluorescent signal (average value of the inlet, the middle and the

outlet ones) may be plotted as a function of the permeate flow reduction

(Figure 3.22).

Figure 3.22: Correlation between the permeate flux reduction and the evolution of the
fluorescence (average value of the inlet, the middle and the outlet) at the feed flow of 130

µL min−1 and TMP=90 mbar.
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As it can be seen from Figure 3.22 the initial reduction of the permeate flow until

around 50% of the starting value is a linear function of the gray value with the

negative slope. This implies that at this region the fluorescent signal is a sensitive

indicator of the extent of the permeate flux decline. However, once the gray value of

around 21 is reached, there is no longer any clear correlation between gray value and

flux value.

Another type of correlation between gray value and flux value may be observed in

Figure 3.23 reporting the results obtained at 75 µL min�1 and

TMP=180 mbar.

Figure 3.23: Correlation between the permeate flux reduction and the evolution of
the average fluorescence along the microchannel at the feed flow of 75 µL min−1 and
TMP=180 mbar.

According to Figure 3.23, there is no linear correlation between the permeate flux

reduction and the intensity of the fluorescent signal. In the same time, Figure 3.24

demonstrates the dependence of gray values on the filtrate flux reduction during the

filtration performed at the feed flow rate of 250 µL min�1 and TMP of

180 mbar.

All correlations presented in Figure 3.22, Figure 3.23 and Figure 3.24 are surprising

as in all three cases almost stable permeate flux is accompanied by the increase of

gray values. Indeed, we could a-priori think that the formation or the accumulation

of gel layer at the surface could lead to a decrease in flux with a quasi-stable signal
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Figure 3.24: Correlation between the permeate flux reduction and the evolution of the
average fluorescence along the microchannel at the feed flow rate of 250 µL min−1 and
TMP=180 mbar.

of fluorescence (the fluorescence signal being relative to the surface

concentration).

In contrast, our results suggest that the accumulation of new protein chains (increase

of fluorescence) does not have an influence on the permeate flux, which is rather

hard to imagine except if the accumulation leads to a protein restructuration

(aggregates formation as it will be discussed in the next chapter). These aggregates

are highly concentrated that would lead to an increase of the fluorescence signal

with a negligible impact on the permeate flux, as aggregates of large sizes should not

lead to a significant hydraulic resistance).

Trying to make a comparative analysis of obtained correlations, it can be stated that

the correlation observed in Figure 3.24 seems to be intermediate between ones

detected in Figure 3.22 and Figure 3.23. Probably, this finding may be related to the

hydrodynamic conditions inside the retentate compartment. At the early stages of

the filtration process the transmembrane convection is actively dragging the protein

chains towards the surface, which leads to the deposit thickening. This leads to the

reduction of the membrane permeability and is reflected by the augmentation of the

gray values. The continuous increase of the thickness of the deposit layer leads to
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the reduction of a slit, available for the passage of the protein solution towards the

outlet of the channel. As so, probably at some point system reaches the condition

when the sweeping effect of axial convection counter balances the transmembrane

drag force. From here on, the deposit could stop to grow, which may result in rather

stable membrane permeability. In parallel, some rearrangements of the deposit layer,

which have no effect on the filtrate flux, may still go on, which is reflected by the

variations in the gray values.

Aiming to summarize all the end data for the experiments where both the fluorescence

and the permeate flow reduction were followed in time, we plotted Figure 3.25, which

indicates the gray values at the end of the filtration process and the respective total

reduction of the permeate flow rate.

Figure 3.25: Comparison between the local fluorescent signals and the permeate flux
reduction at different experimental conditions.

5 Conclusion

The main objectives of this chapter were to characterize the conditions inside the

MMD, to optimize the coupling of the developed MMD with fluorescent microscopy

and to use the obtained system for the preliminary testing of protein filtration at the

microscale. Summarizing all the discussed results, the following conclusions can be

drawn.
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Developed MMD was characterized by building a model, which allows the

determination of hydrodynamic and pressure conditions inside the MMD depending

on applied pressures in the inlet, the retentate and the permeate. Application of this

model allowed to demonstrate that the membrane permeability inside the MMD is

very close to the one measured in conventional Amicon cell. This implies that the

novel MMD provides a possibility to perform membrane-based filtration at the

micro scale.

Coupling of MMD with fluorescent microscopy was successfully achieved, and the

influence of various microscopy-related parameters on the image acquisition was

evaluated. Therefore, other the course of filtration of fluorescently labelled species

not only the permeate flux decline, but also the evolution of fluorescent signal may

be continuously monitored.

The adsorption of BSA-FITC during the no convection process was found to be

reaction-limited. It means that the diffusion towards the surface is significantly

faster than the reaction on the surface. Therefore, the intensification of cross flow

velocity, which leads to a reduction of boundary layer thickness has minor effect on

the cumulative fluorescent signal from the inlet, the middle and the outlet of the

microchannel. However, at higher tangential flow, the difference between

fluorescence recorded at different parts of the membrane becomes more pronounced.

This effect is probably related to the concept of local permeation induced by the

pressure drop along the microchannel.

During the process where the transmembrane pressure was applied (filtration) the

evolution of gray value seems to correlate with the permeate flux decline at the

beginning of the experiment, where the primary contact between membrane and

protein occurs. The analysis of correlation between the fluorescent signal and the

permeate flux decline demonstrated that filtrate flux is not decreasing any more once

the minimal value is reached, while the gray value continue to increase a bit.

Possibly, this is related to some rearrangements of protein deposit that do not have

influence on the transmembrane flux.

During filtration process, the most accumulation favoring conditions are the ones

with highest Pe number. The increase in the fluorescent signal is more rapid in this

case, which indicates the effect of the Pe on the accumulation rate. Moreover, in

these conditions, some differences are noticed between the inlet and the outlet.

However, surprisingly, the gray values are greater at the inlet and lower at the outlet

while the opposite prediction could be made within the frame of film theory,
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considering the boundary layer development along the membrane. Probably, due to

the concentration at the inlet part of the microchannel the configuration of protein is

changed and new configuration possesses reduced ability to adsorb on the latter part

of the membrane.

Finally, the speculations about the phenomena governing the variations between the

rates of the membrane permeability reduction and gray value increase are based

only on some assumptions about protein configuration in solution and

rearrangements in the fouling layer, which still has to be verified. In contrary, it also

important to notice that nowhere in the discussion the possibility of the fluorescence

quenching was addressed. Moreover, we did not consider the fact that most

probably, the fluorescent signal indicates the state only of the top layer (or several

top layers) of the protein deposit without information on the depth of the

accumulated layer. Nevertheless, in order to address these points and verify their

importance, the additional experimental studies are required and may be considered

as an interesting perspective in the protein filtration at the microscale.
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Introduction

In this chapter, the membrane fouling during the filtration of the fluorescently labeled

α-lactalbumin is investigated.

Firstly, the membrane fouling at no convection conditions (no transmembrane

pressure) is analyzed. Since at such conditions, the continuous monitoring of the

membrane permeability reduction based on the flow measurements is not possible,

the intensity of the fluorescent signal is used as a unit of the membrane fouling.

Besides, the post-experimental membrane permeability is measured in order to find

a correlation with the data on fluorescence.

In the second part, different transmembrane pressures and hydrodynamic conditions

are applied to investigate the membrane fouling over the course of filtration. The

spatial distribution of fouling is evaluated. The reduction of the membrane

permeability is studied at the microscale and is accompanied by the real-time

fluorescent image acquisition.

In the third part, the commercially available polyethersulfone membrane is compared

with a novel home-made SlipSkinTM membrane. Particularly, the influence of the

cross flow velocity in the retentate side of the membrane-based microfluidics device

(MMD) on the fouling pattern is studied for both membrane materials.

1 Fluorescent labeling of α-lactalbumin

The main objective of the present work is to analyze the protein/membrane

interaction of medium sized proteins at pH≈7.4 (pH of blood [1]) during the

membrane filtration. Since the key representative and the main marker of such

molecules (β2-microglobulin) is extremely expensive, α-lactalbumin was selected to

perform the preliminary experiments as a model molecule. This choice was dictated

by their similarity in size and isoelectric point (Table 4.1) and availability of

α-lactalbumin.

Table 4.1: Properties of α-lactalbumin and β2-microglobulin [2, 3].

Protein Molecular weight, [kDa] Isoelectric point (pI)

α-lactalbumin 14.2 4.5

β2-microglobulin 11.8 5.7
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According to Table 4.1, the molecular weight of α-lactalbumin is slightly greater

than the one of β2-microglobulin, while it is below the upper limit (60 kDa) of the

molecular weight range of middle sized uremic toxins [4]. In parallel, the isoelectric

point of α-lactalbumin is below 7.4, which implies that at chosen conditions the

charge of both proteins is negative. Thus, the electrostatic interactions between each

of these proteins and the membrane material are expected to be similar.

Aiming to follow the membrane fouling during the filtration of protein solution with

use of the fluorescent microscopy, the labeling of α-lactalbumin with the fluorescent

tag Atto647N was performed according to the protocol presented in Chapter 2. The

common outcome of the labeling procedure in terms of D/P (Dye to Protein) ratio is

1.42±0.36, which suggests that in average each molecule of protein bears

approximately 1.5 fluorescent tags.

Comparison of labeled and native protein was done by their separate filtration on an

Amicon cell and PES membrane. Table 4.2 summarizes the data on UV absorption

at 280 nm of the feed, the retentate and the permeate of native and fluorescently

labeled α-lactalbumin. Three samples of permeate 1 mL each were collected one

after another during the same filtration. Hence, the total filtrate volume was equal to

3 mL.

Table 4.2: Comparison of feed, retentate and permeate absorbance of the labeled and native
α-lactalbumin.

Feed Retentate Permeate
1

Permeate
2

Permeate
3

Rejection
coef�cient

Labeled 0.138 0.146 0.03 0.04 0.038 71%

Native 0.083 0.088 0.058 0.068 0.068 23%

According to Table 4.2, it can be seen that the labeled α-lactalbumin is less

transmitted through the selected membrane than the native one. Logically, such

observation may be ascribed to the presence of the fluorescent tag or to the labeling

procedure, which both may induce some changes of the protein properties (changes

of configuration, increase in size etc.) or the nature of its interaction with the

membrane material. Moreover, the analysis of UV absorbances of the feed (solution

of labeled protein), the retentate and the permeates on the broad wavelength

(200 nm – 800 nm) was performed (Figure 4.1).
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Figure 4.1: UV absorbance profiles for feed, retentate and permeate of the solution of labeled
α-lactalbumin.

Figure 4.1 reveals that only the non-labeled residues may be detected in the

permeate. All five profiles exhibit the absorbance band at 280 nm which stands for

protein itself. However, the samples of the feed and the retentate possess the

absorption maximum at 647 nm, which is a characteristic band for the fluorescent

tag (Atto-647N). Therefore, the presence of the label precludes the protein from

permeation through the membrane and/or probably leads to the facilitated

adsorption on the membrane surface. In fact, the discovery of possible changes in

protein properties (molecular size and relative molecular charge) was done by

Bingaman et al. [5], who performed the study with use of different proteins and

fluorescent tags. Hence, our results are not surprising.

Nevertheless, taking into account that for the further studies of the membrane fouling,

low concentration of α-lactalbumin (50 mg L�1) is required, the selected tag seems

to be appropriate due to the fact that it expresses one of the most intense fluorescent

signals compared to other labels with red fluorescence [6].
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2 Investigation of α-lactalbumin-mediated membrane fouling

at TMP=0

The starting set of experiments with fluorescent α-lactalbumin was conducted in the

absence of the convective flow through the membrane, meaning that there was no

drag force pulling the solute towards the membrane surface. Over the course of

filtration the homogeneous coverage (without apparent aggregates) was recorded

(Figure 4.2).

Figure 4.2: The appearance of the membrane surface with adsorbed protein after the non-
convection process at feed flow rate of 130 µL min−1.

Figure 4.3, Figure 4.4 and Figure 4.5 depict the increase of the fluorescent signal

from the different parts of the microchannel at different hydrodynamic conditions,

while Figure 4.6 provides a comparison between the fluorescent signals at the inlet

part of the MMD depending on the cross flow velocity.

Figure 4.3: Evolution of gray value at the inlet, the middle, and the outlet of the microchannel
at feed flow rate of 130 µL min−1.
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Figure 4.4: Evolution of gray value at the inlet, the middle, and the outlet of the microchannel
at feed flow rate of 75 µL min−1.

Figure 4.5: Evolution of gray value at the inlet, the middle, and the outlet of the microchannel
at feed flow rate of 35 µL min−1.
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Figure 4.6: Evolution of gray value at the inlet of the microchannel at different cross flow
velocities and TMP≈0.

As it can be concluded from figures above, the flow rate of 130 µL min�1 results in

the greatest fouling (the most intense fluorescence), while at two other cross flow

velocities the gray values are similar. The final gray values at the inlet, the middle

and the outlet of the microchannel obtained in the experiment with flow rate of

130 µL min�1 are almost twice greater than in 75 µL min�1 and 35 µL min�1 cases.

For example, the gray values at the inlet of the MMD are 54.8±8.9, 27.6±2.5, and

23.4±4.8 respectively. The tendency of greater protein accumulation at higher feed

flow rate may be related to the sensitivity of α-lactalbumin to the hydrodynamic

conditions. As it was reported in some studies, at greater velocity (higher shear

stress) the protein has higher propensity to unfold [7, 8]. Such change of the

conformation leads to the facilitated interaction between hydrophobic parts of the

protein molecule adsorbed on the membrane surface with the one flowing in the

solution. As a result, the greater degree of protein unfolding the greater fouling is

observed, which is reflected in Figure 4.6. Moreover, based on the obtained results,

this effect is more noticeable at feed flow rate above 75 µL min�1. On the other

hand, the obtained results could be explained under the assumption that the

adsorption process is diffusion-limited. If this assumption is correct, the results in

Figure 4.6 could be analyzed from the film theory viewpoint. As the fouling
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processes were performed at no convection regime, according to the film theory the

thinner boundary (shorter diffusion path) leads to a greater extent of adsorption. In

order to estimate the boundary layer thickness during the conducted experiments,

the Leveque correlation for rectangular channel (Equation 4.1) was used.

Sh = 1.86(ReSc
dh
l

)0.33 (4.1)

After calculating the value of Sherwood number (Sh), it is possible to estimate the

thickness of the boundary layer by applying Equation 4.2:

δ =
dh
Sh

(4.2)

The estimation of boundary layer thickness using the α-lactalbumin diffusion

coefficient of 1.07× 10�10 m2 s�1 reveals that the decrease of feed flow rate from

130 µL min�1 to 35 µL min�1 results in δ increase from 23.2 µm, to 27.9 µm (at

75 µL min�1) and 35.8 µm. Hence, the main trend in obtained results is

corroborated by the estimation of boundary layer thickness within the frame of film

theory.

Besides, the cross flow velocity has an influence on the spatial distribution of fouling

along the membrane. At greater flow rates (Figure 4.3 and Figure 4.4) one can

clearly see the discrepancy between the gray values obtained at the inlet, the middle,

and the outlet of the microchannel at every time point. This observation is ascribed

to the presence of pressure drop (calculated value are presented in Table 4.3) along

the membrane and the concept of internal filtration. The latter concept dictates that

even if global transmembrane flux is close to zero, due to the pressure drop, the local

pressure at the inlet of the channel is greater than the one at the outlet. Therefore,

the local filtration occurs at the beginning of the channel and the backfiltration

(permeation from the permeate side back to the retentate compartment) can possibly

take place close to the end part of the membrane. Ultimately, such distribution of

flows results in the gradual reduction of local gray value from the inlet towards the

outlet, which is observed in Figure 4.3 and Figure 4.4. In parallel, no differences in

gray values along the membrane are detected at the feed flow rate of 35 µL min�1.

Such result suggests that below certain cross flow velocity, the pressure drop along

the channel becomes too small to have a noticeable impact on the local

transmembrane pressure conditions inside the MMD. Another important finding on

fluorescent signal evolution is that at all three analyzed flow rates, the plateau of
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gray values is not reached even after 9000 s of experiment. This implies that it takes

more time than the selected duration of the process to achieve a maximal quantity of

foulant on the membrane surface. Such result is slightly different compared to the

one obtained for BSA-FITC at no convection conditions, where the plateau was

reached within the duration of the experiment (see Chapter 3). This difference might

be attributed to the significant difference in protein concentration: 1 g L�1 in case of

BSA-FITC and only 50 mg L�1 in case of α-lactalbumin. Besides, we may consider

the structural properties of these two proteins. According to Greene et al. [9]

α-lactalbumin can easily assume an alternative conformation and is stable at

partially denatured states. One the other hand, BSA is considered a relatively rigid

or “hard” protein [10]. Based on these quotes, we may assume that BSA is less

susceptible to conformational changes. Thus, it can be hypothesized that during the

fouling development α-lactalbumin undergoes some conformational changes. These

rearrangements may contribute to greater accumulation of protein molecules on the

membrane surface, which is reflected by the continuous augmentation of gray values

throughout the entire duration of the experiment.

In order to evaluate the influence of protein deposition at no convection conditions

on the membrane permeability, the permeability reduction index (PRI) is presented

in Table 4.3. The equation for calculation of PRI was given in Chapter 2

(Section 4.2.2).

Table 4.3: Permeability reduction index depending on the hydrodynamic conditions.

Feed �ow rate Re ∆P, [Pa] PRI

130 µL min�1 4.65 44.4 0.36

75 µL min�1 2.69 25.6 0.37

35 µL min�1 1.26 12.0 0.33

Based on data shown in Table 4.3 the PRI is almost identical for higher Re numbers

and is slightly smaller in 35 µL min�1 case. The lower permeability reduction in

the latter case is again related to the reduced impact of hydrodynamic conditions,

which was discussed previously. Moreover, according to Table 4.3, the lower cross

flow velocity leads to smaller pressure drop along the microchannel, which, in turn,

results in lower local filtrate flow. As so, the transmembrane drag force becomes

negligible in such case.



3 Influence of feed flow rate on α-lactalbumin-mediated membrane
fouling at TMP=90 mbar

127

C
ha

pt
er

4

Besides, the greater membrane permeability reduction in 75 µL min�1 case

compared to 35 µL min�1 one is in the agreement with measurements of the

fluorescent signals: the greater gray value is, the more significant PRI is. In

contrary, the comparison of PRIs and gray values obtained for 75 µL min�1 and

130 µL min�1 demonstrates the absence of correlation. The reasons for this

outcome are not yet well understood.

3 Influence of feed flow rate on α-lactalbumin-mediated

membrane fouling at TMP=90 mbar

The second set of experiments aiming to evaluate the influence of the cross flow

velocity on the membrane fouling was performed with application of the

transmembrane pressure of 90 mbar (Figure 4.7).

Figure 4.7: Permeate flow reduction profiles at different feed flow rates and TMP=90 mbar.

As it can be analyzed through Figure 4.7, at different feed flow rates the entire

permeate flow reduction profile can be separated on three zones, which are

characterized by unequal rates of filtrate flux decline. As in the previous chapter, the
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zones of permeate flow decline are distinguishes in the following manner. The first

zone represents the steep linear decrease of the permeate flow and takes place in the

beginning of the filtration process. The third zone is observed in the end the of the

filtration experiment and is characterized by linear decline of the filtrate flow with

the minimal slope. Consequently, the second (“transition”) zone is located between

the first and the third ones and may vary in duration and shape depending on the

experimental conditions. Presence of this “transition” zone between fast and slow

fouling was reported by Pradanos et al. [11].

The permeability reduction profiles within the initial zone are more distinct than at

the further stages of filtration. This region represents the primary contact between the

protein solution and the membrane surface. The fastest linear permeability reduction

of around 40% was achieved at 130 µL min�1 during first 600 s. The primary loss of

the productivity is similar at 75 µL min�1 and at 35 µL min�1 cases. In the former

case, the steep initial permeability drop of 40% is reached after 1000 s, while during

the latter process the 35% decrease of filtrate flux is achieved after 600 s.

The second zone of the obtained profiles is located differently in time and is

characterized by an intermediate rate of permeability reduction. From Figure 4.7 it

can be seen that the greater feed flow rate results in more prolonged “transition”

zone. Even though, the processes happening within this period of time are not well

described, theoretically the prolonged duration of such transition may be ascribed to

the presence of more significant sweeping effect. It prevents the system from

reaching the state, which is characteristic for the commencement of the third zone

with slowest fouling. Finally, the total permeate flow reduction index in the end of

the process is almost the same: 0.62, 0.59 and 0.58 (in the order from the highest

feed flow rate to the lowest). This means that after the filtration process the

membrane exhibits the permeability only of 40% compared to the virgin

state.

Along with constant measurements of the permeate flow rate, the fluorescent images

of the whole membrane filtration area were also recorded. The most unexpected

outcome was the observation that over the course of filtration some dark structures

were formed on the membrane surface (Figure 4.8 and Figure 4.9). Such structures

were not observed neither during BSA filtration (at all analyzed TMPs) nor during

the non-convection experiments with α-lactalbumin.
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Figure 4.8: Fluorescent image of a part of microchannel during the experiment conducted at
130 µL min−1 and TMP=90 mbar. (The brightness of image was adjusted to obtain a better
contrast between the dark zones and the bright background). Magnification: x50.

Figure 4.9: Fluorescent image of a part of microchannel during the experiment conducted at
130 µL min−1 and TMP=90 mbar. Magnification: x500.

As it can be seen from Figure 4.8 and Figure 4.9, during the course of filtration a

lot of dark structures are formed. We believe that this observation may be explained

by the phenomena called aggregation-caused fluorescence quenching (ACQ). Such

phenomenon was reported in some publications [12, 13] and is explained by a specific

intermolecular interaction of the fluorescent molecules. Briefly, in tightly packed

state the fluorescent tags of the neighboring molecules may have π–π interactions,

which in turn lead to the annihilation of their light emission [14]. Assuming that

the formation of discussed dark zones is governed by ACQ, we would further denote

these structures as aggregates.

The close examination of Figure 4.8 reveals that the formed aggregates are different

in shape, size and location. Besides, in Figure 4.9 some small dark grains between

large clusters can be seen and they may also be considered as aggregates which did
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not grow to larger sizes. However, it is worth noting that the formed structures are

not visible in scanning electron microscopy (SEM) image (Figure 4.10), which are

acquired from post experimentally “dissected” MMD. Therefore, it may be postulated

that the aggregates are indeed detectable only when the surrounding molecules emit

the fluorescent light.

Figure 4.10: SEM image of dissected microchip after the filtration of fluorescent α-
lactalbumin.

Aiming to perform the quantitative analysis of such aggregates formation depending

on the transmembrane pressure applied and the hydrodynamic conditions inside the

microchannel the specific image analysis was performed (Section 5 in Chapter 2).

The application of this method allows to discriminate dark and bright zones by using

the threshold gray value and then to analyze them separately. Therefore, in our

study, for each experiment we determined the percentage of membrane surface

covered with aggregates (percentage of surface with gray value below the threshold)

and the evolution of fluorescent signal from the non-ACQ zones (gray value above

the threshold). In order to evaluate the precision of the developed method, the error

bars are shown in Figure 4.13 and Figure 4.14. For this, the estimation of the surface

coverage was done at threshold gray values n+1 and n-1, where n stands for the

initially selected threshold.

Figure 4.11 demonstrates the increase of the surface coverage with the formed

aggregates at the inlet, the middle, and the outlet parts of the microchannel during

the filtration process conducted at 130 µL min�1 and 90 mbar. To avoid

cumbersome images, only the ones acquired at 25 min (upper left image), 50 min,
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75 min, 100 min, 125 min, and 150 min (bottom right) are presented.

Inlet

Middle

Outlet

Figure 4.11: Qualitative evolution of ACQ zones during the experiment performed at 130

µL min−1 and 90 mbar (upper set of images represents the inlet of the microchannel, middle
set – middle, and the bottom – outlet).

As it can be concluded from Figure 4.11, at analyzed experimental conditions the

ultimate surface coverage is rather significant (numerical estimation and comparison

are provided further). The upper left image of each set represents the state of the

membrane surface after 25 min of protein filtration. At this point, in none of the

parts of microchannel the aggregates are visible. However, the permeate flow

reduction profile (Figure 4.7) indicates that the most severe fouling occurs within



C
hapter 4

132 CHAPTER 4. MEMBRANE FOULING INDUCED BY THE MIDDLE
MOLECULE FILTRATION

this first part of filtration process. As so, no direct correlation between the permeate

flux decline and the formation of aggregates is observed in the beginning of

filtration process. Hence, the conclusion that the initial membrane permeability

decline is associated with the pore blockage and/or the formation of thin deposit

layer of the protein molecules can be drawn. On the other hand, it should also be

mentioned that the fluorescent images were acquired at low magnification (x50), and

probably, at this point formed aggregates are not large enough to be visible.

Nevertheless, the upper middle images (after 50 min of filtration) show the presence

of aggregates at all three analyzed regions of the MMD. The majority of detected

ACQ zones are located close to the edge of the channel. This finding is most

probably related to the flow conditions along the width of the channel: the maximal

flow velocity is in the center, while the minimal one is the proximity of the channel's

wall. As so, the residence time of the solution close to the edge is greater than in the

center, while the transmembrane drag force is practically the same. Besides,

according to Kim et al. [15] one of the factors responsible for the aggregation of

proteins is supersaturation of solution close to the membrane pores. Hence, the part

of solution flowing near the wall of the channel has longer residence time inside the

microchannel and therefore has more chances to become supersaturated. As a result,

the first aggregates are formed in such conditions. From here on, the surface

coverage is steadily increasing at the inlet, the middle, and the outlet of the channel.

Interestingly, one can see that the formation of large aggregate starts from the small

nuclei which then grows in size. This real-time observation corroborates the fouling

mechanism proposed previously [15, 16].

Aiming to analyze the correlation between the permeate flux reduction and the

surface coverage with aggregates during the entire filtration process, Figure 4.12

was plotted.

As it may be concluded from Figure 4.12, the initial drop in membrane permeability

is not associated with the formation of visible aggregates. The first ACQ zones are

detected after membrane losses 45% of its initial productivity. However, from here

on, almost linear dependence with negative slope is observed until the end of the

experiment. The same trend was also observed for other filtration processes

conducted in this study at another conditions. Besides, we have to point out again

that the absence of correlation at the early stages may be related to the small

magnification used during image acquisition. As so, an additional study with use of

greater magnification can be considered as a perspective for the further investigation

of the protein deposit formation during filtration at the microscale.
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Figure 4.12: Correlation between the permeate flow reduction and the surface coverage with
ACQ zones at 130 µL min−1 and 90 mbar.

The quantitative representation of changes in surface coverage with ACQ zones is

presented in Figure 4.13, while Figure 4.14 demonstrates the evolution of mean gray

value of non ACQ region.

According to Figure 4.13, the surface coverage with ACQ zones become apparent

only after the initial delay, and is followed by continuous almost linear increase. The

only exception from this trend is noticeable at time point of 5400 s, where the instant

reduction of surface coverage is observed. Such occurrence is related to the presence

of air bubble in the solution, captured on one of images (Figure 4.15 (C)). The shear

stress created on the air/membrane interface was large enough to detach some part

of deposits from all analyzed zones of the microchannel. After this momentary trend

disruption, the subsequent aggregate expansion led to the ultimate surface coverage

of 0.36±0.02. This means that during the experiment performed at feed flow rate of

130 µL min�1 and TMP of 90 mbar, a bit more than one third of the surface of the

membrane at the inlet, the middle, and the outlet of the microchannel is covered by

the formed aggregates.
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Figure 4.13: Changes in the percentage of membrane surface covered with aggregates at 130

µL min−1 and 90 mbar.

Figure 4.14: Evolution of mean gray value of non-ACQ zone during the experiment
conducted at 130 µL min−1 and 90 mbar.
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Besides, the size of error bars in Figure 4.13 and Figure 4.14 suggests that the

developed method of image analysis is rather precise and allows the comparison of

surface coverages obtained over different filtration processes with an adequate

accuracy. On the other hand, the analysis is not automated and requires the

processing of each image separately, therefore, the error bars are not calculated for

other experiments.

Figure 4.15: The state of membrane surface before (image A, time point 5100 s) and
after (image B, time point 5400 s) the passage of air bubble captured in image C.
Magnification: x50.

The ACQ zones expansion is accompanied by the increase of mean gray value of

non-quenched region. The profile presented in Figure 4.14 is less linear and almost

reaches a plateau at the late stages of the filtration experiment. This implies that

application of transmembrane pressure of 90 mbar is sufficient to achieve almost

steady state of fouling layer only after 9000 s of the filtration process. On the other

hand, one can see that application of TMP erases the difference between the

fluorescent signals at the inlet, the middle and the outlet of the microchannel. This

indicates that here the pressure drop along the membrane is not influencing the

spatial distribution of protein accumulation.

The comparison of Figure 4.14 and Figure 4.3 suggests that the fouling is lower

during the process where transmembrane pressure is applied. Such conclusion

would be misleading in the view of membrane permeability reductions obtained in

the end of these processes. The mismatch may be attributed to the compressibility of

the protein deposit. According to Ho and Zydney [16], the protein deposit on the

membrane surface is more compressed at higher TMP. Therefore, tighter packing of

protein molecules may also result in partial quenching of the fluorescent signal

coming even from zones without visible aggregates. Besides, another explanation

can be found in the formation of the aggregates. Since, they are not observed during

“non-convective” regime, we may assume that in this case it is possible to quantify

all the adsorbed protein. In parallel, in Figure 4.14 the gray values represent only the

non-ACQ zones, while regions covered with aggregates may also have a

considerable contribution to the overall decline of the membrane permeability.



C
hapter 4

136 CHAPTER 4. MEMBRANE FOULING INDUCED BY THE MIDDLE
MOLECULE FILTRATION

Consequently, the comparison of gray values obtained at TMP of 90 mbar and

“non-convective” regime is not straightforward in this case, and therefore the further

results obtained at “non-convective” cases and with application of TMP are not

compared with each other.

The evolution of surface coverages with ACQ zones obtained at different feed flow

rates and transmembrane pressure of 90 mbar are presented in Figure 4.16 and

Figure 4.17.

Figure 4.16: Changes in the percentage of membrane surface covered with aggregates at
75 µL min−1 and 90 mbar.

Obtained results indicate that at different feed flow rates the augmentation of surface

coverage with ACQ zones is linear. However, the time of detection of first

aggregates and extent of final coverage are different. Over the course of filtration

performed at 35 µL min�1 the first quenched zones are visible after 600 s, while at

greater cross flow velocities the initial delay is longer. This finding is related to a

longer residence time of the protein solution inside the microchannel, which enables

more rapid achievement of supersaturation. In principle, the same explanation is

valid for the terminal extent of surface coverage. The decrease of feed flow rate

(increase of residence time) results in the increased quantity of ACQ zones.

Practically, the higher surface coverage of 0.68±0.04 is achieved at the slowest flow

rate in contrast to 0.57±0.03 for the flow rate of 75 µL min�1 and 0.36±0.02

observed in “130 µL min�1” case.
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Figure 4.17: Changes in the percentage of membrane surface covered with aggregates at
35 µL min−1 and 90 mbar.

Obtained results may be also explained through the application of film theory. As it

was discussed in Section 4.1 of Chapter 3, the mathematical expression of this theory

is as in Equation 4.3:

Pe =
Jδ

D
= ln

cm
cb

(4.3)

According to Equation 4.3 the reduction of boundary layer thickness (δ) induced

by augmentation of tangential flow leads to a smaller protein concentration in the

proximity of the membrane (cm). The estimated values of Peclet number (Pe) and

boundary layer thickness for processes performed at different cross flow velocities

and the TMP of 90 mbar are presented in Table 4.4.

As it can be seen from Table 4.4, the boundary layer thickness increases as the feed

flow rate decreases. This leads to a greater accumulation of protein, which seems to

correlate with surface coverage with ACQ zones.

The changes of mean gray values of non ACQ zones are summarized in Figure 4.18

and Figure 4.19.
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Table 4.4: Estimated values ofPe and boundary layer thickness at the experiments conducted
at different feed flow rates and TMP=90 mbar along with surface coverages with ACQ zones
in the end of filtration.

Experiment Boundary layer
thickness (δ)*

Peclet number
(Pe)**

Surface coverage
with ACQ zones

130 µL min�1 23.2 µm 2.88 0.36±0.02

75 µL min�1 27.9 µm 3.45 0.57±0.03

35 µL min�1 35.9 µm 4.43 0.68±0.04

* - for evaluation of δ the diffusion coefficient of 1.07× 10�10 m2 s�1 was used.

** - since the permeate flux (J) is changing with time, the initial permeate flux

value was used for the calculation of Pe.

Figure 4.18: Evolution of mean gray value of non-ACQ zone during the experiment
conducted at at 75 µL min−1 and 90 mbar.

Comparison of Figure 4.14 with Figure 4.18 and Figure 4.19 reveals that there are

two main trends in gray value variation depending on the feed flow rate. Firstly, the

transition from the lower cross flow velocity to the higher one results in the increase

of the fluorescent signal at the end of the experiment: 25.4±1.5, 31.4±1.6 and

37.7±0.9. As in previous sections, such finding may be explained by the impact of
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Figure 4.19: Evolution of mean gray value of non-ACQ zone during the experiment
conducted at at 35 µL min−1 and 90 mbar.

hydrodynamic conditions on the protein unfolding. As so, the higher Re leads to

greater unfolding, which in turn is reflected by the higher gray value. The second

observed trend is the gradual shifting of gray value augmentation from almost linear

(Figure 4.14) to a visible plateau (Figure 4.19). This effect is also related to the

hydrodynamic conditions. At more gentle conditions, system is closer to an

equilibrium state and, therefore, is less prone to such changes at the

solution/membrane interface as protein unfolding, deposit displacement and other

possible ways of deposit rearrangements. On the other hand, gentle conditions are

expected to generate a higher accumulation of protein, which contradicts the gray

value measurements. However, it seems that this effect is reflected by the higher

surface coverage at lower cross flow velocities.

Summarizing the data related to the experiments performed at TMP of 90 mbar, one

can see that despite the variations in surface coverage with ACQ zones and

differences in gray values between experiments, the increase of one parameter is

accompanied by the reduction of the other and vice versa (graphically it is shown

later in Figure 4.31). In other words, if one process is characterized by higher gray

value than the second one, it also exhibits lower surface coverage with the ACQ

zones. Moreover, despite the differences in the appearance of the protein deposit,
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the final membrane permeability is reduced to the same extent. This outcome

suggests that the overall ultimate resistance of the protein deposit is similar in all

three experiments. Therefore, it seems that the key parameter, which defines the

filtration process throughput is the compactness (density) of the protein deposit,

which theoretically has to be constant at the same TMP.

4 What is the effect of an intermediate TMP on the membrane

fouling at 130 µmmin−1?

Aiming to investigate the fouling process at intermediate conditions between no

convection (TMP=0) and filtration (90 mbar), the experiment at the feed flow rate of

130 µL min�1 and transmembrane pressure of 45 mbar was performed. Expecting

the similar results as for other two extreme cases, this process was extended up to

5.5 h (19 800 s). Only the part of results, which is acquired within the same period

of time as in other processes (9000 s), is used for comparisons with the outcomes of

other filtrations. This approach is used to get better distinction between results at the

region of interest.

The variation of the filtrate flux was matched to the one recorded during the

“130 µL min�1 + 90 mbar” filtration process. The comparison is depicted in

Figure 4.20.

The permeate flow reduction profiles exhibit similar appearance at both TMPs. At the

end of the filtration process the PRI of membrane in `130 µL min�1 + 90 mbar” case

was 0.62, while in `130 µL min�1 + 45 mbar” case it was 0.59. This finding suggests

that at analyzed conditions the drop of membrane productivity is independent of the

applied TMP. However, the comparison of permeate reduction index obtained at no

convection regime (Table 4.3), at 45 mbar and 90 mbar (Figure 4.20) shows almost

twice greater fouling at two latter case: 0.36 vs 0.59 and 0.62.

Besides, the difference in the appearance of protein deposit on the membrane surface

depending on TMPs is significant. As it has already been pointed out, there are no

visible aggregates on membrane surface during “non-convective” process. However,

both filtration processes at 45 mbar (Figure 4.21) and 90 mbar (Figure 4.13) resulted

in considerable surface coverages with ACQ zones.
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Figure 4.20: The permeate flux reduction profile depending on the transmembrane pressure.

Figure 4.21: Evolution of surface coverage with ACQ zones at feed flow rate of 130

µL min−1 and TMP=45 mbar.

Figure 4.21 shows that for the first time in the present research the difference in

surface coverage with ACQ zones between the inlet, the middle, and the outlet of
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the channel may be observed. It demonstrates that the total quantity of aggregates at

the inlet is minimal, while at the outlet is maximal. Obtained result corroborates the

afore-discussed hypothesis on the aggregates growth (need of local supersaturation).

While high feed flow rate carries the protein solution further along the membrane,

the small filtrate flux is not sufficient to induce rapid supersaturation. In such case,

longer period of time is required to achieve such condition. Therefore, the observed

gradual increase of ACQ zones from the entrance towards the outlet of the system is

not surprising.

In addition, the obtained results are in the agreement with the film theory, which

states that the boundary layer thickness increases from the inlet towards the outlet

of the system. As so, the boundary layer thickness is expected to be maximal at the

outlet of the microchannel, which leads to the maximal surface coverage with ACQ

zones. Moreover, Peclet number estimated for this process is almost twice lower

compared to “130 µL min�1+90 mbar” case: 1.58 vs 2.88.

It could be noticed that at the early stages of the filtration, the surface coverage at

the middle and the outlet are almost identical. This may suggest that until this

moment the permeate flow is sufficient enough to induce the supersaturation at the

middle zone of the MMD. However, with the course of filtration and progressive

deposit build-up, it takes more and more time to supersaturate the protein solution.

Hence, the rate of surface coverage at the middle starts to deviate from the outlet one

after 3000 s. This principle is in agreement with the permeate flow reduction profile

(Figure 4.20), where the zone of slow fouling also starts after 3000 s from the

beginning of filtration. Moreover, Figure 4.22 depicts the correlation between the

permeate flux and the surface coverage at different parts of the microchannel.

According to Figure 4.22, one can see that the minor quantity of aggregates may be

detected in all parts of the microchannel only after reaching the flux reduction of

50%. At this point there is no clear difference between surface coverages at the

inlet, the middle and the outlet. However, from here on it is possible to notice that

the subsequent reduction of membrane permeance is accompanied by uneven rates

of aggregates formation along the length of the MMD. Particularly, the minimal

coverage of 14% is observed at the inlet, the intermediate – of 18% at the middle,

and the maximal one of 27% at the outlet part. This numerical comparison supports

the concept, proposed in the paragraph before Figure 4.22.

In view of this concept, the ratio between the axial convection (dependent on feed

flow rate) and the transmembrane drag (defined by applied TMP) is an important
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Figure 4.22: Correlation between the permeate flow reduction and the surface coverage
with aggregates at different parts of microchannel during the filtration at 130 µL min−1 and
45 mbar.

factor, which influences the appearance of the protein deposit on the membrane

surface. Considering that we observe the difference in the uniformity of the surface

coverage along the length of the microchannel between the experiments

`130 µL min�1 + 45 mbar” (Figure 4.21) and “130 µL min�1 + 90 mbar”

(Figure 4.13), we may assume the existence of the critical ratio between two

aforementioned convections. Taking into account the initial filtrate fluxes of

25.24±0.48 L m�2 h�1 bar�1 (5.3±0.1 µL min�1) at TMP=45 mbar and of

49.84±1.19 L m�2 h�1 bar�1 (10.5±0.3 µL min�1) at TMP=90 mbar, the critical

ratio is between 12.4 and 25 (more precise estimation requires a set of additional

experiments). Below this critical value the supersaturation is rapid and it is hard to

distinguish the inequality between different parts of the microchannel. However,

above this critical value, the attainment of supersaturation requires more time,

leading to progressive augmentation of surface coverage with aggregates towards

the outlet.

The increase of mean gray values during the filtration process is presented in

Figure 4.23.



C
hapter 4

144 CHAPTER 4. MEMBRANE FOULING INDUCED BY THE MIDDLE
MOLECULE FILTRATION

Figure 4.23: Evolution of mean gray value of non-ACQ zone during the experiment
conducted at 130 µL min−1 and 45 mbar.

The trend in gray value augmentation seems to be transitional between two other

extreme cases (“130 µL min�1 + 0 mbar” (Figure 4.3) and “130 µL min�1 +

90 mbar” (Figure 4.13)). In order to provide a direct comparison Figure 4.24 is

plotted and demonstrates the fluorescent signals from the middle part of the

microchannel during the experiments performed at feed flow rate of 130 µL min�1

and different TMPs.

The “130 µL min�1 + 45 mbar” curve is less linear compared to no convection

regime, while the approaching of plateau is still not visible, unlike “130 µL min�1 +

90 mbar” case. Moreover, the gray values in the end of the process are also

intermediate in “130 µL min�1 + 45 mbar” case: 41.1 vs 48.4 and 37.7.

Considering the previously discussed effect of deposit compressibility on the gray

value, the observed dependence suggests the intermediate state of deposit

compaction at transitional transmembrane pressure regime.

The variation of controlled parameters during the whole filtration process is

presented in Figure 4.25 and Figure 4.26. Since the period from 9000 s until the end

did not lead to significant changes in permeate flow rate, the extended graph is not

presented.



4 What is the effect of an intermediate TMP on the membrane
fouling at 130 µm min�1? 145

C
ha

pt
er

4

Figure 4.24: Comparison of gray values at the middle of the microchannel during the
experiments performed at feed flow rate of 130 µL min−1 and different TMPs.

Figure 4.25: Evolution of mean gray value of non-ACQ zone during the experiment
conducted at 130 µL min−1 and 45 mbar (prolonged experiment).



C
hapter 4

146 CHAPTER 4. MEMBRANE FOULING INDUCED BY THE MIDDLE
MOLECULE FILTRATION

Figure 4.26: Evolution of surface coverage with ACQ zones at feed flow rate of 130

µL min−1 and TMP=45 mbar (prolonged experiment).

From Figure 4.25, one can see that the profile of mean gray value is leveling with

time. The linear augmentation observed at early stages of the filtration process is

progressively shifted to the steady values. This implies that maximal fluorescent

signal (41.4±2.3) is reached after 12 500 s of the experiment and its further growth is

negligible. In contrary, the surface coverage with ACQ zones is increasing throughout

the entire experiment. However, even after the prolonged filtration, the cumulative

surface coverage at the inlet, the middle, and the outlet (Figure 4.26) is still lower

than the one obtained during “130 µL min�1 + 90 mbar” process: 0.29±0.07 vs

0.36±0.02. This serves as an additional confirmation of high importance of ratio

between the axial convection and the transmembrane drag force.

5 Do the feed flow rate decrease and the TMP increase act

similarly?

Having in mind the conclusion about the importance of ratio between the axial

convection and the transmembrane drag force, it is important to compare the

influence of two-fold reduction of former force with the two-fold increase of the
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latter one. For this, an additional filtration at 75 µL min�1 and transmembrane

pressure of 180 mbar was performed, and its outcome was compared to the result of

“35 µL min�1 + 90 mbar” process. The filtration experiment “75 µL min�1 +

90 mbar” was taken as a reference.

Figure 4.27 demonstrates the profiles of membrane fouling at different

conditions.

Figure 4.27: The comparison of permeate flow reduction profile at different hydrodynamic
and pressure conditions.

As it was discussed previously, the fouling pattern of both experiments performed at

90 mbar is very similar. Both of them start with initial fast linear fouling zone, in

the end of which the membrane tested at “35 µL min�1 + 90 mbar” lost around 30%

of its performance. While the slope of flux decline for “75 µL min�1 + 90 mbar”

membrane is less steep, but in the end results in 40% drop of permeability. Then, the

short intermediate region is observed, which is followed by the slow fouling zone.

In the end of these experiments both membranes exhibit only around 42% of their

initial permeability. In contrast, the profile recorded at 180 mbar is notably

different. The initial fast fouling starts with the steepest decline and is terminated by

the permeability drop of 40%. The subsequent protein deposit build up results in the

ultimate permeate flow reduction of 68%, which is larger than in two other cases.

Hence, it may be postulated that the two-fold increase of transmembrane pressure
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has a greater impact on membrane fouling than the two-fold reduction of cross flow

velocity. In the view of large difference in applied TMP, the compressibility of

protein deposit seems to be a primary reason for this finding.

Besides, the comparison of Peclet numbers reveals that the two-fold increase of

transmembrane pressure has a greater impact than the two-fold reduction of cross

flow velocity. Particularly, estimated Pe for “75 µL min�1 + 180 mbar” case is

equal to 7.25, while for “35 µL min�1 + 90 mbar” process it is only 4.43. Which

means that the increase of Pe leads to greater fouling. Consequently, it can be stated

that not only the ratio between axial convection and transmembrane drag force

defines the extent of membrane fouling, but also Peclet number which combines the

influence of these convections through the film theory.

The evolution of surface coverage with aggregated zones at the highest TMP

(Figure 4.29) also demonstrates the highest abundance. In fact, the observed fouling

on the membrane surface more resembles continuous scaling layer (Figure 4.28)

rather than separated clusters of aggregates, which may also be related to higher

compactness of the cake.

Figure 4.28: Fluorescent image of the membrane surface fouled at 75 µL min−1 and
TMP=180 mbar. Magnification: x50.

As it can be seen from Figure 4.29, the first aggregates are formed after 300 s from the

beginning of the filtration process. After 2000 s 80% surface coverage is achieved,

and is already greater than the maximal coverages in other experiments. From here

on, the further expansion of quenched zones is taking place, but at much slower

rate, and reaches the 90-95% spreading after 4800 s. The last part of experiment

is characterized by almost constant state of the fouling layer and at the end of the

process demonstrates the 95% coverage everywhere along the microchannel.
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Figure 4.29: Evolution of surface coverage by ACQ zones at feed flow rate of 75 µL min−1

and TMP=180 mbar.

To finalize the analysis of this experiment, the evolution of mean gray value is

presented in Figure 4.30.

Similarly to the expansion of quenched zones, the mean gray value increases from

zero to almost maximal value within first 2000 s. After this time point, the plateau

is observed, meaning that the fluorescent signal remains constant until the end of the

process. However, it is worth noting that the analysis of fluorescent signal intensity is

done only for non-quenched regions. And, considering the high surface coverage

with ACQ zones, the remaining part occupies a small part of the surface, which

appears as “defects” of scaling layer. Therefore, the conclusions built based on these

measurements could be misleading. Hence, it is difficult to compare the fluorescent

patterns obtained during this process with gray value profiles recorded during other

experiments.

Finally, in order to illustrate the dependence of surface coverage with ACQ zones and

the gray values on the Pe number, which was mentioned in the end of Section 3 of

this chapter, Figure 4.31 is plotted based on the surface coverages and gray values

recorded at the middle part of the microchannel at the moment when the total filtrate

volume reached 0.5 mL.
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Figure 4.30: Evolution of mean gray value of non-ACQ zone during the experiment
conducted at 75 µL min−1 and TMP=180 mbar.

Figure 4.31: The dependence of surface coverage with ACQ zones and gray values at the
same filtrate volume on the Pe number.
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6 Effect of pressure stepping on the membrane fouling

Aiming to verify the stability of fouling layer depending on the applied

transmembrane pressure, the three-step filtration process was performed at constant

feed flow rate of 75 µL min�1. The permeate flow profile is shown in

Figure 4.32.

Figure 4.32: The permeate flow profile during the three pressure step experiment at fee flow
rate of 75 µL min−1.

The first part of the experiment was run at no convection regime. The membrane

permeability reduction at these conditions is mainly related to the interactions

between protein and membrane material. Here, the impact of transmembrane drag

force is negligible. This step is then followed by application of TMP of 90 mbar.

Since the permeability of clean membrane was measured at maximal TMP of

180 mbar, in order to evaluate the percentage of the permeate flow reduction after

the first step the division of the virgin permeability by the factor of 2 is required.

Therefore, the no convection regime led to the PRI of 0.37. Immediately after the

commencement of the second step the permeate flow profile starts to go down

indicating the increase of resistance, which is provided by the layer of accumulated

protein. Since, the first stage of this experiment was performed at TMP≈0, we may

assume that the thickness of the protein deposit before the increase of TMP is not
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large enough to be considered compressible. Thus, it seems that the main

phenomena contributing to the flux decline is addition of new protein molecules,

which are steadily dragged towards the membrane. The quantitative evaluation of

this stage demonstrates that it results in additional permeate flow reduction of 14%.

The last part of the filtration process at 90 mbar appears to be horizontal, suggesting

that the steady state was achieved. This stability is disrupted by the increase of TMP

from 90 mbar to 180 mbar. Immediately after the new filtration conditions are

established, the membrane permeability continues to decrease, due to the increase of

the resistance of the protein deposit. At this stage, two parallel phenomena may take

place: further thickening of the deposit layer and the compression of already

existing accumulated layers of protein. The plateau of filtrate flow rate is observed

in the end of the experiment, which suggests that the maximal state of fouling for

these particular conditions is achieved. The terminal value of permeate flow

reduction is 63% and is slightly lower compared to the simple one-step

“75 µL min�1 and TMP=180 mbar” filtration process, where the ultimate drop was

equal to 68%. Such counterintuitive observation can be related to the discovery of

van Reis et al. [17], who showed that the more gentle beginning of filtration process

results in lower extent of fouling. Thus, stepwise increase of TMP allowed to reduce

the resulting resistance of protein deposit despite the increased duration of the

filtration process.

The fluorescent microscopy provided information on influence of each stage of the

pressure stepping experiment on the appearance of fouling layer. Figure 4.33

summarizes the state of the membrane surface in the end of no convection regime

and its changes during the filtration at 90 mbar and 180 mbar.

Image 1 in Figure 4.33 shows the state of the membrane surface in the end of first no

convection step. As this point, membrane is uniformly covered by fluorescent

species without any apparent ACQ zones. However, 5 min after the transmembrane

pressure is increased up to 90 mbar the first small grains can be observed (image 2).

This finding once again demonstrates that the presence of filtration, which causes

local supersaturation, is a key parameter in the formation of ACQ zones. Moreover,

preliminary equilibration of system at no convection regime cuts down the time

between the beginning of filtration and the detection of first aggregates, as it was

seen at similar hydrodynamic conditions (Figure 4.16). The continuation of the

filtration process (images 3-5) leads to more significant surface coverage with ACQ

zones. Nevertheless, in the end of this stage (image 5) one can see that dark zones

are still dispersed and look like small individual islands (do not create a large
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Figure 4.33: Fluorescent images of membrane surface during the three step filtration process
and feed flow rate of 75 µL min−1. (Magnification: x50). The number in the bottom right
corner indicates the time point in minutes from the beginning of the process at which the
image was acquired.

network). However, the shift to the highest TMP (images 6-9) accelerates the

formation of new ACQ zones and the growth of already existing ones. As a result,

the continuous network of ACQ zones, which covers the great majority of surface, is

developed. The final state of fouling layer (image 9), similarly to Figure 4.28,

resembles the scaling layer with some “defects” (non-quenched zones) in it. On the

other hand, the number of such “defects” in Figure 4.33 is notably greater, which is

reflected by smaller permeate flow reduction in Figure 4.29 compared to the

respective curve in Figure 4.27. As so, it can be stated that there is a correlation

between the number of “defects” in the network of ACQ zones and the membrane

permeability reduction.

7 Preliminary study of anti-fouling properties of SlipSkinTM

material

Recently, our colleagues in University of Twente developed a novel membrane from

a specific hydrophilic SlipSkinTM material. The improved biocompatibility of this

material compared to benchmark flat membranes has been already

demonstrated [18].

In the present preliminary study, we are aiming at analyzing of antifouling

properties of novel SlipSkinTM membranes at the microscale and their comparison
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with results obtained for PES membranes. Since these membranes possess

significantly different clean water permeabilities: 56±12 L m�2 h�1 bar�1

(SlipSkinTM) vs 562±53 L m�2 h�1 bar�1 (PES), the preliminary comparison is

done based on the no convection experiments. At these conditions the main

parameters influencing the membrane fouling are protein/membrane interaction and

the hydrodynamic regime inside the microchannel. The following figures represent

the variation of gray value in time at different feed flow rates.

Figure 4.34: The variation of gray value at the different parts of microchannel with
SlipSkinTM membrane at feed flow rate of 130 µL min−1 and TMP=0.

The close analysis of Figure 4.34, Figure 4.35 and Figure 4.36 reveals that similarly

to PES membrane, the fouling of SlipSkinTM one is dependent on the applied

hydrodynamic conditions. As so, in “130 µL min�1” case, the maximal gray value

of 21.5±0.5 at the inlet, the middle, and the outlet of the microchannel was

detected. The shift for lower cross flow velocity led to lower extent of fouling,

which is reflected by the reduction of fluorescent signal. The process conducted at

75 µL min�1 resulted in intermediate membrane fouling with the end gray value of

16.5±0.5, while at the lowest Re the fluorescent signal was minimal: 9.4±0.5. This

finding is not surprising in the view of two previously discussed concepts. Firstly,

the higher feed flow rate (higher shear stress) may induce greater protein unfolding.

Since the protein unfolding influences mainly the intermolecular interaction, the
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Figure 4.35: The variation of gray value at the different parts of microchannel with
SlipSkinTM membrane at feed flow rate of 75 µL min−1 and TMP=0.

Figure 4.36: The variation of gray value at the different parts of microchannel with
SlipSkinTM membrane at feed flow rate of 35 µL min−1 and TMP=0.
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Figure 4.37: The macroscopic view of microchip with PES and SlipSkin membranes after
the no convection experiments at 35 µL min−1. (left image – virgin PES membrane, central
– fouled SlipSkinTM membrane, right – fouled PES membrane).

variation of membrane fouling depending on the hydrodynamic conditions is visible

disregarding the membrane material. Secondly, it can be assumed that the

adsorption of α-lactalbumin on SlipSkinTM membrane alike on PES membrane is

diffusion-controlled. If this assumption is correct, the obtained result obey the film

theory, which suggests thinner boundary layer at higher feed flow rate leads to

greater protein adsorption.

One of interesting features of gray value profiles recorded for SlipSkinTM membrane

(Figure 4.34 and Figure 4.35) is that there is almost no difference between

fluorescent signals at the inlet, the middle, and the outlet of the MMD. In contrast,

the respective graphs for PES membranes (Figure 4.3 and Figure 4.4) exhibit the

notable distinction between the parts of the membrane. The mismatch between

analyzed membranes is ascribed to the difference in permeability. As SlipSkinTM

membrane is less permeable, the local variation of transmembrane pressure induced

by pressure drop along the channel has lower impact on the local filtrate flux.

Consequently, the transmembrane drag force (at the inlet) and the backflushing lift

force (at the outlet) are lower compared to PES membrane with higher permeability.

Therefore, the effect of flow distribution inside the MMD diminishes when the less

permeable membrane is used.

The pairwise comparison of gray value profiles recorded at similar experiments, but

for different membrane materials, suggests lower accumulation of protein on the

surface of SlipSkinTM material. In particular, during the “130 µL min�1” and
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“35 µL min�1” processes, the fluorescence acquired by PES membrane is almost

2.5 times higher: 48.4±6.4 vs 21.5±0.5 and 23.3±0.4 vs 9.4±0.5. The discrepancy

found at 75 µL min�1 is smaller, but still visible and is around 30% in the favor of

SlipSkinTM. Thus, all performed experiments clearly demonstrated the lower

adsorption of protein by SlipSkinTM membrane compared to PES membrane. This

effect may be related either to the lower propensity to adsorb proteins by SlipSkinTM

material or to a lower permeability of the developed membrane, which influences

the extent of the transmembrane drag force, responsible for transferring the protein

from the bulk to a membrane/solution interface. Finally, even the visual examination

of both fouled membranes (Figure 4.37) with the unaided eye makes it possible to

see that significantly lower quantity of protein (less intense blue color) has been

attached to the surface of SlipSkinTM membrane.

8 Conclusion

The objectives of this Chapter were to analyze the membrane fouling at the

microscale at different hydrodynamic and pressure conditions and to perform the

microscale comparison of commercial polyethersulfone (PES) membrane with the

membrane fabricated from novel SlipSkinTM material. The following conclusion

could be made based on the obtained experimental results.

The extent of adsorption of α-lactalbumin-Atto647N was found to be dependent on

the feed flow rate: the greater gray values were observed at the higher feed flow

rates. Probably, this outcome is related to the higher shear stress at greater cross

flow velocity, which may lead to greater unfolding of protein chains. If this

assumption is correct, the greater shear stress results in facilitation of interaction

between hydrophobic parts of the protein molecule adsorbed on the membrane

surface with the one flowing in the solution. Besides, considering the film theory

and the reduction of the boundary layer thickness with increase in feed flow rate

(shear stress), it was assumed that adsorption of α-lactalbumin-Atto647N is limited

by diffusion towards the membrane surface.

The difference in the fluorescent signal recorded from the inlet, the middle and the

outlet during the experiments at TMP≈0, suggest that the internal filtration induced

by pressure drop along the microchannel also influences the adsorption of

α-lactalbumin-Atto647N. However, at smallest feed flow rate applied, this
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difference vanishes indicating that the pressure drop is too small to have a noticeable

impact on the distribution of accumulated protein.

The application of transmembrane pressure (shifting to the filtration conditions) was

associated with the formation of dark zones, which were not detected neither during

experiment with BSA-FITC (at all studied conditions) nor during no convective

fouling experiments with α-lactalbumin-Atto647N. Their formation was ascribed to

the phenomena called aggregation-caused fluorescence quenching (ACQ). This

phenomena is related to a specific intermolecular π–π electron interactions in tightly

packed state the fluorescent tags of the neighboring molecules, which leads to the

annihilation of their light emission. Moreover, the highlighted dark zones were not

observed during scanning electron microscopy analysis, indicating that these zones

are detectable only when the surrounding molecules emit the fluorescent

light.

Analysis of correlation between the surface coverage with ACQ zones and the filtrate

flux decline demonstrated that there is no visible dependence in the beginning of the

filtration process where the primary contact between membrane and protein occurs.

However, this outcome is related to the small magnification applied for the real-time

observation of surface. Probably, the size of formed ACQ zones is too small to be

detected under selected magnification. Besides, at the latter stages of filtration it

seems that the surface coverage with ACQ zones has a linear dependence with a

negative slope on the permeate flux decline.

The comparison of results obtained during the experiment conducted in filtration

mode (at TMP=90 mbar) revealed that the reduction of feed flow rate leads to a

greater surface coverage with ACQ zones and to a reduced gray values of non-ACQ

regions. This outcome was related to the ratio between axial convection (directed

towards the outlet of the microchannel) and the transmembrane drag force (acting

perpendicularly to the membrane). Particularly, the greater this ratio is, the shorter is

the residence time of protein solution inside the microchannel. As so, it has less

time to achieve a state of supersaturation, the condition which is believed to be

prerequisite for the formation of ACQ zones. From another point of view, the

increase of aggregates formation is related to increase in Pe number, which is in

agreement with film theory. Finally, despite the differences in gray values and

surface coverages with ACQ zones, the ultimate permeate flux reduction was

practically the same at TMP=90 mbar. This observation suggested that the

compactness of the protein deposit has the determining effect on the filtrate flux
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decline.

Based on the obtained results the critical value of ratio between the axial convection

and the transmembrane drag force was estimated to be between 12.4 and 25. Below

this critical value the supersaturation of solution is achieved rapidly which leads to a

uniform coverage of membrane surface with ACQ zones. However, above this

critical value, the attainment of supersaturation requires more time, which results in

progressive increase of surface coverage with ACQ zones from the inlet towards the

outlet. Moreover, the evaluation of influence of two-fold reduction of the axial

convection and the two-fold increase of transmembrane drag force on the formation

of ACQ zones demonstrated that these two changes are not equivalent. The two-fold

increase of transmembrane drag force led to significantly greater fouling, reflected

by greater surface coverage with ACQ zones and more significant permeate flux

reduction. Analysis of this outcome through the film theory showed that the

two-fold changes of convection led to a different changes in Pe number.

Particularly, the increase of transmembrane convection leads to a higher Pe number

and greater fouling. Therefore, it may be concluded that alike experiments with

BSA-FITC, the fouling induced by α-lactalbumin-Atto647N is more severe at

processes with higher Pe numbers.

The experiment with stepwise increase of transmembrane pressure demonstrated

that each increase of transmembrane convection lead to a progression in the protein

accumulation that was reflected by the decline of permeate flux. It was also

observed that the gentle beginning of experiment can compensate the increased

duration.

The preliminary comparison of α-lactalbumin-Atto647N on the surface of the

membrane prepared from the novel SlipSkinTM material and the commercially

available PES membrane demonstrated the improved anti-fouling property of

SlipSkinTMmembrane. It was also demonstrated the extent of protein adsorption on

SlipSkinTM membrane is dependent on cross flow velocity: the higher cross flow

velocity the greater protein accumulation. However, due to small permeability of

this membrane, the difference in fluorescence at the inlet, the middle and the outlet

was not observed.
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Introduction

In this chapter, we develop the model which highlights the benefits of combining the

diffusion, convection and adsorption in one double-layer membrane proposed

recently by our partners in University of Twente [1, 2]. This membrane consist of

two layers: 1) a mixed matrix layer, where activated carbon particles are

incorporated inside the membrane material; 2) a particle-free selective layer

providing hemocompatibility and selectivity. This functionalized membrane showed

an excellent removal of small and protein-bound toxins from human plasma and

therefore gave a high promise for its further development for dialytic applications.

However, the contribution of the mixed matrix layer to the removal of the uremic

toxins as well as the influence of the membrane characteristics and process

conditions remains uncertain. We therefore aim at developing the model, which is

able to encapsulate the various parameters and their physical relationships, in order

to describe the overall performance of the membrane towards removal of small and

middle sized uremic toxins. As a result, the model gives an opportunity to optimize

the membrane properties and process conditions.

The upcoming sections are organized in the following manner: first, the selected

assumptions along with mathematical derivation of required equations are described

in order to formulate the model. Secondly, the fabrication and characterization of

functionalized double-layer membranes is presented. Then, the prediction of solute

concentration profiles across the membrane with use of the model is demonstrated.

Finally, the developed model is evaluated by the comparison with the experimental

results.

This work was submitted to the Chemical Engineering Science Journal in the form

of article. D. Snisarenko, D. Pavlenko, D. Stamatialis, P. Aimar, C. Causserand, P.

Bacchin, “Convection-diffusion-adsorption model of solute removal in dialysis by

membrane with double functionality”.
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Nomenclature

a Specific surface area of the

adsorbent

m2 per m3 of mixed matrix

membrane

c concentration (mol m�3)

d diameter (m)

D diffusion coefficient (m2 s�1)

div divergence (-)

j molar flux density (mol m�2 s�1)

J convective flow through the

membrane

(m s�1)

k heterogenic adsorption constant (m s�1)

K pseudo mass transfer

conductance

(m s�1)

l Length of the fiber (m)

m mass (mg)

M molecular weight (g mol�1)

N number of fibers (-)

Pe Peclet number (-)

q quantity of adsorbed specie µg per mg of membrane

r rate of adsorption (mol m�3 s�1)

Re Reynolds number (-)

s sink term (mol m�3 s�1)

S membrane surface area (m2)

Sc Schmidt number (-)

Sh Sherwood number (-)

t time (s)

V volume of fluid (m3)

Greek letters:

δ Thickness of the domain (m)

∆ Determinant defined in

Equation 5.5

(-)

φ Thiele modulus (-)
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Subscripts:

0 Initial time point

a After the adsorptive layer

ads Adsorption

b Before the adsorptive layer

conv Convection

d Dialysate

diff Diffusion

e external

f Feed

h Hydraulic

in At the inlet of particular domain

l Lumen of the membrane

max maximal

out At the outlet of particular

domain

s Shell side of the module

t Time different from 0
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1 Model development

1.1 System formulation

The geometry of the system was dictated by the novel concept of blood filtration,

which employs the functionalized membranes with incorporated adsorptive

particles [1]. In its way through the membrane, a toxin present in the blood (feed

stream) first passes through the particle-free layer (PFL) and then through the mixed

matrix membrane (MMM), where it can adsorb on the dispersed adsorptive particles

as depicted in Figure 5.1. The driving force of the solute transport is not the same

along the length of the membrane, because solute concentrations in the blood and

dialysate compartments change. Aiming to overcome this effect, as the base element

of the system, we took the region of the membrane where the solute concentration

may be assumed constant. Because boundary layers are present on both sides of the

membrane, we have to consider a four-layers system (Figure 5.1).

Figure 5.1: The schematic representation of the system geometry (dots in the feed represent
the toxin molecules present in the blood stream). 1 – feed side boundary layer, 2 – particle-
free membrane, 3 – mixed matrix membrane, 4 - dialysate boundary layer.

The model of solute transport through this system was developed within the frame of

following assumptions:

1. Molar flux through the membrane is considered to be at steady state.

2. Fluids in the blood and dialysate compartments are Newtonian.

3. The molar flux at any point is considered as diffusive or as a combination of

diffusive and convective contributions.

4. The transport of solute through the membrane occurs through the pores present

in both the particle-free and the mixed matrix layers.
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5. Adsorptive particles are considered to be uniformly dispersed inside the

polymeric matrix;.

6. Absence of concentration gradient along the membrane (along Y axis in

Figure 5.1).

7. Adsorption is considered as first order heterogeneous reaction. Dealing with

the adsorption mechanism, such a kinetic condition can correspond to the

system where the adsorptive capacity is large compared to the amount to be

adsorbed.

The mass transport of solute across the membrane is conventionally described by the

continuity equation in the form of Equation 5.1:

∂c

∂t
+ div(j) = ±s (5.1)

where s is the sink term which represents the adsorption of the permeating

solute.

Analyzing the geometry of the model one may distinguish two types of regions

depending on the possible toxin removal mechanisms: ones with convection and

diffusion only, and one layer where, in addition to these two mechanisms,

adsorption also takes place. Therefore, these regions can be studied separately. At

steady state, the total molar flux in the region without adsorbent is constant and has

the following form (Equation 5.2):

j = −D dc

dx
+ Jc (5.2)

where dc
dx is the local solute concentration gradient, D is diffusion coefficient, and J

is convective flow through the membrane.

Equation 5.2 can be integrated across each layer assuming a given concentration in

the inlet and the outlet. As so, the solution of Equation 5.2 results in a generic formula

(Equation 5.3) applicable for the regions of the system without adsorptive particles

by setting s = 0.

j = J

(
cout − cine

Jδ
D

)
1− e

Jδ
D

(5.3)
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The application of Equation 5.1 to the MMM layer results in a differential equation

(Equation 5.4), which apart from diffusive and convective terms, also accounts for

the presence of solute adsorption:

D
d2c

dx2
− J dc

dx
− akc = 0 (5.4)

Where a stands for specific surface area of adsorbent in m2 per m3of mixed matrix

membrane and k is heterogenic adsorption constant.

The solution of Equation 5.4 (presented in Appendix B) results in Equation 5.5,

which describes the solute concentration at any depth (x) inside the MMM

layer:

c = c3

e
Pe3
2

(
x
δ3

�1
)

sinh
(
x∆
δ3

)
sinh (∆)

− c2

e
Pe3
2

x
δ3 sinh

(
∆

(
x

δ3
− 1

))
sinh (∆)

(5.5)

where ∆ =

√
Pe2

3 + 4φ2

2
; Pe3 =

Jδ3

D3
; φ =

√
ak

D3
δ3

From the concentration profile, it is possible to determine the molar flux before the

MMM layer (jb), and the molar flux after (ja) by writing the molar flux Equation 5.2

at the inlet boundary x=0 and the outlet x=δ3:

jb = c2

(
D3∆ cosh(∆)

δ3 sinh(∆)
+
D3Pe3

2δ3

)
− c3

D3e
−Pe3

2 ∆

δ3 sinh(∆)
(5.6)

ja = c2
D3e

Pe3
2 ∆

δ3 sinh(∆)
− c3

(
D3∆ cosh(∆)

δ3 sinh(∆)
− D3Pe3

2δ3

)
(5.7)

Finally, since some part of the permeating specie is getting adsorbed inside the

MMM, the solute molar flux density before this layer is greater than the one after,

jb > ja. Summarizing the aforementioned model formulation, the schematic

depiction of the entire system with key parameters (interface concentrations and

fluxed) involved is presented on Figure 5.2.



1 Model development
1.2 Application of local mass balance

171

C
ha

pt
er

5

Figure 5.2: Schematic representation of formulated system with the key parameters.

1.2 Application of local mass balance

The model is established by considering the continuity of the molar flux before and

after the MMM layer. The following system of five equations with two unknown

molar flux densities jb and ja, and three unknown concentrations at the interfaces of

domains c1, c2 and c3 has to be solved



jb = cfK1a − c1K1b ;

jb = c1K2a − c2K2b ;

jb = c2K3a − c3K3b ;

ja = c2K3c − c3K3d ;

ja = c3K4a − cdK4b ;

The expressions for each pseudo mass transfer conductance (Ki,j ,) are determined

from the writing of the differential molar balances presented in the previous section.

The expressions for these conductances are given in the Appendix A.

An analytical solution can be found for this system when the bulk concentrations in

the feed and the dialysate sides are known. The solution for the concentration of
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the permeating specie on the interfaces adjacent to the adsorptive layer c2 and c3 are

given below:

c2 =

=
K1aK2a

(
K4a +K3d

)
cf +K3bK4d

(
K2a +K1b

)
cd(

K3a

(
K2a +K1b

)
+K1bK2b

)(
K4a +K3d

)
−K3b

(
K2a +K1b

)
K3c

(5.8)

c3 =

=
K1aK2aK3ccf +

(
K3a

(
K2a +K1b

)
+K1bK2b

)
K4dcd(

K3a

(
K2a +K1b

)
+K1bK2b

)(
K4a +K3d

)
−K3cK3b

(
K2a +K1b

) (5.9)

Combining these last two expressions with Equation 5.6 and Equation 5.7, enables

determining the molar flux before and after the MMM layer. Knowing the input

parameters listed in left hand side of Figure 5.3 one can perform the modelling of the

instantaneous condition (“snapshot”) of the system. In other words, the insertion of

such input parameters as thicknesses of boundary layers, sieving and solute diffusion

coefficients, rate of convective flow, adsorption constant and solute concentration on

both sides of membrane, provides the possibility to analyze the state of the system at

a particular moment of time.

The primary outcome of the model is the determination of the solute concentration

profile across the membrane and the calculation of the solute mass transfer density

across the membrane. Furthermore, the model enables analyzing the impact of the

adsorptive particles on the local solute concentration inside the MMM and

comparing the transfer efficiency with other scenarios such as: a) absence of

convection (solute removal occurs only by diffusion and adsorption); b) absence of

adsorption (presence of diffusion and convection), and c) absence of both

convection and adsorption. The benefit of the functionalized membrane compared to

a conventional single layer membrane of same thickness can be defined through a

solute transport enhancement factor (STEF) index:

STEF =
jb
jdiff

(5.10)
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Figure 5.3: Required input and obtained output parameters from the model “snapshot”
analysis.

In practice, STEF is defined as a ratio of molar flux density (jb) obtained in one of

the aforementioned scenarios to the molar flux density obtained when only diffusive

transport is involved (jdiff ). The solely diffusive case is used as a reference and

STEF demonstrates the intensification of the solute removal due to the contribution

of convection or/and adsorption.

1.3 Global mass balance

In order to depict the effect of the mass transfer on the solute removal, equations

describing molar fluxes at a local scale presented in the previous section need then

to be integrated over the full membrane module and along time. The differential

equation to be integrated relies on mass balance on the feed and dialysate

streams:

dcf
dt

= −jbS
Vf

(5.11)

dcd
dt

=
jaS

Vd
(5.12)
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Where cf and cd stand for the solute concentration in the feed and dialysate, S is the

filtration surface area, Vf and Vd are volumes of feed and dialysate.

Since, the model accounts for the presence of the convective transfer, volumes of the

feed and dialysate are also changing with time, with respect to Equation 5.13 and

Equation 5.14:

dVf
dt

= −JS (5.13)

dVd
dt

= JS (5.14)

The integration of these equations combined with the mass flux given in the previous

section enables the determination of the variation of the solute in the blood and then

the clearance kinetics.

2 Validation experiments

2.1 Membrane fabrication and characterization

Double layer mixed matrix membranes were prepared according to a multistep

procedure. For the selective layer, a polymer solution was prepared by dissolving

15% polyethersulfone (PES, Ultrason E 6020, BASF, Germany) and

polyvinylpyrrolidone (PVP, K90, Fluka, Germany) of different quantity (details in

Table 5.1) in ultra-pure N-methylpyrrolidone (NMP, Acros Organics, Belgium).

Adsorptive layer was based on a solution containing 14% PES and 1.4% PVP

dissolved in NMP. Activated carbon (AC) with average particle diameter of 27 µm

was added gradually to the polymer solution to obtain a final concentration of 60%

by weight. Both solutions were degassed for 48 hours before the spinning.

Two different spinning conditions were utilized aiming to obtain membranes of

different transport properties. The first batch of membranes (further denoted as

Membrane 1) was formed via immersion precipitation method at the conditions

summarized in Table 5.1. The second batch of membranes (hereon denoted as

Membrane 2) was fabricated according to the procedure described by Tijink et al.

[2] with the conditions, which are also presented in Table 5.1. Table 5.2 describes

the specification of used spinnerets.
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Table 5.1: Spinning conditions of the fiber preparation.

Membrane 1 Membrane 2
Inner layer pumping speed, [mL min�1] 0.4 0.9

Outer layer pumping speed, [mL min�1] 1.6 3.2

Bore pumping speed, [mL min�1] 2.8 2.7

Bore composition Demi water 5 wt% PVP in

ultra pure water

Air gap, [cm] 10 -

Pulling speed, [m min�1] 3.5 7

Content of PVP in the dope solution for

selective layer, [wt%]

7 10

Table 5.2: Spinneret specifications.

Membrane 1 Membrane 2
Inner diameter needle, [mm] 0.16 0.26

Outer diameter needle, [mm] 0.26 0.46

Inner diameter first orifice, [mm] 0.46 0.66

Outer diameter first orifice, [mm] 0.66 0.96

Inner diameter second orifice, [mm] 0.86 1.66

The membranes were cleaned by ultra-pure water to remove the remaining solvent.

The fibers were then dried at 37�C for 2 hours and subsequently were fractured in

liquid nitrogen. The samples were dried under vacuum at 30�C and gold sputtered

using a BalzersUnion SCD 0 40 sputter coater (Oerlikon Balzers, Balzers,

Liechtenstein). Finally, samples were imaged using a JEOL JSM-560 0LV Scanning

Electron Microscope (JEOL, Tokyo, Japan).

Dry fibers were cut into pieces of 15 cm each and then glued into modules (inner

diameter of 4 mm) of 3 fibers each, and 10 cm in length. Clean-water flux was then

measured for each module with use of the set-up (Figure 5.4) described in detail in

the following section. For this, modules were initially prepressurized at 2 bar for

1 h and then tested at transmembrane pressures of 0.5, 1.0, 1.5 and 2.0 bar, with

ultrapure water. The mass of collected permeate was monitored continuously.
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2.2 Adsorption kinetics in static mode

At this stage, the knowledge of the adsorptive capacity of the carbon particles is an

important issue. Experiments were conducted to determine the kinetics of

adsorption of creatinine and α-lactalbumin (as a model compound for middle sized

molecules) onto the membrane. For this purpose five pieces of hollow-fiber

membranes of 5 cm each were placed in 25 mL of 0.1 g L�1 solution of creatinine

or α-lactalbumin in phosphate buffer solution (PBS). The solution was stirred to

avoid transport limitations between solute and surface of adsorptive layer of the

membrane. The decay of solute concentration with time was monitored by sampling

of 0.5 mL/sample every 3 minutes for further analysis by UV-spectroscopy. The

timing of sample collection was adjusted so as to limit the total withdrawal of initial

volume at 10%. A linear decrease of the solute concentration in the initial stage of

the process was observed. The initial slope of the concentration decrease provides

an information on the rate of adsorption which may be used in the calculation of the

product of the adsorption constant and specific surface area of adsorbent (ak).

2.3 Experimental study of the clearance of small and middle sized
solutes

The experimental analysis of the clearance of solutes with the dual-layer membranes

was conducted with use of the set-up (Convergence B.V., Enschede, The Netherlands)

presented on Figure 5.4.

Figure 5.4: Schematic representation of the applied set-up.
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Briefly, experimental set-up consists of 2 peristaltic pumps, 4 pressure detectors, 2

back-pressure valves and 2 reservoirs for the model solutions. All the parts of the set-

up are connected via PTFE tubings to membrane module which has inlets and outlets

for the feed and dialysate solutions that are pumped in counter-current configuration.

The flow rates of the feed and dialysate solutions are controled by the peristalitic

pumps, while constant TMP is generated by the back-pressure valves. Pressure in the

system is monitored by 4 pressure detectors which are installed near the membrane

module's inlets and outlets. Compartments for the module solutions are positioned

on the balances to control the mass of the system in time.

For the validation experiment, PBS-based 0.1 g L�1 solutions of creatinine (Sigma-

Aldrich, France) as a model molecule for the small uremic toxin; and α-lactalbumin

(Sigma-Aldrich, France) as a model compound for the middle sized molecule were

prepared, and were further used as the feed solutions. The pure solution of PBS was

used as the dialysate.

Validation experiments were conducted using 50 mL of the feed and dialysate

solutions. Moreover, we followed the convention that the flow rate of the dialysate

has to be twice as high as the flow rate of the feed stream [3]. As so, the feed flow

rate was set as 5 mL min�1, while the dialysate flow was equal to 10 mL min�1. In

addition, the feed solution was flown inside the hollow fiber membrane lumen, while

the dialysate was pumped through the shell side of the module. For experiments in

diffusive mode (conventional dialysis), the transmembrane pressure (TMP) was kept

around 0 bar, meaning that the toxin removal driving force was generated only by

the difference of its concentration across the membrane. In contrary, another set of

experiments was conducted with utilization of both diffusion and convection

(hemodiafiltration mode). There the TMP was set at 0.17 bar or 0.5 bar in different

experiments in order to induce the convective transport through the membrane.

These pressure regimes were chosen in order to, in one hand, avoid the necessity to

add new portion of the feed solution in the system during the experiment, and, on

the other hand, to generate convective flow with noticeable impact on overall solute

removal. Throughout the experiment, the weight of the feed and dialysate solutions

was continuously monitored. Decrease of the feed (increase of the dialysate) mass

was considered to be due to the presence of convection. Samples of 1 mL were

taken from both compartments in time and the concentration of creatinine and

α-lactalbumin there was measured by UV-spectroscopy (Varian, Cary 300 Scan

UV-Visible Spectrophotometer) at 25�C in a 10 mm quartz cuvette at 230 nm and

280 nm, respectively. The increase of the solute concentration in the dialysate was
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attributed to the diffusive transport, in case of the experiment conducted in diffusive

mode (conventional dialysis) or to combination of diffusive and convective

removals, in case of the experiment performed in the hemodiafiltration mode. In

parallel, based on mismatch between the amount of solute disappeared from the feed

side and found in the dialysate the quantity of solute adsorbed inside the membrane

was defined. Finally, the total solute removal was considered to be the sum of

diffusive/convective and adsorptive removals. Each validation experiment was

conducted three times. After the experiments, the modules were dried in air and the

effective surface area of membrane inside the module was measured.

3 Results and discussion

3.1 Membrane fabrication and characterization

Figure 5.5 demonstrates the structure and the morphology of the membranes:

Membrane 1 Membrane 2

Figure 5.5: SEM images of fabricated dual-layer membranes (right-hand side images are
adapted from [2]).

On the images of Membrane 1 and Membrane 2 one can distinguish the inner particle-

free region with a denser skin layer on the lumen side and the outer particle-loaded
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(MMM) layer. In both cases, the two layers are well attached without apparent gaps

between. In both membranes, the MMM layer is more porous than the particle-

free layer, suggesting that the main contribution to mass transport resistance of the

entire membrane should be the inner layer. In addition, activated carbon particles are

uniformly distributed inside the polymeric matrix of MMM. The dimensions of the

fibers are summarized in Table 5.3. These values were further used for simulations

based on the mass transfer model which has been described here above.

Table 5.3: Geometrical dimensions of the fabricated fibers.

Membrane 1 Membrane 2

Thickness of the inner layer, [µm] 21 49

Thickness of MMM, [µm] 47 111

Lumen diameter, [µm] 450 669

External diameter of the fiber, [µm] 586 984

The clean water flux tests revealed that the Membrane 1 is significantly less

permeable than M2: 2.5±1.1 L m�2 h�1 bar�1 vs 58.4±9.3 L m�2 h�1 bar�1 [2]

respectively. The integrity of the membranes was not affected during the water

permeance testing, meaning that fabricated membranes possess sufficient

mechanical strength for the dialysis and hemodiafiltration experiments.

The product of heterogeneous adsorption constant and specific surface area of

activated carbon (ak) for both membrane types were determined with respect to

creatinine and α-lactalbumin Table 5.4.

Table 5.4: Values of “ak” parameter for various pairs “Membrane-solute”.

Membrane 1 Membrane 2

Creatinine 0.152 s�1 0.082 s�1

α-lactalbumin -* 0.011 s�1

* - was not determined, because Membrane 1 was impermeable for α-

lactalbumin.

According to Table 5.4, the “ak” parameter for the adsorption of creatinine is almost

twice higher for Membrane 1 than for Membrane 2. Since the membrane material

and the adsorptive particles are the same for both membranes, the difference in

adsorptive properties between these membranes may be attributed to the different

accessibility of activated carbon particles embedded in the polymer matrix. In
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parallel, the comparison of adsorptive properties of Membrane 2 with respect to

creatinine and α-lactalbumin demonstrates that adsorption of the protein is

significantly lower, only 0.011 s�1. This may be attributed to either a difference in

steric hindrance for small sized creatinine and much larger protein or it can be

connected to the different affinity of activate carbon particles to creatinine and

α-lactalbumin. Finally, various permeation trials with use of Membrane 1 revealed

that it is completely impermeable for α-lactalbumin; therefore, the experimental

estimation of “ak” for this case was not performed.

3.2 Double layer membrane transfer modelling

To perform the modelling of the transfer through the MMM the thicknesses of

boundary layers (δ) have to be estimated. Since the validation of the model was

performed with use of the hollow-fiber membranes placed in the module, two sets of

hydrodynamic correlation, for lumen and shell sides, were used. The flow rates of

feed and dialysate streams were taken from the filtration the set-up utilized during

the validation experiments. The estimation of the conditions in the lumen side were

done using two following correlations: Shl = 2.66Re0.25
l Sc0.33

l

(dhl
l

)0.33; δl =
dhl
Shl

[4], while the quantification of the hydrodynamic conditions in the shell side was

done by applying another set of equations: Shs = 1.25Re0.93
s Sc0.33

s

(dhs
l

)0.93;

dhs =

(
d2
s −Nd2

e

)(
ds +Nde

) ; δs =
dhs
Shs

[4]. Where dh stands for the hydraulic diameter, N

is number of fibers, de and ds are external diameter of the membrane and the

diameter of the module (shell). The selected correlations are assumed to be

applicable, as they were developed for hollow fiber modules operated at laminar

conditions (Re<2000), while in our experiments Re in the shell and the lumen side

was below 100.

Validation experiments were conducted at feed and dialysate flow rates of

5 mL min�1 and 10 mL min�1, respectively. Since, a low concentration of solute

was used for the preparation of all feed solutions and since the pure phosphate

buffer was used as the dialysate, the viscosity and density of both solutions were

assumed to be equal to the ones of water: 10�3 Pa s and 1000 kg m�3 respectively

for the calculation of the boundary layer thicknesses. Based on the aforementioned

hydrodynamic correlations, the thicknesses of the boundary layers in the lumen and

shell sides were determined (Table 5.5).
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Table 5.5: Boundary layer thicknesses in the validation experiments.

Membrane
1

Membrane
2

Experiment with creatinine
Lumen boundary

layer, [µm]

30.7 45.3

Shell side boundary

layer, [µm]

197 245

Experiment with α-lactalbumin
Lumen boundary

layer, [µm]

17.9 23.8

Shell side boundary

layer, [µm]

87.1 124

As it can be seen from Table 5.5, the boundary layer thickness in the creatinine

removal experiments differs in case of Membrane 1 and Membrane 2. This

difference is ascribed to the difference in geometry (see Section 3.1) of the said

membranes. Similarly, due to the difference between the outer diameters of both

membranes, the boundary layer thickness on the shell side was found smaller for

Membrane 1. Similar results were obtained from calculations of hydrodynamic

conditions during the α-lactalbumin removal experiments. The lumen boundary

layers were found to be 17.9 µm and 23.8 µm, while the shell side boundary layers

are 87.1 µm and 124 µm for Membrane 1 and Membrane 2, respectively.

According to data presented by Shaw et al. [5] the diffusion coefficient of creatinine

in water at room temperature is 9× 10�10 m2 s�1, while Kim et al. [6] used the

value of 5.31× 10�10 m2 s�1. Therefore, here we used the average value of

7× 10�10 m2 s�1. To the best of our knowledge, the diffusion coefficient of

α-lactalbumin was not reported in the literature. Thus with use of Einstein equation

and molecule effective radius reported by Fu et al. [7] it was calculated to be equal

to 1.07× 10�10 m2 s�1. Finally, for the sake of simplicity we assumed that the

solute diffusion coefficient is the same in the all regions of the system.

The parameters used for our simulations have been gathered in Table 5.6. In principle,

these parameters represent the filtration of creatinine through the Membrane 2.

The predicted solute concentration profiles across the membrane with and without

adsorption have been plotted in Figure 5.6, in the absence of solute in the dialysate

stream.
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Table 5.6: Input parameters applied to produce creatinine concentration profile across
Membrane 2.

Name of input parameter Value

Blood boundary layer thickness 5× 10�5 m

Particle-free layer thickness 4.9× 10�5 m

MMM thickness 1.11× 10�4 m

“ak” parameter 0.082 s�1

Solute diffusion coefficient 7× 10�10 m2 s�1

Thickness of dialysate boundary layer 2.3× 10�4 m

Convective flow rate through the membrane 1.1× 10�6 m s�1

Solute concentration in the blood side 0.885 mol m�3

According to Figure 5.6 the presence of adsorptive particles favors the reduction

of solute concentration inside the membrane. The molar flux of solute through the

membrane is then more important: one can note a steeper decline of the concentration

profile in the blood boundary layer (BBL). This effect is attributed to the adsorption

of a fraction of the permeating species by the particles present in the MMM that is

accelerating the mass transfer. Quantitative expression of such phenomena is given

by the solute transfer enhancement factor (STEF) parameter provided by the model

(Table 5.7).

Table 5.7: Solute transfer acceleration for various system conditions.

Solute removal
mechanisms involved

Molar �ux density, ja Solute transfer
enhancement factor

Diffusion 1.41× 10�6 mol m�2 s�1 1*

Diffusion and

Adsorption

3.12× 10�6 mol m�2 s�1 2.21

Diffusion and

Convection

1.95× 10�6 mol m�2 s�1 1.39

Diffusion, Convection,

and Adsorption

3.63× 10�6 mol m�2 s�1 2.58

* - taken as reference.
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Figure 5.6: Solute concentration profiles across the membrane depending on the removal
mechanisms involved. (BBL stands for blood boundary layer, PFL – particle free layer,
MMM – mixed matrix membrane) (image A - diffusion vs diffusion+adsorpsion; image B -
diffusion+convection vs diffusion+convection+adsorption).

From Table 5.7 one may conclude that for the selected set of input parameters, the

addition of convective flow to solely diffusion-driven solute removal results in 1.39

times greater elimination rate, while adsorption provides a STEF of 2.21. Moreover,
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the combination of all three removal mechanisms is characterized by a STEF of 2.58,

meaning that compared to a pure diffusive transfer, the complete system allows to

gain more than 2.5 times a flow of solute out of the feed (blood).

In parallel, the concentration inside the membrane as well as the molar flux across the

membrane depend on hydrodynamics on the feed side. Figure 5.7 shows the influence

of convection flow rate (Peclet number) on the system, where diffusion, convection

and adsorption are employed in the solute elimination from the feed stream.

Figure 5.7: Solute concentration profile across the membrane and feed boundary layer at
various rates of convective flows.

As it can be seen from Figure 5.7, at lower values of Pe the solute concentration in

the MMM is significantly different from the one in the bulk. However, at Pe>1,

when convection becomes dominant over diffusion, the solute is more efficiently

transferred towards the adsorptive layer, so that the bulk and membrane

concentration are balanced. In order to keep a Pe larger than 1, the convective flow

of 1.4× 10�5 m s�1 or greater has to be generated. On the other hand, an excessive

convection rate leads to the reduced impact of adsorption on the solute removal.

Therefore, at high Pe one does not take advantage of the presence of the adsorptive

capacity of the membrane.
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3.3 Experimental results vs modelling

A first experiment was conducted in the diffusive mode with use of creatinine

solution and Membrane 1. The experimental results are compared to the model in

Figure 5.8.

Figure 5.8: Results of validation experiment 1 vs theoretical prediction (continuous lines are
predicted evolution of solute removal, while dots represent the experimental results).

According to the Figure 5.8 it can be seen that the diffusive curve is ideally

predicting the removal of creatinine by diffusion. Both experimental and theoretical

results demonstrated that during a four-hour experiment at given conditions, one

may achieve diffusive removal of 0.6 mg of creatinine. The slight deviation of

diffusive curve from linearity is a result of decrease of solute concentration in the

feed and increase in the dialysate, which led to the reduction of solute removal

driving force across the membrane. In contrary, the adsorption curve fits the

experimental data only in the early stage of the process. This observation may be

explained by saturation of adsorptive particles, which starts to be noticeable after

half an hour of the experiment, and ultimately reaching a membrane adsorptive

capacity of 0.34 mg or, more precisely, 26.27 µg of creatinine per 1 mg of

membrane. Therefore, the modification of model with the new fitted input parameter

“Membrane limiting adsorption capacity” (MLAC) was done aiming to account the
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activated carbon particles saturation (Figure 5.9). In order to introduce this

parameter in the model, the following conditions were applied:

q < qmax; r = akc

q ≥ qmax; r = 0

As so, until the amount of adsorbed specie (q) is inferior to the maximal capacity

(qmax), the adsorption mechanism is in force and is happening according to the

previously discussed assumptions. However, once the maximal membrane capacity

is reached, the adsorption is no longer possible, and, therefore, the adsorptive

removal mechanism is switched off by the model.

The result of MLAC application for the experiment 1 is presented in

Figure 5.9.

Figure 5.9: Results of validation experiment 1 vs theoretical prediction accounting saturation
of the adsorbent.

According to Figure 5.9, the saturation of particles embedded in the polymer matrix

of the membrane is reached after 45 min of experiment, meaning that starting from

this time point the creatinine removal is governed solely by diffusion. As it can be

seen from the total removal curve, insertion of membrane limiting adsorption

capacity parameter enables rather precise prediction of the outcome of the

experimental creatinine removal. Finally, the “snapshot” analysis of analyzed
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system at the initial time point showed that due to the presence of adsorptive

particles in the membrane the creatinine transfer acceleration of 93% was gained,

meaning that at the early stages of the process, while the adsorbent is not yet

saturated the solute removal rate is almost twice higher thanks to the presence of the

adsorbent. Such observation provides the numerical justification of the beneficial

use of dual-layer membranes with incorporated particles of activated carbon.

Validation experiment with use of creatinine solution and Membrane 1 was also

conducted in hemodiafiltration mode (applying TMP). However, due to tight

structure of the skin-layer in the particle free membrane the convection was limited

even at high pressures, therefore, the convective term had a negligible contribution

to over mass transfer during the experiment. Consequently, the result of this

experiment were almost identical to the one with diffusive transport only; thus, these

results are not presented here.

As it was aforementioned, Membrane 1 was found to be impermeable for

α-lactalbumin, therefore this membrane was not suitable for model validation

experiments with use of middle sized solutes.

The first validation experiment with use of α-lactalbumin solution and Membrane

2 was performed in diffusive regime. Due to poor diffusivity of the protein, during

the four-hour experiment no noticeable concentration reduction in the feed side was

observed. This outcome was theoretically predicted by model, which demonstrated

that at chosen conditions the removal of α-lactalbumin is negligible both by diffusion

and adsorption. Therefore, the results of this trial are also not presented here.

In order to evaluate the validity of developed model with respect to middle sized

solutes, a second experiment was conducted with use of Membrane 2 and

α-lactalbumin at TMP of 0.5 bar. Applied pressure difference across the membrane

resulted in the convective flow of 3.38× 10�6 m s�1. The results of the second

experiment and their comparison with model are presented in Figure 5.10.

According to Figure 5.10, the diffusive+convective removal of α-lactalbumin as in

previous validation experiments is in perfect agreement with theoretical prediction.

Thanks to significant convection rate, the removal of 2 mg of α-lactalbumin was

achieved within four hours of experiment. In addition, the adsorptive removal of

0.47 mg was observed after half an hour from the process start, and was not

changing throughout the remaining time. This observation indicates that alike the

first experiment, the saturation of adsorptive particles was achieved at early stage of
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Figure 5.10: Results of validation experiment 2 vs theoretical prediction.

the process. Fast saturation may be attributed to the presence of convection, which

enabled facilitated transport of protein towards the surface of activated carbon. This

hypothesis was supported by “snapshot” analysis, which demonstrated that

convection provided 837% solute transport acceleration in the beginning of the

process, while presence of the adsorptive layer resulted in 71% of protein removal

facilitation. Finally, the cumulative effect of MMM and convection enabled 9.4

times greater solute removal rate than one may expect from solely diffusion-based

process.

Since during the experiment 2 the saturation MMM was achieved, it was possible to

modify the model with use of “Membrane limiting adsorption capacity” parameter.

Based on the experimental result the input value of 8.1 µg of α-lactalbumin per

1 mg of membrane was taken. The comparison between validation experiment 2 and

modified model is presented in Figure 5.11.

According to Figure 5.11 the modified model more precisely describes adsorptive

removal of α-lactalbumin, and, consequently, the total elimination of protein is more

accurately predicted. In particular, the saturation of adsorbent was reached after

30 min of experiment, and the remaining time α-lactalbumin was happening mainly

due to convection and partially due to diffusion.
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Figure 5.11: Results of validation experiment 2 vs theoretical prediction accounting
saturation of the adsorbent.

Based on conducted validation experiments, the developed model demonstrates

precise prediction of solute removal at the early stage of the process (less than one

hour), which is in the agreement with the assumption that the adsorption is the

first-order reaction. However, the modification of model with “Membrane limiting

adsorption capacity” parameter was required in order to account the possibility of

adsorbent saturation, which was observed in both validation experiments. Finally,

the MLAC parameter differs from the limiting adsorbent capacity, because inside

the membrane the accessibility of the adsorbent is lower than in the free state,

therefore, it can be evaluated only experimentally for each membrane type.

4 Conclusion

The concept of double layer membranes aiming the improvement of removal of

blood toxins is a promising advancement of dialysis treatment. In the present study

we presented the model which allows more in-depth analysis of interplay of three

solute removal mechanisms: diffusion, convection, and adsorption. The model was

validated via comparison of model predictions with outcome of experimental testing

of home-made double layer mixed matrix membranes. The developed model

provides an accurate agreement with diffusive and convective removals obtained
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experimentally for both small and middle sized uremic toxins. Moreover, even a

rather simplistic approach in the modelling of adsorptive removal of toxins

(first-order reaction) provides a possibility to evaluate the amount of adsorbed

species at the early stages of treatment process. While after the occurrence of

adsorbent saturation the insertion of Membrane limiting adsorption capacity term

enables to adjust model for new circumstances. The developed model may be

further applied in the optimization of double layer membrane properties and the

process conditions.
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The present work was realized in the frame of international project BioArt, which

was focused on the development of new approaches in kidney and liver failure

treatments. One of applied strategies was to develop and to optimize the novel

membranes with improved properties, such as biocompatibility (lower protein

adsorption on the membrane surface), better removal of toxins etc. This particular

thesis was focused on the development of methods to control the removal and

adsorption of the middle sized uremic toxins in artificial kidney. The primary

motivation for this study emerges from the fact that these compounds are poorly

removed in modern clinically accepted blood purification techniques. While the

accumulation of middle sized uremic toxins in the patients with the lapse of time

leads to the new diseases, which negatively influence the quality of their lives.

Secondly, the clinical blood purification (hemodialysis) is associated with frequent

contact between the blood and the synthetic filters (membranes). This contact

normally results in the adsorption of blood components on the surface of the

membrane, which may lead to adverse side effects related to the membrane

biocompatibility such as blood coagulation, complement activation, blood cells

adhesion etc. Therefore, both highlighted problems needed to be addressed and new

solutions are required to make the lifesaving hemodialysis technique one step closer

to the adequate replacement of the functions of native kidney.

Firstly, the conventional methods of investigation of adsorption on the membrane

surface (membrane fouling) include macro approaches, such as the permeate flux

measurements or/and control of the transmembrane pressure. However, these

methods provide information about the macro scale, while no data is obtained

concerning the scale of an isolated fiber inside the hemodialysis module. Therefore,

the first part of the present work was focused on the characterization of the novel

transparent membrane-based microfluidics device (MMD), which was developed in

order to transfer the investigation of membrane fouling to the micro scale. Firstly,

the membrane permeability inside the developed MMD was compared to the

macroscale set-up and almost identical values were obtained:

562±53 L m�2 h�1 bar�1 and 541±37 L m�2 h�1 bar�1, respectively. This result

demonstrated that the membrane-based filtration can be downscaled in the MMD

without loss of membrane productivity per unit of filtration surface. Then, to benefit

from the MMD's transparency, it was coupled with fluorescent microscopy, which

allows the real-time monitoring of the membrane surface during the contact with

fluorescent species. During the coupling optimization, the influence of various

microscopy-related parameters on the fluorescence measurements were investigated.
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As an outcome of this analysis, it was demonstrated that even 250 µm displacement

of focus from the membrane surface in both directions along the Z-axis (normal to

the membrane surface) does not have a significant influence on the recorded

intensity of the fluorescent signal. Moreover, it was discovered that neither the

signal coming from the solution of labelled protein nor one from the adsorbed

protein on the internal glass surface of the MMD affect the precision of the

acquisition of signal from the membrane surface. As so, the only parameter

deserving the careful control is the exposure time, which has to be adjusted

depending on the fluorescent tag and the concentration of dissolved species. Then,

the MMD was applied for the preliminary real-time study of adsorption of

fluorescently labelled Bovine Serum Albumin (BSA) on the surface of membrane,

fabricated from polyethersulfone, which is common material of hemodialysis

membranes. The BSA was chosen for this test in order to be sure to have the protein

deposition on the membrane surface; the protein (Molecular weight = 66 kDa) is

totally retained by the membrane with molecular weight cut off 50 kDa. Moreover,

albumin is one of the most abundant proteins in blood, and, therefore, it is important

to know how this protein interacts with the material of artificial kidney. The

application of MMD allowed to discover that adsorption of BSA is a

reaction-limited process, meaning that diffusion towards the surface is significantly

faster than the reaction on the surface. Moreover, it was demonstrated that

depending on applied transmembrane pressure, there is a possibility to observe

different extent of fouling (intensity of fluorescence) along the membrane.

Particularly, if transmembrane pressure (TMP) is close to zero, it seems that the

pressure drop inside the retentate compartment plays a noticeable role in distribution

of fluxes inside MMD, which leads to higher accumulation of protein at the inlet

part and to lower accumulation at the outlet. In addition, during the filtration

experiments (TMP > 0) it was found that the evolution of gray values (the unit of

fluorescent intensity) correlates with the permeate flux decline in the beginning of

the experiment, where the primary contact between membrane and protein occurs.

However, once the minimal value of filtrate flux is reached, it remains unchanged,

while the gray value continue to increase a bit. The nature of this disagreement was

not clearly understood and requires additional study. Finally, the analysis of

obtained results through the generally accepted film theory revealed that the most

favoring conditions for the protein accumulation are the ones with highest Pe

number.

The developed MMD was then used for the analysis of membrane fouling at
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different hydrodynamic and pressure conditions applied for the filtration of solution

of fluorescently labelled small size protein (α-lactalbumin). The choice of protein

was dictated by its similarity in size and isoelectric point to the main marker

(β2-microglobulin) of middle sized molecules removal during hemodialysis

(artificial kidney) and availability of α-lactalbumin. The obtained results suggested

that unlike the adsorption of BSA the adsorption of α-lactalbumin at TMP≈0 is

dependent on the feed flow rate. Particularly, the greater feed flow rate is, the more

noticeable accumulation of α-lactalbumin is observed. This observation is related

either to the higher extent of protein unfolding at higher shear stress or to the

thinning of the boundary layer at greater feed flow rates, which in turn would imply

the diffusion-limited adsorption. In addition, the observed difference in the

fluorescent signal recorded from different parts of the MMD during the experiments

at TMP≈0, suggest that the pressure drop along the microchannel also influences

the adsorption of α-lactalbumin-Atto647N. However, this difference vanishes at low

feed flow rates, because the pressure drop becomes too small to have a noticeable

impact on the distribution of accumulated protein. Moreover, the surprising

observation was done during the application of transmembrane pressure (shifting to

filtration conditions). A lot of strange unexpected dark zones were formed, which

were not detected neither during experiment with BSA-FITC (at all studied

conditions) nor during fouling experiments with α-lactalbumin-Atto647N at

TMP≈0. It was hypothesized that their formation is governed by the phenomena

called aggregation-caused fluorescence quenching (ACQ), which takes place when

π-electrons of neighboring fluorescent tags start to interact leading to the

annihilation of the fluorescent light emission. In addition, two factors were found to

be determining in the membrane fouling during the filtration experiments. Firstly, it

is the ratio between axial convection (directed tangentially to the membrane surface)

and the transmembrane drag force. It was estimated that there is a critical value of

this ratio (between 12.4 and 25), below which the supersaturation of solution is

achieved rapidly which leads to a uniform coverage of membrane surface with ACQ

zones. While above this critical value, the attainment of supersaturation requires

more time, which results in progressive increase of surface coverage with ACQ

zones from the inlet towards the outlet. Secondly, analysis of obtained results

through the film theory demonstrated that the fouling induced by

α-lactalbumin-Atto647N is more severe at processes with higher Pe numbers.

Finally, the comparative study of α-lactalbumin adsorption on polyethersulfone and

novel SlipSkinTM membranes demonstrated the lower propensity of latter material
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to interact with protein, suggest it as a promising candidate for fabrication of

membranes for biomedical application. The obtained results shed the light on the

membrane fouling induced by middle sized molecules at the microscale during the

use of artificial kidney. Therefore, this knowledge may be used for the optimization

of operating conditions and membrane materials for currently used artificial

kidney.

The development of a mathematical model, which describes the toxin removal from

the blood stream using functionalized double-layer membrane, was then

investigated. The model combines three solute removal mechanisms: diffusion,

convection and adsorption. Therefore, it allows more in-depth analysis of interplay

of three solute removal mechanisms happening simultaneously. The model was then

validated by comparison of model predictions with outcome of experimental testing

of home-made double-layer mixed matrix membranes. The comparison revealed

that even a rather simplistic approach in the modelling of adsorptive removal of

toxins (first-order reaction) provides a possibility to evaluate the amount of adsorbed

species at the early stages of treatment process. However, since the possibility of

adsorbent saturation was not initially considered, the insertion on a new parameter

“Membrane limiting adsorption capacity” is required in order to adjust model for

new circumstances. As so, the developed model illustrates how the proposed

double-layer membrane concept offers significant benefits in terms of toxin removal

in comparison to conventional dialysis. Finally, the main achievement of the

developed model is that it may serve as tool for the further improvement of

functionalized membrane in terms of toxin removal and optimization of process

conditions.

As further developments of this thesis, several directions may be proposed.

Firstly, the developed microfluidics device may be further optimized. At the current

form, it resembles the micro cross flow filtration unit, where permeate compartment

has only one exit. From the blood purification point of view, this design is a

miniaturized version of hemofiltration, which as it was discussed in Chapter 1 is not

the most optimal technique. In contrast, addition of one outlet in the permeate side

of the MMD would allow to perform the filtration process at counter-current mode,

which would bring research closer to micro hemodialysis and

hemodiafiltration.

Concerning the application of fluorescent microscopy in the investigation of protein

accumulation on the membrane surface, several points are still to be clarified. Firstly,
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it is important to evaluate whether the recorded fluorescent signal comes from the top

layer of the deposit or from its entire thickness or maybe there is a specific depth of

the deposit which can be analyzed. This knowledge would provide an opportunity to

understand the correlation between the reduction of membrane permeability and the

recorded gray values.

Secondly, there is an interest in developing a method to correlate the fluorescent

signal with the quantity of adsorbed protein. Aiming to progress in this direction,

one of additional tasks would be to investigate the influence of fluorescence

quenching phenomena on this quantification. This need emerges from our

observation that over the course of filtration α-lactalbumin tends to form specific

dark zones, which are believed to be related to its aggregation. In addition, if this

assumption is correct, and considering the premise that aggregates are highly

concentrated it would be an intriguing advancement to determine at which critical

local concentration these aggregates are formed.

Lastly, in this project it was found that conventional film theory could not explain

the outcome of BSA filtration at relatively slow feed flow rate and intensive

transmembrane flux (Figure 3.20). More significant protein accumulation was

located at the inlet of the system and less significant at the outlet, while the film

theory suggests absolutely the opposite scenario. Therefore, the additional study is

required to obtain a better understanding of mechanisms, which are governing such

distribution of fouling along the membrane.

Some additional modifications could also be made in order to improve the developed

mathematical model. Firstly, our model demonstrated its potential for the evaluation

of removal of small and middle sized uremic toxin. However, it is not able to model

the removal of protein-bound toxins. In fact, the toxins belonging to this group are

present in the blood of patients both in the protein-bound and the free forms and

the ratio between these forms is described by the association constant. Taking into

account that only non-bound molecule may be transferred through the membrane,

the model can be “equipped” with a term, which would calculate the free fraction

of protein-bound toxin at a given time. In such case, the model would be able to

simulate the dissociation of protein-molecule complex in response for the continuous

removal of the free fraction of the toxin.

Besides, the blood is multicomponent solution, while our model was developed and

validated only for mono component solutions. Therefore, aiming to make the model

closer to real biological system, it could be expanded in the way that the removal of
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several toxins can be predicted simultaneously. Finally, based on conducted

validation experiments, the adsorptive particles are getting saturated over the course

filtration. Therefore, the assumption that the adsorption is a first order reaction is

applicable only at the beginning of the process. As so, the sink term (adsorptive

removal) in the model could be changed from the first-order to Langmuir-like form,

so that the progressive saturation will be accounted.

At the end of this manuscript, it could be stated that the developments done during

this project may be applied in other membrane-based applications. For example,

the developed mathematical model may be applied to study other systems where

diffusion, convection and adsorption (reaction) are taking place in the same time.

Talking about the novel membrane-based microfluidics device, it can be pointed out

that its application may go beyond protein filtration. It may be used to downscale

any other kind of liquid separation. Hence, its development can be considered as

a benchmark for transferring the studies of membrane-based processes to the micro

scale with an opportunity to monitor its progress in the real time.
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The complete expressions for pseudo mass transfer conductances (Ki,j), which are

used in Section 1.2, have the following form:

K1a =
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Detailed solution of the differential equation Equation 5.4, which describes the

combined diffusive, convective, and adsorptive solute removal mechanisms. The

initial equation to solve:

D
d2c

dx2
− J dc

dx
− akc = 0
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Medium sized molecules clearance through artificial kidneys

Despite a long history of development, the hemodialysis procedure (artificial kidney) still possesses some limitations,
such as loss of the initial properties of the membrane due to fouling and poor removal of the middle sized uremic
toxins.

The present study is part of an European project named BioArt the aim of which was to overcome these
limitations. In that objective, one of the partners of BioArt project reported on the development of the novel
promising concept of double layer membrane with embedded adsorptive particles. A thorough characterization of
the new membrane was then necessary, more precisely the extent to which mixed matrix layer can improve the
removal of the uremic toxins from various groups needed to be evaluated, as well as the propensity of the membrane
material to become fouled.

The studies of the fouling phenomena are conventionally performed at the macro scale (bundle of hollow fibers)
without insights of what is happening at the scale of an isolated fiber. Therefore, the primary aim of the present
Thesis was to transfer the research of the protein-induced membrane fouling from the macro to the micro scale.
A novel transparent microfluidics device with the polymeric membrane inside has been developed and applied for
the filtration of model proteins: bovine serum albumin (BSA) and α-lactalbumin. Thanks to the coupling of the
microchip with the fluorescent microscopy, different patterns of protein deposition on the membrane surface were
observed and related to the variations in the hydrodynamic conditions inside the microchip. It was found that at
certain conditions one may observe the difference in protein accumulation in the inlet, the middle, and the outlet of
the channel while at other conditions this effect vanishes. Additionally, the unexpected phenomena of α-lactalbumin
aggregation was observed over the course of filtration. The location and shape of the aggregates were also dependent
on the hydrodynamic conditions and the applied transmembrane pressure.

Aiming to address the problem of membrane design optimization for the enhancement of the middle molecules
elimination from the bloodstream, a mathematical model, which accounts for the presence of adsorptive particles
inside the complex double-layer membrane, has been proposed. The objective of the model was to understand the
interplay of three solute removal mechanisms: convection, diffusion, and adsorption. The model allows predicting
the influence of various parameters such as molecule diffusivity, membrane thickness, the presence of convection,
content of adsorptive particles on the flux intensification across the membrane. The developed model seems to be
a useful tool, which may be applied to design optimized membranes for the removal of toxins.

Keywords: Hemodialysis, Microfluidics Device, Membrane Fouling, Protein Adsorption, Mass Transfer Model

Clairance de molécules de taille moyenne à travers un rein artificiel

Malgré une longue histoire de développement, l’hémodialyse (rein artificiel) possède encore quelques limitations,
telles que la perte des propriétés initiales de la membrane en cours de traitement à cause du colmatage et la
mauvaise élimination des toxines urémiques de taille moyenne.

La présente étude fait partie d’un projet européen nommé BioArt dont le but est d’apporter des solutions à ces
limites. Dans cet objectif, l’un des partenaires du projet a proposé le développement d’un nouveau concept de mem-
brane double couche au sein de laquelle sont incorporées des particules adsorbantes. Une caractérisation complète
de cette nouvelle membrane était alors nécessaire, plus précisément l’impact de la matrice mixte sur l’élimination
des toxines urémiques de divers groupes devait être évalué, ainsi que la propension du matériau membranaire à se
colmater.

Les études des phénomènes de colmatage sont classiquement menées à l’échelle macroscopique (faisceau de fibres
creuses) sans analyse à l’échelle d’une fibre isolée. Le but premier de la présente thèse a alors été de proposer un
dispositif permettant une étude du colmatage membranaire induit par la protéine à l’échelle microscopique. Un
dispositif microfluidique transparent dans lequel la membrane polymère est insérée a été élaboré et mis en œuvre
pour la filtration des protéines modèles : l’albumine de sérum bovin (BSA) et l’α-lactalbumine. Grâce au couplage
avec la microscopie de fluorescence, différents modes d’adsorption des protéines sur la surface de la membrane ont
été observés et liés aux variations des conditions hydrodynamiques à l’intérieur de la puce. Il a été constaté, sous
certaines conditions, une différence dans l’accumulation de protéines entre l’entrée, le centre et la sortie du canal
tandis que dans d’autres conditions cet effet s’annule. En outre, un phénomène inattendu, l’agrégation de l’α-
lactalbumine, a été observé au cours de la filtration. La localisation dans le canal et la forme des agrégats dépendent
également des conditions hydrodynamiques et de la pression transmembranaire appliquée.

Dans le but d’optimiser la conception de la membrane vis à vis de son aptitude à éliminer des molécules de taille
moyenne de la circulation sanguine, un modèle mathématique a été proposé. L’objectif du modèle était, en prenant
en compte la présence de particules adsorbantes à l’intérieur de la membrane double couche, de rendre compte de
la combinaison des trois mécanismes d’élimination du soluté : la convection, la diffusion et l’adsorption. Le modèle
permet de prédire l’influence de divers paramètres tels que la diffusivité de la molécule, l’épaisseur de la membrane,
la présence de la convection, la charge en particules adsorbantes, sur l’intensification des flux à travers la membrane.
Le modèle semble être un outil utile pouvant être appliqué à l’optimisation de membranes pour l’élimination des
toxines.

Mots clés: Hémodialyse, Dispositif Microfluidique, Colmatage de la Membrane, L’adsorption de la protéine, Modèle
de transfert de la masse.
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