
   

         M :

Université Toulouse III Paul Sabatier (UT3 Paul Sabatier)

Sciences de l'Univers, de l'Environnement et de l'Espace (SDU2E)

The influence of invertebrate and microbial cross-community interactions 
on the nitrate removal function in the hyporheic zone

       Lundi  20 Juin 2016
Jingmei YAO

Ecologie fonctionnelle

Arturo ELOSEGI, Professeur, University of the Basque Country
�Christophe PISCART, Chargé de recherche, UMR 6553 (CNRS)-ECOBIO 

Magali GERINO, Professeur, UMR 5245 (CNRS-UPS-INPT)-EcoLab

UMR5245 (CNRS-UPS-INPT)-Ecolab-Laboratoire d'écologie fonctionnelle et Environnement 

José-Miguel SANCHEZ PEREZ, Directeur de recherche, UMR 5245 (CNRS-UPS-
INPT)-EcoLab

Magali GERINO, Professeur, UMR 5245 (CNRS-UPS-INPT)-EcoLab



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 



 

 

 

 

 

 

 

 

 

 

Influence des interactions entre les communautés 

d'invertébrés et de micro-organismes dans la fonction de 

rétention du nitrate dans la zone hyporhéique en milieu 

riverain 
 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 



 

1 

 

Acknowledgements 
 

This thesis work was completed at the UMR Ecolab "Laboratoire Ecologie 

Fonctionnelle et Environnement", within the Doctoral School SDU2E "Sciences of the 

universe, environment and space". First of all, I would like to thank the two successful 

management teams. This work was supervised by Magali GERINO within the BioRef team 

"Biodiversity, Trophic web and fluxes in aquatic systems". I would like to thank her, 

because many achievements of this work would not have been possible without the great 

contribution she had shown throughout my thesis. Her availability, energy and support 

enabled me to overcome the obstacles. My great thanks go to the amazing jury team in my 

big event, especially to Arturo ELOSEGI and Christophe PISCART for having agreed to 

review my work and further polished it with nice suggestions, and Jose-Miguel 

SANCHEZ-PEREZ who accepted the presidency in the defence jury board. I also thank 

Michele TACKX, Alain DAUTA and Fanny COLAS for their great helps in both my study 

and life. Claudine, Sabine, Frederic.J, Evelyne, Frederic.A, Frank, Antoine, are also 

thanked. I also appreciate my student colleagues, even office mates, their presence during 

my PhD, like Yang, Magali B., Maiwen, Marjorie, Sophie, Anthony, for the moments we 

spent together with the same goal, sharing the joys and difficulties of a thesis. I thank 

Leonardo, Xiaolin, Samuel and Cecilia with whom I spent these years in very nice projects 

including interesting fieldwork with pleasure! Additionally, a special thank goes to my 

Chinese friends: Rui SANG, Ran ZHAO, Tian ZHAO, Jianwei GUO, Tiantian XIONG, 

GANG WANG, Xue BI, Yingying GU, Xinqiang YOU, Jin WANG, Jin Huang, Xue LIU ... 

for the joys during our lives and studies in France. 

Finally, I would like to thank my family, especially my parents. In particular, a big 

thank you is given to my husband HAN Le! 

 

 

 

 

 



 

2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

3 

 

Résumé de la thèse  

L’objectif de cette étude est de mieux comprendre comment la biodiversité influence 

le service de purification de la qualité de l’eau en tant que service de régulation capable 

de limiter la charge en polluants de l’eau naturelle. Peu d’études ont regardé comment les 

invertébrés (macro- et méio-faune) sont capables d’influencer le fonctionnement de la 

zone hyporhéique considérée, comme un réacteur biogéochimique contribuant largement 

au recyclage des nutriments. L’élimination du nitrate et la dénitrification sont utilisés 

comme indicateur de ce service dans les rivières afin de pouvoir suivre son évolution 

spatiale et temporelle. Dans cette thèse, la relation fonctionnelle entre le taux de 

réduction des nitrates et les organismes participant à l’expression de ce service est testée 

à différentes échelles d’étude allant du microcosme jusqu’à l’habitat hyporhéique d’un 

méandre de large rivière, la Garonne. Cette relation est mise en évidence dans une série 

de colonnes d’infiltration reproduisant le lit de rivière avec sa communauté benthique 

(projet Inbioprocess). Dans cette expérience, un gradient de biodiversité a été créé avec 

des combinaisons de communautés +/- biofilm, +/- méiofaune et +/- macrofaune pour 

tester leur influence sur l’élimination du nitrate avec et sans pesticides dans le cadre du 

projet Inbioprocess. Les résultats suggèrent l’influence des interactions entre 

communautés, sur le taux de réduction des nitrates qui est supérieur quand les invertébrés 

sont présents (11.8 ± 1.2) par comparaison avec les conditions sans invertébrés (7.7 ± 1.4 

mg N l-1d-1 ; moyenne ± erreur standard (m ± ET)).  

Ces interactions ont également été suggérées comme favorisant le retour de la 

capacité de réduction des nitrates en présence de pesticides, utilisé comme source de stress, 

dans l’eau des microcosmes. Ces résultats de laboratoire montrent l’influence des 

interactions trophiques et non trophiques entre les différents niveaux trophiques de ce 

réseau, avec probablement l’implication des espèces les plus résistantes pour expliquer la 

capacité potentielle de résilience du système. L’existence de cette relation fonctionnelle de 

type “top-down” a ensuite été explorée en conditions in situ. Les taux de rétention mesurés 

dans 9 cours d'eau européens (projet STREAMES) ont été estimés à l'échelle du tronçon de 

rivière à 1.64 ± 2.39 (m ± ET) mg NO3
--N m-2.min-1. L’influence des communautés 

d’invertébrés sur le taux de réduction des nitrates se révèle statistiquement comme aussi 
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importante que celle des facteurs physicochimiques dans l’ensemble des tronçons 

explorés. L’étude des traits biologiques des communautés d’invertébrés a permis de 

préciser le type de communauté le plus corrélé aux processus d’élimination des nitrates. 

Ces organismes sont majoritairement interstitiels vivant dans les sédiments grossiers et 

avec des modes d’alimentation de type brouteurs de biofilm. Dans la zone hyporhéique 

de la zone humide alluviale de Monbéqui (projet Attenagua), la corrélation positive de la 

communauté d’invertébrés avec le taux de dénitrification a été seulement visible pendant 

automne. Cette période est considérée comme un moment propice pour l’observation de 

la relation diversité-fonction dans ce milieu. Ce moment arrive après une longue période 

de stabilité hydrologique et de faible débit dans la zone hyporhéique, quand les effets 

biologiques dépassent alors le contrôle exercé par l’hydrologie. Dans ce méandre, des 

gradients spatiaux de diversité d’invertébrés (Shannon de 0,6± 0.06 à 1,25 ± 0.1; m ± ET), 

du taux de dénitrification potentielle (de 0,5 ± 0, 14 à 13,6 ± 4,0 µg N2O-N h-1.g OM-1), de 

l’oxygène dissous, et des concentrations de carbone organique dissous, nitrate, et 

ammonium ont été enregistrés. Ces gradients permettent d’identifier les zones propices à 

l’expression de cette relation biodiversité – fonctions de l’écosystème (BEF) au niveau la 

ripisylve où la diversité des invertébrés et les taux de dénitrification sont élevés et sous 

faibles pressions des pesticides agricoles. Enfin une corrélation positive générale a été 

trouvé sur l’ensemble des saisons entre les compositions des communautés microbiennes 

et invertébrées. Finalement, ce travail a permis de démontrer l’existence d’une possible 

relation positive entre la diversité des communautés d’invertébrés, en terme de niveaux 

trophiques impliqués, et la fonction de réduction des nitrates dans la communauté d’eau 

souterraine, comme dans les tronçons de cours d’eau. L’influence de la diversité de 

méiofaune comme celle de la macrofaune sur le métabolisme et la diversité microbienne 

du biofilm est soulignée pour la régulation de la fonction de réduction des nitrates dans 

les sédiments des petits cours d’eau et dans la zone hyporhéique d’une rivière.  

Mots clés : Service d’épuration de l’eau, cycle des nutriments, zone hyporhéique, 

réduction des nitrates; biodiversité des niveaux trophiques, communautés d’invertébrés, 

macrofaune, méiofaune 
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English abstract of the thesis 

This PhD study aims to understand how the biodiversity influences the water 

purification processes in the hyporheic zone of running water, as an important regulating 

service that reduces the quantity of pollutants in freshwater ecosystems. Few studies have 

focused on how the invertebrate community influences the functioning of hyporheic zones, 

which are considered as a biogeochemical reactor that largely contributes to nutrient 

cycling capacity of the rivers. Nitrate retention or denitrification functions in hyporheic 

zones are used as indicators for the water purification service. The relationship between 

the nitrate removal function and its associated biodiversity was tested at different scales 

from indoor microcosms to in-stream reaches and the hyporheic habitat of a large river 

(Garonne) meander, under natural and stressful conditions.  

First, the linkage between invertebrates and the nitrate (NO3
-) removal function was 

given in evidence in a series of infiltration columns that mimicked the riverbed 

conditions with its benthic communities. A gradient of community diversity was created 

with biofilm, meiofauna and macrofauna communities’ combination in different 

treatments. It enabled to test the influence of the invertebrate community on the NO3
- 

removal rates with and without pesticides during the Inbioprocess project. The results 

implied the influence of invertebrate and microbial cross-community interactions on NO3
- 

removal rates, which was higher with invertebrate communities in the sediments (11.8 ± 

1.2) than without (7.7 ± 1.4 mg N.l-1
.d-1). These findings suggested a top-down control of 

invertebrates on the microbial activities.  

These interactions were also depicted at the source of the recovery of the NO3
- 

removal capacity when facing stressful conditions due to addition of pesticide in the 

experimental water. These laboratory findings highlighted the importance of multi-trophic 

level interactions in the hyporheic habitat, with probable implication of the more resistant 

species in the resilience capacity of this system. The occurrence of the top-down linkage 

was then explored in in situ habitats. The NO3
- removal rates measured at the reach scale in 

9 European streams during the STREAMES project ranged from 0.04 to 10.75 with an 

average of 1.64 ± 2.39 mg NO3
--N m-2.min-1 (Mean ± SE). The results suggested that not 

only physico-chemical and hydrological factors, but also macro-invertebrate assemblages 
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may influence nitrate removal. Some functional groups positively correlated with nitrate 

reduction were biofilm grazers and interstitial organisms associated with macro-porous 

substrate. In the hyporheic water of Monbequi meander of the Garonne river, the positive 

correlation between invertebrate diversity and the potential denitrification rates was only 

visible during the autumn season, suggesting a potential “hot moment” for the observation 

of this correlation between biodiversity and ecosystem function in fields. This moment 

occurs after a long period of hydrological stability and low discharge, when the biological 

effects might overweight hydrological effects on ecosystem functions. In this meander, 

significant spatial gradients of invertebrate diversity (Shannon ranging from 0.6± 0.06 to 

1.25 ± 0.1), potential denitrification rates (ranging from 0.5 ± 0.14 to 13.6 ± 4.0 µg N2O-N 

h-1.g OM-1), dissolved oxygen, dissolved organic carbon, ammonium ion and nitrate 

concentrations, and conductivity were recorded. They permit to identify “hot places” for 

high biodiversity and denitrification rates, with low pesticide pressure and under the 

riparian forest. An overall positive correlation between invertebrates and bacterial 

community compositions was found over the four seasons. 

Overall, this work shows the existence of the positive relationship between the 

interactions of invertebrate and microbial cross-community in terms of the trophic level 

composition and the function of nitrate removal. The relevance of the meiofauna and 

macrofauna for the nitrate reduction function was highlighted in the hyporheic zone of 

meanders and riverbed sediments of stream reaches.  

 

Key words: Water purification service, nutrient cycling, nitrate reduction, vertical 

biodiversity, invertebrate community, hyporheic zone 
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I.1 Résumé du chapitre I 

Les services écosystémiques sont les processus par lesquels les écosystèmes et leurs 

espèces procurent des bénéfices à la société (Daily, 1997). Le concept de services 

écosystémiques a suscité un intérêt grandissant par sa capacité à connecter les fonctions 

des écosystèmes au bien-être des populations humaines (MA, 2005). En effet, l'évaluation 

biophysique des services écosystémiques et la mise en évidence de leur valeur sociétale 

peut faciliter le transfert des connaissances scientifiques dans une forme plus facilement 

ou plus largement accessible vers l’ensemble des parties en charge de la gestion de ces 

milieux naturels (Griebler et al., 2014). 

Les services écosystémiques comprennent les services d'approvisionnement tels que 

la nourriture et l'eau; les services de régulation tels que le contrôle des inondations et des 

maladies et la réduction des déchets; et les services culturels tels que les identités 

culturelles et spirituelles (MA, 2005).  

Dans le service de réduction des déchets terrestres et aquatiques, une partie de ce 

service est associée à la régulation de la qualité de l’eau, encore dénommé le service de 

purification naturelle de l'eau dans les écosystèmes d’eaux courantes et stagnantes.  

Plusieurs indicateurs de ce service sont utilisés dans la littérature pour mettre en 

évidence son évolution en conditions naturelles ou sous l’effet de pressions anthropiques, 

telles que le taux de réduction des nitrates, la qualité de l’eau (Layke, 2009; Maes et al., 

2012) ou le niveau de naturalité du lit des rivières (Albert et al., 2015). Dans ce chapitre 

d’introduction, une synthèse bibliographique présente l'état de l'art sur les relations entre 

la Biodiversité et les Fonctions Ecosystémiques (BEF) et leur implication dans les 

services écosystémiques. Plus particulièrement, le service de régulation de la qualité de 

l’eau est examiné dans les écosystèmes d’eau courante au niveau des processus à 

l’interface eau-sédiment ou encore dans les sédiments macro-poreux de la zone 

hyporhéique. Ces sites sont des bioréacteurs naturels jouant un rôle de réduction des 

polluants qui circulent dans l’eau naturelle. La biodiversité vivant dans ces milieux est 

représentée par des communautés composées majoritairement de micro-organismes et 

d’invertébrés dans des réseaux trophiques de type majoritairement détritique. C’est la 

relation existant entre cette biodiversité et la fonction de réduction des nitrates qui est 
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étudiée dans cette thèse comme processus « modèle » impliqué dans le service 

d’auto-épuration de l’eau.  

Actuellement, le déclin de la qualité de l'eau est devenu un enjeu de préoccupation 

mondial. Le service de purification de l'eau est le seul service naturel de régulation qui 

contribue à l'amélioration de la qualité de l'eau. Les excès de nutriments et de matière en 

suspension et les polluants tels que les métaux sont filtrés, dilués, adsorbés et/ou 

biotransformés dans les sédiments quand l'eau coule à travers les zones humides, les 

rivières et les plaines inondables. Ce processus de purification réduit la pollution de l’eau 

pour les secteurs en aval. En retour, si on considère une relation positive entre la 

biodiversité et le service d’épuration de l’eau (Loreau et al., 2001; Tilman et al., 2001; 

Hooper et al., 2005; Balvanera et al., 2006), alors une eau de meilleure qualité, en apportant 

les conditions de conservation de la biodiversité, devrait favoriser la fourniture du service 

d’épuration. Compte-tenu de la demande d'amélioration de la qualité de l'eau par la 

directive cadre Européenne sur l'eau (DCE) et l'influence de la qualité de l'eau sur la santé 

humaine, la compréhension des processus à l’origine du service de purification de l'eau est 

cruciale. 

Aujourd'hui, il est reconnu que les caractéristiques environnementales 

(géomorphologiques, physico-chimiques, etc…) sont des conditions primordiales pour la 

durabilité des services dans les systèmes naturels (Zaccagnini et al., 2001). Toutefois, le 

rôle fondamental de la biodiversité est également reconnu pour le maintien des processus 

écologiques (par exemple, la production primaire, le recyclage des nutriments) qui 

sous-tendent les services naturels. Mais, si la connaissance des relations entre la 

biodiversité et les fonctions sous-jacentes aux différents services naturels est encore mal 

documentée (National Ecosystem Assessment (NEA), 2010), alors l’implication de la 

biodiversité dans les services d’écosystèmes avec toutes les variations spatio-temporelles 

liées aux facteurs abiotiques du milieu, est encore bien moins clairement établie. 

La biodiversité est l’ensemble des formes vivantes sur notre planète, et comprend la 

diversité génétique, spécifique et écosystémique. L'étude des relations entre la Biodiversité 

et les Fonctions d'Ecosystème (BEF) vise à relier les variations de la biodiversité avec les 

changements d'une fonction donnée. Les fonctions des écosystèmes sont des processus 

biologiques, géochimiques et physiques qui se produisent au sein d'un écosystème. Ainsi 
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l’étude des relations entre biodiversité, fonction et service naturel devrait permettre de 

prédire les conséquences de la perte de biodiversité pour la fonction associée à cette 

biodiversité ainsi que pour la fourniture du service écosystémique qui intègre cette 

fonction (Cardinale et al., 2012). La connaissance des processus biologiques et 

physico-chimiques impliqués dans l’expression des services naturels apparaît alors 

essentielle pour l'amélioration de la gestion intégrée et durable des écosystèmes et des 

prises de décision éclairées. Plusieurs modèles et hypothèses ont été explorés qui 

démontrent aujourd’hui clairement la relation entre les fonctions écosystémiques et la 

biodiversité (Díaz et al., 2006; Boulton et al., 2008 ; De Bello et al., 2010; Cardinale et al., 

2012; Quijas et Jackson, 2012). Pourtant, jusqu'à présent, relativement peu de résultats de 

recherche sont disponibles sur les mécanismes avec lesquels la biodiversité participe à 

l’expression des services naturels (Kremen, 2005). Ceci est principalement dû aux 

interactions complexes entre les différentes composantes de la biodiversité et les fonctions 

impliquées. Toutefois, la biodiversité est maintenant reconnue comme capable d’améliorer 

la capacité de résistance et résilience de plusieurs fonctions d’écosystème, et il est alors 

envisageable que cette même biodiversité participe à la résilience de certain services 

naturels face au changement global (Cardinale et al., 2012; Loreau et Mazancourt, 2013; 

Santos-Martín et al., 2013). 

Cependant, l’anthropisation de la biosphère a conduit au déclin de la biodiversité 

locale et mondiale (Vitousek et al., 1997; MA, 2005; Worm et al., 2006) et également à 

des modifications rapides dans la composition, la structure et le fonctionnement des 

écosystèmes. Si la majorité des services écosystémiques de régulation sont dépendants de 

la biodiversité, alors la capacité des écosystèmes à fournir ces services est également 

potentiellement érodée (Daily, 1997; Palmer et al., 2004). Cette pression sur les services, 

dans un contexte d’érosion rapide de la biodiversité, soulève des préoccupations majeures 

sur le maintien de la capacité des écosystèmes à réguler des phénomènes naturels (ex : 

climat, qualité de l’air, de l’eau et des sols) ainsi qu’à fournir des biens associées à ces 

services (Schläpfer et Schmid, 1999; Loreau et al., 2001; Diaz et al., 2005; Hooper et al., 

2005; MA, 2005; TEEB, 2010). Aussi, ce contexte d’érosion de la biodiversité a motivé 

une grande partie des recherches sur les relations BEF (Ehrlich et Ehrlich., 1981; Walker, 
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1992; Loreau et al., 2001; Hooper et al., 2005; Duffy et al., 2007; Cardinale et al., 2012; 

Santos-Martín et al., 2013; Science for Environment Policy, 2015). 

Cette thèse est centrée sur l’étude de la relation qui peut exister entre la biodiversité et 

les processus impliqués dans la capacité de purification de l'eau. Cette relation est explorée 

à différentes échelles, en allant de microcosmes expérimentaux aux sédiments de tronçons 

de rivière in situ et dans la zone hyporhéique d’une zone humide alluviale de la Garonne. 

Quand l’eau de surface coule à travers ces derniers écosystèmes, les processus physiques, 

chimiques et biologiques permettent la réduction de la charges en polluants. Mais, parmi 

ces processus, ceux d’origine biologiques peuvent également être modifiés sous l’effet des 

mêmes polluants, limitant ou modifiant ainsi l’efficacité du service d’épuration, avec des 

répercussions sur la qualité de l’eau en aval. Les ruisseaux et les rivières sont des systèmes 

hydrologiques connectés avec les systèmes terrestres, via les zones riveraines et les zones 

humides alluviales (Grimaldi et Chaplot, 2000; Marmonier et al., 2012). Les sédiments de 

fond de rivières, et des zones humides alluviales qui constituent la zone hyporhéique sont 

peuplés de communautés benthiques parmi lesquelles les invertébrés sont généralement 

bien développées. Ces organismes constituent un maillon important dans le réseau 

trophique, positionnés entre les ressources trophiques primaires (feuilles, algues, bactéries 

et champignons des biofilms interstitiels) et des consommateurs tels que les poissons 

(Covich et al., 1997). Mais les invertébrés peuvent également constituer des niveaux 

trophiques importants pour la mise en place de plusieurs relations fonctionnelles avec le 

biofilm telles que le broutage, le déchiquetage de la litière et le creusement de galeries dans 

le sédiment et le biofilm interstitiel. L’influence des communautés benthiques inféodées à 

ces milieux sur les processus de rétention de l’azote et des nutriments est examinée en 

introduction aux recherches menées dans cette thèse. Le rôle plus particulier des 

invertébrés composant la méiofaune et la macrofaune en tan que organismes ingénieurs 

capables d’influencer l’activité des communautés de micro-organismes du biofilm 

(eucaryotes unicellulaires hétérotrophes) est présenté.  

La diversité des invertébrés est supposée jouer un rôle important dans ce service, 

compte-tenu de la connexion intime avec les processus de reminéralisation 

microbiologique et l’ensemble des interactions possibles dans ce réseau trophique 

détritique (Jones et al., 1997; Lawrence et al., 2002 ; Mermillod-Blondin, 2011; Steif, 
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2013 ). Si l’activité microbienne sous l’influence des invertébrés est aussi capable de 

réduire la charge en pollution par dégradation ou assimilation, alors les invertébrés peuvent 

être reconnus comme agissant en tant que facilitateurs du service d’épuration (MA, 2005; 

Ostroumov, 2006; Boulton et al., 2008). En se nourrissant de biofilm vivant ainsi que de la 

matière détritique, en creusant des galeries dans l’espace interstitiel et via l’ensemble des 

activités de bioturbation, les invertébrés contribuent à modifier l'architecture du film 

microbien. Dans le même temps, l’entretien d’un réseau de galeries par ces invertébrés 

dans les sédiments, améliore l'approvisionnement en ressources qui alimentent le 

consortium bactérien et stimule ses différentes voies métaboliques (Nogaro et al., 2010). 

Ces activités, accompagnées par le broutage du biofilm vieillissant, ont donc la capacité à 

influencer à la fois l’intensité du métabolisme microbien et la répartition des différents 

métabolismes dans l’espace interstitiel (Mermillod-Blondin, 2011). De fait, l’ensemble de 

ces interactions invertébrés / consortium microbien ont certainement des influences sur le 

cycle des nutriments, du moins sur les parties de ces cycles qui prennent place dans le 

sédiment. L'effet positif de la diversité des invertébrés sur l’élimination des nutriments a 

été mis en évidence dans plusieurs expériences de laboratoire (Mermillod-Blondin et al., 

2000, 2001, 2002, 2003, 2004; Cooney et Simon, 2009;  Bonaglia et al., 2014; Liu et al., 

2014). Cependant, dans ces expériences, les relations entre la diversité des invertébrés et la 

rétention des nutriments (BEF) sont rarement observées dans des conditions in situ (Huryn 

et Huryn, 2002; Lecerf et al., 2006, Lecerf et Richardson, 2010; Vaughn, 2010; Cardinale, 

2011). En effet, la mise en évidence dans ces conditions in situ est complexe, que dans les 

conditions de laboratoire, due aux multiples sources de variations simultanées, y compris 

les facteurs de stress. Ainsi, si la démonstration de l’influence des invertébrés dans le 

service de régulation de la qualité de l’eau est importante, il apparaît tout aussi nécessaire 

de tester les sources potentielles de perturbation des fonctions réalisées par ces 

communautés et participant à ce service. En effet, si la biodiversité est impliquée dans 

l’expression de la fonction de réduction des nitrates, alors cette fonction devrait être 

impactée par les facteurs de stress connus pour la biodiversité. De plus, la mise en 

évidence de l’évolution de cette fonction cible associée au service d’auto-épuration sous 

l’influence de perturbations devrait permettre une appréciation de sa sensibilité face aux 

changements de l’environnement tels que l’arrivée de pesticides dans les eaux naturelles. 
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De même la recherche de cette relation en conditions environnementales variables devrait 

aboutir à l’identification, à terme, des conditions favorables à l’expression de ce service 

de régulation.  

Le besoin d’une meilleure démonstration de l'implication de la biodiversité des 

invertébrés en conditions in situ apparaît évident comme pour les autres compartiments 

biologiques microbiens et végétals pour une meilleure appréciation du rôle des 

organismes dans ce service de régulation. Toutefois, le transfert des approches en 

laboratoire vers le milieu naturel, pour rendre visible l’origine biologique dans ce service 

écosystémique, est difficile en conditions de variations environnementales. En particulier, 

les interactions complexes entre les facteurs abiotiques (température, nutriments, 

polluants, etc...) et des facteurs biotiques sont à l’origine de facteurs confondants qui 

peuvent masquer les liens entre la biodiversité et la purification de l'eau dans les 

écosystèmes naturels (Kremen, 2005 ; Tylianakis et al., 2008; Duffy, 2009). 

Le principal objectif du présent travail a été de comprendre la relation entre la 

diversité des organismes benthiques et le service d’épuration de l’eau dans les écosystèmes 

lotiques en conditions naturelles et en conditions de stress. Nous avons considéré la 

diversité des communautés de macrofaune, méiofaune (c.à.d. les invertébrés benthiques) et 

microbiennes et pris en compte la fonction d’abattement du nitrate comme un proxy du 

service de régulation de la qualité des eaux (Maes et al., 2012 , 2013). La fonction 

d’abattement du nitrate se produit principalement dans la zone hyporhéique, qui 

correspond à l’interface entre la colonne d’eau et les eaux souterraines. Ainsi, la relation 

diversité des communautés et la fonction écosystémique mentionnée ci-dessus a été 

explorée dans ce manuscrit dans les zones hyporhéiques d’une collection de sites de 

rivières d’ordre trois et dans la plaine alluviale d’un fleuve, la Garonne.  

Plus spécifiquement, les objectifs du mémoire ont été de : 

- tester si les interactions entre les communautés benthiques de la macrofaune, 

méiofaune et microbiennes participent à la fonction d’abattement du nitrate dans des 

conditions expérimentales contrôlées en laboratoire en présence et en l’absence d’un stress  

induit par les fongicides. Plus particulièrement, il s’agit d’étudier si la relation indirecte 

entre les invertébrées et cette fonction peut agir par contrôle top-down des invertébrés sur 

la communauté microbienne.  
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- explorer le lien fonctionnel entre la diversité des invertébrés benthiques et la 

fonction d’abattement du nitrate in situ dans le lit de petites rivières et dans la plaine 

alluviale d’un fleuve et tester ce lien en conditions contrôlées dans des microcosmes.  

- utiliser une approche par les traits fonctionnels en considérant le type de nourriture, 

le mode d’alimentation et le mode de locomotion en relation avec le substrat pour tester la 

relation entre la diversité des invertébrés benthiques et la fonction d’abattement du nitrate 

in situ dans le lit de petites rivières et dans la plaine alluviale d’un fleuve. 

- identifier les conditions environnementales in situ qui participent en lien avec la 

diversité des invertébrés benthiques à un abattement efficace du nitrate. 

Apres l’introduction générale, les 2 chapitres suivant de la thèse présentent chacun 

une double approche de cette relation en conditions expérimentales de laboratoire puis 

dans le milieu naturel. Le chapitre IV est composé de la discussion générale, la conclusion 

et les perspectives issues de ce travail. 
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I.2 Biodiversity and ecosystem functions 

An ecosystem function is an intrinsic ecosystem characteristic related to the matter 

and energy flows resulting from ecosystem processes. The various ecosystem processes 

can result from a set of interactions between abiotic elements (e.g. CO2 exchange between 

water and the atmosphere), between an abiotic element and a living one (e.g. CO2 uptake 

by primary producers) or between living organisms within the system (e.g. predation) 

(Harrington et al., 2010).  

According to the type of ecosystem, the biodiversity, defined as ‘the variety of life at 

any hierarchical level, including genes, species, functional groups and ecological diversity 

across all scales (spatial, temporal and biotic scales of organization) (Naeem, 2002)’ can be 

more or less important. 

Darwin and Wallace (1858) were already concerned with understanding the 

fundamental mechanisms that mediate the functioning of diverse ecosystems but this 

theme mainly received more attentions from in the 1990’s. Indeed, a context of consequent 

biodiversity loss has stimulated functional ecology research focusing on the Biodiversity – 

Ecosystem Function (BEF) over the past two decades (Ehrlich and Ehrlich., 1981; Walker, 

1992; Loreau et al., 2001; Hooper et al., 2005; Duffy et al., 2007; Cardinale et al., 2012; 

Santos-Martín et al., 2013; Science for Environment Policy, 2015). Hooper et al. (2012) 

showed that the effects of species loss on two important ecosystem functions (productivity 

and decomposition) are of comparable magnitude to the effects of many other global 

environmental changes, according to a suite of meta-analyses of published data. The BEF 

studies consider the contribution of biodiversity to ecosystem functions, where the main 

approach is to manipulate the biodiversity (mainly species richness) and investigate its 

consequences on ecosystem function under controlled conditions. On the other hand, there 

are also a few field surveys that investigate the biodiversity and ecosystem function 

simultaneously (rather than manipulate biodiversity) to study the relationship between 

them (e.g. Huryn and Huryn, 2002; Lecerf et al., 2006). In real world ecosystems, field 

conditions, both biodiversity and ecosystem functions may co-vary with many abiotic 

factors in different temporal and spatial patterns, and the variations of interactions between 

biodiversity and ecosystem functions are still unclear in field conditions (Tylianakis et al., 
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2008; Duffy, 2009). 

First, regarding the BEF, many studies have demonstrated the fundamental role of 

biodiversity to regulate ecosystem functions (Díaz et al., 2006; De Bello et al., 2010; 

Cardinale et al., 2012; Quijas and Jackson, 2012). As biodiversity declines, processes such 

as primary production, biomass production and nutrient recycling, are reported to be 

impaired (Cardinale et al., 2012). Meanwhile, biodiversity effects enable these processes to 

be resistant and resilient in the face of global changes (Cardinale et al., 2012; Loreau and 

Mazancourt, 2013; Santos-Martín et al., 2013). 

In fact, there are several hundreds of papers reporting more than 600 BEF 

experiments that manipulate more than 500 types of species concerning different 

ecosystem functions in different ecosystems: forest (e.g. Zhang et al., 2012; Cong et al., 

2015), grassland (e.g. Isbell et al., 2011), soil (e.g. Bardgett and Van Der Putten, 2014; 

Wagg and Bender, 2014), freshwater (e.g. Lecerf and Richardson, 2010, Vaughn, 2010; 

Cardinale, 2011) and marine systems (e.g. Worm et al., 2006; Gamfeldt et al., 2015). And 

different designs were used according to (i) laboratory or field experiments (ii) biodiversity 

manipulation (e.g. species richness, evenness, functional groups) either by experiments 

changing biodiversity through direct manipulation (substitutive or additive experiments) or 

using indirect diversity gradients (natural variations or gradients in environmental 

conditions) (iii) maximum species number (Balvanera et al., 2006).  

Three main points were drawn from reviewing these BEF studies:  

1) A positive effect of biodiversity on ecosystem functions is generally reported (Loreau 

et al., 2001; Tilman et al., 2001; Hooper et al., 2005; Balvanera et al., 2006). The 

increasing biodiversity may enhance and stabilize ecosystem functions, or buffer 

ecosystems against stresses (Duffy, 2009; Loreau, 2010; Steudel et al., 2012), 

although negative and no effects of biodiversity on functions still exist. 

2) This positive effect on any single ecosystem function is mainly reported to be 

non-linear and saturating, while the exact models to which BEF corresponds are still 

debated. Figure I-1 summarizes several models and hypotheses to explore the positive 

shape of BEF relationships (Boulton et al., 2008). Specifically, in the non-linear 

relationships, the initial biodiversity loss (X axis from right to left in Figure I-1) in 

ecosystem with high biodiversity has relative small impacts on ecosystems function, 
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but the increasing loss results to the accelerating rate of change (Cardinale et al., 

2012). 

3) Concerning the type of biodiversity, in addition to species richness, the importance of 

species composition and functional properties (e.g. traits) on ecosystem functions has 

been highlighted. Functional traits can define the role of biological communities, 

identify the key characteristics and mechanisms by which the organisms interact with 

the ecosystem properties, and demonstrate the complexity of processes and 

interactions which occur in ecosystems. Thus this approach is useful to predict the 

functional consequences of biological changes caused by human activities (De Bello 

et al., 2010; Menezes et al., 2010). 

 
Figure I-1 Predicted outcomes of contemporary hypotheses of the association of biodiversity with ecosystem 

functions (Boulton et al., 2008) 

    Despite of these progresses, there are still some shortages and debates concerning the 

following aspects of BEF knowledge (Balvanera et al., 2006; De Bello et al., 2010; 

Cardinale et al., 2012): 

1) Concerning the ecosystem type, much more studies are on terrestrial ecosystems than 

on marine and aquatic systems. Balvanera et al. (2006) inventoried, for example, 252 

studies in terrestrial and 55 in freshwaters systems between 1954 and 2004.  

2) Concerning the type of biodiversity and ecosystem functions, most studies focus on 
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primary producers, especially on higher plants and algae. 

3) Concerning the trophic levels, BEF studies are limited to one trophic level (horizontal 

diversity), only 2% BEF studies considered more than one trophic level (vertical 

diversity; mostly plants together with pollinators, soil invertebrates or 

microorganisms) (de Bello et al., 2010). Researches of BEF and trophic ecology have 

proceeded largely independently, although the incorporation of the vertical diversity 

into BEF arising from horizontal diversity changes is repeatedly suggested (Duffy et 

al., 2007; Reiss et al., 2009; Cardinale et al., 2012). Indeed, the loss of diversity across 

trophic levels is mentioned to influence ecosystem functions stronger than the 

intra-level loss within trophic levels, since food web interactions are key mediators of 

ecosystem functions (Bastian et al., 2008; Duffy, 2009; Lecerf and Richardson, 2010). 

4) Many studies are designed at small scale and under highly controlled conditions. 

Their relevance to natural ecosystems and realistic biodiversity’s decline is often 

unclear (Duffy, 2009). Indeed, in natural ecosystems, where abiotic conditions are less 

controlled, biodiversity effects on ecosystem functions can be weaker or more 

difficult to distinguish compared to that in lab, since they could be overridden by the 

stronger influences of natural abiotic factors (Balvanera et al., 2006). On the other 

hand, biodiversity effects can also be sometimes stronger, since more niche 

differences in natural conditions may enhance the biodiversity effects (Zimmerman 

and Cardinale, 2014).  

5) Multisite surveys of BEF relationship sometimes lead to controversy, since 

biodiversity at any single location, or at any particular time, usually differs from those 

at other locations and times.  

In natural conditions, the biodiversity change, the covariation between 

biodiversity-ecosystem function-abiotic factors and the different tropic levels involved 

are the realistic scenarios of research background, which are hard to mimic by BEF 

experiments (mainly considering random combinations of species, controlled abiotic 

conditions and single trophic level). Then, recognising the limits of traditional BEF 

studies, it is worthwhile to conduct simultaneous investigations of biodiversity and 

ecosystem functions in field conditions, which could provide complementary information 

compared to the abovementioned BEF studies.  
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Of course difficulties exist in these fields survey, like that abiotic factors may serve 

as confounding factors for both biodiversity and ecosystem functions; and hence the 

causes or the consequences for the change of biodiversity and ecosystem functions is 

unclear. For example, biodiversity can drive ecosystem functions while ecosystem 

functions can limit or improve biodiversity development; biodiversity and/or ecosystem 

functions can change abiotic properties; abiotic changes may cause the variation of 

biodiversity and/or ecosystem functions (Cardinale and Nelson, 2009; Hooper et al., 

2012). Specifically, regarding to the abiotic changes, biodiversity and functions may be 

both under control of chemical stresses and physical perturbations with different 

responses (McMahon et al., 2012).  

We suggest to integrate traditional BEF studies and in field investigations in studying 

the relationship between biodiversity and ecosystem functions. Such studies should:  

(1) not limit this observation to primary producer and production function but include 

other biochemical functions such as nutrient cycling; (2) consider more trophic levels 

(such as in field invertebrate and microorganism community) and expand to large scale 

experiments; (3) be explored with more efforts in aquatic ecosystems. 

Freshwater ecosystems are among the most imperilled, biodiversity losses occurring 

much faster in freshwater than terrestrial or marine ecosystems (Dudgeon et al., 2006). 

River ecosystems are suggested as one of the most complex ecological systems to be 

explored for the studies about the relationship between biodiversity and ecosystem 

functions, which can integrate more trophic levels (riparian litter producers, aquatic 

micro-fungi, macro-invertebrates, and fishes) (Lecerf and Richardson, 2010).  

I.3 Biodiversity and Ecosystem Services (BES) 

After reviewing biodiversity and ecosystem function relationships, this following 

section is dedicated to ecosystem services (ES), which can link the ecosystem functions 

to human society. Ecosystem services are the conditions and processes through which 

natural ecosystems, and the species that make them up, sustain and fulfil human life 

(Daily, 1997). Consequently, ES contribute to raise awareness of the importance of 

protecting ecosystems, and can also provide decision makers with quantitative data, 
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enabling them to consider all aspects of the socio-economic-ecological system in which 

we live (Kremen, 2005; Cardinale et al., 2012).  

A large number of studies concerning ecosystem services have been carried out over 

the last decade and major international search initiatives have formed and rapidly 

developed. The Millennium Ecosystem Assessment 2005 (MA 2005) firstly brought the 

concept and classification of ecosystem services into widespread use. Following MA, the 

Economics of Ecosystems and Biodiversity (TEEB, 2010) centring on economic 

valuation was launched. Then the Mapping and Assessment of Ecosystems and their 

Services (MAES) initiative aimed to produce a framework for ecosystem assessment to 

ensure a harmonised approach across the EU, which uses The Common International 

Classification of Ecosystem Services (CICES) for more detailed and more comprehensive 

classification of ES. The Intergovernmental Platform on Biodiversity and Ecosystem 

Services (IPBES) was established in 2012 with the aim to assess ecosystem services on a 

global level. The number of articles including “Ecosystem services” and the four main 

categories of ES are shown in Figure I-2 and I-3 respectively.  

  
Figure I-2 Number of articles including “Ecosystem services” across time in the international literatures 

(from Web of Sciences) 
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Figure I-3 Four categories of ecosystem services (MA 2005)  

The complex set of relations that exist between human stress, biodiversity, 

ecosystem function, ecosystem service and humanity is shown in Figure I-4. On one hand, 

we need to look at what is the service currently used and expected by the society 

(socio-cultural and economic sectors) (i.e. demand-side). On the other hand, the 

knowledge about the capacity of the ecosystem to generate that service (i.e. supply-side) 

should be considered. 

 
Figure I-4 A methodological framework about the complex relationships established between ecosystems 

and human, which considers both the ecosystem services delivery (supply-side) and demand from 

stakeholders (demand-side), including ecological, cultural and monetary domains. Modified from 

Gómez-baggethun et al. (2014) 
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In the supply side, biodiversity can contribute to ecosystem service delivery with 

direct links, for example: rare species with intrinsic values (this biodiversity gains great 

concern from the traditional conservation aspect) or cultivated species with direct 

economic values. The role of these types of biodiversity in the ecosystem services is well 

stated, and this biodiversity has generally benefited from substantial managements and 

protection efforts (Mace et al., 2012). 

Moreover, biodiversity can act as a regulator of ecosystem functions and then 

indirectly links to ecosystem services (Mace et al., 2012). For instance, the dynamics of 

soil nutrient cycles were demonstrated to be governed by the composition of biological 

communities in the soil, which shows the biodiversity effect on a regulation service 

(Lavelle et al., 2006). In order to show how biodiversity influences ES, it is required to 

understand how it influences ecosystem function. The large number of above-mentioned 

BEF studies (in section I.2) helps to identify what is the biodiversity involved in different 

ES and to understand how this biodiversity changes the flow of energy and material 

contributing to ES.  

It should be noticed that biodiversity may have a key role in the delivery of some 

services (e.g. pollination or soil nutrient cycling) but a minor one in others (e.g. flood 

prevention) (Mace et al., 2012). Also, biodiversity may provide only a few improvements 

to ecosystem services in a short term but provide sustainable, long-term provision of 

benefits (Science for Environment Policy, 2015). In the short-term conditions of many 

BEF experiments, without considering its influence in ecosystem stability, the importance 

of biodiversity on ecosystem functioning may be underestimated (Cardinale et al., 2012). 

Thus, long-term observation of the biodiversity effects on the resilience capacity of 

ecosystem should get more attention. This could provide a supplementary link that 

supports the direct relationship from BEF to ES (Cardinale et al., 2012; Loreau and 

Mazancourt, 2013; Thibaut and Connolly, 2013). Additionally, the complexity of the 

interactions between biodiversity and ecosystem service delivery should be noticed. Also, 

the set of interactions to be considered is largely dependent on the environmental 

characteristics of the ecosystems (Kremen, 2005; Mace et al., 2012). 

Although there are close intellectual ties between the fields of BEF and BES 

(Biodiversity-Ecosystem Service), their distinctions are evident. BEF research had 
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developed lots of experiments and mathematical theory to describe how species, genetic 

and functional diversities of organisms control ecosystem functions. Less data and 

synthesis on BES studies are so far available, in part because many services cannot be 

measured directly or manipulated experimentally. Moreover, BES studies have mainly 

been conducted at landscape scale and often focused on how major habitat modifications 

influenced ‘provisioning’ and ‘regulating’ services of ecosystems.  

 
Figure I-5 Generalized functional relationships between the levels of ecosystem services provision 

(Y-axis) and the degree of loss of biodiversity related to different land use intensities (X-axis). Adapted 

from Braat et al. (2008). R: sum of regulating services; P: sum of provisioning services; Cr: sum of 

cultural-recreation value; Ci: sum of cultural-information value (including aspects such as cultural heritage, 

education, etc.); ESL: sum of all the ecosystem services 

Figure I-5 shows a simplified diagram of how changes in biodiversity influence 

ecosystem services, considering different types and intensities of land use as a proxy for 

ecosystem perturbation. Theoretically, all ES do not show the same dependency of 

biodiversity (Science for Environment Policy, 2015). The regulation service is considered 

to be maximal with highest biodiversity (i.e. non-human disturbed ecosystems), whereas 

the provisioning service peaks at relatively low biodiversity levels. This hypothesis was in 

agreement with the spatial analysis of Maes et al. (2012) and Cimon-Morin et al. (2013). 

Indeed, maximizing production of provisioning services could substantially alter the 
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performance of other ES, and threaten biodiversity (Foley et al., 2005; Bennett et al., 2009; 

Raudsepp-Hearne et al., 2010; Cimon-Morin et al., 2013). Compared with the productivity 

service that has visible economic value, the regulation service is more likely to be given 

less priority in case of choices to be made between various ecosystem services in 

conservation or management planning.  

To sum up, concerning the three aspects of biodiversity, ecosystem functions, and 

ecosystem services respectively, we retain three major points of interest and needs for 

attention: 1) Biodiversity can act as a regulator of ecosystem services because of its 

significant role underpinning ecosystem functions (aspect (iii) in Figure I-4). Although 

this type of biodiversity effects widely exists, the importance of this pathway is not evident 

and not as well recognized as the aspects (i) and (ii) in biodiversity conservation and 

management (Figure I-4). 2). There is a need for extended experimental, observational and 

theoretical work on effects of biodiversity on the ecosystem functions that can be linked to 

ecosystem services, such as water quantity and quality regulation, pollination, carbon 

storage and climate regulation (Kremen et al., 2004; Balvanera et al., 2005). 3) There is 

also a need of protection measures for regulating services and the biodiversity that 

underpins them. These protections also profit many other ecosystem services dependent 

upon them (Chan et al., 2006; Maes et al., 2012; Science for Environment Policy, 2015). 

Management oriented research should include the search of the ecosystem compartments 

that support these ES by identifying the highest spatial correlation between regulation 

services and biodiversity (Cimon-Morin et al., 2013).  

 In fact, quantitative knowledge of relationships between biodiversity, ecosystem 

functions, and ecosystem services is still poorly documented (National Ecosystem 

Assessment (NEA), 2010). Integrating BEF and BES research can enable to effectively 

manage and mitigate the consequences of biodiversity loss, offering a good feedback to 

managers and decision makers.  
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I.4 Water purification service and nitrate removal 

I.4.1 Water purification service  

At global scale, although a few provision ecosystem services have been improved (e.g. 

crop provision), many key ecosystem services are at risk of degradation, mainly regulating 

services, e.g. 70% of the regulating services are degraded or being used unsustainably (MA, 

2005). Particularly, water purification, as a regulating service controlling water quality, is 

of great importance for the dense populated regions with heavy pressure on water resources, 

such as Europe (European Water Framework Directive, TEEB 2010). For example, water 

purification seems to be the most degraded service among all regulating services in Spain 

(Santos-Martín et al., 2013).   

In general, the MA emphasizes the identification and use of indicators for ecosystem 

services survey and trends assessments (MA, 2005). An ecosystem service indicator is 

information which communicates the characteristics and trends of ecosystem services, 

making it possible for policy-makers to understand the conditions of delivery, as well 

spatial and temporal trends and rate of change in ecosystem services (Layke et al., 2012). A 

rather broad interpretation of this definition includes datasets and proxy indicators such as 

land cover and land use (Maes et al., 2016).  

Potential indicators used to map (or quantify) water purification service (i.e. 

biophysical indicator on the supply side) are nutrient retention capacity, denitrification, the 

area or proposition occupied by riparian forest, the amount of waste processed by 

ecosystems (volume/mass of water processes) and the naturalness of riverbeds and 

floodplains (Layke, 2009; Maes et al., 2012; La Notte et al., 2012 a, b; Albert et al., 2015). 

There are different approaches to conduct the biophysical assessment of water purification 

service delivery at different scales. For example, the nutrient retention capacity is 

commonly used in approaches to quantify the water purification capacity in laboratory 

experiments (microcosm), in situ measurements (e.g. nutrient enrichment experiments) 

and modelling approaches (e.g. The Soil and Water Assessment Tool (SWAT) models).  

On the demand side, the contribution of ecosystem services to human well-being can 

be socio-cultural (Chan et al., 2012) or monetary (Wegner and Pascual, 2011).  
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1) The socio-cultural value i.e., the contributions to user’s cultural identity and heritage, 

spiritual values, or good social relationships or living security obtained through 

ecosystem services (Chan et al., 2012). It is given by users to ecosystem services was 

measured through indicators that express the importance users allocate to them in a 

non-market value elicitation context (de Groot et al., 2012). For instance, according to 

the investigation of 796 respondents in Spain during 2008-2009 (Martín-López et al., 

2014), water purification was the service showing highest saliency (66.5% of 

respondents selected it as being of primary importance) of all ecosystem services;  

2) The monetary value of ecosystem services can be estimated using contingent valuation 

and replacement methods. For instance, Martín-López et al. (2014) report the monetary 

values of water purification service (i.e. 210840 euros ha−1 year−1) based on contingent 

valuation. In total, provisioning services accounted for 65.6% to the monetary value of 

the sum of all the ES values, regulating services accounted for 7.7%, and cultural 

services accounted for 26.4% (Martín-López et al., 2014). 

Concerning the demand side, one can see that human beings have very high demand 

of water purification service (socio-cultural aspect), but the estimated monetary value of 

this regulating service is relative low (economic aspect). One of the possible reasons 

could be the lack of accurate estimation and complementary understanding of the supply 

side of water purification (ecological aspect), which may underestimate its economic 

value. There may exist mismatching between the supply flow and demand of this service 

with time and/or space (Albert et al., 2014). Finally, the water purification service 

estimations in both supply and demand sides may be limited by the following uncertainties, 

like (i) the number of benefits considered (e.g. nitrogen, phosphorus and pesticide 

removal); (ii) the methods of quantification of biophysical units and valuations; (iii) the 

variables included in the valuation metrics (e.g. market price) (Boithias et al., 2016). 

Moreover, many valuations of ES, to date, do not integrate biophysical processes but focus 

on expert knowledge and spatial analyses (e.g. Burkhard et al., 2012; Nedkov and 

Burkhard, 2012). Biophysical processes could help to understand the mechanistic links by 

integrating biophysical indicators associated with the structure and the functionalities of 

the ecosystems to provide ecological services. More researches are needed to understand 

biophysical processes involved in the ES supply to realistically valuate them.  
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In order to decrease these uncertainties, and to provide more accurate estimations of 

water purification service in the supply and demand sides, in the following sections, we 

will mainly focus on the ecological (biophysical) domain of the water purification service 

(supply side).  

What are the main processes that lead to water purification service? 

The water purification service could be regarded from the ecological side as the group 

of biotic and abiotic processes that contribute to improve the natural water quality. When 

polluted water moves through rivers and streams, lakes, estuaries, coastal marshes and 

oceans, the exogenous molecules might be retained or transformed by several processes 

that occur at different scales from microbial biofilm metabolism to catchment features 

(CICES) (Schmitz et al., 2008). Such ecosystems can provide the biophysical (infra) 

structure to deliver water purification services (Maes et al., 2012). For example, it is 

reported that terrestrial, riverine and ocean ecosystems can contribute to 31%, 21% and 48 % 

of nitrogen removal respectively (Galloway et al., 2004). The ecological processes at the 

basis of water purification services consist of physical, chemical, physio-chemical and 

biological aspects, which are shown in Figure I-6 (Ostroumov 2005; 2006).  

The main pathways by which pollutants are retained in an ecosystem are summarised 

as follow: 

1) filtering out of pollutants and specially the conservative or refractory pollutants such as 

heavy metals by physical and chemical processes such as sedimentation and absorption 

on sediment particles. 

2) biodegradation of the non-conservative pollutants by biological processes that are able 

to transform nutrients, oils and some pesticides.  

3) biological removal and accumulation by many types of organisms.  

These pathways of natural water purification have inspired some ecological 

engineering applications, such as flocculation by addition of various substances in the 

water, or phytoextractions which uses the biological removal by some plant species. 
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Figure I-6 Summary of chemical, physio- chemical and biological processes involved in water purification 

and their interactions with some examples: 1. sedimentation of suspended particles increases water clarity, 

providing more light for photosynthesis by aquatic plants; 2. physical dilution of pesticide concentration 

reduces toxicity for biological processes; 3. invertebrates influence soil and sediment structure by 

bioturbation, increasing the residence time, which determines many physic-chemical processes; 4. pollutants 

break-down by microorganisms facilitates their chemical transformation; 5. chemical transformations 

provide different forms of elements which can be used by micro-organisms and vegetation; 6. Physical 

cooling of water provides suitable temperature for chemical transformations. Adapted from Ostroumov 

(2005 and 2006) 

What are the main factors influencing the water purification service? 

As previously mentioned in this chapter, both abiotic and biotic processes can lead 

to water purification functions, which are influenced by numerous factors. The factors 

can be divided into three categories: geomorphic (e.g. physical properties of soil and 

stream channel); chemical (e.g. pH, solute concentrations, temperature, as well as 

anthropogenic molecules with specific toxicity), and biotic (e.g. plants, invertebrates, 

bacteria, fungi, algae)(Von Schiller et al., 2008b). Geomorphic features dictate the 

residence time of water, which is the main factor impacting many physical as well as 

chemical and biological processes. The physical, biotic and chemical features control 

biological removal (Ensign and Doyle, 2006; Elosegi et al., 2010).  
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How does biodiversity influence the water purification service? 

Most studies on biodiversity-water purification relationship focus on the influences 

of plants and microorganisms on water purification via assimilative uptake and 

biodegradation (Cardinale, 2011; Harrison et al., 2014; Saleem et al., 2016). It is now 

possible to find examples of the bioremediation ability of ecosystems for water 

purification of xenic loads from the most labile (Lewis et al., 2007) to the most refractory 

substances such as nitro-aromatic componds in freshwater ecosystems (Kulkarni and 

Chaudhari, 2007). Other biodiversity components (e.g. fishes, invertebrates, snails, etc…) 

are also reported to be associated with water purification (De Bello et al., 2010). 

Specifically, concerning the trophic cascade, the reduction of planktivorous fish and 

introduction of piscivorous fish can reduce predation pressure on zooplankton, thereby 

increasing grazing pressure on phytoplankton to improve water quality in eutrophic 

systems (Sierp et al., 2009). Also, invertebrates acting as ecosystem engineers may have 

important influences on water purification via bioturbation effects, which can change the 

physical and chemical properties of soil or sediment, and subsequently increase the 

residence time of water and promote nutrients and pollutants removal (Jones et al., 1997; 

Lawrence et al., 2002; Mermillod-Blondin, 2011; Stief, 2013). Numerous studies reported 

bioturbation effects in marine sediments (Gilbert et al., 2003; Gerino et al., 2007; 

Bonaglia et al., 2014) and soil (Fitter and Gilligan, 2005; Lavelle et al., 2006), but few 

studies consider bioturbation in freshwater and running systems (Mermillod-Blondin et 

al., 2000; Mermillod-Blondin and Rosenberg, 2006; Lagauzère et al., 2009). Several 

studies have previously measured bioturbation in lakes and pounds (Mermillod-Blondin 

et al., 2005; Delmotte et al., 2007; Devault et al., 2009a; Beauchard et al., 2012) but the 

mechanism of bioturbation are different when occurring in coarse sediments of river beds 

(Gerino et al., 2003; Mermillod-Blondin, 2011).  

Moreover, in the studies, different biodiversity levels are included in water 

purification service, e.g., habitat area, communities, functional traits, species, among 

which, specifically forest and prairie wetlands, caused the most concerns (82 % in 100 

papers reviewed by Harrison et al. (2014)). As above stated, studies on BEF in water 

purification function via functional traits are also of great interest, in addition to studies 
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on BEF via taxa richness ( de Bello et al., 2010; Balvanera et al., 2014; Harrison et al., 

2014). Based on one meta-analysis, de Bello et al. (2010) stated that the water 

purification service is mediated by a range of aquatic organisms and associated with their 

functional groups (e.g. feeding and bioturbation). 

Water purification in riverine ecosystems  

 BEF studies in rivers were mainly performed with terrestrial plants in the riparian 

zone and wetlands. It is usually assumed that excess nutrients and pollutants which are 

not immobilized by plants are ultimately leached to aquatic ecosystems. In fact, the entire 

riverine ecosystems, including riparian zone, alluvial wetland and stream/river channel 

(Figure I-7) play important roles to process and remove pollutants (Lewis et al., 2007; 

Boulton et al., 2010). It is reported that 50% of the nitrogen entering streams and rivers can 

be finally removed due to this service, before flowing into coastal waters (Pusch et al., 

1998; Mulholland et al., 2008). 

 
Figure 1-7 Scheme of the hydrological system in river basins, including groundwater, riparian zone and 

alluvial wetland, hyporheic zone and the stream or river channel (Bouwman et al., 2013) 

I.4.2 Nitrogen removal  

 Nitrogen removal is an important ecosystem function of the riverine ecosystems, 

which is also used as a proxy for water purification service. In fact, nitrogen is a common 

indicator for water quality, which is a fundamental component for living organisms 
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(Palmer et al., 2004; Gruber and Galloway, 2008). However, excess nutrients in aquatic 

ecosystem can produce detrimental effects on ecosystem functions such as eutrophication 

(Grizzetti et al., 2008, 2015).  

 In order to illustrate the nitrogen removal processes, the whole nitrogen cycling in 

aquatic ecosystems is firstly explained. As shown in Figure I-8, nitrogen cycling involves a 

variety of N forms, including organic N fractions (particulate organic N (PON), dissolved 

organic N (DON)), inorganic nitrate (NO3
-), nitrite (NO2

-), and ammonium (NH4
+). 

Besides, the gaseous forms (N2, N2O, NO) are exchanged with the atmosphere (Zhou et al., 

2014). 

 
Figure I-8 Nitrogen cycle in streams (http://www.waterontheweb.org/) 

In riverine ecosystems, inorganic-N stimulates primary production and then supports 

the consumer food web. Particularly, NH4
+ removal is due to uptake by primary producers, 

bacteria, and fungi, absorption and nitrification. NO3
- removal from the water is detailed 

later. Through the food chain, nitrogen can be transferred from these microbial 

communities to higher trophic levels (i.e. protozoan, zooplankton, invertebrate, vertebrate 

and fish), then death and excretions of these organism compose detritus (Peterson et al., 

2001; Valett et al., 2008). The organic-N in the detritus sustains the decomposer pathways, 

and it is transferred into inorganic-N by fungi and bacteria with of help of shredding 

invertebrates. 
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Where does the nitrogen removal happen in rivers? 

For nitrogen retention in riverine systems, there are indeed the effects of the nitrogen 

dilution, transportation and biotic uptake by phytoplankton and plants in the free-running 

water. But the main locations for pollutant removal are reported to be in the riparian zones 

(thanks to the riparian forest), the streambeds and hyporheic zones (Triska et al., 1989a, b; 

Marti et al., 2004; Argerich et al., 2011). Specifically, the hyporheic zone (HZ) is an active 

ecotone between the surface stream and groundwater, characterized by a large volume of 

the water reservoir, high residence time, high gradients in nutrient concentrations and 

strong hydrologic exchange, as well as abundant biodiversity, and active microbial 

metabolism (Boulton et al., 1998, 2010; Jekel and Gruenheid, 2005; Crenshaw et al., 2010; 

Ranalli and Macalady, 2010). Consequently, HZ can play an important role in water 

purification and other biogeochemical processes within lotic ecosystems, acting as a 

'hotspot' for pollution depletion. The hyporheic zone positioning in stream systems and 

some examples of HZ are illustrated in Figure I-9. 

 
Figure I-9 (a) cross-section of a stream system, made up of water column, benthic zone, hyporheic zone and 

groundwater (extracted from: www.bgs.ac.uk); Examples of stream hyporheic zones in (b) lateral exchange 

and (c) vertical exchange. In panel c, sections of channel that are upwelling (water moving from the bed into 

the channel) are noted by the gray bars and downwelling sections (water moving from the channel into the 

bed) are noted by the white bars (Hester and Gooseff, 2010) 

I.4.3 Nitrate removal 

Nitrate is a major form of nitrogen in many streams and rivers (Groffman et al., 2004; 

Mayer et al., 2007), and since it may impair the drinking water quality and cause 
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eutrophication (Klocker et al., 2009), there are considerable interests in the natural nitrate 

removal function. Nitrate is a largely investigated nutrient and integrated in the European 

Nitrates Directive (91/676/EEC, 1979) controlling nitrate pollution from non-point sources 

and point sources. Nitrate removal in rivers consist of a sum of abiotic and biotic processes 

(Ranalli and Macalady, 2010). 

Abiotic and biotic nitrate removal processes and their interactions 

Abiotic nitrate retention processes include passive hydrologic storage, dilution (e.g. 

by groundwater and tributaries), adsorption and burial (Bernot and Dodds, 2005) and 

chemical transformation (Triska et al., 1989 a, b). Biotic nitrate retention processes include 

assimilatory uptake by stream organisms, often referred to as primary uptake 

compartments (i.e. those compartments that take up dissolved nutrients directly from the 

water column). The relative contribution of autotrophs (i.e. algae, macrophytes, and 

bryophytes) and heterotrophs (i.e. bacteria and fungi) to assimilatory uptake is influenced 

by the availability of nutrients, light and organic matter (Allan and Castillo, 1995; Von 

Schiller et al., 2008). Biotic nitrate retention processes also include some dissimilatory 

reduction processes, such as denitrification, a major anaerobic microbial removal pathway 

taking place in sediments. Denitrification can reduce dissolved NO3
- to gaseous forms of N, 

which results in a permanent N lost from the ecosystem (Seitzinger, 1988). Denitrification 

is generally controlled by the availability of oxygen, organic carbon and NO3
- (Holmes et 

al., 1996; Kemp and Dodds, 2002). There are also other dissimilatory processes such as 

dissimilatory nitrate reduction to ammonium (DNRA) and ANaerobic AMMonium 

Oxidation (ANAMMOX) (Burgin and Hamilton, 2007). 

Biotic removal processes can be controlled by bottom-up forces (resources, which 

influence activities of microbial removal (Dodds et al., 2002; Roberts and Mulholland, 

2007), and top-down processes (microorganisms predation by invertebrates and other 

organisms (e.g. fish, zooplankton and protozoans)) (Wallace and Webster, 1996).  

There also exist interactions between abiotic and biotic processes. For example, a 

large hydrologic storage space indicates a long residence time, enhancing the possibility of 

subsequent biotic uptake or transformation (Triska et al., 1989 a, b; Wondzell and Swanson, 
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1996). In contrast, the clogging of sediments caused by the deposition of particles in 

streams and rivers beds can decrease sediment permeability and hence greatly affect 

hyporheic microbial processes (Nogaro et al., 2010). Changes of the physical structure of 

sediments via bioturbation by invertebrates, can increase the residence time and 

consequently the abiotic hydrological storage (Mermillod-Blondin, 2011). Different 

processes contribute differently in nitrate removal in streams. For example, in the Sawtooth 

Mountains (USA), it was estimated that biological retention in streams dominated total 

retention ranging from 9% to 33% across the entire stream length (Covino et al., 2010). 

The factors mentioned above as important drivers for water purification processes of 

course also apply to affecting nitrate removal processes (Ensign and Doyle, 2006; 

Klocker et al., 2009). 

Concerning the relationship between biodiversity and nitrate removal, the influence 

of algae species richness on nitrate removal was demonstrated by Cardinale (2011), 

showing that nitrate concentrations in water decreased as species richness increased. Yet, 

this assimilation process is only one crucial step in nitrogen removal from water. 

Moreover, de Bello et al. (2010) reviewed that nitrate removal could be mediated by a 

range of aquatic organisms (e.g. fishes, invertebrates, snails, beavers) via specific 

functional traits. But the relationship between nitrate removal and the biomass, richness 

and functional diversity of these organisms is still unknown. The role of higher plant 

diversity in nitrate removal is well documented, but is beyond the context of this thesis. 

The approaches to quantify the nitrate removal processes  

To quantify the nitrate reduction capacity as a proxy for water purification service, 

different methods are used depending on different scales. 

1) lab approach 

Nitrate removal processes have been measured using different approaches in lab 

experiments. For example, Cardinale (2011) measured nitrogen uptake rates by using 

15N-labelled nitrate, via stream mesocosms to mimic the variety of flow habitats and 

disturbance regimes. Sheibley et al. (2003) measured nitrification and denitrification in 
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perfusion cores with only microbial colonisation, although such infiltration sediment 

columns have still rarely been used in hyporheic studies. A series of experiments was run 

by Mermillod-blondin between 2001 and 2011 that provided a large improvement in the 

understanding of biodiversity related to the denitrification function in this type of system.  

2) field approach 

2.1) reach scale study 

In reach scale, similarly, particular processes of nitrate removal capacity such as 

denitrification have been investigated using incubation experiments (Kemp and Dodds, 

2002; Inwood et al., 2005; Arango et al., 2008; Klocker et al., 2009). The total nitrate 

removal in streams has been mostly studied using in field nutrient enrichment experiments 

(Stream Solute Workshop, 1990; Dodds et al., 2002; Gücker and Pusch, 2006; 

Sánchez-Pérez et al., 2009) and sometime explored using 15N tracer addition techniques 

(Peterson et al., 2001; O’Brien et al., 2007; Mulholland et al., 2008; Von Schiller et al., 

2008a). 

2.2) catchment scale study 

At the watershed scale, a series of catchment-scale modelling tools have been 

developed or adapted to estimate nutrient retention in streams and standing water bodies, 

with different complexity, ranging from a simple, equilibrium input–output type to 

dynamic, physical-based models, such as MOdelling Nutrient Emissions into RIver 

Systems (MONERIS), SWAT, Geospatial Regression Equation for European Nutrient 

losses (GREEN) models (Grizzetti et al., 2005; Hejzlar et al., 2009).  

Modelling approach can simulate the variations of nutrient retention in large temporal 

and spatial scales and provide visual spatial information to managers and decision makers 

at regional or national and catchment scales (Maes et al., 2012). In order to understand the 

abiotic and especially the biotic mechanisms involved in nitrate removal in detail, the 

quantifications of nitrate removal at reach scale and microcosms were considered in this 

manuscript.  

As above mentioned in section I.2, on one hand, the microcosm experiments in 
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laboratory is a good way to test the relationship between biodiversity and ecosystem 

function, because abiotic factors are under control in these conditions. Simultaneous field 

investigations of biodiversity and nitrate removal function allow to explore the link in real 

conditions but with more complexity. On the other hand, the constraints of these 

approaches should be noted, e.g. (i) nutrient enrichment approaches may underestimate 

actual uptake rates at ambient levels (Dodds et al., 2002; Mulholland et al., 2002); (ii) 

incubation experiments are difficult to extrapolate to the whole reach scale (Dodds et al., 

2000); (iii) laboratory microcosms may not well simulate in field conditions. However, 

they have advantage regarding the cost-effectiveness compared with the isotope 

experiments which can more precisely quantify the relative contribution of the different 

pathways in the total N removal. 

In fact, isotope experiments show that the denitrification fraction of total nitrate 

removal was quite different in different stream ecosystems and the associated land use. 

Mulholland et al. (2008) found that denitrification generally accounted for a median of 16% 

of total nitrate uptake and exceeded 45% of total uptake in a quarter of 72 streams. Arango 

et al. (2008) found that assimilatory processes dominated whole-stream N demand in 

headwaters of varying land use. However, Von Schiller et al. (2008a) did not detect 

denitrification in a forested stream, but they observed that denitrification accounted for 9% 

and 68% of total nitrate uptake in the urban and the agricultural streams, respectively.  

I.5 What are the links between invertebrates and the nitrate 

removal function?  

Microbial communities (bacteria, fungi, and algae) and aquatic plants are well known 

as main direct contributors for biological nitrate removal in rivers via uptake processes. 

There are other organisms that also, indirectly, participate in nitrate removal through 

cascading effects including fishes, vertebrates, invertebrates, zooplankton and protozoans. 

Here we will focus on the link between invertebrates and nitrate removal functions for 

several reasons explained below. 

By the term ‘invertebrates’ we here consider the benthic community living at the 

surface of the riverbed and/or in the hyporheic zone. As such, these aquatic invertebrates 
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can be associated with autotrophic biofilms covering different types of substrates (as 

illustrated in Figure I-10 d-e) or with heterotrophic biofilms within the hyporheic zone. 

Within the term ‘invertebrates’, we can distinguish between macro-invertebrates and 

meio-invertebrates. Macro-invertebrates have a size > 250 µm (or > 500 µm depending on 

the authors) including insects larvae, crustaceans, molluscs, arachnids and oligochetes, 

etc…(Merritt and Cummins, 2007); Meio-invertebrates size ranges between 50-250 µm (or 

42-500 and 63-1000 µm) and meio-invertebrates mainly include nematoda, copepoda, 

rotifera, tardigrade, etc… (Giere, 2009).  

In most systems, macro-invertebrates have much higher biomasses than 

meio-invertebrates, whereas meio-invertebrates have much higher productivity than 

macro-invertebrates. Meio-invertebrates can be consumed by macro-invertebrates and 

there exists possible competition or facilitation interactions between meio- and 

macro-invertebrates (Giere, 2009). 

 
Figure I-10 Examples of macro-invertebrate, meio-invertebrate and biofilm observed in Garonne River: (a) 

Chironomidae larva (b) Copepode (harpacticoide) (c) nematode (Chromadorina sp.) (d)-(e) autotrophic 

biofilm; (f) autotrophic biofilm composition. Photos: B. Mialet, N. Majdi and F. Azémar (Ecolab, UPS, 

Toulouse) 

The reasons for focusing on the link between invertebrates and nitrate removal are 

multiple: 

1) Invertebrates are the major organisms living in the benthic area and hyporheic zone of 

lotic systems which, as mentioned previously, are the main places for nitrate removal 
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in river ecosystem. Compared with fishes and zooplankton, invertebrates occur in 

higher abundance and diversity in these areas (Giere, 2009). 

2) Invertebrates exert top-down control on microbial nitrate removal via biofilm grazing 

and bioturbation effects as ecosystem engineers. Via the consumption of microbial 

organisms, and modification of biofilm and sediment structures, invertebrates can 

further influence microbial activities, and as such indirectly influence nitrogen and 

resource cycling and thereby nitrate removal (Mermillod-Blondin et al., 2003;Covich 

et al., 2004; Karlson et al., 2007; Stief, 2013). Figure I-11 shows the microbial nitrate 

removal pathways and their interactions with invertebrates. Nevertheless, the influence 

of this community on the nitrate removal process is still poorly documented 

(Mermillod-Blondin et al., 2003). 

 
Figure I-11 A general diagram of the biotic nitrate removal pathways (Marshall and Hall, 2004; Giere, 2009; 

Stief, 2013): (a) Nitrate mediation by bacteria and uptake by fungi, algae (also by aquatic plants but not 

shown here); (b)These microbial communities are consumed by invertebrates (also by micro-invertebrates 

and protozoans but not included in this thesis); (c) Excretions of macro- and meio-invertebrates fuel 

microorganisms growth; (d) Indirect effects on microbial communities from bioturbation by invertebrates  

In addition, macro-invertebrates are good indicators of water quality (e.g., biotic 

indices). Invertebrates are widely used because of their differential sensitivity to 

environmental changes and their broad geographical distribution (Statzner and Bêche, 
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2010). Because of its relationship with water quality, and the fact that the invertebrate 

community is indirect contact with the biofilms of the streambeds and hyporheic zones 

(Marmonier et al., 2012), invertebrates could be a potentially interesting indicator of the 

nitrate removal function.  

The review about invertebrate diversity and nitrate removal 

Concerning the relationship between invertebrates and nitrate removal, the current 

researches mainly investigated the effects of a single or a few macro-invertebrate taxa 

(e.g. Chironomidae) (Mermillod-Blondin et al., 2000, 2001, 2002, 2003; Marshall and 

Hall, 2004; Navel et al., 2012). Stief (2013) reviewed the effect of benthic macrofauna on 

nitrate fluxes and denitrification via three types of animal–microbe interactions in the 

benthos of aquatic ecosystems (i) ecosystem engineering (ii) grazing, and (iii) symbiosis.  

However, there are few studies showing the effects of an entire invertebrate 

community on nitrate removal. Furthermore, only one study reports the influence of 

meio-invertebrate density on denitrification rate. Raffaelli et al. (2003) tested the effects 

of the whole benthic marine community and Bonaglia et al. (2014) tested the effects of 

low and high density of meiofauna in the presence or absence of macrofauna on nutrient 

cycling in marine sediments, and found that meiofaunal bioturbation activity has a 

stimulating effect on nitrifying and denitrifying bacteria. 

These previous studies were based on in-door experiments, which, through presence 

and absence of invertebrates in the experimental setup, demonstrated one direction of the 

biodiversity and ecosystem function relationship (influence of invertebrates on nitrate 

removal). In real ecosystems the direction of this link is less clear. Moreover, abiotic 

factors, such as temperature, nutrient concentrations and hydrological conditions may 

impact both the microbial and invertebrate communities, as well as the nitrate removal 

function, and thus may act as confounding factors that moderate the BEF relationship 

(Cardinale and Palmer, 2002; Balvanera et al., 2006; Tylianakis et al., 2008; 

Mermillod-Blondin, 2011; Zimmerman and Cardinale, 2014). Consequently, these abiotic 

factors may increase the difficulty to identify the relationships between invertebrate 

diversity and nitrate removal under natural conditions (Balvanera et al., 2006).  
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In this manuscript, we define the stressful conditions as corresponding to microcosms 

or ecosystems with pesticide stress, while the natural conditions comparably with less 

stress.  

I.6 Ecosystem functions and nitrate removal under stress in 

rivers 

The biodiversity, ecosystem function and their relationships in riverine ecosystems 

could be modified by man-made pressures, including global change, chemical pollution for 

example, heavy metals, medical residues, pesticides or nutrient enrichment 

(eutrophication), physical changes (e.g. channelization and dam), loss or alteration of 

riparian zones (Wakelin et al., 2008). Such stresses can alter river characteristics, 

negatively impact ecological communities, disrupt river functions and related ecosystem 

services such as regulation for water quality (Bernot and Dodds, 2005; Schäfer et al., 2007; 

Simon et al., 2009; La Notte et al., 2012a; Rasmussen, 2012c; Dehedin et al., 2013; Elosegi 

and Sabater, 2013; Albert et al., 2014)(refer to Figure I-2).  

In the literature, there is much focus on the influences of stressors on river 

characteristics, but few studies on how these stressors affect ecosystem functions (but see 

Meyer et al., 2005; Bott, 2006; Piscart et al., 2009; Simon et al., 2009; Izagirre et al., 2013), 

and rare studies on how the relationship between biodiversity and ecosystem functions 

evolves under stressors, especially in animal ecology and freshwater ecosystems (Piscart 

et al., 2009; Cornut et al., 2012; Steudel et al., 2012; Woodward et al., 2012; Colas et al., 

2016). Despite the decline and change of biodiversity driven by anthropogenic impact, 

most BEF studies manipulated species richness or composition without considering 

anthropogenic stressors (Hooper et al., 2005; Hillebrand and Matthiessen, 2009; Reiss et 

al., 2009). In that case, the predictions of the relationship among biodiversity and 

ecosystem functions under stressful conditions might be unreliable when all the three 

components (biodiversity, ecosystem function and stress) are not simultaneously 

considered in a system (McMahon et al., 2012). 

In particular, the nitrate removal function in rivers is assumed to be affected by these 

stressors in several ways. First, physical alteration, such as channelization that removes 
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streambed heterogeneity and volume of the hyporheic sediment might decrease the water 

residence time, and thus decrease nitrate removal (Nogaro et al., 2013). Secondly, chemical 

pollution, by for example pesticides may cause direct toxic depression of microbial 

metabolic activity, reducing nitrate removal (Schäfer et al., 2011; Artigas et al., 2014). Also, 

elevated nitrate loads, representing another type of pollutants, may increase or ‘‘saturate’’ 

the ability of rivers to attenuate nitrate pollution (Mulholland et al., 2008). Finally, since it 

was previously stated that biodiversity is indirectly or directly involved in the nitrate 

removal processes, all stressors that affect this biodiversity (e.g. the loss or substitution of 

some species or functional groups) is supposed to change the capacity of nitrate removal in 

riverine ecosystems (Newbold et al., 2006; Flores et al., 2014).  

Above mentioned influences of stressors on nitrate removal are not yet well 

confirmed, especially considering the influences on the biodiversity and ecosystem 

function relationships (Newbold et al., 2006). Among many anthropogenic stressors, 

chemical contaminants like pesticides are undoubtedly one of the most diverse and 

common abiotic stressors while one of most understudied stressors in conservation science 

(Lawler et al 2006). The term pesticide covers a wide range of compounds including 

herbicides, fungicides, insecticides, nematicides, plant growth regulators and others 

(McKnight et al., 2015). The intensive use of pesticides in worldwide agriculture, is 

estimated to 1 - 2.5 million tons of active ingredients (Fenner et al., 2013), and it causes the 

problem of water pollution due to transfer of numerous pesticide molecules and their 

metabolites (Gilliom, 2007; IFEN, 2007; Roy and Bickerton, 2012). Their occurrences in 

environment raised serious increasing concerns (Fleeger et al., 2003; Schulz, 2004) that 

lead to include these compounds in the European legislation since 1979 (e.g. European 

Commission, 1991, 91/414/EEC; European Commission, 1998, 98/8/EC). Indeed, 

pesticides have been reported to impair biodiversity and ecosystem functions in aquatic 

ecosystems, mainly focusing on leaf litter breakdown and associated biodiversity. These 

influences vary spatially and temporally depending on many factors, such as pesticide 

concentrations and types, and the features of biotic compartments (Schäfer et al., 2007; 

Piscart et al., 2009; Rasmussen et al., 2012 a,b,c; Artigas et al., 2014; Flores et al., 2014). 

Yet, the influences of pesticides on the biodiversity and the nitrate removal function 

relationship are rarely investigated (Milenkovski et al., 2010).  
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Whether the biodiversity and ecosystem function relationship exists or how it varies 

under environmental stressed conditions is still unclear. Furthermore, whether it is feasible 

to use invertebrates to indicate nitrate removal remains to be examined both in stressed and 

in natural condition ecosystems.  

Also, understanding how the mechanisms controlling nitrate removal are affected by 

stresses is critical, since it allows to predict the evolution of water purification service, and 

the quality with time and space. Thus the temporal trends of the water purification service 

should be considered as a source of information on the quality of the water resource with 

the same attention as the pollution threat. Together this information could provide 

arguments to policy makers and environmental managers to develop suitable strategies to 

conserve or restore the water purification service in riverine ecosystems facing stresses in 

order to ensure the capacity to supply the natural capacity of water quality regulation.  

The above provides an overview of the ecological knowledge about stress impact on 

biodiversity and ecosystem functions from the supply-side of the ecosystems (shown in 

Figure I-2). When this knowledge is transferred into visible and understandable values for 

human beings in the demand-side, the non-ecologist public can better understand this 

information. However, this transfer requires the previous knowledge collection on the 

ecological and biophysical processes that underpin these values to make it as accurate and 

realistic as possible.  

I.7 Objectives and organization of the thesis  

The overall objective of this thesis is to understand the relationship between benthic 

diversity and water purification service in riverine ecosystem under natural and stressful 

conditions. The macrofauna, meiofauna and microbial communities were used as a source 

of community diversity, and the nitrate removal function is considered as a proxy for 

water quality regulation service (Maes et al., 2012, 2013). The nitrate removal function 

mainly occurs in the hyporheic zone, which is theoretically, the interface between stream 

water and groundwater. Thus, the above-mentioned relationship is explored in this 

manuscript in the hyporheic zones of a set of streams reaches and in the alluvial wetland 

of a large river, the Garonne.  
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Specifically, this manuscript aims to:  

1)  test whether the cross-community interactions between meiofauna, macrofauna and 

microbial communities could provide a positive effect on the nitrate removal 

function with and without stress in laboratory conditions. In particular, whether the 

indirect relationship between invertebrates and this function could occur via 

top-down control of invertebrates on the microbial community. 

2)  explore this functional linkage between invertebrate diversity and the nitrate removal 

function in field conditions including streams reaches and an alluvial wetland as in 

laboratory microcosms. 

3)  use a trait-based functional approach to explore this relationship in field conditions 

considering feeding and bioturbation processes. 

4)  identify the environmental conditions in fields that allow the invertebrate diversity 

and function relationship to express and the related ecosystem function to be more 

efficient.  

This thesis is structured in 4 chapters with the general outline given in Figure I-12. 

Following this general introduction (Chapter I), the thesis then presents the 

investigation of the water purification service and related biodiversity in natural conditions 

in Chapter II. The same relationship is explored in stressful conditions in Chapter III. Each 

of these two chapters consisted of laboratory and field works, composing two subchapters. 

In Chapter II, the laboratory experiments (Section II.2) aimed to test the role of cross- 

community (biofilm, meiofauna, macrofauna) effects on nitrate removal. This manuscript 

begins with this section because the lab scale experiment enabled us to focus on the effects 

of the invertebrate community on the ecosystem function under controlled abiotic factors 

and without anthropogenic stress. Since the results of Section II.2 suggested a possible 

linkage between microbial-invertebrate communities and nitrate removal, this relationship 

was studied in field experiments (Section II.3) at the reach scale in a set of streams. By a 

functional trait approach, Section II.3 offered the opportunity to identify the potential 

ecological engineers in the invertebrate communities that may be involved to participate to 

the in-stream nitrate removal. Section II.3 aimed to understand how the BEF evolves in 

realistic natural conditions taking into account the environmental spatial and temporal 

variabilities.  
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Then, to understand how the relationship between the invertebrate compartment and 

nitrate removal could change in impaired aquatics ecosystems, this relationship was 

studied in Chapter III in stressful conditions.  

Section III.2 reports nitrate removal measurements with gradients of benthic 

communities in laboratory experiments and pesticide in the water as a source of additional 

chemical stress. In order to understand the effects of the cross-community interactions on 

the nitrate removal efficiency in real world ecosystems under the influence of pesticides, 

we explored the relationship between invertebrates and potential denitrification rates in the 

groundwater of an alluvial wetland in Section III.3. This wetland locates in a meander of 

Garonne river running through an intensive agricultural landscape under pesticide stress.   

Chapter IV ends up with a general discussion, conclusion and perspectives.  

 
Figure I-12 Outlines of this thesis. The work marked with dash line was conducting in this PhD period but 

is not included in this thesis manuscript
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Chapter II: The relationship between invertebrate community 

and the nitrate removal function  
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II.1 Résumé du chapitre II 

Ce chapitre vise à tester les relations entre diversité des communautés benthiques de 

cours d’eau et la fonction de réduction des nitrates en conditions naturelles. L’exploration 

de cette relation a été realisée par 2 approches complémentaires :  

- une approche expérimentale en conditions contrôlées issues du jeu de données du 

projet Inbioprocess.  

- une approche en milieu naturel dans un ensemble de petits cours d’eau européens à 

l’échelle du tronçon de cours d’eau. Cette étude est réalisée à partir d’un jeu de données 

extrait du projet européen Streames.  

Le rôle des interactions entre les communautés benthiques impliquées dans le 

processus de réduction des nitrates dans l’eau interstitielle de la zone hyporhéique a 

d’abords été mis en évidence à partir des données issues du projet INBIOPROCES 

(2007-2010). Ce projet intitulé «Relation entre la biodiversité et les processus écologiques 

à l’interface entre les eaux de surface et de sub-surface pour une gestion durable de l’eau 

souterraine » et intégré dans le Programme ANR-IFB Biodiversité est à l’origine d’un jeu 

de données intéressant pour tester les hypothèses de recherche de ma thèse en conditions 

contrôlées. Par le contrôle des conditions physicochimiques dans ces expériences, les 

effets des interactions entre les communautés d’invertébrés et le biofilm sur la rétention des 

nutriments peuvent être testés plus facilement qu’en milieu naturel. Différentes 

combinaisons de communautés d’organismes benthiques (+/-biofilm, +/- méio-invertébrés 

et +/- macro- invertébrés) ont été mises en œuvre pour distinguer les effets des interactions 

entre ces communautés dans des microcosmes reproduisant des portions d’interface 

eau-sédiment. Les hypothèses testées sont que la transformation des nitrates et du carbone 

organique dissous (1) est influencée par la présence des invertébrés, (2) est plus efficace 

quand la diversité de la communauté benthique augmente. 

Ces hypothèses sont testées en utilisant des microcosmes reproduisant chacun une 

portion de l’interface eau-sédiment de lit de rivière et colonisées par différentes 

communautés. Les conditions expérimentales sont : sédiment abiotique (AS); sédiment 

avec biofilm (SB); sédiment avec biofilm et méiofaune (SBM); et sédiment avec les 

communautés du biofilm, méiofaune et macrofaune, ce qui correspond de plus près à la 
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communauté benthique complète d’un lit de rivière (SBMM). Les taux de réduction du 

nitrate (NO3
--N) et du carbone organique dissous (COD) dans le sédiment des 

microcosmes ont été estimés par la diminution des quantités de nutriments dans l’eau 

interstitielle pendant une semaine. Le jeu de données utilisé correspond à une expérience 

qui a duré 75 jours avec les invertébrés introduits dans les microcosmes à partir du 47ième 

jour pour laisser le temps au biofilm de se développer avant les périodes de test des effets 

de la biodiversité. Les mesures de taux de réduction des NO3
--N et de COD obtenues 

pendant la première partie de cette expérience jusqu’au jour 55 ont été publiées dans Liu et 

al. (2016). Dans ce chapitre de thèse, deux périodes de mesure supplémentaires de la même 

expérience ont été ajoutées au jeu de données (périodes 3 et 4 du jour 56 au jour 75) pour 

pouvoir tester l’effet du temps sur ce taux de rétention en présence de différentes 

communautés.  

Pendant les 75 jours de développement du biofilm, le taux de réduction du nitrate a 

augmenté significativement avec le temps sur toute la durée de l’expérience dans 

l’ensemble des conditions testée. L’effet du traitement testé par une ANOVA à mesures 

répétées est significatif avec une réduction du nitrates dans la condition SB toujours 

inérieure à la réduction mesurée dans la condition avec une biodiversité maximale 

(SBMM). Le taux de réduction du COD ne varie pas significativement avec le nombre de 

communautés présentes. Cette étude met en évidence les effets des interactions entre les 

communautés benthiques sur la fonction de réduction des quantités de NO3
--N et atteste du 

maintien des taux réduction mesurés pour les NO3
--N, dans les sédiments macroporeux en 

conditions expérimentales.  

La section II.2 a permis de mettre en évidence le rôle important des invertébrés dans la 

fonction d’abattement des nitrates à l’interface sub-surface / surface de l’eau. Elle suggère 

une influence positive des interactions potentielles entre les communautés benthiques et la 

fonction d’abattement des nitrates, en relation avec le contrôle top-down. Les résultats 

obtenus par l’approche expérimentale en conditions contrôlées seront utiles à 

l’interprétation des observations in situ de la relation diversité des invertébrés et la fonction 

de réduction des nitrates testés en conditions naturelles dans les cours d’eau (section II.2). 

Cette deuxième partie du chapitre II est composée d’un article accepté dans le 

Journal Freshwater biology en mai 2016.   
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Dans la section II.3, nous utilisons les variations naturelles de la biodiversité dans le 

lit de rivières pour tester le lien entre la diversité des invertébrés et la rétention des 

nutriments, et explorons ce lien en utilisant la description des communautés d’invertébrés 

benthiques par les traits fonctionnels.  

Cet article explore l’influence plus particulière des facteurs biologiques sur la 

fonction de réduction des nitrates dans l’écosystème de petit cours d’eau. L’intérêt est plus 

particulièrement porté sur la communauté d’invertébrés benthiques et ses interactions avec 

l’activité du biofilm autotrophe et hétérotrophe. L’objectif de cette étude est de mettre en 

évidence l’influence des interactions entre ces communautés sur l’intensité de la fonction 

de rétention des nitrates à l’échelle de tronçons de petit cours d’eau. La base de données 

utilisée est issue du projet STREAMES, intitulé « Stream Reach Management, an Expert 

System » (2000 à 2004) intégré dans l’action clé “ Sustainable Management and Quality of 

Water ” du 5ième Programme Cadre de la Commission Européenne. Dans ce projet, les 

taux de rétention des nutriments ont été mesurés dans des petits cours d’eau européens 

représentatifs d'un éventail de conditions climatiques, grâce à la méthode expérimentale 

d’addition de nutriments in situ appliquée à l'échelle d’un tronçon de cours d’eau. Un 

extrait des données de cette base a été utilisé qui présente pour 9 cours d’eau européens, des 

mesures abiotiques (les taux de rétention du nitrate, les dimensions du lit et de la zone 

hypothétique, les débits, NO3
-, NH4

+, COD et température et occupation des sols dans le 

bassin versant amont), et des mesures biologiques échantillonnées simultanément 

(composition taxonomique des communautés d’invertébrés).  

Une approche par l’étude des traits fonctionnels permettrait la compréhension des 

mécanismes biotiques et abiotiques impliqués dans les processus d’abattement des nitrates 

en sélectionnant des modalités de traits associés à la communauté microbienne (contrôle 

top-down) et avec les facteurs abiotiques des cours d’eau associés à l’abattement des 

nitrates (effet de filtre : les conditions environnementales filtrant la composition de 

l’assemblage de macro-invertébrés). 

Dans un premier temps, les influences indépendantes et similaires des facteurs 

biotiques et abiotiques sur la fonction d’abattement de nitrates ont été statistiquement 

déterminées dans ces cours d’eau. Puis, plusieurs modalités de traits ont été identifiées 

comme significativement associées avec l’abattement des nitrates. Les principales 
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modalités identifiées comme positivement corrélées avec l’abattement des nitrates sont 

« racleurs / brouteurs » (trait de mode d’alimentation), « dalles, blocs, pierres, 

galets »  (trait de préférence de microhabitat), « rampant » et « endobenthique »  (trait de 

locomotion), et « détritus » et « débris végétaux » (trait de type de nourriture). Les 

principales modalités identifiées comme négativement corrélées avec l’abattement des 

nitrates sont « limon », « vase » et « microphyte » (trait de préférence de microhabitat), et 

« sédiments fins + microorganismes » et « animaux morts » (trait de type de nourriture). 

Ces résultats sont cohérents avec l’hypothèse de contrôle top-down et viennent compléter 

la compréhension de l’influence des facteurs hydromorphologiques sur l’abattement des 

nitrates.  

Cette étude suggère l’implication de la communauté de macro-invertébrés dans le 

processus d’abattement des nitrates en conditions naturelles simultanément avec 

l’influence abiotique. Ces organismes peuvent être impliqués dans cette relation 

fonctionnelle par des interactions trophiques et non-trophiques (ex : bioturbation) avec la 

communauté de biofilm microbien des sédiments. Ceci a mis en évidence l’intérêt 

d’appliquer une approche fonctionnelle pour expliquer les relations entre diversité et 

fonction d’abattement des nitrates. 
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English abstract of Chapter II 
The main objective of this chapter was to explore the indirect relationship between 

invertebrate communities and the nitrate removal function of aquatic ecosystems in natural 

conditions (less stress).   

The exploration of this link that might exist between benthic biodiversity and this 

function was: 

- first made in laboratory experimental conditions (section II.2)  

- then investigated in the field at the river reach scale (section II.3).  

These two complementary approaches allow to improve our understanding of the 

influences of biodiversity on the ecosystem function under controlled conditions before 

exploring the occurrence of these effects in in situ habitats under more complex 

environmental conditions. Therefore, the methodology is to demonstrate the validity of the 

relationship between biodiversity and the nitrate reduction function in laboratory 

conditions and afterwards to test this relationship in field conditions.  

Changing to field conditions also represents an upscaling of the indoor measures at 

the microcosm scale to the river reach scale. This chapter considers the exploration of this 

relationship in natural conditions with less stress, since the next chapter will test the same 

relation in stressful conditions. Furthermore, the nitrate reduction rates recorded in the 

experimental conditions with invertebrates and without stress (section II.2) could provide a 

potential reference to be used to compare with the next experiment reported in section III.2 

with contamination, since they are under the same experimental designs.  

Section II.2 presents parts of an indoor experiment performed during the 

Inbioprocess Project titled “Linking biodiversity and ecological processes in the 

subsurface/surface water interfaces for sustainable groundwater management” (2007 to 

2010). This project was funded by the French National Research Agency, 

(ANR2006-BIODIV-007). It was coordinated by the UMR-CNRS 5023 Ecologie des 

Hydrosystèmes Fluviaux from Lyon 1 University and aimed at linking biodiversity and 

ecological processes in the groundwater/surface water interfaces (i.e. riverbed sediments). 

These interfaces were viewed as active zones harboring, through sediments, important 

communities of benthic organisms (from river ecosystem) and interstitial organisms (from 

groundwater ecosystem) with various activities, behaviors and specific biological traits. 
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The main scientific objectives and working hypotheses of the Inbioprocess Project were: 

(i) to analyse significance of invertebrate migrations in stream sediments (e.g. hyporheic 

zone) during hydrological disturbances (floods or droughts). 

(ii) to define the role of biodiversity on organic matter breakdown and the interactions with 

sediment porosity. This was done by assessment of the relationships between 

functional diversity of interstitial communities and organic matter processing.  

(iii) to define the role of biodiversity in detoxication processes, in other words, to evaluate 

the contribution of river sediment biota to the abatement of xenobiotic toxicity.  

Several experiments were run during this project to look for evidence of the influence 

of biodiversity on removal of the excess concentration of nitrate as a primary chemical 

pollution in rivers. These experiments served towards the objective (iii) and referred to two 

hypotheses:  

H1: Functional diversity of aquatic invertebrates (bioturbators and/or detritivores) affects 

nutrient removal rates. 

H2: The more diverse the community, the more intense the nitrate removal. 

The section II.2 is based on the results of one first experiment run at UMR Ecolab in 

Toulouse in order to examine the potential influences of meiofauna and macrofauna on the 

nitrate reduction function in hyporheic conditions. A series of water infiltration 

microcosms that reproduce the water and macro-porous sediment interface of a river bed 

was set for these experiments. The nitrate and DOC reduction rates were compared under 

different combinations of communities, allowing the investigation of the invertebrate 

community influence on the nutrient recycling functions. The combination of communities 

in the different treatments was made with sediment +/- biofilm, +/- meiofauna, +/- 

macrofauna. Liu et al. (2016) was a previous paper reported the first part of results of this 

experiment. I am a co-author of this paper that was written during my PhD in cooperation 

with my team at Ecolab, participating in invertebrate data calculation and manuscript 

writing, so this paper is included in Annex I of this manuscript. Section II.2 is based on a 

data set exploration that is a time extension of the previous data set reported in Liu et al. 

(2016), where only 56 days were reported. In order to track the trend of NO3
--N reduction 

rates with the presence of different communities over a longer period of time, an extended 

dataset was explored further during 75 days extracted from the same experiment as shown 
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here in the present chapter.  

In this experiment, the biodiversity effects are studied at the cross-community level, 

which is not the common level for studying the biodiversity effect. The arguments to 

consider this level of biodiversity combinations are the following: 

If biodiversity effects on one ecosystem function exist at the level of species richness 

because of inter-species interactions, there are no objection to also test the biodiversity 

effects at the level of inter community interactions. It has been indeed argued that 

biodiversity-ecosystem function (BEF) experiments need to be extended beyond the single 

trophic level to better understand the variations of biodiversity effects across an ecosystem 

(Balvanera et al., 2006; Duffy et al., 2007). This vertical diversity theory has so far mainly 

been considered in trophic studies that examine the effects of the trophic chain length on 

the efficiency of a given function (Duffy et al., 2007; Bastian et al., 2008). The consistency 

between the inter-community diversity applied in this thesis and the ‘vertical diversity’ 

theory is further commented upon here.  

The term “vertical” diversity refers to the diversity across several trophic levels or 

groups, while the horizontal diversity refers to the diversity within one trophic level. In this 

thesis, although we did not directly manipulate the number of trophic groups, we 

considered that the vertical diversity increased when comparing the treatment only with 

biofilm (SB) to the treatments with meiofauna (SBM) or with meio- and macrofauna 

(SBMM). There is probably no increase of trophic groups between SBM and SBMM, since 

most of the trophic groups already exist in the meiofauna, but the complexity of the trophic 

web is considered to increase from SBM to SBMM treatments. In summary, it is 

considered in this chapter and further in this manuscript that:  

- Vertical diversity increases when passing from SB to SBM treatment,  

- Trophic web complexity increases when passing from SBM to SBMM treatment.  

This section provides the opportunity to examine the influence of invertebrate 

communities on nitrate removal, in relation to one of the possible direction of the links 

between the biodiversity and the nutrient recycling functions. The different linkages and 

directions about this relationship were mentioned in the general introduction and later 

developed in this chapter introduction. By increasing the number of communities under 

controlled circumstances and measuring the resulting difference in the function 



Chapter II: The relationship between invertebrate community and the nitrate removal function  

66 

performance (i.e. nitrate removal in this case), the observed differences between the 

treatments with and without invertebrates at the end of the experiment are interpreted as a 

result of the invertebrates’ activities. These results could be mainly explained by the 

direction of link that relies upon the invertebrate effects on the biogeochemical function.  

Moreover, the third part of this chapter is the infield investigations of this relation 

where the question if biodiversity promotes water quality or may be the biodiversity is a 

consequence of the opposite direction of the same links (the water quality promotes the 

biodiversity) inevitably arises. The evidence obtained in the experimental approach will be 

useful for the interpretation of the infield observations about the relationships between 

invertebrate diversity and nitrate removal (Section II.3).  

In Section II.3, we use natural variations of streambed biodiversity to test the link 

between invertebrate diversity and nutrient retention and explore this link with trait-based 

description of the benthic invertebrate communities. Indeed, it is more difficult to set 

biodiversity treatments in open field plots than in laboratory experiments. Loreau et al. 

(2001) and Hooper et al. (2005) pointed out that extrapolation of in laboratory experiments 

to landscape scale is likely to be hindered by important environmental heterogeneity.  

Section II.3 reports a new exploration of a European database. This database was 

extracted from the STREAMES project (2000-2004) coordinated by the University of 

Barcelona (Spain). This research is part of the European Program called “Human effects on 

nutrient cycling in fluvial ecosystems”, aiming at the development of an Expert System to 

assess stream water quality management at reach scale. The general context was the key 

action “Sustainable Management and Quality of Water” of the 5th Framework Program of 

the European Commission.  

More precisely, the STREAMES project aimed (i) to evaluate the effect of large 

stream nutrient loads on stream nutrient retention, and (ii) to examine the relationships 

between stream nutrient retention and several physical, chemical and biological structural 

or functional factors that may constrain or control the nutrient retention capacity in streams. 

With this objective, the STREAMS project compiled a database representing a diversity of 

streams encountered in the Mediterranean region, from Portugal to Israel, plus some 

central European sites that served to enlarge the range of environmental conditions. In total 

eleven third-order streams were investigated at three different scales with different original 
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research objectives related to assessment of point and non-point nutrient loads, and 

analysis of the relationship between land use (catchment scale), evaluation of the 

geomorphology effects on nutrient retention in streams (reach scale) and assessment of the 

role of stream biological processes on nutrient retention (sub-reach scale). 

Those reaches were also characterized by 2 sub-reaches: one upstream (as a control 

reach) and one downstream of a wastewater treatment plant (WWTP). In the stream project, 

benthic invertebrate communities were investigated for species and functional groups 

measurements to demonstrate the usefulness of the invertebrate community composition as 

bio-indicator for stream functioning. It was concluded that no clear relationship exists 

between biodiversity and nutrient uptake rates under point source (WWTP) and non-point 

source of nutrient inputs (Morais et al., 2009; Sanchez et al., 2009). 

A part of the STEAMES database was re-examined in Section II.3 of this thesis. The 

sub-reach information database was used in the present PhD to test my hypothesis, since 

this dataset provided simultaneous measurements of streambed biodiversity and in situ 

nutrient retentions in contrasted catchments. For each reach, only the data from the 

upstream sub-reaches was selected in order to test our hypotheses in the less perturbed 

conditions. Each sub-reach was investigated at different dates representative of different 

environmental conditions. Among the 3 nutrients of which the retentions were recorded 

(nitrate, ammonium, and phosphorus) in the STREAMES project, only the nitrate retention 

data was considered. The simultaneous influences of abiotic (i.e. hydromorphological and 

physicochemical) and biotic (i.e. biofilm and macro-invertebrates) factors on in-stream 

nitrate removal were thus, in this PhD work, re-examined more in detail based on this 

stream sub-reaches selection.  

The infield exploration of the studied biodiversity and function relationship allows to 

consider different directions in the linkage that relay invertebrate and nutrient retention:  

First view is a bi-directional linkage with a mechanistic approaches that opposes the 2 

ways of interpreting this relationship with bottom-up and top-down controls as the current 

debate (Srivastava et al., 2009). The first direction (top-down effects) considers the 

invertebrate communities control via different activities (e.g. feeding and bioturbation) on 

the microbial communities and consequently biofilm metabolism. This first direction was 

tested in Section II.2. The second direction (bottom-up) underlines the trophic dependency 
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of the microbial community on the nutrients resources offered by the system and the 

subsequent trophic dependency of the invertebrate community on the biofilm biomass.  

There also exists another type of debate about the different ways of considering the 

biodiversity and retention linkage in streams: Do the invertebrate diversity and hence its 

activities interfere with the nutrient transformation pathway via the microbial metabolism? 

So that a first direction of this link would be considered as the invertebrate influence on the 

water quality improvement. Or with an opposite direction, the same link could be viewed 

as: Is water quality controlling the biodiversity level? This last way of using the linkage is 

referring to bio-indication. 

Whether one view of the link or one direction is more realistic than the other is hard to 

know. Probably all these links simultaneously exist in the field. They are all valuable and 

interesting functional approaches to be developed. Hence, because the previous laboratory 

results in Section II.2 suggest the top-down effects of the invertebrates on nitrate removal, 

we will orientate the discussion of the infield results in this way. 

Section II.3 consists an accepted paper in the Journal “Freshwater Biology”. My 

involvement in this paper was to set the new research hypothesis, to define the suitable 

sub-data base to test this hypothesis, to run the whole statistical treatments, to analyse the 

results with the cooperation of the Toulouse team of the STREAMES project, and to write 

the paper previously submitted to the whole stream project participants for comments. 
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II.2 Part 1: Effect of time and invertebrates on nitrate removal in laboratory experimental 

conditions 

Effect of time and invertebrates on nitrate removal in 

laboratory experimental conditions 

II.2.1 Introduction 

The hyporheic zone is now recognized as a place of high biogeochemical activity 

(Pusch et al., 1998, Boulton et al., 1998, 2010; Nogaro et al., 2013) which participates in 

stream eco-functioning by changing water quality (Stanford and Ward, 1993; White, 1993; 

Storey et al., 1999). When a hyporheic zone exists, the biofilm biomass of the river may be 

largely extended with heterotrophic metabolisms in the sediments. Nitrogen and carbon 

reduction processes are established for heterotrophic biofilm in gravel bed sediments 

(Dahm et al., 1998; Peyrard et al., 2008; Iribar et al., 2008, 2015). Among these processes, 

the nitrate removal function has been usually used as a proxy for a natural water quality 

regulation service (Mulholland et al., 2008). 

Water quality favors biodiversity in ecosystems (e.g. De’ath and Fabricius, 2010) and 

in turn, biodiversity can have an impact on water quality through functional activities such 

as microbial metabolism, bioturbation and grazing by invertebrate communities (Hulot et 

al., 2000; Loreau et al., 2001; Lawrence et al., 2002; Timmermann and Banta, 2008). Liu et 

al. (2016), as several previous author studies (Mermillod-Blondin et al., 2000, 2001, 2002, 

2003, 2004; Mermillod-Blondin and Gaudet, 2004; Stief, 2013) highlighted the effects of 

interaction between microbial, meio- and macrofauna on nitrate (NO3
-) and dissolved 

organic carbon (DOC) reduction in macro-porous stream sediments in short-term 

laboratory experiments. However, if the invertebrates as ecological engineers are able to 

influence the nitrate reduction function, it is not clear whether this influence is sustainable 

with time or just a transient response to some experimental manipulations. The general 

assumption is that biodiversity contributes positively to ecosystem processes and 

represents an insurance against environmental variations and disturbances (Loreau et al., 

2001). How this biodiversity contribution evolves with time in fields? One of the major 
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questions concerning the role of hyporheic zone is how and to what extent biodiversity that 

lives in this habitat contributes to the riverine ecosystem functioning and its resilience 

capacity (Marmonier et al., 2012). The exploration of these questions requires a first 

assumption that invertebrate diversity’s influence on the nitrate reduction function is 

sustainable with time in the hyporheic zone in natural conditions. This question has been 

merely addressed in the literature previously. In Liu et al. (2016), the experimental design 

only allowed to demonstrate a short-term influence on the nitrate reduction after 

introduction of the biodiversity composed by invertebrate and biofilm communities. The 

increase of the nitrate reduction rate after the meio- and macrofauna communities’ arrival 

could be the results of the artificial introduction of the invertebrates, and this phenomenon 

may attenuate with longer experimental time duration.  

In Liu et al. (2016), the influence of the invertebrates on the nutrient reductions was 

tested using microcosms reproducing a portion of a riverbed water-sediment interface 

during 10 days, on a 47 days old biofilm. The same experiment is used in the present study 

with a dataset extended to 28 days of nutrient recycling records under invertebrate effects. 

Experimental treatments were identical with sediment and biofilm (SB); sediment, biofilm 

and meiofauna (SBM) (only available in one period); and sediment, biofilm, meiofauna 

and macrofauna community assemblages (SBMM). Liu et al. (2016) reported the positive 

effects of the cross-community interaction on reduction rates of nitrate (NO3
−-N), which 

increased significantly with increasing the community levels (SBMM>SBM>SB). The 

one-fold higher nitrate reduction rates in SBM than that in SB indicated the role of the 

meiofaunal group in stimulating the nitrate removal process. And the two-fold higher 

nitrate reduction rates in SBMM than that in SB implied that macrofaunal organisms can 

facilitate the self-depuration process in hyporheic zones on this time scale.  

Unfortunately, the denitrification rates at the end of experiments and nitrate reduction 

rates in phase 3 and 4 were not available for SBM treatment under a longer period of 

experimental time. One of the main results of Liu et al. (2016) was the demonstration of the 

meiofauna involvement in the nutrient recycling processes. The influence of this particular 

community would be less detailed in the present section.   

The objective of this section was to test the durability of the positive relationship 

between the biodiversity composed of invertebrates and biofilm and the nitrate and DOC 
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reduction rates at the subsurface-surface water. Specifically, this study consisted in 

characterizing the role of invertebrates on the targeted functions of nutrients reduction as a 

proxy for the water purification service. The invertebrate community is composed of 

meiofauna, macrofauna, so that the comparison between treatments with and without 

invertebrates still allowed to test the durability of the influence of vertical diversity on this 

function in hyporheic sediments. 

II.2.2 Materials and methods 

The methodology implemented here relied on the same laboratory experimentation as 

described in Liu et al. (2016) with a time duration lasted 75 days after beginning of water 

circulation in the microcosms. To test the role of invertebrates on nitrogen and carbon 

reduction rates, analysis of these elements was performed in water flowing through a series 

of infiltration column microcosms reproducing a portion of water-sediment interface. The 

effects of invertebrate were tested by the comparison of 2 experimental composition of the 

microcosms as experimental treatments with sediment and biofilm and with or without the 

invertebrate community.  

II.2.2.1 Microcosm design 

The microcosm design followed our previous studies as described in Sánchez Pérez et 

al. (2013) and Liu et al. (2016). 16 Plexiglas columns (height: 20 cm, internal diameter: 6.8 

cm) were independently run to allow replicates of 3 treatments (Figure. II.2-1a). A 

downward water circulation in microcosms, as a constant infiltration flow rate of 7–8 mL 

min−1 created similar in situ water flow range of in hyporheic sediments (Sánchez Pérez et 

al., 2003; Weng et al., 2003; Peyrard et al., 2008). Supplied water was aerated in tanks to 

maintain oxygen saturation. All the microcosm-setups (n = 16) were placed in a dark room 

to avoid phototrophic biofilm development. Room temperature was fixed at 15 ± 0.5 °C. 
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Figure II.2-1 Microcosm design (a), treatment setup (b) and experimental design (c). Capital characters in 

bold were used to name the different treatment (b), i.e. SB = abiotic Sediment + Biofilm, SBM = abiotic 

Sediment + Biofilm + Meiofauna, and SBMM = abiotic Sediment + Biofilm + Meiofauna + Macrofauna. 

Note: Layers showing in (b) are visual aids for treatment presentation. They were mixed properly, gently and 

homogenously as (a) shown 

II.2.2.2 Experimental design 

Treatment setup  

    The experimental design was shown in Figure II.2-1. Three different biodiversity 

levels were set in the microcosms to allow comparison of their functioning: sediment and 

biofilm (SB); sediment, biofilm and meiofauna (SBM); sediment, biofilm, meiofauna and 

macrofauna community assemblages (SBMM). Water circulation was activated in the total 

16 microcosms. After 40 days of incubation, these microcosms were assigned to SB. Phase 

1 was the week before invertebrate introduction. At day 47, invertebrates were introduced 



Chapter II: The relationship between invertebrate community and the nitrate removal function  

73 

in the related columns so that the 16 SB microcosms were divided into three treatments i.e. 

SB (n = 4), SBM (n = 6) with meiofauna added and SBMM (n = 6) with macrofauna added. 

Phase 2 was used to compare meio-invertebrate effects and lasted for 7 days. The SBM 

treatment was stopped at the end of the phase 2 because the columns were allocated to 

other unpublished treatments. Then, Phase 3 (from day 57 to 65) and Phase 4 (from day 67 

to 75) were used to track the invertebrate effects on NO3
--N reduction rates during longer 

time. Finally, this experiment allowed to record invertebrate community effects during the 

last 28 days of the experiment (from day 47 to day 75). 

Biofilm incubation  

To provide nutrients for constant biofilm growth, KNO3 and CH3COONa·3H2O were 

added to each tank and adjusted to the final concentrations (NO3
--N, 10 mg L-1, DOC, 30 

mg L -1) once a week.  

Invertebrate sampling and microcosm colonization  

In situ invertebrate communities were collected in the Leze River (a sub-tributary of 

the Garonne River, South West France) as described in Liu et al. (2016). Organisms, 

detritus and some sediments were collected with a “double net” surber equipped with a 55 

and a 250 µm nets that enabled to sample meiofauna (55–250 μm) and macrofauna (> 250 

μm) simultaneously. When using the double net surber in streams, the sediment was 

manipulated over the first 10 cm of the benthic boundary layer. In that way, it allowed the 

collection of an invertebrate community likely as representative as possible of the surface 

layer of the hyporheic zone with a thickness similar to the depth of microcosm column. 

After the collection, the three fractions (organisms, detritus and some sediments) were 

divided into subsamples of approximately the same fresh weight, and were introduced 

together at the top of the sediment into SBM and SBMM treatments at the beginning of the 

experiment. Replicates of these subsamples were dried (121 °C during 3 hours) and 

introduced in all microcosms without invertebrate community at the beginning of the 

experiment to supply the same amount of sediment and organic matter as to the other 

microcosms. A set of three additional subsamples of these three fractions was used for 

invertebrate identification and counting. 
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II.2.2.3 Experimental analysis 

Biofilm biomass  

The biomass of interstitial biofilm (including fauna when present) was determined at 

the end of the experiment by ash free dry mass (AFDM) following the method of Liu et al. 

(2016).  

Physical-chemical analysis 

Nitrate concentration was analysed by a high performance ion chromatographic 

analyser (DIONEX, DX500 and DX120). Dissolved organic carbon concentration, were 

measured by a Total Organic Carbon Analyser (Shimadzu TOC-5000A). For dissolved O2 

measurements, a measuring chamber containing an electrode WTW CellOx 325 

beforehand calibrated was incorporated into the water circulation at the outlet of the 

column. 

Meio/macro fauna identification 

Three more replicates of wet subsamples with fresh invertebrates were stored at the 

initial time for fauna quantification. At the end of the experiment (day 75), 90 % of the total 

sediments in each microcosm of SBM and SBMM were used for identification and 

quantification of the remaining communities. Samples were preserved in 5% formalin until 

sorting of organisms. Meio- and macrofauna were identified at the lowest taxonomic level 

as possible using a stereo dissecting microscope (Tachet et al., 2002). 

Aerobic respiration and denitrification  

Aerobic respiration and denitrification were measured at the end of the experiment 

(day 75) following the slurry technique (Furutani et al., 1984) and detailed in Liu et al. 

(2016).  
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II.2.2.4 Nutrient and DOC reduction rates 

The definition of nutrient reduction rate is referred to the total quantity of nutrient that 

is removed from water when passing through the sediment of microcosms. It was estimated 

by the changes of nitrate and DOC quantities over time (time interval: 7 days) in the 

reservoir water. The nitrate reduction rate quantifies the sum of all the processes which 

transform the nitrate and that can happen during the water flow through the sediment 

column, mainly denitrification, DNRA and anammox pathways. DOC reduction rate 

referred to all the microbial metabolism processes of aerobic and anaerobic 

re-mineralization of DOC. It mainly occurred as an oxidation process of DOC.  

II.2.2.5 Statistical analysis 

The normal distribution and homoscedasticity of variances of nitrate reduction were 

verified. Before testing faunal influences, the homogeneity of the nutrient concentrations 

and nitrate reduction rates between intended treatments were examined by one-way 

ANOVA test.  

O2 concentration, nitrate and DOC reduction rates were measured repeatedly in each 

microcosm at different times (P2, P3 and P4). The variations of these variables were 

examined by one-way repeated measures RM-ANOVA with treatment as a main factor and 

time as the repeated factor. The sphericity assumption was examined (Mauchly's sphericity 

test). If RM-ANOVAs detected significant differences, pairwise post-hoc tests (Bonferroni 

multiple comparisons) were undertaken to examine the differences. Significance was 

determined at ɑ = 0.05 (95% confidence). Since O2 concentration, nitrate and DOC 

reduction rates at SBM treatment were only available in Phase 2, these data of SBM 

treatment were not included in RM-ANOVA analysis. Also, O2 concentration, nitrate and 

DOC reduction rates in Phase 1 were not included in the statistical analysis and were only 

performed as references in the Figure II.2-2, Figure II.2-3 and Figure II.2-4.  

For comparing the variables that were only available at the end of the experiment 

(biofilm biomasses, denitrification and respiration rates) in two treatments (SB and 

SBMM), Mann-whitney test was used. 

These analyses were undertaken using the SPSS statistical package (Version 22) and 
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Graph pad prism 6. 

II.2.3 Results 

II.2.3.1 Macrofauna and meiofauna 

At the end of the experiment, the mean ash free dry weight of sediments i.e. biofilm 

biomasses in SB and SBMM was 5.02 ± 0.39 g and 5.18 ± 0.43 g respectively. No 

differences were found between these treatments (Mann-whitney test, p > 0.05). It 

indicates that the addition of invertebrates did not have neither positive nor negative 

pressure on hyporheic biofilm biomass in this study. 

A total of 29 macrofaunal taxa were introduced into SBMM. The total macrofaunal 

density ranged from 191 to 380 individuals per microcosm. Diptera (Chiromidaes) 

dominated the macrofaunal community i.e. contributed 70 % of the total density, followed 

by Plecoptera (12 %), Coleoptera (5 %), Oligochaeta (4 %) and Hydrachnidiae (4 %) and a 

few Ephemeroptera (2 %) and Tricoptera (1 %). The dominant functional groups of 

macroinvertebrates at the initial period were scrapers (23 %), deposit feeders (22 %), 

shredders (20 %), predators (20 %), followed by filter feeders (9 %) and parasites (4 %). 

Total density per microcosm at the end of the experiments (48±18 ind. per microcosm) was 

lower than that at the beginning of the macrofauna introduction (267±25 ind. per 

microcosm). Taxonomic composition varied from the beginning compared with the end of 

experiments. The dominated taxa were Diptera (40 %), followed by Oligochaeta (29 %), 

Hydracarien (14 %) and Copepoda (8 %) of the total density of macrofauna at the end of 

the experiment. Predators became the most numeric functional feeding group (50 %) and 

followed by deposit feeders (26 %), scrapers (14 %), absorbers (4 %) and shredders (3 %) 

of the total density at the end. 

A total of 19 meiofaunal taxa were introduced into SBM and SBMM. The mean 

meiofaunal density at the beginning was 35296 ± 3956 ind. per microcosm. With a relative 

abundance of 84 % in both SBM and SBMM, rotifers were the most abundant organisms 

introduced in the microcosms with the meiofauna fraction, followed by Tardigrades (8 %) 

and meiobenthic Chironomidae larve (3 %). Total density per microcosm at the end of the 

experiments (5437 ± 3596 ind. per microcosm in SBMM) was lower than that at the 
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beginning of the invertebrate introduction. Rotifers became even more dominant (96 % in 

SBMM). 

II.2.3.2 O2 concentrations 

Table II.2-1 reports the RM-ANOVA results for O2 concentrations, nitrate and DOC 

reduction rates. No significant difference of O2 concentration was detected between SB 

and SBMM treatments during the experiments (RM-ANOVA, F=0.04, treatment effect, 

P>0.05, Table II.2-1), while O2 concentrations changed significantly over time. O2 

concentrations during phase 4 (1.61±0.43, mean ± SE, n=10) were significantly higher 

than those at phase 2 (3.54 ± 0.44, n=10) (Bonferroni post host test, t=3.3, p=0.02). The 

time effect on O2 concentrations was different between treatments (RM-ANOVA, F=4.4, 

treatment x time effect, P=0.03, Table II.2-1). O2 concentrations of SB treatment 

significantly increased from phase 3 to phase 4 (Bonferroni post host test, t=3.0, p=0.03) 

and O2 concentrations of SBMM treatment significantly increased from phase 2 to phase 4 

(Bonferroni post host test, t=3.0, p=0.03) (Figure II.2-2). 

Table II.2-1 Results of repeated measures analysis of variance (RM-ANOVA) for testing differences in O2 

concentrations, NO3
--N and DOC reduction rates between treatments (SB and SBMM). Treatment was a 

main effect and time was a repeated factor (3 phases with invertebrates from day 47 to day 75).  

  Source d.f F P 

O2 
concentration 

Treatment 1 0.04 0.84 

Time 2 5.3 0.02 

Treatment x Time 2 4.4 0.03 

NO3
--N 

reduction rates 
Treatment 1 6.6 0.03 

Time 2 19.5 <0.001 

Treatment x Time 2 0.34 0.72 

DOC 
reduction rates 

Treatment 1 0.04 0.85 

Time 2 3.3 0.06 

Treatment x Time 2 2.2 0.15 

 



Chapter II: The relationship between invertebrate community and the nitrate removal function  

78 

 
Figure II.2-2 Oxygen concentrations (mg O2. l-1) (mean ± SE) at the exit of water column during the 4 

experimental phases (Phase 1: the period before invertebrate introduction, from day 40 to day 47; Phase 2: 

the first period with invertebrates’ addition from day 47 to day 55; Phases 3 from day 59 to day 67; Phases 

4 from day 67 to day 75). Sample numbers (n = 16) are replicates columns for SB in Phase 1; they become 

in Phase 2 (n = 4 for SB, n = 6 for SBM, and n = 6 for SBMM); and in Phase 3 and 4 (n=4 for SB, and n=6 

for SBMM). Oxygen concentrations at SBM treatment is only available in Phase 2. “*” marks statistical 

differences 

II.2.3.3 NO3--N and DOC reduction rates 

When water circulation started i.e. before nutrient enrichment and 

invertebrates’addition, no differences in concentrations of NO3
--N and DOC between 

treatments were found (one-way ANOVA, p > 0.05). Mean concentrations measured in all 

microcosms were equal to 3.7 ± 1.0 mg L-1 for DOC and 1.8 ± 0.1 mg L-1 for NO3
--N. At 

the start of Phase 1 (just after addition of KNO3 and CH3COONa in each microcosm), 

DOC mean of 31.2 ± 2.1 mg L -1 and NO3
--N concentrations of 11.2 ± 0.5 mg L -1 were 

detected with no significant differences between intended treatments (one-way ANOVA, p > 

0.05). In phase 1, no significant difference of NO3
--N reduction rates between the intended 

treatments was observed (one-way ANOVA, p > 0.05).  

In these three phases (P2, P3 and P4), NO3
--N reduction rates measured in the 

sediment columns with meiofauna and macrofauna (SBMM) (13.4 ± 2.5, mean ± SE) were 

significantly higher compared with its control treatment SB (9.0 ± 3.3) (RM-ANOVA, 

F=6.56, treatment effect, p=0.04, Table II.2-1). It was implied that the increasing 

invertebrate community may enhance the efficiency of NO3
--N reduction in the 



Chapter II: The relationship between invertebrate community and the nitrate removal function  

79 

microcosms. NO3
--N reduction rates showed the significant changes with time 

(RM-ANOVA, F=19.5, time effect, p<0.001). NO3
--N reduction rates significantly 

increased from phase 2 to phase 3 (Bonferroni post host test, t=3.3, p=0.01), and then 

significantly increased from phase 3 to phase 4 (Bonferroni post host test, t=2.84, p=0.04) 

(Figure II.2-3a). The influences of treatments on NO3
--N reduction rates did not change 

with time (RM-ANOVA, F=6.56, treatment x time effect, p>0.05, Table II.2-1).  

DOC reduction rates did not vary significantly with treatments (54.2 ± 2.9 mg C d−1 

with biofilm alone (SB) to 54.9 ± 1. 9 mg C d−1 with the addition of meiofauna and 

macrofauna community) (SBMM)). Also, no significant effects of time and interactions 

were detected in DOC reductions rates (RM-ANOVA, p>0.05, Table II.2-1) (Figure 

II.2-3b).  

 
Figure II.2-3 NO3

--N reduction rates (a) and DOC reduction rates (b) (mean ± SE) (see description of the 

phases in Figure II.2-2). Sample numbers are SB =16 in Phase 1; SB=4, SBM=6, and SBMM =6 in Phase 2; 

SB=4, SBMM=6 in Phase 3 and 4. NO3
--N and DOC reduction rates at SBM treatment are only available in 

Phase 2 
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II.2.3.4 Microbial activities 

Mean denitrification rate in SBMM was significantly higher (6-fold) than that in SB 

(Mann-whitney test, p < 0.01, Figure II.2-4a) at the end of the experiment. No significant 

difference of the mean respiration rates between SBMM and SB (Mann-whitney test, p > 

0.05, Figure II.2-4b) was found on the same final time.   

 
Figure II.2-4 Denitrification (a) and respiration (b) rates at the end of experiment (mean ± SE). Sample 

numbers are n = 4 for SB, n = 6 for SBMM. Different characters (“a”, “b”) resulting from statistic tests mark 

the treatments with significantly differences 

II.2.4 Discussion 

Nitrate reduction efficiencies were enhanced with additional meio- and 

macro-invertebrate communities compared to single biofilm treatment (SBMM > SB, 

Figure II.2-3a). Compared to SB treatment, the vertical diversity was higher at SBMM 

treatment with increasing trophic groups (e.g. consumers and predators), which had the 

most complex trophic web and the highest number of trophic levels composition. Our 

results showed a constant invertebrate effect on nitrate reduction rates for the whole 

experiment duration. This result not only demonstrated the influence of invertebrate 

communities but also may suggest the maintaining of the effect of interactions between 

invertebrates and biofilm (herein called cross-communities effects) on the nitrate reduction 
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function. Furthermore, the nitrate reduction rates continuously increased during the 

experimental time after invertebrate addition that lasted 28 days (from day 47 to day 75). 

This was, to the best of our knowledge, the first demonstration of invertebrate effect 

persistency on water quality in a simulated hyporheic ecosystem. The denitrification rates 

increased by a factor of 6 at the end of experiments in presence of meiofauna and 

macrofauna compared to those measured in sediments without invertebrates. Since 

denitrification could be one of the main pathways of nitrate reduction processes in the 

hyporheic microcosms, these results confirmed the close relationship between invertebrate 

and biofilm, which may explain the indirect influence of invertebrates on the nitrate 

reduction function. 

Meiofauna i.e. benthic rotifers – the most abundant group in our microcosms – are 

primarily microphagous i.e. consuming microalgae, bacteria, protozoan and/or fungi 

(Ricci and Balsamo, 2000; Duggan, 2001; Mialet et al., 2013). Thus, their effects on 

reduction rates could be also interpreted as partly resulting from the meiofaunal feeding 

(grazing and filtration) activity that could change the microbial flora and/or stimulate the 

microbial growth (e.g. Aller and Aller, 1992; Liu et al., 2015). The meiofauna also showed 

a decrease of total density during the experiment with increasing rotifer dominance in the 

community. It is known that rotifers are resistant to perturbed environment (Palmer et al., 

1992; Majdi et al., 2012). Liu et al. (2016) suggested that the higher nitrate reduction rate in 

the presence of meiofauna could indirectly result from the bioturbation activity of rotifers, 

stimulating N-treating bacteria. Besides, bioturbation activity of both meio-and 

macrofauna could modify the physico-chemical properties of sediments, which also 

change the nutrient reduction by sediments (Ferguson and Eyre, 2007; Bonaglia et al., 2013, 

2014). Although this positive effect of meiofauna on the nitrate reduction function may 

exist in phase 3 and 4, the significant higher nitrate reduction rates observed at SBMM 

treatment in phase 3 and 4 could be attributed to the effects of meiofauna and/or 

macrofauna. It is hard to discern the effect from meiofauna or macrofauna on nitrate 

reduction recorded in SBMM treatment at the present study. 

Nitrate reduction rates increased both in SB and SBMM treatments over time. 

Moreover, there was always a higher nitrate reduction rate in SBMM than that in SB, 

implying that macrofaunal and meiofaunal organisms can facilitate the self-depuration 



Chapter II: The relationship between invertebrate community and the nitrate removal function  

82 

process in hyporheic zones. The maintained enhancement of nitrate reduction during the 

three phases (P2, P3 and P4) in the treatment with the addition of meiofauna and 

macrofauna, even though invertebrate density and diversity decreased at the end of 

experiments, could be the results of the species adapted to experimental conditions in the 

invertebrate community. The taxa composition of macrofauna varied from the beginning to 

the end of the experiments, however, Diptera was dominant throughout the experiment. 

Also a notable increase of relative density of Oligochaete was observed, which may be due 

to their tolerance to the effect of nutrient loadings (Verdonschot, 1996; Giere, 2009). The 

decrease of macrofauna density during the experiment may partly result from the high 

fraction of predators at the end of the experiment. It may be emphasized that among the 

treatments in our experiments, SBMM could better reflect the in situ condition of a river 

bed, because the co-existence of meiofauna and macrofauna in the SBMM treatment was 

closer to the community composition in the natural stream beds compared to other 

treatments (without invertebrates or with only meiofauna and biofilm). Also the 

invertebrates’ collection occurred on a sediment layer (10 cm) whose thickness was similar 

to the microcosm depth. Comparison of nitrate reduction with and without invertebrates 

indicated the important role of those organisms and the related trophic groups in the nitrate 

removal function of biofilm. This result suggested that invertebrate communities, with 

possible cross-community interactions, is a prerequisite for self-purification service 

efficiency and more attention should be paid to these organisms in conservation strategies 

of river beds. 

Our results showed that invertebrates (macrofauna and meiofauna) could involve in 

the nitrate reduction function, which can indirectly interact with the activities of biofilm 

compartments to improve water quality. This finding agreed with the literature. Stief (2013) 

reviews three types of animal–microbe interactions (i) ecosystem engineering, (ii) grazing, 

and (iii) symbiosis, which attest of sediment dwelling invertebrates as important mediators 

between nutrients in the water and microbes in the benthos. Diptera larvae, dominant in our 

experiments, are known as being characteristic of bioturbation by bioirrigation which 

refers to the process of benthic organisms flushing their burrows with overlying water 

(Roskosch et al., 2010). This may result in creating organic-rich microenvironments 

favorable for nitrate consumption (Gilbert et al., 1995), because the burrows could favor 
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the water and nutrient circulation inside the mosaic of micro-environments of the sediment 

column (Hansen et al., 1996; Ford et al., 1999; Michaud et al., 2006). Thus, the 

contribution of invertebrate such as Diptera could be the one of the accelerators of nitrate 

reduction in hyporheic zones.  

Nitrate reduction rates increased between SBM and SBMM in Phase 2 also included 

the possibility of the interactions between macro- and meiofauna communities. Few 

studies provide the influence of such interactions on nitrogen concentration changes in 

aquatic ecosystems (Liu et al., 2015, 2016). This underlies the need to understand this type 

of interactions to better estimate their impacts on nitrate reduction in ecosystems.  

Unlike in nitrate reduction rates, no differences in DOC reduction were observed 

between treatment (SB and SBMM) and time. Liu et al. (2016) found higher DOC 

reduction rates occurrence in SBM than in both SB and SBMM microcosms with a shorter 

recording time. The present observation suggested that the previous stimulation of the 

DOC assimilation as a carbon source for heterotrophic bacterial in the experimental 

column was no more effective under the whole invertebrate communities’ influence 

(SBMM). This observation may suggest that biofilm growing is still stimulated by the 

invertebrates’ activities but may be limited by the simultaneous grazing pressure by the 

same or other invertebrates. This balance between grazing and biofilm growing under 

invertebrate effects may also explain the similar biofilm biomasses in all conditions at the 

end of the experiment.  

Moreover, the equivalent respiration rates in SB and SBMM at the end of experiments 

supported the assumption that the bacteria activity remained relatively constant under the 

influence of the invertebrate community. Yet, Michaud et al. (2006) reported a concomitant 

increase in nitrate and DOC reduction rates with the presence of macrofaunal gallery 

diggers, as Mermillod-Blondin et al. (2000, 2001) reported with Oligochetes Tubificids. 

This suggested that the effect of macrofauna on DOC reduction was probably related to the 

relative densities of the different functional groups of bioturbation (Michaud et al., 2005). 

Some other previous studies of invertebrates–microbial community interactions in 

sediments underlined the macrofaunal effects on nutrient reductions rates with a negative 

relation: macro-consumers might substantially depress the global biofilm biomass 

(Mulholland et al., 1994; Sabater et al., 2002; Marshall and Hall, 2004). The fact that we 
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measured a constant biofilm biomass suggested that the interactions may occur through 

other pathways stimulating the growth of bacteria (Liu et al., 2015), which could 

counterbalance the biomass reducing effect. The major possible effect of invertebrates that 

explained the increase of metabolism and its efficiency was then likely the results of 

cross-compartment interactions between invertebrate and biofilm through the different 

bioturbation and feeding activities.  

Oxygen concentration is known to be related to nitrate reduction and especially by 

influencing the denitrification pathway (Kemp and Dodds, 2002). In phase 2, the evident 

oxygen depletion at SBMM treatment was observed. Mermillod-Blondin et al. (2000, 2001) 

showed that the activities of invertebrates (Tubificids) in sediment columns could increase 

the number of active bacteria and thus resulting in rapid decrease of oxygen concentrations 

in the interstitial sediment. The hypoxia condition could simultaneously favor 

denitrification activity. However, the transient oxygen depletion at SBMM treatment was 

no longer observed in later phases. During phase 4, no difference of oxygen concentrations 

between SB and SBMM treatment in our experiments with increased concentrations 

detected in SBMM. The variation of oxygen concentration during experiments may 

suggest a transient adaption of invertebrates to the laboratory conditions. This observation 

also implied that the significant enhancement of nitrate reduction in SBMM in phase 3 and 

4, was not mediated by hypoxia conditions, but was more likely a consequence of 

invertebrate interactions with biofilm.  

II.2.5 Conclusion 

This study aimed to emphasis the important role of invertebrates on the 

biogeochemical (nitrogen and carbon) reductions function in subsurface-surface water 

interface. This study showed that microbial community in interaction with meiofauna and 

macrofauna in the hyporheic sediment could favor the nitrate reduction function and this 

effect was maintained during the time duration of the experiment: 28 days. Unlikely, the 

DOC reduction rates did not vary with time and under invertebrate effects.  

Cross-community effect may play a role in the nitrate reduction function which was 

efficient until the end of the experiment with the reduced invertebrate community observed 

at that time. This finding suggested that the attention should be paid to the possible links 
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(feeding and bioturbation) between invertebrate and microbial communities in addition to 

the intra-community diversity effect when regarding the drivers of nutrient recycling 

function and related ecosystem service.   

 

 

  



Chapter II: The relationship between invertebrate community and the nitrate removal function  

86 

  



Chapter II: The relationship between invertebrate community and the nitrate removal function  

87 

II.3: Part 2: Effects of macroinvertebrate traits on nitrate removal in stream sediments 

Effects of macroinvertebrate traits on nitrate removal in 

stream sediments 

Jingmei Yao 1, 2, Fanny Colas 1, 2, Angelo G. Solimini3, Tom J. Battin 4, Sarig Gafny 5, 

Manuela Morais 6, María Ángeles Puig 7, Eugenia Martí 7, Martin Pusch 8, Catherina 

Voreadou 9, Francesc Sabater 10, Frédéric Julien 1, 2, José M. Sánchez-Pérez 1, 2, Sabine. 

Sauvage 1, 2, Philippe Vervier 1, 2, Magali Gerino 1, 2* 

1Université de Toulouse; INP, UPS; EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement); 118 

route de Narbonne, F-31062 Toulouse, France 

2CNRS; EcoLab; F-31062 Toulouse, France 

3 Department of Public Health and Infectious Diseases, Sapienza, University of Rome, Rome, Italy 

4 Department of Limnology, IECB, University of Vienna, A-1090 Vienna, Austria 

5 School of Marine Sciences, Ruppin Academic Center, Israel 

6 Department of Biology, Institute of Earth Sciences (ICT), University of Évora, 7005 Évora Codex, Portugal 

7 Centre d’Estudis Avançats de Blanes (CSIC), Acces Cala Sant Francesc 14, Catalonia, Spain 

8 Institut of Freshwater Ecology and Inland Fisheries (IGB), Muggelseedamm 301, 12587 Berlin, Germany 

9 The Natural History Museum of Crete, University of Crete, Heraklion 71409, Crete, Greece 

10Departament d’Ecologia, Universitat de Barcelona, Diagonal 645, Barcelona 08028, Catalonia, Spain 

 

Keywords: regulation service, water quality, in-stream nitrate removal, macroinvertebrate 

traits, biofilm 

Corresponding author: Magali GERINO; E-mail: magali.gerino@univ-tlse3.fr 

 

This artical was accepted by the journal“Freshwater Biology”in may 2016 



Chapter II: The relationship between invertebrate community and the nitrate removal function  

88 

II.3.1 Abstract 

1.  The in-stream function of nitrate regulation may be used as a proxy for the 

ecosystem service of water purification and this function is well known to be driven by 

abiotic and biotic factors. With regard to biotic drivers, most of the literature focuses on 

the microbial community, while there has been very little emphasis on the benthic 

macroinvertebrate community. The latter lives on the streambed or in the hyporheic zone 

and consumes autotrophic or heterotrophic biofilms at the source of this regulation. 

2.  The objective of this study is to examine the potential relationship between the 

macroinvertebrate communities and nitrate removal. We analysed a dataset of in-stream 

nitrate removal rates measured in nine third-order streams. The simultaneous influences 

of abiotic (i.e. hydromorphological and physico-chemical) and biotic (i.e. biofilm and 

macroinvertebrate) drivers on in-stream nitrate removal were examined. The independent 

contribution of each driver to nitrate removal was then identified. This study shows that 

not only physicochemical (e.g. NH4
+, DOC and temperature) and hydrological (transient 

zone) factors, but also macroinvertebrate assemblages, had independent influences on 

nitrate removal intensity. 

3.  The potential relationship between macro-invertebrates and nitrate removal was 

finally explored using trait-based approaches. It is hypothesised that a trait-based 

approach would permit the elucidation of the biotic and abiotic mechanisms involved in 

the nitrate removal processes. This method allows the selection of trait modalities 

associated with the microbial communities (i.e. assuming top-down control of 

macroinvertebrate on microbial communities) and with in-stream abiotic conditions 

correlated to nitrate removal (i.e. assuming environmental conditions filter the 

macroinvertebrate assemblage composition). 

4.  Main trait modalities positively correlated with nitrate removal were scraper (feeding 

habit), flagstones/boulders/cobbles/pebbles (substrate preference), crawler and interstitial 

(locomotion), detritus and dead plants (food). Main modalities negatively correlated with 

nitrate removal were silt, mud and microphyte (substrate preference) and fine sediment 

and microorganisms, and dead animals (food). These results agreed with the top-down 

control hypothesis and complemented the understanding of the influence of 
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hydromorphological factors on nitrate removal. 

5.  This study highlighted the involvement of the macroinvertebrate community in the 

nitrate regulation process and the interest of applying a functional approach in explaining 

relationships between biodiversity and the nitrate removal function. 

II.3.2 Introduction 

Anthropogenic loading of nitrogen into freshwater has increased by more than one 

order of magnitude over the past two decades (Vitousek, 1997; Galloway et al., 2004; 

Ruehl et al., 2007). Streams and rivers are reported to be important sinks for nitrogen 

(Grizzetti et al., 2015), and about half of the nitrogen input is ultimately removed by 

streams and rivers before flowing into coastal waters (Galloway et al., 2004). In-stream 

nitrogen retention is the set of processes by which nitrogen is stored, transformed and 

removed from the natural water (Alexander et al., 2000). This retention contributes to the 

regulation of the downstream water quality delivery. Nitrate is one of the major forms of 

nitrogen in rivers. Nitrate retention may be used as an indicator for the ecosystem service 

of water quality regulation (Millennium Ecosystem Assessment 2005; Cardinale, 2011). 

There has been considerable recognition of nitrate retention by the riparian ecotone of 

riverine ecosystems, but in-stream nitrate retention is presently attracting growing interest 

(Bernal et al., 2015).  

A number of processes are involved in in-stream nitrate retention, including abiotic 

processes such as hydrologic storage (Triska et al., 1989a; b) in addition to biotic retention 

(i.e. removal by microbial metabolism). Biotic removal theoretically includes assimilation 

processes via uptake by plants and algae, and dissimilation processes such as nitrate 

reduction via denitrification and ANaerobic AMMonium OXidation (anammox) (Ranalli 

and Macalady, 2010; Ligi et al., 2014). Both autotrophic and heterotrophic biofilms can 

significantly support microbial nutrient removal (Pusch et al., 1998; Sabater et al., 2002; 

Battin et al., 2003; Teissier et al., 2007) so that biological drivers include microorganisms 

such as bacteria, fungi and algae as well as macrophytes (Battin et al., 2003; Simon et al., 

2005; Ensign and Doyle, 2005; Von Schiller et al., 2008). These processes have 

furthermore been reported to occur mainly on the streambed and in the hyporheic zone 

(Triska et al., 1989a; b; Fellows et al., 2001; Marti et al., 2004; Argerich et al., 2011). Biotic 
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nitrate removal can be estimated by conducting a pulse addition experiment based on the 

nutrient spiralling concept (Newbold et al., 1981; Stream Solute Workshop, 1990).  

More specifically, in-stream biotic nitrate removal intensity has been reported to be 

controlled by abiotic factors such as nutrient concentrations (Bernot and Dodds, 2005; 

Mulholland et al., 2008) and the hydromorphological features of the stream channel and 

hyporheic zone (Gücker and Boëchat, 2004; Ensign and Doyle, 2006).  

In-stream biotic removal is known to be mainly regulated by bottom-up effects of 

resources (such as carbon and nutrient availability) and environmental conditions (Dodds 

et al., 2002; Roberts and Mulholland, 2007). Biotic removal also could be controlled by a 

top-down effect of consumers, such as invertebrate assemblage feeding on the biofilm 

(Wallace and Webster, 1996; Mermillod-Blondin et al., 2003; Covich et al., 2004; Karlson 

et al., 2007; Stief, 2013). However, top-down controls have rarely been reported as biotic 

drivers of in-stream nitrate removal (Lawrence et al., 2002; Sabater et al., 2002; Law, 2011). 

This top-down control due to invertebrate grazing could allow the continuous growth of 

the microbial community and thus contribute to prevention of the porous media in which 

nitrogen transformation takes place, such as hyporheic sediments, from clogging. This 

influence should favour the irrigation of surface water and nutrients into the hyporheic 

media and hence promote contact between nitrate and microbial populations responsible 

for nitrate reduction (Mermillod-Blondin et al., 2000, 2003; Mermillod-Blondin and 

Rosenberg, 2006; Stief, 2013). Additionally, in porous sediments, the indirect effect of 

macroinvertebrate dwelling and bioirrigation activities can change the geometry of the 

abiotic microenvironment by modifying the spatial distribution of oxic and redox 

conditions in sediments. 

The above examples mainly come from laboratory experiments, whereas the in field 

relationship between macroinvertebrate assemblages and nitrate removal requires further 

exploration. Two other reasons that justify the examination of macroinvertebrate 

community composition as a potential driver of in field biotic nitrate removal are:   

(i) the strong association of invertebrates with the benthic sediments and hyporheic zones, 

which is recognised as major sites of biogeochemical reactions (Giere, 2009) 

(ii) their sensitivity to in-stream environmental conditions (e.g. chemical and 

hydromorphological qualities) (Rosenberg and Resh, 1993; Menezes et al., 2010; Statzner 
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and Bêche, 2010) that may also affect nitrate regulation efficiency.  

Even if taxonomy-based metrics are widely recognised as being useful in 

bio-indication, they only partially highlight ecosystem functioning (Sandin and Solimini, 

2009). A trait-based approach using multiple biological and ecological traits of organisms 

(e.g. mobility, feeding type, size, lifespan of aquatic invertebrates) describes the 

community functionalities (Hooper et al., 2005; Bremner et al., 2006; Colas et al., 2013). 

Such an approach allows (i) a description of the macroinvertebrate assemblage responses 

to many abiotic and biotic stressors, (ii) a reduction in uncertainties related to seasonal 

effects integrating environmental conditions over time and space, and (iii) a more direct 

and easier detection of the mechanism by which the community interacts with the 

ecosystem functioning. Furthermore, the trait composition of invertebrate communities is 

comparable across large spatial scales, and even across ecoregions which harbour 

communities of different taxonomic composition (Dolédec et al., 2006; Feio et al., 2010). 

Consequently, an increasing number of studies report interest in a trait-based approach for 

an improved assessment of stream health and for linking diversity to ecosystem functions 

(e.g. McKie et al., 2008; Colas et al., 2013, 2014; Frainer et al., 2014).   

In this study, the initial objective was to explore the simultaneous influence of abiotic 

(i.e. hydromorphological and chemical) and biotic (i.e. biofilm and macroinvertebrate) 

drivers on in-stream biotic nitrate removal using a dataset from nine third-order streams. A 

variance partitioning approach allowed the assessment of the magnitude of the independent 

contribution of biotic and abiotic drivers of nitrate removal. Focus was then put on the 

potential relationship between macroinvertebrate and biotic nitrate removal using 

trait-based approaches. It was hypothesised that biological traits of invertebrate 

assemblage allow to highlight the modalities at the source of their relationships with 

biofilm microbes (e.g feeding habits and food) and the environmental conditions 

associated with nitrate removal (e.g. locomotion and substrate preference). This 

information should depict the processes controlled by invertebrate activity and related to 

nitrate removal according to the top-down control assumption.  
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II.3.3 Materials, methods and data collection  

IIn the field, data were collected as part of the EU-funded STREAMES project 

(STream REAch Management, an Expert System, http://cordis.europa.eu/project/ 

rcn/54747_en.html). The objective of this project was to identify the relationships between 

in-stream nutrient retention capacity and potential biotic and abiotic factors in a set of 

streams in different ecoregions. The STREAMES project originally involved 11 

third-order streams across seven European countries plus Israel. In each stream, several 

experimental field measurements were conducted to cover contrasting hydrological 

conditions during 2002. 

For the specific objective of the present study, only the dates with simultaneous field 

records in the stream reaches of nitrate uptake and physical, chemical, hydrological, 

biofilm and macroinvertebrate characteristics were selected. Only reaches located 

upstream from wastewater treatment plants (WWTP) were selected to avoid disturbance 

from local outflows into the river water. Finally, after this data selection, 27 measurements 

from nine streams (Figure II.3-1) were included in this study (see Table II.3-1).  

 
Figure II.3-1 The nine locations of the investigated streams 
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Table II.3-1 Values of UNO3
--N and main characteristics of the study sites, including catchment, 

physicochemical characteristics, substrate, hydrology and biofilm factors. †Percent data were normalised 

prior to analysis by arcsine √ (x) transformation. * For the denitrification rate, only 15 out of 27 

measurements had data records. This is shown here as a reference, but not for the subsequent analysis 

    9 streams (n=27) 

    Minimum Mean Maximum Standard 
deviation 

Nitrate uptake rates UNO3
--N (mg.m-2.min-1) 0.04 1.64 10.75 2.39 

Catchment†  Catchment area (Km2) 11.2 53.2 480 88.3 

Slope (%) 0 11 24 10 
Natural (%) 20 51.7 87.4 21.7 
Agricultural (%) 10.8 45.6 79 20.4 
Urban (%) 0 2.7 20 3.9 

Physicochemical 
characteristics 

NH4
+-N (mg N.l-1) 0.003 0.039 0.18 0.048 

NO3
--N (mg N.l-1) 0.05 2.66 8.98 2.6 

PO4
3--P (mg P.l-1) 0.003 0.112 0.59 0.163 

DOC  (mg C.l-1) 0.68 3.4 7.75 2.04 

Conductivity (uS.cm-1） 163.9 646.4 1257.5 323.6 

Temperature (°C) 5.2 13.19 22.3 4.13 
Substrate size† Boulders (%) 0 23.5 64.8 18.1 

Cobbles (%) 0 17 42.5 13 
Pebbles (%) 0 14.1 35 11.4 
Gravel (%) 0 29 81.5 21.6 
Sand (%) 0 10.1 45 11.9 
Silt and mud (%) 0 6.3 76.5 14.8 

Hydrological 
characteristics 

Depth (m) 0.02 0.11 0.32 0.07 
As/A 0.04 17.45 63.7 17.37 
HRF 0.39 188.16 974.96 220.57 
Discharge  0.001 0.063 0.267 0.073 
(Q, m3.s-1) 

Velocity (m.s-1) 0.02 0.17 0.5 0.13 

Froude 0.03 0.16 0.43 0.1 
Reynolds 358 17526 73077 18763 

Biofilm Chla (mg. m-2) 1 67 483.8 96.4 

Denitrification rate * mg N2O.m2.min-1 0 1.17 4.02 1.29 
Macro-invertebrates Total density (ind. m-2) 548 9205 64912 12955 
  Richness 5 17 38 8 
  Shannon index 0.35 1.24 2.5 0.58 
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Field and laboratory measurements followed common procedure guidelines, ensuring 

comparability of all data (Gorden et al., 1992; Clesceri, 1998; Gordon et al., 2004; Vellido 

et al., 2007; Morais et al., 2009). During each field study, hydrology, substrate and 

invertebrate communities were measured in six equidistant transects (with 3.5m as average 

transects length). Three water samples were collected in each transect and were 

immediately filtered through pre-combusted glass microfiber filters (Whatman GF/F, 

0.7µm) and stored in coolers before chemical analyses. Three surface sediment samples in 

each transect were also collected (18 samples per reach) for quantification of biofilm 

chlorophyll a concentration after pigment extraction from sediment. 

II.3.3.2 Nitrate removal measurements 

Nitrate addition experiments, using the slug addition technique, were conducted to 

estimate the retention capacity for NO3
--N along each stream reach over a short period of 

time, according to the procedure of Gorden et al. (1992) and applied by Ruggiero et al. 

(2006) and Sánchez-Pérez et al. (2009). Known quantities of nitrate and NaCl (as a 

conservative tracer) were added at the same time as a pulse input from a carboy in the 

mid-channel at the top end of the reaches. The experimental distances were calculated so as 

to be dependent on the stream discharge (Q) (Table II.3-1). Water samples were then 

collected at the downstream end of the reach, with an increase of sample frequency 

during the NaCl solution passage. Concentration-time curves (mg. L-1 .s-1) of nitrate and 

NaCl were then used to calculate the nutrient mass retained (mg). The nutrient uptake rate 

at experimental level (Uexp, mg.m-2.min-1) was equal to the nutrient mass retained during 

the addition experiment divided by the stream bottom area A (m2) and by the time 

duration (min). Uptake length Sw (m) was the average distance travelled by a nutrient ion 

before uptake, therefore estimated as: 

Sw= ([Nut]b*Q)/(Uexp*w)  

  where [Nut]b is the nutrient background concentration (mg.L-1), Q is the discharge 

(m3.s-1) and w (m) is the average stream width of the reach. The first-order uptake rate 

coefficient (Kc, m-1) was calculated by: 

Kc=v/Sw 

   where v is the stream water average velocity (m, s-1). Uptake velocity (Vf, m.s-1; the 
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vertical velocity at which nutrients move to the stream bottom) was estimated from  

Vf = Kc*d 

where d is the mean stream depth. The gross nutrient uptake rate at ambient level (U, 

mg.m-2.min-1) was calculated from (see details in Ruggiero et al., 2006):  

U= Vf*[Nut]b  

Uptake rate (U) was selected here as the preferred metric for quantifying the benthic 

nutrient removal because it is relatively independent of nutrient concentrations and of the 

hydrologic characteristics of the stream. “UNO3
--N” denotes the assimilation (i.e. uptake by 

plant and algae) and dissimilation (e.g. denitrification and anammox) processes for biotic 

nitrate removal. It is a good indicator of variations in biotic nitrate removal and enables 

intra- and inter-site comparisons (Simon et al., 2005; Ensign and Doyle, 2006).   

II.3.3.3 Abiotic factors  

Catchment factors 

The catchments of the experimental reaches were characterised for total area, mean 

slope and percentage of land uses using geographic information system (GIS) data layers. 

These data were then combined using ArcGIS (Environmental Systems Research Institute, 

Redlands, CA, USA). Land uses (%) were grouped into natural areas (including forest 

and open land), agricultural land use (including arable and grassland) and urban areas 

(including towns, residential areas, industrial and commercial zones) 

Hydromorphological factors 

River depths, widths and current velocities were measured to estimate discharges 

according to the velocity-area method, then the Froude number and Reynolds number 

were calculated, according to Gorden et al. (1992). 

The Froude number (Fr) represents the relationship between inertial forces (due to 

downstream water movement) and gravitational forces, indicating the strength of the water 

current. The Reynolds number (Re) represents the relationship between inertial forces 

and viscosity forces, indicating the degree of turbulence of the water.  
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The size of the transient storage zone within each reach was estimated by 

conducting independent additions of conservative tracers (NaCl) (Stream Solute 

Workshop, 1990). The following two parameters were included to describe the transient 

storage zone:  

Normalised storage zone area (As ⁄A): the transient storage zone cross section (As, 

m2) accounts for regions of the stream ecosystem where water moves at a slower velocity 

than the average surface velocity. This parameter was normalised by the stream main 

channel surface cross-sectional area (i.e. A). The variable was used to estimate the 

relative importance of zones with slow water velocities such as the hyporheic zone and 

pools among physical factors that might influence solute transport and retention in stream 

reaches.  

Hydraulic retention factor (HRF, s.m-1): the transient storage zone (As, m2) divided 

by the uptake length of water (Sw) reflects the potential transient storage zone effect 

(Morrice et al., 1997). 

Substrate factors 

Substrate size composition was assessed by eye and categorised into percentages of 

boulder (>40 cm), rock (20 to 40 cm), cobble (6 to 20 cm), pebble (2 to 6 cm), gravel (0.2 

to 2 cm), sand (0.006 to 20 mm) and silt and mud (< 0.006 mm) (Gorden et al., 1992). 

Physico-chemical factors 

Water samples were collected and filtered in situ (e.g. through pre-ashed Whatman 

GF/F glass fibre filters) and stored on ice. Nutrient concentrations, including ammonium 

(NH4
+-N), nitrate (NO3

--N), phosphate (PO4
3--P) and dissolved organic carbon (DOC) 

concentrations, were analysed using High Performance Ionic Chromatography with a 

DIONEX system. Temperature, dissolved oxygen, conductivity and pH were measured in 

the field using multi-parameter probes (e.g. YSI 6920). 
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II.3.3.4 Biotic factors 

Biofilm biomass  

Autotrophic biofilm samples from a known area of substrate were collected. The type 

of device used to collect the biofilm samples depended on the size and type of the dominant 

stream substrata covered by biofilm. Samples were frozen and kept in the dark before 

estimating chlorophyll a concentration following standard protocols (Steinman et al., 

1996). In the laboratory, samples were extracted in 90 % acetone over 24 h at 4 °C, 

sonicated or homogenised for 5 min and then centrifuged for 10 min. Chlorophyll a 

concentrations were then determined by spectrophotometry.  

Macro-invertebrate community 

Benthic macroinvertebrates were sampled using a Surber net with a 200 µm mesh size. 

Six equidistant transects per reach were investigated in sampling locations following 

standard requirements in terms of substrate type selection (Verneaux et al., 1982; Compin 

and Céréghino, 2003). At each location two replicates were taken with respect to 

microhabitat distributions. Samples were preserved in 96 % ethanol before taxonomic 

identification. Macroinvertebrate individuals were identified and counted using stereo 

dissecting microscopes. The family taxonomic level was used for most organisms, except 

for some groups identified at a higher taxonomic level (i.e. Chironomidae at super family 

level and Oligochaeta) or some groups at a lower taxonomic level (e.g. Ancylus at genus 

level for Gastropod). Taxa densities (individuals.m-2) were calculated by taking into 

account the sampled area for each sample. Rare taxa (n < 3 individuals in all records) were 

excluded from the analysis (Colas et al., 2013). Densities were then log (x+1) transformed 

to stabilise variances and normalise the dataset, producing a ‘taxa by measurement’ matrix 

(27 measurements x 71 taxa). 

Macro-invertebrate functional trait profile 

Each trait was described by a set of categories (called modalities). Five traits 

including morphology (‘maximum size’), feeding behaviour (e.g. ‘food’ and ‘feeding 
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habits’) and habitat preferences (‘locomotion and substrate relationship’ and ‘substrate 

preference’) were selected (see TableII.3-2) (Usseglio-Polatera et al., 2000; Castella et al., 

2012; Gallardo et al., 2014; Szöcs et al., 2014).  

 
Table II.3-2 The selected trait modalities (26 modalities of four biological traits and one ecological trait) and 

the rationale, see detailed rationale in the text. Concerning the modality trade-off, some rare or similar 

modalities were pooled together into the same trait (e.g. ‘≤0.25 cm’ and ‘>0.25–0.05 cm’ were pooled in 

‘≤0.5 cm’). 

Trait Modalities Rationale 
Feeding habits  Deposit feeder Indicating top-down control and 

multiple stressors 
Shredder   
Scraper   
Filter-feeder   
Predator   

Food Fine sediments + microorganisms Indicating food available, 
completing top-down control 
mechanism 

  Detritus (< 1mm) + Dead plant 
(>= 1mm)   

  Living microphytes   
  Living macrophytes   
  Dead animal (>= 1mm)   

  
Living microinvertebrates + 
macro-invertebrates + vertebrates 

  

Maximum 
potential size 

≤0.5 cm Indicating organism performances, 
responses to disturbances and 
ecosystem functioning 

> 0.5-1 cm 
> 1-2 cm 
> 2-4 cm 
> 4 cm 

Locomotion and 
substrate 
relation 

Crawler Describing dwelling activities; 
indicating hydromorphological 
conditions  

Burrower 
Interstitial 

Substrate 
(preference) 

Flagstones/boulders/cobbles/pebbles Indicating microhabitat conditions 
Gravel 
Sand 
Silt+mud 
Macrophytes 
Microphytes 
Organic detritus/litter 
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  This selection considered the possible influence of macroinvertebrate on nitrate 

removal by biofilm. Concerning the top-down control hypothesis, the biological traits 

“feeding habit” and “food” were chosen, which can indicate the potential interactions 

between macroinvertebrate and biofilm, regarding to trophic behaviour and the available 

food resources (Statzner and Bêche, 2010). The trait “locomotion and substrate associated” 

was selected to reveal potential dwelling activities in sediments. The selected modalities 

within this trait were considered to describe the movement of organisms associated with 

the streambed and hyporheic zone. The trait “body size” was considered since it is reported 

that large animals may have a more significant effect on ecosystem function (Badosa et al., 

2006; Brucet et al., 2006; Gascón et al., 2009). These selected traits have already been 

reported as responding to chemical and hydromorphological conditions (Piscart et al., 2006; 

Gallardo et al., 2009; Statzner and Bêche, 2010; Colas et al., 2014). The ecological trait 

“substrate preference” was considered to describe the microhabitat conditions for the 

macroinvertebrate communities and may indicate hydrological and morphological 

conditions. 

II.3.4.4 Statistics 
Several centred-normed Principal Component Analyses (PCA) were performed for 

each group of abiotic factors (i.e. catchment properties, physicochemical characteristics of 

water, substrate size and hydrological characteristics). Coordinates of each measurement 

from the main axis (i.e. Axes 1 and 2) were extracted and used as synthetic variables for 

each group of abiotic factors. Correspondence analysis (CA) was used for log-transformed 

densities of macroinvertebrate taxa. Similarly, the coordinates of each measurement from 

the main axis of CA were extracted and used as synthetic variables of macroinvertebrate 

assemblages.  

Generalised linear models (GLMs) with the “Gaussian family” followed by a 

stepwise procedure based on the Akaike information criterion (AIC) were carried out to 

assess the abiotic and biotic drivers that were significantly correlated with UNO3
--N. The 

coordinates of all measurements from Axes 1 and 2 of each PCA or CA were combined as 

predictors. A total of 11 predictors were used (i.e. Catch 1+ Catch 2 + Phy-che 1+ Phy-che 

2+ Sub 1 + Sub 2 + Hydro 1 +Hydro 2+ Biofilm Chla + M.Inv1+ M.Inv2, see TableII.3-3 
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and Figure II.3-2 for details). UNO3
--N as a dependent variable was previously 

log-transformed to fulfil normality.  

The D2 of each model was calculated to account for the amount of deviance 

according to the formula proposed by Guisan and Zimmermann (2000) (Eq. (1)): 

D2 = (model$null · deviance − model$deviance )/model$null · deviance (1) 

The D2 of GLMs is the equivalent of the R-squared value of linear models that 

measures the proportion of variation accounted for by the model. Model checking 

included homogeneity of variance and normal distribution of model residuals.  

The relative importance of each predictor in the best-fitted model was then 

examined using hierarchical partitioning (HP). A randomisation test, which was based on 

the upper 0.95 confidence limit, was then run on the hierarchical partitioning results to 

provide statistical significance (Nally, 2002). HP determined the independent contribution 

of each predictor to the response variable and separated it from the joint contribution 

resulting from the correlation with other variables. This enabled a ranking of the 

importance of the covariates in explaining the response variable independently of the 

other covariates.  

For trait-based analyses, the mean functional trait profiles of the community were 

calculated from taxonomic data for each measurement using fuzzy-coded biological and 

ecological traits (Chevenet et al., 1994) described for each taxon from the literature. Fuzzy 

coding used positive scores (between 0 and 3 or 5) to describe the affinity of a species for 

different modalities of a given trait, accounting for phenotypic and ecological preference 

variability among taxa. The fuzzy coding procedure helped to extract different types and 

levels of information available for different taxa (Chevenet et al., 1994), addressing spatial 

or temporal differences in the traits of a given taxon (Statzner and Bêche, 2010). The mean 

weighted (by log-transformed densities) trait profiles of community assemblages were then 

calculated for each measurement and expressed as relative density distributions of trait 

categories within the assemblages (Thioulouse et al., 1997). Partial least squares (PLS) 

regressions (Abdi, 2003) were then carried out to identify macroinvertebrate trait 

modalities that significantly predicted UNO3
--N. PLS was particularly suitable for this case 

because (i) there were few replicates (n=27) and several predictors (n=21) and (ii) many 

predictors showed high collinearity (Carrascal et al., 2009). PLS reduced a set of predictors 
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to a few components that had maximum covariance with the response variable. These 

components were defined as a linear combination of original variables, so the original 

multi-dimensionality was reduced to a lower number of components. PLS analysis 

generated variable importance in projection (VIP) values, as well as the variance (R2) 

explained by each of the two components. VIP values reflect the importance of each 

predicted variable of the model, with VIP > 0.7 indicating important predictors (Eriksson, 

1999). 

For all steps in the statistical analysis, “ade4” (Chessel et al., 2012), “MASS”, 

“hier.part” (Walsh et al., 2013) and PLS (Mevik and Wehrens, 2007) packages in R 

software (R development Core Team, 2013) were used. 

II.3.4 Results 

II.3.4.1 Nitrate uptake rate (UNO3
--N) and environmental characteristics 

UNO3
--N ranged from 0.04 to 10.75 mg.m-2.min-1, with a mean value equal to 1.64 ± 

2.39 (standard deviation) in all measurements (Table II.3-1).  

The catchment size of the investigated streams ranged from 11.2 to 480.0 km2 (Table 

II.3-1). The average catchment slope was 10 %. Studied catchments included wide ranges 

of natural (20-87 %) and agricultural (11-79 %) land uses. Urban land use accounted for 

less than 20 % in all catchments (Table II.3-1). The first axis of the PCA performed on 

catchment variables accounted for 44 % of the variance and indicated a gradient from 

natural to agricultural-dominated catchments. The second axis (34 % of the variance) 

indicated a gradient from urban to agricultural-dominated catchments (Table II.3-3). 

Concentrations (min – max) of phosphate (0.003 - 8.2 mg PO4
3--P. L-1), nitrate (0.05 - 

8.98 mg NO3
--N. L-1), dissolved organic carbon (0.55 - 21.9 mg C. L-1) and ammonium 

(0.003 - 0.18 mg NH4
+-N. L-1) spanned wide ranges. Water temperature and conductivity 

ranged from 5.2 to 22.0 °C and 164 to 1258 uS.cm-1, respectively (Table II.3-1). The first 

axis (Phy-che 1) of the PCA performed on the physico-chemical variables of water, 

explaining 37 % of the variance, was negatively related to NO3
--N, PO4

3--P and 

conductivity. The second axis (Phy-che 2 with 24 % of the variance) was positively 

loaded with NH4
+-N (0.7), DOC (0.7) and temperature (0.5) (Table II.3-3). 
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Depth (0.02 - 0.32 m), velocity (0.02 - 0.50 m3. s-1) and Froude (0.03 - 0.43) varied 

by over an order of magnitude among the studied streams. Discharges (0.001 - 0.267 m3. 

s-1), As ⁄A ratios (0.04 - 63.70), HRF (0.4 – 975.0) and Reynolds (358 - 73077) spanned 

wide ranges (Table II.3-1). The first axis of hydrological-PCA (Hydro 1) was 

representative (49 % of the variability) of a gradient of hydromorphological features 

(Reynolds, velocity, Q and Froude). The second axis (Hydro 2), accounting for 24 % of 

the variability, was negatively related with the transient storage zone variables (i.e. HRF 

and As/A) (Table II.3-3). 

The substrata in these streams had different compositions (Table II.3-1), as depicted 

by the substrate size PCA. The first axis that accounted for 40 % of the total substrate 

variability indicated the gradient of sediment granulometry (Table II.3-3).  

 The third components of each PCA accounted for less than 20 % of the variance and 

are not shown here. 

Large variations in the concentration of biofilm chlorophyll a were observed 

between the streams (1 - 484 mg. m-2) (Table II.3-1). 
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Table II.3-3 Results of principal component analysis (PCA) for catchment, physicochemical characteristics, 

substrate and hydrological factors. The percentage values on each axis represent the amount of variance 

explained by each PCA component. Only important factors are included (loading >0.5). See Table II.3-1 for 

a more detailed description of the factors included in each PCA 

Extracted 
component Code 

Variance 
explained  

Positive (+)  

loading 

Negative (-)  

loading 

Catchment  
axis 1 

Catch 1 44 % Agricultural (0.8), 
urban (0.7), 
catchment area (0.5) 

Nature (-0.9) 

Catchment  
axis 2 

Catch 2 34 % Catchment area (0.7), 
urban (0.5) 

Slope (-0.6), diffuse 
(-0.6) 

     
Physicochemical 
axis 1 

Phy-che 1 37 % Temperature (0.5) NO3
--N (-0.9),  

PO4
3--N (-0.8), 

conductivity (-0,6) 
Physicochemical 
axis 2 

Phy-che 2 24 % NH4
+-N (0.7), 

DOC (0.7), 
Temperature (0.5) 

 

     

Substrata axis 1 Sub 1 40 % Silt (0.9), 
Sand and mud (0.8) 

Cobbles (-0.8)                                      

Substrata axis 2 Sub 2 24 % Pebbles (0.6) Gravel (-0.9) 

      

Hydrological  

axis 1 

Hydro 1 49 %   Reynolds (-1.0), 

velocity (-0.9), 

Q (-0.8),  

Froude (-0.8) 

 

Hydrological 
axis 2 

Hydro 2 24 %   HRF(-0.9),                                       
As/A (-0.9) 
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II.3.4.2 Taxonomic structure of macro-invertebrate assemblages  

Macroinvertebrate densities, richness and diversity (Shannon index) exhibited large 

variations within the streams (Table II.3-1). The first (M. Inv 1) and second (M. Inv 2) axes 

of the correspondent analysis performed on macroinvertebrate explained 15 % and 12 % 

respectively of the variation in the taxonomic composition in the streams (Figure. II.3-2).  

 
Figure II.3-2 Factorial plane of correspondence analysis (CA) performed on the log-transformed densities. 

Only species with loadings > 0.5 are shown in this figure.  The black circle represents taxa with loadings 

below 0.5 in axes 1 and 2. Grey rectangles group different taxa with similar loadings. The inset box shows the 

axes scales. See the detail in the II.3.7 Annex 

II.3.4.3 Relationship between UNO3--N and abiotic and biotic drivers 

The components listed in Table II.3-4 were selected as the best predictors of UNO3
--N by 

the step-wise GLM analysis. These results indicate that biotic and abiotic factors together 

explained 56 % of the total deviance of UNO3
--N distribution. The hierarchical partitioning 

(HP) allowed the identification of the independent influences of these seven selected 

components on UNO3
--N and simultaneously ranked these influences. The best predictors 
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were the abiotic factors (Hydro 2 and Phy-che 2) and the biotic factors (M.Inv 2 and M.Inv 

1) with independent contributions varying from 23 % to 16 % of UNO3
--N variance.  

 
Table II.3-4 Step-GLM coefficients and P-values for seven components selected from 11 initial components 

resulting from PCA and CA analysis in sections 3.1 and 3.2. This outcome model is based on the most 

representative components that were used as independent variables and on UNO3
--N as dependent variable. 

D2 is the total variance of UNO3
--N explained by this model. Hierarchical partitioning quantifies the 

independent influences of each selected component on UNO3
--N; * indicates statistically significant 

influences of HP results 

Selected 
components 

Step-GLMs    
D2=0.56 (n=27) Hierarchical partitioning 

Estimate P value Independent influence (%) 

Phy-che 2 0.54 0.03 18 * 
Hydro 1 -0.19 >0.1 5 
Hydro 2 -0.45 0.05 22 * 
Biofilm Chla -2.61 0.06 14 
M.Inv 1 -1 0.02 16 * 
M.Inv 2 0.81 0.07 23 * 

 

For the two abiotic factors, Phy-che 2 was positively related with UNO3
--N so that higher 

values of UNO3
--N were found in sites with a higher temperature and concentrations of 

NH4
+-N and DOC (with the positive loading on Phy-che 2 Table II.3-3). Hydro 2 was 

negatively related with UNO3
--N and PCA results (Table II.3-4) , which indicated that Hydro 

2 was negatively loaded by As/A and HRT. As a result, UNO3
--N was higher with larger 

values of As/A and HRT.  

For the biotic factors, M.Inv 2 had a significant positive correlation with UNO3
--N. The 

following taxa had positive loadings of M.Inv 2: e.g. Helophoridae, Odontoceridae, 

Crambidae Aeshnidae, Stratiomyidae and Atyidae (Figure II.3-2). The GLM result 

therefore indicated a positive relationship between UNO3
--N and the occurrence of these taxa. 

M.Inv 1 had a significant negative correlation with UNO3
--N. Since M.Inv 1 had also a 

negative loading in the CA results with some other taxa, it was concluded that the 

combination of these twice negative correlations led to positive influences. Thus the higher 

UNO3
--N were positively related with the occurrence of taxa such as Culicidae, Mesoveliidae, 

Nemouridae, Limnephilidae and Planorbidae. These results suggested the occurrence of a 
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particular influence of some macroinvertebrate taxa on UNO3
--N intensity. At the same time, 

it also showed the relative contribution of the invertebrate community in the retention 

capacities estimated by UNO3
--N, with a comparable influence to the abiotic drivers. 

II.3.4.4 Relationship between UNO3--N and macroinvertebrate trait 

modalities  
In the outcome PLS regression model, the first extracted component accounted for 42 % 

of the variance in the macroinvertebrate functional profile and contributed to 28 % of the 

variation in UNO3
--N (Table II.3-5).  

The modalities identified as having a significant positive association with UNO3
--N 

were coarse sediment (i.e. flagstones/boulders/cobbles/pebbles) for the substrate 

preference trait, crawler and interstitial for the locomotion trait, and detritus and dead 

plants (food trait) plus scraper (feeding habit trait). The modalities exhibiting a negative 

association with UNO3
--N were silt, mud and microphyte (substrate preference trait) and fine 

sediment and dead animals (food trait).  

 The second component accounted for 36 % of the macroinvertebrate functional 

profile variance. It is not shown here since it selected similar important predictors of UNO3
--N 

as the first component. It explained 20 % of the variation in UNO3
--N.  

Modalities of “maximum potential body size” trait were not selected as important 

predictors of UNO3
--N (VIP < 0.7) and were consequently excluded from the final PLS 

results. 
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Table II.3-5 Loadings of VIP (variable importance in projection) of the first component extracted from 

partial least squares (PLS) regression analysis performed for the nine streams (n=27), with UNO3
--N as 

dependent variables and selected modalities of macroinvertebrates as independent variables (i.e. 21 

modalities of four traits). Y-weights correspond to loadings of UNO3
--N. VIP >0.7 are in bold. Green 

values were correlated positively to UNO3
--N 

  Loading VIP Component 1 
 (R2 =42%) 

Y-weights    +0.28   

Traits Variables 
Selected modalities 

  

Substrate (preference) Flagtones/boulders/cobbles/pebbles 0.89 0.20 
Gravel 0.31 0.07 

Silt and mud 0.93 -0.20 

Sand 0.30 0.06 

Macrophytes 0.55 0.12 

Microphytes 0.76 -0.17 

Organic detritus/litter 0.13 -0.03 

Locomotion and 
substrate relationship 

Crawler 2.15 0.47 

Burrower 0.34 0.07 

Interstitial 2.11 0.46 

Food Fine sediment +microorganism 1.12 -0.24 

Detritus + dead plant 0.92 0.20 

Living microphytes 1.17 0.25 

Living macrophytes 0.19 0.04 

Dead animals 2.07 -0.45 

Living micro-, macro-invertebrates + 
vertebrates 

0.10 0.02 

Feeding habits Deposit feeder 0.42 0.09 

Shredder 0.63 -0.14 

Scraper 0.74 0.16 

Filter-feeder 0.42 0.09 

Predator 0.06 0.01 
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II.3.5 Discussion 

The values of nitrate removal rates in the present stream study fall within ranges that 

have been reported by others (Mulholland et al., 2008), which include streams with 

mainly natural land uses and agriculture and few urban areas, the same three land types 

occurring in the watersheds of the present reaches.  

II.3.5.1 Relative contribution of biotic and abiotic drivers to nitrate 

removal 

The slug addition method was used to quantify the in situ short-term nitrate removal. 

It includes all the possible in-stream microbial processes happening during this 

experimental time, like short-term assimilative uptake and permanent removal by 

denitrification and anammox. UNO3
--N was found to be strongly regulated by the 

combination of physico-chemical and hydrological factors and by some 

macroinvertebrate groups. Previous studies of UNO3
--N drivers demonstrated the influence of 

nitrate concentration, temperature and discharge, as well as the biotic influence of 

microbial community composition and biomass (Simon et al., 2005; Mulholland et al., 

2008; Von Schiller et al., 2008). However, none of these studies have combined both types 

of biotic and abiotic influences together in the same analyses. Furthermore, the biotic 

drivers generally considered the biofilm and macrophyte composition of the biotic 

assemblages without including invertebrate community composition. This study depicted 

an additional independent and significant contribution of the macroinvertebrate 

community on the microbial processes at the source of the UNO3
--N; this provided a 

complementary insight of the organisms possibly involved in the relationships with the 

microbial community responsible for nitrogen processing. 

II.3.5.2 Abiotic drivers of nitrate removal  

DOC and NH4
+ concentrations and temperature were positively correlated with 

UNO3
--N. DOC is an important source of carbon for stream heterotrophs and occasionally for 

autotrophs (Bernhardt and Likens, 2011). Previous research demonstrated how DOC 
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concentrations significantly control nitrate removal, in particular through the in-stream 

denitrification process (Meyer et al., 2005; Gücker and Pusch, 2006; Peyrard et al., 2011). 

Higher DOC and NH4
+ concentrations at the same sites were probably due to 

mineralization activity. High water temperature may accelerate metabolic processes and, 

consequently, nitrate removal (Ortiz et al., 2005).  

Nitrate concentration was not selected as a predictor of UNO3
--N by the final model, 

probably due to the high NO3
- concentrations in this study (2.2 mg/l on average). Under 

high nitrate concentrations, the microbial pool may become saturated with N, resulting in 

decreased N-absorbing capacity (Garcia-Ruiz et al., 1998; Kemp & Dodds, 2002; Arango 

et al., 2008; Mulholland et al., 2008). The microbial communities of some reaches in this 

study might therefore have exceeded their ability to sequester additional nutrients.  

A wide range (0.04-63.7) and relatively high values of As/A (mean= 17.5) were 

observed in this study across different regions. As/A and HRF were found to positively 

influence UNO3
--N. The transient storage zone has widely been regarded as an important 

geomorphological feature having a positive influence on UNO3
--N of streams (Valett et al., 

1996; Gücker and Boëchat, 2004; Hall et al., 2009). The spiralling process, which 

characterizes the water flow in the transient zone, facilitates the contact of reactive solutes 

with a high biotic capacity for biogeochemical processing (Mulholland, 2000; Runkel, 

2007). The significant contribution of transient storage to N removal has also been 

demonstrated by modelling efforts at reach and watershed scales (Stewart et al., 2011). In 

contrast, several studies reported no relationship between solute removal and transient 

storage parameters (e.g. Webster et al., 2003; Niyogi et al., 2004; Meyer et al., 2005), 

probably due to the relatively low values and the small range of transient storage in these 

authors’ studies. 

II.3.5.3 Biotic driver of nitrate removal 

No significant independent influence of Chla on UNO3
--N was found, although 

autotrophic biofilm organisms were likely to contribute to this process. In the studied 

reaches, heterotrophic biofilm biomass supported by large transient storage zones may also 

suggest considerable heterotrophic contributions in the nitrate retention process 

(Marmonier et al., 2012). Thus, it is difficult to confirm a relationship existing between 
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only surface biofilm biomass and nitrate removal.  

On the other hand, hierarchical partitioning helped to identify the significant 

independent influences of the macroinvertebrate community on UNO3
--N in these streams. 

Previous laboratory experiments (Mermillod-Blondin et al., 2000; 2003; 

Mermillod-Blondin and Gerino, 2002; Mermillod-Blondin and Rosenberg, 2006; Navel et 

al., 2011) already demonstrated a large decrease of nitrate concentrations with sediment 

depth in down-welling flow-through columns colonised with Oligochaetes or other 

invertebrates. This depletion being more accentuated in the columns with invertebrates 

than in columns without fauna suggests the possible enhancement of microbial 

denitrification under these invertebrate activities. These laboratory experiments using 

intact invertebrate and microbial assemblages from natural streams sediments may reflect 

the set of processes that occur in the field and that involve interactions between the two 

assemblages (Marshall and Hall, 2004). These laboratory studies allowed examination of 

the role of invertebrates as possible ecological engineers exerting top-down control on 

nitrate removal. Stief (2013) explained the effect of benthic macrofauna on nitrate removal 

by the animal–microbe interactions due to sediment burrowing, grazing or symbiosis. 

In the present study, undertaken in natural conditions, the direction of the relationship 

between macroinvertebrate communities and nitrate removal is hard to demonstrate and 

may happen in several ways simultaneously. The trait profile of the macroinvertebrate 

community can provide a better understanding of the links that relate the 

macroinvertebrate community to nitrate removal and these links are summarized in a 

conceptual model (Figure II.3-3): 

(1) a direct influence of macroinvertebrate on nitrate removal via invertebrate feeding on 

the biofilm that promote a top-down control of the microbial community.  

(2) an indirect physical effect by invertebrate dwelling activities that change the abiotic 

microenvironment and limit sediment clogging.  

(3) an indirect link due to some abiotic conditions (including water quality) that may 

influence both macro-invertebrate composition and nitrate removal, also called the 

filtering effect.  
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Figure II.3-3. Schematic of the potential links between macroinvertebrates and in-stream nitrate 

removal (the lines in grey are explored in this study) 

 

This last indirect linkage could be the result of the initial improvement in water 

quality due to a natural water quality regulation. Also, macroinvertebrate diversity and 

nitrate removal may have been controlled by the same abiotic drivers such as discharge 

and pollutants that lead to confounding effects on retention processes.  

II.3.5.4 Relationships between macro-invertebrate trait profile and 

nitrate removal  

The macroinvertebrate community positively associated with UNO3
--N was 

characterised by a higher density of organisms that live in coarse sediment and exhibit 

locomotion as crawlers or through interstitial moving in their habitats. In these 

communities, organisms positively related to nitrate removal were mainly scrapers using 

detritus, dead plants and living microphytes as their main food (e.g. the Gastropod Physella 

with positive loading on M.Inv 2 and the Plecoptera Nemouridae with negative loading on 

M.Inv 1).  

These results revealed a potential top-down control of macroinvertebrates (e.g. 

scrapers) on biofilm microbes. Indeed, scrapers primarily shear attached algae from 

autotrophic biofilms, but also consume the heterotrophic biofilms of the interstitial matrix 
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(Merritt and Cummins, 2007). The main food sources identified as living microphytes, 

detritus and dead plants further agreed with the occurrence of autotrophic and 

heterotrophic biofilms in the food web of these invertebrates. Both types of biofilm 

consumption by macroinvertebrates is likely to influence UNO3
--N. Although it was difficult 

to draw conclusions about the main direction of the cross-community relationships, which 

probably exist in both directions, many arguments can be found to support the indirect 

contribution of scrapers on biofilm nitrate removal through the top-down aspect. Indeed, 

scraping can build and maintain galleries in the biofilms (Mermillod-Blondin et al., 2000, 

2003; Stief, 2013), as well as in the interstitial sediments and maintain microbial diversity 

mosaic (Law, 2011). Feeding on the biofilm components also prevents the clogging of 

sediments and fuels the productivity and activity of microbes by favouring nutrient 

penetration in the whole sediment column (Covich et al., 2004; Stief, 2013). It has been 

reported that, to some degree, scraping effects may stimulate biofilm regrowth with a high 

productivity and metabolism (Gasol et al., 2002; Cheever et al., 2011). This was different 

with some studies, where intense scraping may substantially decrease biofilm biomass and 

its nitrate removal capacity (Sabater et al., 2002; Law, 2011).  

The macroinvertebrate assemblages positively related with nitrate removal prefer to 

live in coarse sediment instead of silt and mud substrates. In contrast with coarse sediment, 

fine sandy sediment was negatively correlated with nitrate removal because a low 

hydraulic conductivity limits opportunities for water exchange and it is a supplementary 

source of interstitial clogging (Morrice et al., 1997). Moreover, coarse sediment suggests 

strong hydrological connections between surface flowing water and interstitial water 

(advection-dominate system) that allows invertebrate colonisation at depth in the sediment 

column and enhances the zone of biological influences (Gerino et al., 2003; 

Mermillod-Blondin and Rosenberg, 2006; Piscart et al., 2011).  

The locomotion trait modality associated with interstitial invertebrate living in the 

hyporheic zone was also selected as an important predictor of UNO3
--N. This agreed with 

previous studies, showing how hyporheic invertebrate assemblages are found to have small, 

but significant effects on nutrient and organic matter processing by changing flow patterns 

and associated solute concentrations (Mermillod-Blondin et al., 2000, 2001; 

Mermillod-Blondin and Gérino, 2002; Marshall and Hall, 2004). 
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In summary, the results of this functional trait approach suggest a possible 

relationship between nitrate removal and macroinvertebrates via their top-down control 

effect on biofilms as well as their dwelling activities in the hyporheic zone. The substrate 

preferences of macroinvertebrate communities also confirmed the preferential 

involvement in UNO3
--N processes of interstitial communities and the associated microbial 

consortium that constitute heterotrophic biofilms. Moreover, these results provide 

additional information about the influence of hydromorphological factors on UNO3
--N. For 

example, a higher UNO3
--N was observed in sites with higher densities of macroinvertebrates 

which preferred coarse substrate rather than clogging sediments, potentially suggesting a 

higher UNO3
--N was associated indirectly with coarse sediments in these streams.   

II.3.6 Conclusions and perspectives 

Both abiotic and biotic factors were examined in this study as simultaneous main 

drivers of in-stream biotic nitrate removal quantified as UNO3
--N in field conditions. 

Physico-chemical (e.g. NH4
+, DOC and temperature) factors, hydro-morphological 

(transient zone) factors and macroinvertebrate assemblages were statistically found to have 

independent influences on UNO3
--N. These results suggest that study of macroinvertebrate 

community, in addition to other compartments of the riverine biota, may be necessary to 

explain variability in in situ nitrate retention. The development of experimental studies in 

laboratory conditions was previously required to explore the different hypotheses behind 

the functional relationship between invertebrate diversity and nutrient retention. The 

trait-based approach highlighted the potential contribution of these organisms, such as 

biofilm grazers, to in field microbial nitrate removal. Some specific macroinvertebrate trait 

modalities, such as scraping and living in coarse sediment, were more closely associated.  

Moreover, the relationship between macroinvertebrate diversity and nitrate removal 

via biofilm microbes includes a minimum of two trophic levels that are macroinvertebrate 

as biofilm consumers and microbes as nutrient consumers. If nitrate removal is more 

intense when both trophic levels are interacting, these relations may be considered as an 

extension of biodiversity- function (BEF) relationship at multi-trophic level (Duffy et al., 

2007; Cardinale et al., 2012). Few BEF studies have been able to deal with more than one 

trophic level in experimental conditions and the present approach provided an initial view 
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of the possible importance of cross-level interactions in in situ nutrient cycling processes.  

Furthermore, the evidence of the main macro-benthic drivers having a positive 

correlation with nitrate removal efficiency provides references for future management or 

restoration strategies to support this ecosystem function as a proxy for water purification 

services. It is suggested that this in-stream biodiversity providing the ecosystem service of 

water purification is more extensive than the microbial consortium, and could be regarded 

as a consortium of ecological engineers. Hyporheic zones with coarse sediments in the 

streambed is recommended since these provide essential habitats for biodiversity and 

biogeochemical processes that support nitrate removal as a regulation service. 
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II.3.7 Annex 

Table II.3 annex 1 Results of Correspondence analysis (CA) for macro-invertebrate species; the first 

component of CA explained 15 % of the variance and the second component 12 %; only main species are 

included (loading >0.5) 

Order Family Genus/species Axis 1 Loading 
Diptera Culicidae   -2.40 

Hemiptera Mesoveliidae   -2.40 
Diptera Dixidae    -2.26 

Gastropod Planorbidae Gyraulus sp. -2.19 
Isopod Asellidae   -1.93 

Hemiptera Notonectidae   -1.74 
Plecoptera Nemouridae   -1.55 
Plecoptera Taeniopterygidae   -1.53 
Gastropod Physidae Physa sp. -1.20 
Trichoptera Limnephilidae   -1.04 
Coleoptera Dytiscidae   -0.93 

Diptera Tipulidae Tipula -0.86 
Amphipod Gammaridae   -0.67 

Oligochaeta     -0.59 
Diptera Empididae   0.51 

Ephemeroptera Ephemerellidae   0.51 
Gastropod Bythinellidae   0.61 

Ephemeroptera Caenidae                          0.65 
Coleoptera Elmidae   0.67 
Trichoptera Polycentropodidae   0.88 
Coleoptera Hydrophilidae   1.14 

Nematomorpha     1.18 
Odonata Gomphidae   1.30 

Coleoptera Haliplidae (larvae)   1.57 
Ephemeroptera     1.63 

Trichoptera Helicopsychidae   1.73 
Diptera Tabanidae   1.73 

Ephemeroptera Polymitarcidae   1.73 
Trichoptera Ecnomidae   1.84 
Heteroptera Corixidae                  1.91 
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Order Family Genus/species Axis 2 
Loading 

Trichoptera Helicopsychidae  -2.70 
Diptera Tabanidae  -2.70 

Ephemeroptera Polymitarcidae  -2.70 
Trichoptera Ecnomidae  -2.51 
Heteroptera Corixidae  -2.38 

Diptera Culicidae  -1.88 
Hemiptera Mesoveliidae  -1.88 
Coleoptera Haliplidae (larvae)  -1.63 

Diptera Dixidae  -1.47 
Ephemeroptera Ephemeridae  -1.45 

Gastropod Planorbidae Gyraulus sp. -1.40 
Odonata Gomphidae  -1.28 

Hemiptera Notonectidae  -1.27 
Amphipod Gammaridae  -1.20 

Isopod Asellidae  -1.14 
Nematomorpha   -1.05 

Coleoptera Hydrophilidae  -0.92 
Plecoptera Nemouridae  -0.76 
Plecoptera Taeniopterygidae  -0.73 
Trichoptera Limnephilidae  -0.59 

Diptera Tipulidae Tipula -0.57 
Gastropod Lymnaeidae  0.53 

Ephemeroptera Heptageniidae  0.57 
Gastropod Ancylidae Ancylus sp. 0.59 
Trichoptera Hydropsychidae  0.59 

Ephemeroptera Leptophlebiidae Leptophlebiidae Gen. 
sp. 

0.60 

Plecoptera Capniidae Capnioneura 0.61 
Diptera Rhagionidae Rhagionidae 0.62 

Turbellaria Dugesiidae Dugesia 0.62 
Gastropod Physidae Physella acuta 0.63 
Gastropod Hydrobiidae Potamopyrgus 0.64 
Trichoptera Beraeidae Beraea sp. 0.64 

Odonata Lestidae Lestes sp 0.65 
Gastropod Hydrobiidae Bythiospeum 0.66 
Plecoptera Perlodidae Perlodidae 0.67 
Odonata Cordulegasteridae Cordulegaster 0.67 

Crustacean Atyidae Atyaephyra 
desmarestii 

0.67 

Hirudinea Erpobdellidae  0.71 
Diptera Stratiomyidae  0.75 
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Lepidoptera Crambidae Cataclysta sp 0.79 
Coleoptera Hygrobiidae Hygrobia sp 0.82 

Odonata Aeshnidae Boyeria irene 0.85 
Trichoptera Odontoceridae Odontocerum 

albicorne 
0.90 

Coleoptera Helophoridae Helophorus sp. 0.90 
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II.4 Main discussion  

The results of the laboratory experiment showed that the average nitrate reduction 

rates significantly increased when the invertebrate communities were present in the 

experimental setup (SBMM > SB). The vertical diversity (number of trophic levels) and 

the food web complexity increased from SB to SBMM treatments. These results 

highlighted the positive roles of meiofauna, macrofauna and the potential 

cross-community interactions in the nitrate reduction of the hyporheic microcosms. The 

effects were observed over 28 days with a constant increase of the nitrate removal rates. 

These findings allowed to suppose a sustainability of nitrate removal in the microcosms 

conditions. The integration of microbial, meiofauna and macrofauna communities in 

studying the nitrate removal function in these hyporheic microcosms improved the realism 

of the experimental food-web configurations.  

About the direction of the relationship between diversity and function, it showed that 

increasing richness of communities experimentally led to increase the efficiency of nitrate 

reduction. So this chapter may yield the proof of the potential effect of cross-community 

links referred to richness of community on ecosystems functions. Probably, the 

biogeochemical processes occurring in the hyporheic zone such as nitrate removal were 

not only depended on the microbial compartment and abiotic factors. Considering 

microbial predation and other trophic strategies in the interstitial biodiversity tended to 

mediate the efficiency of nitrate removal, as previously demonstrated by Saleem et al. 

(2016) for example.  

The present results agreed with that the vertical diversity and food web complexity 

can influence the strength of the biodiversity-function relationships (Duffy et al., 2007; 

Jabiol et al., 2013; Saleem et al., 2016). It may suggest that the influence of vertical 

diversity on ecosystem functions could be considered as important as the horizontal 

diversity on ecosystem functions, which were considered in most previous BEF 

relationships in streams (e.g. species richness, a review of Lecerf and Richardson (2010)) 

and other ecosystems (Duffy et al., 2007; Duffy, 2009; Marmonier et al. 2012). Lecerf and 

Richardson (2010) stated that trophic and non-trophic (e.g. facilitation) interactions govern 

the functional consequences of biodiversity on ecosystem functions by reviewing about 40 
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stream studies but among which, only one study addressed this cross trophic levels’ 

influence on ecosystem function. Further studies have to be undertaken to examine similar 

issues in streams.  

Moreover, the top-down control mechanism could be explored via the functional 

groups identified in this experiment based on traits-based approach. Thus it is also of 

interest to consider functional diversity that quantifies the variations in organismal traits 

within assemblages (Hooper et al., 2005; Cardinale et al., 2012). Cardinale et al. (2006) 

stated that the number of species may have a weaker effect on ecosystem functions than the 

overall assemblage composition (i.e. the types of organisms present). Their findings also 

indicated that species traits and functional diversity may be better correlated with 

ecosystem functions than taxonomic diversity. This finding supported the idea that 

community composition matters more than species richness when regarding one 

biogeochemical function such as nitrate removal. That aspect was particularly explored in 

the infield part of this chapter (section II.3).  

In the field survey, trait-based approach identified some modalities of organisms, 

which were positively correlated to nitrate removal (e.g. scrapers (feeding habit) and 

crawler and interstitial (locomotion)). These results agreed with the top-down control 

hypothesis, which coincided with the observed influence of the macro-invertebrate 

community containing similar main functional groups (scrapers and interstitial 

invertebrates) in the laboratory experiment in section II.2. This infield results also showed 

the influence of biotic factors with a similar statistical importance as the abiotic factors on 

nitrate removal such as hydromorphological factors. 

To summarize, this chapter emphasized the importance of invertebrate communities 

(meio- and macro-invertebrate) on the nitrate removal function possibly via the complex 

interactions for inter-communities (or across trophic levels) in both laboratory and infield 

conditions, in addition to the contribution of abiotic factors. It agreed with a dominant 

positive relationship in the majority of BEF studies (Harrison et al., 2014). Moreover, three 

(or more) trophic levels were integrated to study the indirect relationship between 

invertebrate diversity and ecosystem function in field, using functional traits approach. By 

mimicking scenarios of trophic complexity in laboratory experiments as realistically as 

possible, our results may strength rather than weak the evidence for the importance of 



Chapter II: The relationship between invertebrate community and the nitrate removal function  

130 

biodiversity effects on the ecosystem functions. Thus, these findings suggested considering 

trophic levels as numerous as possible in testing the relationship between biodiversity and 

ecosystem functions.   
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III.1 Résumé du chapitre III 

Le chapitre III décrit deux études qui ont été réalisées au cours de cette thèse 

afin de commencer l'exploration des variations du service de purification de l'eau 

sous les effets de pressions anthropiques de types chimiques. Notamment, si l’arrivée 

de molécules artificielles dans l’environnement comme les pesticides peut affecter la 

biodiversité, alors il est possible que les mêmes sources de stress aient des 

répercussions sur l’intensité des processus biogéochimiques influencés par cette 

biodiversité. Dans ce chapitre, la source de stress utilisée pour tester la variabilité de 

la fonction de réduction des nitrates sous l’effet d’une perturbation est la présence de 

pesticides dans l’eau interstitielle en provenance des sols agricoles. Comme pour le 

chapitre précédent, cette recherche de la relation diversité/fonction en conditions de 

stress est testée dans 2 approches complémentaires :  

- en conditions expérimentales de laboratoire sur un second jeu de données issue 

du programme Inbioprocess qui mettent en œuvre des combinaisons de communautés 

en présence d’un pesticide dans des microcosmes.  

- en conditions naturelles dans la zone hyporhéique d’un méandre de la Garonne 

à l’aval de Toulouse. Les recherches menées dans cette partie ont été intégrées dans le 

cadre du Projet SUDOE Attenagua et ont fait l’objet d’un article accepté. 

Dans la première partie, l’influence des interactions inter-communautés sur 

l’intensité de réduction du nitrate en conditions de stress est explorée à l’aide d’une  

expérience mettant en œuvre une contamination de l’eau interstitielle avec un  

fongicide en tant que source additionnelle de stress pour la biodiversité. L’expérience 

a été menée avec une série de colonnes de sédiment pour l’infiltration de l’eau 

reproduisant les conditions de la zone hyporhéique d’une rivière. Le taux de 

réduction du nitrate est comparé avec différentes combinaisons de biodiversité 

soumises au même stress. Les 3 conditions testées sont représentatives d’un gradient 

de biodiversité avec des microcosmes composés de sédiments avec (i) biofilm (ii) 

biofilm et méiofaune (iii) biofilm, méiofaune et macrofaune. L’effet du stress 

entraine une diminution rapide des taux de rétention des nitrates dans l’ensemble des 
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traitements avec biodiversité. La comparaison avec l’expérience précédente réalisée 

en conditions similaires de laboratoire dans le projet Inbioprocess sans stress permet 

de supposer que cette réduction d’efficacité est attribuable à l’arrivée du fongicide 

dans l’eau interstitielle. Ces effets apparaissent toutefois de manière transitoire car 

durant la période suivante de mesure (de 7 à 13 jours après l’injection de pesticide) 

une augmentation significative du taux de réduction de NO3
--N est enregistrée dans 

l’ensemble des traitements avec un taux maximum enregistré dans les microcosmes 

avec plus grand nombre de communautés présentes. A l’aide d’une ANOVA avec 

mesures répétées, l’interaction significative des facteurs temps et traitement dans 

cette expérience permet d’interpréter ces résultats comme l’effet des interactions 

entre invertébrés et consortium microbien. Un laps de temps apparaît nécessaire pour 

l’observation d’un retour aux taux de réduction initiaux qui est expliqué par le 

rétablissement des interactions trophiques entre les communautés présentes comme le 

broutage du biofilm et la bioturbation. Ces interactions entre les microorganismes du 

biofilm hyporhéique et les espèces d’invertébrés sont certainement rendues possible 

par les interventions des espèces les plus résistantes au stress appliqué. Ces résultats 

suggèrent non seulement le rôle de la communauté d’invertébrés dans l’expression 

optimale de cette fonction d’écosystème, mais ils suggèrent aussi l’importance de la 

présence des invertébrés dans le phénomène de résilience de ces écosystèmes face à un 

stress chimique. Ces résultats ont encouragé la mise en œuvre de nouvelles 

expériences pour tester les effets de cette biodiversité avec plusieurs niveaux 

trophiques incluant le compartiment microbien. Ces observations en conditions 

contrôlées permettent d’aller explorer l’existence d’une relation positive entre la 

fonction de réduction des nitrates et la biodiversité des communautés d’invertébrés en 

conditions naturelles.  

La section III.3 comporte un article publié dans la revue «Ecological 

Engineering», sous le nombre doi http://dx.doi.org/10.1016/j.ecoleng.2016.02.019, et 

une partie additionnelle pour décrire l'apparition des pesticides d’un méandre de la 

Garonne. Cet article explore la relation entre la diversité des invertébrés et le processus 

de dénitrification microbienne impliquée dans le service de purification de l'eau au 

http://dx.doi.org/10.1016/j.ecoleng.2016.02.019
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niveau de la zone hyporhéique d’un méandre de la Garonne. Les zones humides 

alluviales sont le support d’un important service naturel de régulation, la purification 

de l’eau, qui permet l’élimination de nutriments en excès dans l’eau comme d’autres 

polluants également. Dans ces habitats, les bactéries dénitrifiantes sont supposées être 

en interactions fonctionnelles avec la communauté d’invertébrés présente dans le 

milieu hyporhéique, et dominée par des détritivores. Jusqu’ici peu d’études ont 

témoigné des relations existant entre ces communautés d’invertébrés et de 

micro-organismes dans l’eau interstitielle du sédiment de la plaine alluviale, là où les 

interactions biotiques et abiotiques sont complexes.  

Ces recherches ont été menées dans le cadre du projet ATTENAGUA (2013- 2015) 

intitulé « Mise en place d’une méthodologie capable de prévoir les meilleurs 

emplacements pour l'exploitation des eaux souterraines dans le territoire SUDOE». Ce 

projet auquel nous avons participé dans la partie centrée sur la biodiversité 

« invertébrés » a pris place dans le cadre du programme Interreg IVB – SUDOE avec 6 

partenaires européens (France, Espagne, Portugal) et d’une coordination par J.M. 

Sanchez-Perez à EcoLab (http://www.attenagua-sudoe.eu/). 

Les mesures de terrain ont été menées de façon saisonnière pendant un an entre 

avril 2013 et mars 2014. Onze piézomètres dispersés sur un méandre situé dans la 

plaine alluviale de la Garonne en aval de Toulouse, et à la frontière entre la zone 

agricole et la ripisylve ont permis des prélèvements dans la zone hyporhéique. Les 

variables environnementales physico-chimiques et hydrauliques, la biodiversité des 

communautés bactériennes et invertébrées ont été prélevées simultanément en tant que 

facteurs explicatifs du taux de dénitrification potentielle.  

Les corrélations positives entre (i) la diversité des invertébrés et le taux de 

dénitrification potentiel (ii) la diversité des invertébrés et la richesse de la 

communauté bactérienne ont été particulièrement détectées au cours de la campagne 

d'automne.  

Des gradients spatiaux significatifs de la diversité des invertébrés, du taux de 

dénitrification potentielle, des concentrations en oxygène dissous, en carbone 

organique dissous, en ammonium et nitrate et de la conductivité ont été observés dans 
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ce milieu hyporhéique. La campagne d’automne, (9 octobre 2013), qui a été réalisée 

après une longue période de stabilité hydrologique et de faible débit, a montré que la 

diversité des invertébrés était significativement corrélée avec le taux de dénitrification. 

Une corrélation globale significativement positive entre les compositions des 

communautés d’invertébrés et bactériennes a été trouvée pour les quatre saisons. 

Lorsque chaque saison a été considérée indépendamment, cette corrélation était 

significative uniquement pour la campagne d’automne. De telles observations 

suggèrent des interactions inter-communautés existant probablement entre la diversité 

d’invertébrés, la composition de communautés bactériennes et leur activité de 

dénitrification. Il a été proposé de considérer la campagne d’automne comme un 

potentiel moment plus particulièrement propice pour observer cette corrélation 

biodiversité – fonction, au moment où l’influence biologique sur les processus de 

purification de l’eau n’était probablement pas masquée par des influences plus fortes 

de facteurs physiques. De plus, cette étude montre que les conditions 

environnementales optimales pour une élimination des nitrate sont présentes dans la 

zone recouverte par la ripisylve en surface avec une température relativement faible, 

et des concentrations de nitrate et oxygène modérées, une contamination par les 

pesticides faible associée à une biodiversité d’invertébrés élevée, et des 

concentrations élevées de carbone organique dissous et de l’ion ammonium. 
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English abstract of Chapter III 
Following chapter II, where the relationship between invertebrates and the nitrate 

removal function was observed in hyporheic habitats, the main objective of chapter III 

was to further explore this relation under stressful condition.  

Section III.2 is related to a new indoor experiment that was also performed 

during the Inbioprocess Project. In section II.2, the invertebrate community as a source 

of more trophic levels and the macro-, meiofauna-bacteria interactions were suggested 

to play essential roles in the nitrate removal function. The invertebrate community 

composition may be changed under stressors like pesticides by filtering sensitive 

species and developing more resistant groups. Microorganisms may be also affected by 

pesticides occurrence, which could be one reason of variation of biogeochemical 

process intensities such as nutrient recycling. If invertebrates are sensitive to pesticides, 

the ecosystem function in which these organisms are involved may also be modified 

under this type of stress. The objective of section III.2 is to determine whether the 

positive and indirect effects of meiofauna and macrofauna on nitrate removal still exist 

under stressful conditions in the hyporheic habitat. In this section, the fungicide 

Dimethomorph (DIM) was chosen as representative of a chemical stressor as it is 

frequently detected in freshwaters. 

Section III.2 consists of one paper that will be submitted later. I participated in the 

statistical analysis of the dataset and manuscript writing. 

Section III.3 makes part of the ATTENAGUA Project run from 2013 to 2015. 

This project titled «Mise en place d’une méthodologie capable de prévoir les meilleurs 

emplacements pour l'exploitation des eaux souterraines dans le territoire SUDOE» was 

funded by Interreg IVB-SUDOE-ERDF. This project was coordinated by J.M. 

Sanchez-Perez at EcoLab and counted 6 European partners from France, Spain and 

Portugal (http://www.attenagua-sudoe.eu). The main objectives of Attenagua project 

were:   

- to develop a method to identify the best locations for the exploitation of underground 

water in riparian areas recharged by river water in order to benefit from the water 

http://www.attenagua-sudoe.eu/
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purification capacity of porous media riparian wetlands 

- to develop a method transferable to other floodplains 

The three following aspects were included: 

1) Characterization of pollution from multi-contaminants (metals, pesticides, 

organic matter, nitrate...) 

2) Considering ecotoxicological aspects and biodiversity in a functional approach, 

to highlight the role of bacterial communities and aquatic invertebrates 

associated in the natural pollution mitigation processes. 

3) Hydrogeological and biogeochemical modelling, to highlight the hydrological 

functioning and self-purification of the aquifer in interaction with the river and 

test management scenarios to reduce pollution for different active areas. 

The methodological approach was applied on the following 4 sites: Garonne 

(France), Bidasoa (Espagne), Tage (Espagne), Ebre (Espagne). The section III.2 is 

based on the infield investigations of a Garonne alluvial wetland by the UMR Ecolab 

team.  

Section III.2 consists of a paper published on the journal “Ecological 

Engineering”, with the doi number http://dx.doi.org/10.1016/j.ecoleng.2016.02.019. 

More precisely, my contribution was to participate into the whole field investigations 

in Garonne site during 2013, macro- and meio-invertebrates sorting and quantifying 

(detailed data in III.2.8 Annex), data statistical analysing, manuscript writing in 

collaboration with R. Duran from the team “Environnement et Microbiologie » from 

UMR CNRS-IPREM 5254 at the Université de Pau et des Pays de l'Adour. This work 

was orally presented in the 6th international European wetland conference in Spain. I 

also cooperated with the other research teams of the ATTENAGUA project, mainly the 

Instituto Pirenaico de Ecología-CSIC at ZARAGOZA in SPAIN for the invertebrates’ 

identification, and I am co-author of two submitted papers about the inter-site 

comparison of the invertebrate communities. This part also includes an additional part 

to describe the pesticide occurrence in Monbequi meander. This information is added 

here since it seems important to inform the readers about the level of stress that was 

applied on the hyporheic zone during Attenagua project.  

http://dx.doi.org/10.1016/j.ecoleng.2016.02.019
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III.2 Part 1: Effects of meiofauna and macrofauna on nitrate reduction in freshwater 

macro-porous sediment under pesticide stress  

Effects of meiofauna and macrofauna on nitrate 

reduction in freshwater macro-porous sediment under 

pesticide stress 

Yao J.M. 1, Dedieu K. 1,3, Liu Y. 1, Montuelle B. 2,4, Buffan-Dubau E. 1, Julien F. 1, 
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III.2.2 Abstract 

Microbial nitrate retention is a key ecological function in aquatic ecosystems, 

which could be regulated by several abiotic and biotic factors. It could be used as a 

proxy for the water quality regulating service in natural hyporheic sediments. 

Invertebrate communities are reported to be able to influence this function due to 

their close interactions with the activity of microbial community. This essential 

function and/or associated biodiversity may be threatened in the aquatic ecosystems 

by several types of stressors such as pesticides leaching from agricultural area. The 

main purpose of the present study was to investigate the influence of meiofauna and 

macrofauna on the nitrate reduction function with a fungicide occurrence in the water 

of experimental microcosms as a stressor for the biodiversity that drives this function. 

The experiment was run using a series of infiltration sediment columns that mimic 

river hyporheic zone conditions. The nitrate reduction rates were compared in 

treatments with different community compositions, with three biological 

compartment levels from low to high as (i) biofilm and associated microbes (ii) 

biofilm and meiofauna (iii) biofilm, meiofauna and macrofauna. All treatments were 

set under similar stressful conditions with a fungicide Dimetomorphe at initial 

concentration of 1.45 ± 0.02 Pg. l-1.  

Our results showed a significant enhancement of NO3
--N reduction with the 

highest community level (i.e. with biofilm, meiofauna and macrofauna) at the end of 

experiments under the stressful condition. Time also showed a significant effect on 

this function during the period with invertebrates (28 days). The significant influence 

of time and fauna interactions on nitrate removal could be explained by the required 

laps of time for the recovery of functional links between hyporheic biofilm 

microorganisms and invertebrates after stress addition. Biotic interactions between 

communities may be trophic and non-trophic, such as biofilm grazing and 

bioturbation. These results agreed with the previous demonstration of the influence of 

invertebrate and microbial cross-community interactions on the nitrate reduction 
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function as a potential top-down control. These findings suggested this control may 

play an important role in the potential resilience of the ecosystems facing chemical 

stress. These results encouraged further experimental tests of the vertical diversity 

effects with multi-trophic level communities’ combination including microbial 

compartment on ecosystem functions.  

III.2.3 Introduction 

The nitrate removal function contributes to the natural service of water quality 

regulation by reducing excessive nitrate delivered to downstream and coastal 

ecosystems (Bernot and Dodds, 2005; Millennium Ecosystem Assessment (MA), 2005; 

Mulholland et al., 2008). In-stream nitrate removal processes mainly occur in the 

hyporheic zone, where surface water mixes with groundwater. The hyporheic zone is 

often referred to as an active biogeochemical reactor (Boulton et al., 1998; Haag and 

Kaupenjohann, 2001; Datry and Larned, 2008; Boulton et al. 2010; Febria et al., 2012; 

Marmonier et al., 2012). In the hyporheic zone, water flows through macro-porous 

sediments in the interstitial voids and diffuses slowly in sandy zones, as an advection - 

dominated transport (Mermillod et al., 2003, Mermillod-Blondin and Rosenberg, 2006; 

Mermillod-Blondin, 2011). Meanwhile, abundant biodiversity and active microbial 

metabolisms harboring in this habitat can contribute to nutrient cycling at the source of 

the water quality regulation service. However this hyporheic biodiversity’s 

contribution considering the whole trophic web and changing abiotic factors remains 

merely understood (Nogaro et al., 2013).  

The large surface area of sediment particles in the hyporheic zone is coated with 

biofilm, a complex aggregation formed by one exopolymeric matrix that encloses 

heterotrophic microbial communities (e.g. bacteria and unicellular heterotrophic 

eukaryotes). This hyporheic biofilm plays an important role in nitrate reduction via 

microbial immobilization, denitrification, ANaerobic AMMonium Oxidation 

(ANAMMOX) and dissimilatory nitrate reduction to ammonium (DNRA) (Böhlke et 

al. 2004; Grimm et al. 2005; Lefebvre et al. 2006; Kaushal et al. 2008; Ligi et al. 2014). 
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These biofilm nitrate reduction processes are regulated by several abiotic factors, such 

as the geomorphological and chemical features of the hyporheic zone (Stream Solute 

Workshop, 1990; Ensign and Doyle, 2006) and also by biotic factors, mainly 

documented about the microbial communities.  

However, the microbial activities of the heterotrophic biofilm may also be 

controlled by top-down effects, like predation by organisms at higher trophic level (e.g. 

invertebrates). Invertebrate communities including mainly meio-organisms and also 

some macro-organisms are abundant in the hyporheic habitat (e.g. Palmer, 1990; 

Boulton et al., 1998; Gibert and Culver, 2009; Marmonier et al., 2012). It is reported 

that invertebrates can influence microbial nitrate reduction via (i) feeding on biofilm (ii) 

bioturbation that modifies the physical structure as well as the biological and chemical 

properties of the interstitial medium (Mermillod-Blondin et al., 2000, 2001,2002, 2003; 

Gerino et al., 2003; Stief 2013). In these ways, invertebrate communities can influence 

biofilm microbial activities related to nitrate removal in the hyporheic zones 

(Marmonier et al., 2012).  

Meanwhile, biofilm microorganisms are important food sources for invertebrates 

concerning the bottom-up effect. This microbial consortium, especially the 

hyphomicetes part of this consortium is also a key component for riparian litter 

decomposition and conversion into more palatable food resources for 

macro-invertebrate shredders and collector/gatherers (Lecerf et al., 2006; Lecerf and 

Chauvet, 2008; Cornut et al., 2010; Danger et al., 2012; Colas et al., 2013). In this way, 

the bidirectional interactions between the invertebrate and biofilm microbial 

communities (i.e. cross-community effects) can influence the invertebrate 

communities’ dynamic as well as the microbial metabolisms responsible for nutrient 

uptake and cycling. Such cross-community effects between biofilm microorganisms, 

meiofauna and macrofauna on nitrate reduction in hyporheic waters have been 

previously demonstrated in experiments using microcosms (Mermillod-Blondin et al., 

2000, 2001, 2002, 2003; Liu et al., 2016). 

Several empirical studies conducted under more or less constant environmental 

conditions have documented, in most cases, positive effects of biodiversity on 
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ecosystem functions (Duffy, 2009; Cardinale, 2011; Cardinale et al., 2012; Mace et al., 

2012; Naeem et al., 2012). Furthermore, the ecological theory predicts that biodiversity 

generally buffers ecosystem functioning against stress by enhancing resistance and 

resilience capacity (McCann, 2000; Loreau, 2010; Hershkovitz and Gasith, 2013).  

Streams ecosystems are impacted by numerous anthropogenic stressors, and they 

are recognized as some of the most impaired ecosystems on the earth concerning 

biodiversity loses rates (MA 2005; Dudgeon et al., 2006). Particularly, streams in 

agricultural watersheds are widely exposed to contamination, mainly through diffuse 

of pollutions (e.g. pesticides, excessive nitrogen and phosphate). The pesticides or 

Persistent micro Organic Pollutants (POPs) are primarily transported to streams 

recipients via run-off and infiltration in groundwater flow (Landry et al., 2004; Son et 

al., 2006). Occurrence of agricultural POPs in natural water, may temporarily or 

permanently impair biodiversity, including natural community structures and food 

webs (Lauridsen et al., 2006; Rasmussen et al., 2008; Peters et al., 2013)..  

It has been reported that these POPs pose threats on different biofilms 

communities, including microorganisms (Artigas et al., 2014), aquatic fungi (Maltby et 

al., 2009; Dijksterhuis et al., 2011) and invertebrates (Flores et al., 2014). In turn, if 

biodiversity participates in the ecosystem functions, then the impacts of pesticides on 

aquatic communities’ composition and diversity lead to changes in ecosystem 

functions. It is already demonstrated that POPs pollution can affect functions 

underpinning many ecosystem services in aquatic ecosystems (Artigas et al., 2012; 

Rasmussen et al., 2012; Beketov et al., 2013; Cimon-Morin et al., 2013). For example, 

pesticides were reported to affect leaf litter decomposition functions in streams by 

affecting fungi and/or shredder communities (Rasmussen et al., 2012; Flores et al., 

2014). McMahon et al. (2012) found that the fungicide chlorothalonil induced 

reductions in biodiversity which led, through trophic cascades, to important algal 

blooms that shifted ecosystem functions. However, the implication of the biodiversity 

effects on ecosystem functions under chemical stressors is poorly investigated 

(Hillebrand and Matthiessen, 2009; McMahon et al., 2012). Most focus is on the 

relationship between biodiversity and primary production or decomposition functions. 
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Studies of the relationship between biodiversity and nitrate removal functions under 

stress are still rare (Steudel et al., 2012). The demonstration of the anthropic effect on 

stream retention rates mostly concerned the perturbations related to land uses (Arango 

et al., 2008; Von Schiller et al., 2008). The nitrate removal as well as the biodiversity 

effect on this function have been seldom studied under persistent organic 

contamination (Steudel et al., 2012), although this contamination becomes largely 

occurring.  

Among different pesticides, Dimethomorph (DIM) is a morpholine fungicide that 

inhibits sterol (ergosterol) synthesis. It is commonly used in agriculture and viticulture 

for the prevention and cure of downy mildews, late blights, crown and root rots (Liu et 

al., 2012). DIM is frequently detected in runoff water, for example in the Champagne 

area in France (Hennebert et al., 2005) and many other places in the world (Oliveira et 

al., 2013; Avetta et al., 2014). The concentration values in environmental waters range 

from ng L−1 levels in rivers, to μg L−1 levels in wetlands (Environmental Protection 

Agency (EPA), 1998; Maillard et al., 2011). Despite its beneficial effects in the 

agricultural field, DIM shows toxicity for several living organisms including soil and 

water microflora, of which it can alter important biological functions even at very low 

concentrations (EPA, 1998; Lunn, 2007; Oliveira et al., 2013). DIM may have impact 

on the community composition and metabolisms of interstitial fungi in the hyporheic 

biofilm. Consequently, occurrence of DIM in hyporheic waters is suspected to affect 

the nitrate removal functions (e.g. the nitrate assimilative uptake by hyphomycetes 

(Suberkropp, 1998; Storey et al., 1999; Kuehn and Suberkropp, 2006)) by directly 

affecting the fungi compartment biomass and activity, and/or by indirectly affecting 

other related communities. This pesticide was chosen in the present experimental study 

as representative of one chemical stressor that frequently occur in the freshwater 

ecosystems. 

At present no ecotoxicological data of fungicide effects on aquatic fungi or 

microorganisms were available from the European risk assessment procedure (Maltby 

et al., 2009). Moreover, DIM was not included in the recent ecotoxicological studies of 

agricultural fungicides effects on non-targeted fungi (see the information of 42 
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fungicides in Maltby et al. (2009) and 7 fungicides in Dijksterhuis et al. (2011)). These 

studies concluded that the fungicide concentration which possibly displays effects on 

some non-targeted fungi might be below the minimum allowed threshold 

concentrations (NOEL) for the standard test organisms (e.g. algae and invertebrates). 

In this study, we explored the invertebrates’ influences on nitrate removal under 

the chemically stressful conditions produced by DIM. In this study, we considered the 

number of communities present in the experimental ecosystems by distinguishing the 

biofilm, the meiofauna and macrofauna. The combinations of these different 

communities was expected to support cross-community interactions. This paper 

focused on the influence of these interactions on the sustainability of the 

biogeochemical function of nitrate retention involved in water purification. We 

explored the nitrate retention rate from hyporheic waters as a proxy for the water 

quality regulation service (Maes et al., 2012). Using a combination of different 

communities, vertical diversity was increased by adding invertebrates in microcosms 

with biofilm alone. The trophic web complexity was considered to increase when 

addition of macrofauna into microsystems with biofilm and meiofauna.  

III.2.4 Materials and methods 

An in-door experiment was performed using a series of infiltration sediment 

microcosms with vertical water circulation to mimic a river hyporheic ecosystem. The 

DIM was introduced into all the sediment columns with the same concentration on day 

71, allowing to compare nitrate reduction with different combinations of communities 

(biofilm, meiofauna, macrofauna) under stressful conditions. The experimental control 

was the sediment treatment with only biofilm. The lack of invertebrate communities in 

this treatment allowed to measure nitrate reduction without cross-community 

interactions under stressful conditions.  
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III.2.4.1 Microcosm design 

Twelve experimental units were used, each one including a microcosm made with 

a Plexiglas column (height: 20 cm, internal diameter: 6.8 cm) filled with sediment 

(1098 ±102 g of sediment wet weight, mean ± SE) and infiltrated with a vertical and 

downward water flow. The water circulation was realized with a peristaltic pump that 

injected water from tanks, one tank being used for each microcosm. The microcosm 

design was presented in our previous study (See Figure 1a in Liu et al., 2016).  

III.2.4.2 Experimental design 

The experimental design is shown in Figure III.2-1. 

 
Figure III.2-1 Experimental design and timetable (Phase 1: the week before invertebrate introduction, 

from day 50 to day 56; Phase 2: the second week after invertebrates’ addition, from day 64 to day 70; 

Phase 3: the first week with invertebrates after DIM injection, from day 71 to day 77; Phase 4: the 

second week with invertebrates after DIM injection, from day 78 to day 85). The different community 

levels inhabiting the sediment microcosms are called SB for treatment with biofilm; SBM with biofilm 

and meiofauna; SBMM with biofilm, meio- and macro-invertebrate communities  

Treatment setup 

Three community levels were set in the microcosms to allow the comparisons 

between treatments characterized with different communities: biofilm, meio- and 
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macro-invertebrate communities. Four replicates per treatment were used to estimate 

the intra-treatment variability and compare the inter-treatment variability. The 

experiment lasted 85 days with water circulation. The first 56 days of water circulation 

in the microcosms were run in order to obtain a substantial biofilm biomass. Phase 1 

period was used to record the previous biofilm effect on nitrate reduction and lasted for 

7 days (day 50 - 56) before the addition of invertebrates. On days 57, twelve SB 

microcosms were divided into three treatments: i.e. SB (n = 4), SBM (n = 4) with the 

introduction of meiofauna, and SBMM (n = 4) with the addition of meiofauna and 

macro-invertebrate assemblages (see below for invertebrate collection method). Two 

weeks after the introduction of invertebrates (day 71), Dimethomorph (CAS 

number=110488-70-5, log Kow Isomere E=2.63) was injected to reach 2 μg l-1 in the 

water of all treatments.  

The DIM concentration (2 μg l-1) was selected (i) to fall in the range of infield 

DIM concentrations observed in France survey (Maillard et al., 2011) (ii) to remain 

below the values of No Observable Effect Level (NOEL) or non-lethal effects reported 

from the literatures, i.e. 0.005 mg/L for invertebrates (EFSA, 2006). Additionally, this 

concentration was expected to be quantified by regular analytic techniques and to be 

quantified after possible DIM degradation during the experiment. 

Nutrient concentrations were adjusted once a week to 10 mg NO3
--N.L-1 by 

adding KNO3 and to 30 mg DOC.L-1 by adding CH3COONa-3H2O. These 

concentrations were considered to be high enough so that metabolism may not be 

limited by availability of inorganic nutrients within one week (Muylaert et al., 2009).  

In situ invertebrate communities were collected in the Leze River (a sub-tributary 

of the Garonne River, South West France) during February 2009. Invertebrates, 

detritus and some sediments were collected with a “double net” surber equipped with a 

55 and a 250 µm nets that made it possible to sample meiofauna (55 to 250 μm) and 

macro-invertebrates (> 250 μm) simultaneously but in separate sections of the net. The 

three fractions (invertebrates, detritus and some sediments) of 8 surbers were divided 

into subsamples of approximately the same fresh weight, and were introduced together 

at the top of the sediment into SBM and SBMM on day 57. Replicates of these 
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subsamples were dried at 121 °C during 3 hours and then introduced in all microcosms 

to supply the same amount of sediment and organic matter as to the other microcosms 

with living organisms. A set of three additional subsamples of these three fractions was 

used for identification of invertebrates. These meio- and macro-invertebrate 

subsamples, still grouped with sediment and detritus weighed approximately 8 ±0.2 g 

and 37 ±1 g (dry weight) respectively. 

III. 1.4.3 Experimental analysis 

Biomass measurements  

The biomass of interstitial biofilm, in term of ash free dry mass (AFDM), was 

measured at the end of the experiment. Samples of top and bottom sediments of each 

column were dried at 105 °C in an incubator during 48 h, weighed for Dry weight (DW) 

and then burned further at 500 °C for 5 h, and weighed for Ash Weight (AW). AFDM 

was calculated as the differences between DW and AW. The average biomass values of 

the three sediment samples were used for each microcosm.  

For meiofauna biomasses, specimens of each taxon were pictured and measured 

with a Leica DFC 320 fitted on stereomicroscope Leica MZ 12.5 (7x-116x). Their 

volume was approximated as a geometrical volume (Bottrell et al., 1976) or estimated 

with a regression equation (Dumont et al., 1975). Individual biomass for each taxon 

was estimated as 106 µm3 = 1µg of wet weight (Lohmann, 1908). The average value of 

individual biomass was multiplied by the density of each taxon in each column to 

calculate the total biomass for meiofauna. 

Dry biomass of macro-invertebrates was measured by weighing the isolated 

individuals of each taxon for each microcosm. 

Chemical analysis  

Water was analysed weekly after 30 days of biofilm growth. Dissolved oxygen 

(O2) concentration was measured at the outlet of the columns. For O2 analysis, a 
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measuring chamber containing an electrode (WTW CellOx 325) was calibrated and 

then incorporated into the water circulation at the outlet of the column. Water samples 

from the tanks containing the recirculated water were collected to measure nitrate 

(NO3
-), nitrite (NO2

-), ammonium (NH4
+) and dissolved organic carbon (DOC) 

concentrations. For NO3
-, NO2

-, NH4
+ samples, water was filtered through cellulose 

acetate membranes (25 mm diameter, 0.2 μm and VWR) and analysed by a high 

performance ion chromatographic analyser (DIONEX, DX500 and DX120). For DOC 

measurements, water samples were filtered (Whatman GF/F glass-fiber, 0.7 μm, 25 

mm diameter, and pre-combusted at 500 °C for 4 h) and acidified with concentrated 

hydrochloric acid (6N) until pH < 2 (10 μl HCl per ml of filtrate) and kept in glass tubes 

(pre-combusted at 500 °C) in the refrigerator, then analysed by a Total Organic Carbon 

Analyser (Shimadzu TOC-5000A).  

Dimethomorph concentration in the water was analysed by ESI-LC-MS/MS (API 

4000, Applied Biosystems) at the end of the experiment. The detection limit was 0.5 μg. 

l-1.  

Meio/macro-invertebrate identification 

Three more replicates of wet subsamples with invertebrates were stored at the 

initial time for invertebrate identification and quantification. At the end of the 

experiment, 90 % of the total sediment in each microcosm of SBM and SBMM were 

used for identification and quantification of the remaining communities. Samples were 

preserved in 5% formalin until analysis. Determination and quantification was done at 

the lowest possible level (mostly genus level), and afterwards grouped into order level 

for presentation in Table III.2-1 and -2. The total density of the invertebrate community 

was calculated as the total number of individuals, all taxa considered, per microcosm. 

Richness and Shannon index were used to describe the taxonomic diversity of 

invertebrate community. Functional groups including “feeding habit” and “locomotion 

and substrate preferences” of macro-invertebrates were identified according to Tachet 

et al. (2002).  
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Aerobic respiration and denitrification 

Aerobic respiration and denitrification were measured at the end of the 

experiment following the slurry technique (Furutani et al., 1984). About 10 g of wet 

sediment of each sediment layer was placed in 150 mL flasks supplemented with a 

feeding solution in order to optimize microbial activity. For the measurements of N2O 

production (denitrification), the incubation was carried out under anaerobic conditions 

with a N2 atmosphere. The feeding solution was a mixture of 5 mL of a KNO3 (2.2 

g.L−1), glucose (7.5 g.L−1) and glutamic acid (7.3 g.L−1) solution. For the 

measurements of CO2 production (respiration), the incubation was realized under 

aerobiosis with 5 mL of a feeding solution of glucose (7.5 g.L−1) and glutamic acid (7.3 

g.L−1). Then incubation flasks were filled with helium (He). The sequence was 

repeated three times, and inside pressure was adjusted to the atmosphere. After 

removal of 15 mL of He from the incubation flasks, 15 mL of C2H2 (10% v/v final 

volume) was added to inhibit N2O reductase. All incubations were carried out at 20 °C, 

in the dark and gently shaken. At t = 3 h and t = 6 h, gases (CO2-C and NO2 -N) were 

measured by gas chromatography model on a MTI 200 microcatharometer and dry 

weights of sediment were determined after drying at 60 °C to express the results as μg 

of C or N per hour and per gram of dry weight sediment (µg.h-1. g sed DW-1).   

NO3- -N and DOC reduction rates  

The NO3
- -N concentration differences between two sampling dates (time interval 

of one week) were used to calculate the loss of NO3
- -N in the water. Four periods along 

the experiment were set to estimate this loss corresponding to phase 1-4 (see 

experimental design, legend Figure III.2-1).   

In this paper, the nitrate reduction rate quantifies the sum of all the processes 

which transform the nitrate and that can be happening during the water flow through 

the hyporheic sediment columns, mainly denitrification, DNRA and anammox 

pathways. Rates for estimation of NO3
- -N loss expressed as mg NO3

- -N. d-1 per 

experimental unit, during one experimental period were calculated with the following 
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equation: 

NO3
- -N reduction rate = ([NO3

- -N]2 - [NO3
- -N]1) /days * V water  

with: [NO3
- -N]1 and [NO3

- -N]2, being the NO3
- -N concentrations at the 

beginning and at the end of a period.  

days: the time interval between 2 two sampling dates for NO3
--N concentration 

measurements in the tank, usually equal to 7 days. 

V water: the total volume of the water circulating in one microcosm system (15 

L initially fed into the reservoir).  

DOC reduction rate followed the similar equation as NO3
- -N reduction rate (see 

the results in III.2.8 Annex): 

DOC reduction rate = ([DOC]2 - [DOC]1) /days * V water  

III.2.4.4 Statistics 

The normal distribution and homoscedasticity of variances of raw or 

log-transformed data for DIM and O2 concentrations, invertebrate metrics, nitrate 

reduction, denitrification and respiration rates were verified. Before testing faunal 

influences, the homogeneity of the nutrient concentrations and nitrate reduction rates 

between intended treatments were examined by one-way ANOVA test. 

After introducing fauna, DIM and O2 concentrations, and nitrate and DOC 

reduction rates were measured repeatedly in each microcosm at different times. 

Treatment effect for these variables was examined by one-way repeated measures 

(RM)-ANOVA with treatment as a main factor and time as the repeated factor. We used 

2 times for DIM concentrations and 3 times for O2 concentrations and NO3
--N and 

DOC reduction rates. The sphericity assumption was examined (Mauchly's sphericity 

test). If RM-ANOVAs detected significant differences, pairwise post-hoc tests 

(Bonferroni multiple comparisons) were undertaken. 

Paired t-test or Wilcoxon Matched-Pairs Signed-Ranks test was conducted to 

determine if initial and final measurements collected for invertebrate metrics (total 

density, richness, taxonomic Shannon index for meio- and macro-invertebrates 
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respectively) changed significantly during the time of the experiment.   

Denitrification and respiration rates were compared between SB, SBM and 

SBMM treatments only at final time of experiments by a one-way ANOVA.  

Significance was determined at ɑ = 0.05 (95% confidence). These analyses were 

undertaken using the SPSS statistical package (Version 22) and Graph pad prism 6. 

III.2.5 Results 

III.2.5.1 Dimethomorph concentrations 

Dimetomorph (DIM) concentrations in all microcosms of the 3 treatments on day 

74 (3 days after DIM injection in the microcosms) were estimated to 1.45 ± 0.02μg. l-1 

(n=12) and were considered as representative of the initial pesticide contamination. At 

the end of the experiment (i.e. at the end of phase 4 on day 85), the observed DIM 

concentrations ranged from 0.9 to 1.25 μg. l-1 (Figure III.2-2). 

 

Figure III.2-2 Dimetomorph concentrations in the 3 treatments on day 74 and on day 85 (at the end of 

experiment). Bars represent standard error of the mean (n=4). The characters “n.s” indicates no 

significant differences from statistic tests between the treatments on day 74, while “a” and “b” indicate 

significantly differences (p<0.05) between the treatments on day 85. 
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DIM concentrations were significantly different between treatments 

(RM-ANOVA, F=5.04, p=0.04). DIM concentrations at SBMM and SBM treatment 

were significantly higher than those at SB treatment on day 85 (Bonferroni post host 

tests, t=3.03, p=0.01 and t=3.24, p=0.02, respectively), while no significant differences 

in DIM concentrations between the three treatments were observed on day 74 

(Bonferroni post host test, p>0.05). DIM concentrations significantly decreased from 

day 74 to day 85 (RM-ANOVA, F=109.1, p<0.001).  

III.2.5.2 Meiofauna and macrofauna  

At the end of the experiment, the mean ash free dry weight of sediments i.e. 

biofilm biomasses in SB, SBM and SBMM columns were 6.2 ± 0.3 g, 7.1 ± 0.2 g and 

6.7 ± 1.1 g (mean ± SE; n=4). No statistical differences of biofilm biomasses were 

detected among these treatments (one-way ANOVA, p > 0.05). 

A total of 24 taxonomic groups of meiofauna community were introduced on day 

57 in the microcosms of SBM and SBMM, with the mean total density of 1392 ± 171 

individuals per microcosm or 3835 ± 471 ind. dm-2 (mean ± SE; n=3). The total 

densities of meiofauna increased to 65014 ± 52343 and 29184 ± 18599 individuals per 

microcosm in SBM and SBMM microcosms respectively at the end of the experiment 

or 179114 ± 14205 and 80402 ± 51240 ind. dm-2 (n=3) (Wilcoxon test, p>0.05). During 

the experiment, meiofauna richness decreased significantly from 15 ± 1 (initial time) to 

4 ± 1 (SBM) and 5 ± 1 (SBMM) at the end (paired t-test, p=0.003 and p=0.003 

respectively). Also, Shannon diversity index estimated on meiofauna organisms 

decreased significantly (paired t-test, n=3, t=15.5, p=0.004 and t=6.0, p=0.03, 

respectively) from 2.31 ± 0.08 at the initial time to 0.78 ± 0.03 and 0.82 ± 0.23 in SBM 

and SBMM microcosms respectively. No significant differences of total density, 

Shannon and richness for meiofauna were observed between SBM and SBMM 

treatments at the end of the experiment (Wilcoxon test or paired t-test, p>0.05). The 

above-mentioned metrics of meiofauna were illustrated in Figure III.2-3 as a, c, and e 

plots respectively.  
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Figure III.2-3 Means ± standard errors (SE) for density (a, b), richness (c, d), taxonomic Shannon index 

(e, f) of meio- (a, c, e) and macro-invertebrates (b, d, f) (n=3), when introduced in the sediment columns 

“Initial” and at the “End” of the experiments (day 85). *: Significant differences between treatments 

indicated by paired t-test or Wilcoxon Matched-Pairs Signed-Ranks test 

At the initial time, rotifers were the most abundant organisms (Table III.2-1), 

followed by tardigrades and nematodes. At the end of the experiment, rotifers largely 

dominated the meiofaunal community in SBM and SBMM treatments and the second 

numeric group was represented by nematodes (Table III.2-1).  

At the initial time, the mean total densities of macrofauna was estimated to 132 ± 

22 individuals per microcosm or 366 ± 61 ind. dm-2 (Mean ± SE, n=3) (Figure III.2-3b). 

No significant difference of total macrofauna densities was observed between the 

initial and the end in SBMM (paired t-test, t=1.7, p>0.05). The total macrofauna 

density decreased to 74 ±11 individuals per microcosm at the end in SBMM or 204 ± 

30 ind. dm-2. No significant difference of macrofauna richness was detected between 

the initial (28 ± 3) and the end (10 ± 2) in SBMM (paired t-test, t=3.6, p>0.05). 

Shannon diversity index of macrofauna were significantly higher at the initial time 

(2.83 ± 0.09) than that at the end (1.53 ± 0.10) (paired t-test, t=7.4, p=0.02) (Figure 

III-1.3, b, d, f).  
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Table III.2-1 Density and composition of the taxonomic groups of meiofauna, regarding the mean 

density (number of individuals per column) and corresponding percentage of the total density at the 

beginning and the end of experiment  

Taxonomic 
Group 

Initial    End 
SBM-SBMM   SBM SBMM 

density percentage   density percentage density percentage 
Rotifer  675 46%   52028 80% 25303 87% 
Nematode 192 13%   12931 20% 3833 13% 
Tardigrade 233 16%   6 0% 0 0% 
Copepode 92 6%   50 0% 21 0% 
Cladocere 25 2%   0 0% 0 0% 
Hydracarien 8 1%   0 0% 21 0% 
Diptera 125 9%   0 0% 0 0% 
Oligochete 17 1%   0 0% 7 0% 
Ephemeroptere 17 1%   0 0% 0 0% 
Plecoptere 8 1%   0 0% 0 0% 

A total of 28 macro-invertebrate taxonomic groups were introduced in the 

microcosms in SBMM treatments on day 57. Diptera (mainly Chironomidae) 

contributed for 24% of the total macrofauna density, followed by Coleoptere (18%) 

(Table III.2-2). The main feeding groups of macrofauna at the beginning of the 

experiment were scrapers (33%), followed by predators (20%), shredders (18%) and 

deposit feeders (17%). With regards to functional locomotion groups, crawlers were 

the main group at the beginning of the experiment (50%), followed by interstitial 

organisms (18%) and burrowers (12%).  

Taxonomic and functional compositions of macrofauna varied from the beginning 

to the end of experiment. With the exception of Oligochaetes and Hydracariens, all 

taxonomic groups were less abundant at the end than at the beginning of the 

experiment. The relative density of deposit feeders and predators increased, which may 

be due to the increase of relative densities of Oligochaetes (mainly as deposit feeders) 

and Hydracariens (as predators) respectively. Yet no obvious variations of deposit 

feeders’ and predators’ densities were found between the beginning and the end of the 

experiment. Scrapers and shredders decreased but were still present at the end of the 

experiment. The relative density of crawlers decreased, whereas the relative densities 

of interstitials and burrowers slightly increased at the end (Table III.2-2).
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Table III.2-2 Density and composition of macrofauna communities expressed in taxonomic and functional groups (“feeding habit”, “locomotion and substrate preferences”); 

the mean densities i.e. number of individuals per microcosm) and corresponding percentage of the total density (in the brackets) at the beginning and the end of experiment 

Taxonomic Group Initial  End    
Functional Group  

(Feeding habit) 
Initial  End 

Functional Group  

(Locomotion and substrate 

preference) 

Initial  End  

Diptera 32 (24%) 8 (11%)   Scraper 43 (33%)  15 (20%)  Crawler 66 (50%) 17 (23%) 

Coleoptera 24 (18%) 11 (15%)   Predator 26 (20%)  23 (31%)  Interstitial 24 (18%) 27 (37%) 

Hydracarien 19 (14%) 16 (21%)   Deposit feeder 22 (17%) 27 (36%)  Burrower 16 (12%) 15 (20%) 

Oligochaeta 15 (11%) 37 (50%)   Shredder 24 (18 %) 4 (5%)  Filer 5 (4%) 2 (3%) 

Ephemeroptera 14 (10%) 1 (1%)   Filter feeder 8 (6%)  0 
Surface 

Swimmer 
1(1%) 1(1%) 

Plecoptera 13 (9%) 0   Piercer 4 (3%)  0  Full water swimmer 11(8%) 6 (9%) 

Tricoptera 9 (7%) 1 (1%)   Parasite 4 (3%)  0 Temporarily attached 9 (7%) 5 (7%) 

Mollusque 7 (5%) 1 (1%)   Absorber 1 (1%)  4 (5%)  Permanently attached 0 0 
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III.2.5.3 NO3--N reduction rates 

NO3
--N reduction rates were not significantly different between treatments 

(RM-ANOVA, F=4.2, treatment effect, p=0.051), while NO3
--N reduction rates 

significantly changed with time (RM-ANOVA, F=7.6, time effect, p=0.004) (Table 

III.2-3). NO3
--N reduction rates in phase 3 after pesticide addition significantly 

decreased compared to those in phase 2, and NO3
--N reduction rates in phase 4 

significantly increased compared to those in phase 3 (Bonferroni post host tests, t=3.6, 

p=0.006 and t=3.1, p=0.02 respectively) (Figure III.2-4). 

Table III.2-3 RM-ANOVA results for testing differences in NO3
--N reduction rates and oxygen 

concentrations with treatment as a main effect and time as a repeated factor (3 times) 

 
Source d.f F P 

NO3
--N 

reduction 
rates 

Treatment 2 4.2 0.05
1 

Time 2 7.6 0.04 
Treatment x Time 4 3.7 0.02

4 
O2 
concentration 

Treatment 2 0.76 0.49 
Time 2 1.78 0.2 
Treatment x Time 4 3.57 0.03 

The significant interactions effect suggested that NO3
--N reduction rates varied 

over time between the 3 treatments (RM-ANOVA, treatment x time effect, F=3.67, 

p=0.024, Table III.2-3).  

When testing treatment individually, NO3
--N reduction rates at SB and SBM 

treatments did not changed significantly with time (Bonferroni post host test, p>0.05), 

while NO3
--N reduction rates at SBMM treatment significantly decreased from phases 

2 to 3 (Bonferroni post host test, t=4.45, p<0.001) and then significantly increased 

from phases 3 to 4 (Bonferroni post host test, t=3.76, p=0.004).  

When testing the phase individually, during phase 2, before DIM addition, 

NO3
--N reduction rates measured in SBMM treatment (8.3 ± 1.9 mg N d-1) were 

significantly higher compared with its control treatment SB (Bonferroni post host test, 
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t=3.3, p=0.008) (Figure III.2-4a). These results indicated the highest NO3
--N reduction 

rates records that happened when the 3 different communities were present in the 

sediment (biofilm, meio- and macro-invertebrates), as in previous measurements made 

in the same microcosms (Liu et al., 2016). During phase 3, no significant difference of 

NO3
--N reduction rates was observed between the three treatments (Bonferroni post 

host test, p>0.05). Similar to phase 2, during phase 4, NO3
--N reduction rate in SBMM 

(7.4 ± 1.0 mg N d-1) was significantly higher than that in SB microcosms (Bonferroni 

post host test, t=3.2, p=0.01) (Figure III.2-4a).  

 

Figure III.2-4 NO3
--N reduction rates (mg NO3

--N. d-1 per microcosm) according the 3 treatments 

during the 4 experimental phases. Phase 1: the week before invertebrate introduction, from day 50 to 

day 56; Phase 2: the second week after invertebrates’ addition, from day 64 to day 70; Phases 3 and 4: 

the first and second weeks with fungicide injection. Bars represent mean ± standard error (n=4, except 

n=12 for SB in phase 1). “*” indicate significant differences from statistic tests between treatments. “F” 

indicates fungicide occurrence in the water  

III.2.5.4 Oxygen concentrations 

O2 concentrations were neither significantly different between treatments 

(RM-ANOVA, F=0.76, p>0.05), nor between times (RM-ANOVA, F=1.78, p>0.05) 

(Table III.2-3). The significant interactions effects indicated that influences of 

treatments on O2 concentrations depended upon time (RM-ANOVA, treatment x time 

effect, F=3.57, p=0.026) (Table III.2-3).  
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Figure III.2-5 O2 concentrations (mg. l-1) of the 3 treatments during the 4 experimental phases (see 

the description of each phase in Figure III.2-4). Bars represent mean ± standard error (n=4, except 

n=12 for SB in phase 1). “*” indicate significant differences from statistic tests between treatments. “F” 

indicates fungicide occurrence in the water 

O2 concentrations in all microcosms of the 3 treatments in phase 2 equalled to 

4.56 ± 0.17mg. l-1 (mean ± SE, ranging from 3.45 to 5.47, n=12). In phase 3, the 

observed O2 concentrations ranged from 1.94 to 5.77 mg. l-1 (4.56 ± 0.17mg. l-1). In 

phase 4, O2 concentrations showed large variations from 1.94 to 6.55 mg. l-1 (4.30 ± 

0.54mg. l-1) (Figure III.2-5). 

When treatment was tested individually, only for SBMM treatment, O2 

concentrations were significantly higher in phase 4 than those in phase 3 (Bonferroni 

post host test, t=3.38, p=0.01).  

When phase was tested individually, only in phase 4, O2 concentrations at SBMM 

treatment were significantly higher than those at SBM treatment (Bonferroni post host 

test, t=3.46, p=0.005). 

III.2.5.5 Microbial activities 

According to Figure III.2-6(a), at the end of the experiment (after day 85), the 

mean denitrification rate in SB treatments was significantly lower (more than 2-fold) 
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than those in SBM and SBMM treatments (one-way ANOVA, p<0.05). Denitrification 

rates appeared slightly higher with macrofauna (SBMM) than those with only 

meiofauna (SBM treatments) without significant difference (one-way ANOVA, 

p>0.05).  

Respiration rates recorded in SBM treatments were significantly higher than those 

in SB treatments (Figure III.2-6(b)) (one-way ANOVA, p<0.05). Mean respiration rate 

in SBMM treatments was not significantly different from those in SB or SBM 

(one-way ANOVA, p>0.05).  

 
Figure III.2-6 Microbial activities in the 3 treatments at the end of experiment: (a) denitrification rate 

(ng N-NO2.h-1. g -1sed DW); (b) respiration rate (ng C-CO2.h-1. g-1 sed DW). Bars represent standard 

error of the mean (n=4). Significant differences between treatments are indicated by one-way ANOVA 

test (***p < 0.0001; **0.001< p < 0.01; * p < 0.05)  

III.2.6 Discussion 

Since the objective of this experiment was to examine the influences of meiofauna 

and macrofauna on the NO3
--N reduction function under stressful conditions, the main 

discussion explored the differences that existed between treatments with a different 

number of communities occurring in the sediment columns. The experimental control 

was considered to be the treatment with sediment and biofilm only. 

The biotic community compositions were discussed here in order to understand 



Chapter III: The relationship between invertebrate community and the nitrate removal function in the condition of stress 

161 

the influences of the biodiversity with potential changes under chemical and time 

effects on the nitrate reduction function (herein the description of the DIM effects on 

biodiversity not being the goal). This involved biodiversity was considered as 

representative of a food web of multi-trophic levels in the conditions with invertebrates 

and was able to developed cross-communities’ interactions between invertebrates and 

biofilms. These interactions have been previously described as the sources of the 

observed changes in the NO3
- -N reduction rates when comparing with only biofilm 

treatment (Liu et al., 2016). 

The density of meiofauna increased, while their richness and Shannon diversity 

decreased at the end of the experiment when comparing to the beginning. This was due 

to the increase of rotifers and nematodes, the formers being the dominant meiofaunal 

organisms at the end of the experiment. This may be due to that higher DOC 

concentration in experimental conditions favored the bacterial biomass and thus could 

support a high density of meiofauna. Also, rotifers are known to be resistant to 

perturbed environments (Palmer et al., 1992; Majdi et al., 2011). It suggested that this 

meiofauna taxa could adapt more easily to incubation conditions than others. 

Macro-invertebrate density and diversity decreased between the beginning and 

the end of the experiment. The taxonomic and functional structures of the 

macro-invertebrate communities evolved during the time of the experiment. For 

example, some Oligochaete species showing high tolerance to polluted water (Azrina 

et al., 2006) became the major group in these microcosms, while relative pollution 

sensitive taxa (Ephemeroptere, Plecoptere, and Tricoptere) (Merritt and Cummins, 

2007) were rarely found at the end of experiments. These changes may be caused by (i) 

the long experiment period (ii) the difference of living conditions between laboratory 

and nature (iii) the predation effect in the microcosms (iv) indirect effect of DIM 

toxicity. Concerning the functional composition, the interstitial invertebrates became 

the major group at the end of the experiment, which may imply the good 

acclimatization of these organisms to hyporheic-mimicking conditions in the 

microcosms.  

The above-mentioned results confirmed the maintaining of invertebrate 
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communities in the experimental columns during the whole experiment duration.  

In the specific conditions of the present experiment, the nitrate reduction function 

could mainly concern denitrification, DNRA and anammox pathways (Burgin and 

Hamilton, 2007). In these infiltration columns, the microbial activities occur 

predominantly in the biofilm lining all sediment particles with an exopolymeric matrix. 

This biofilm growing may finally occupy all the interstitial voids until sediment 

clogging in case of fine sediment occurrence (Nogaro et al., 2005).  

III.2.6.1 NO3--N reduction without DIM stress (Phase 2) 

The NO3
--N reduction rates recorded during phase 2 (SBMM>SBM>SB) 

highlighted the significant influences of meio- and macro-invertebrate communities in 

the condition without pesticide stress in the water. The NO3
--N reduction capacities 

were observed to be maximal when the highest number of communities occurred in 

these microcosms. These findings agreed with the previous results observed in similar 

laboratory conditions, showing the same patterns for nitrate reduction rates measured 

in the microcosms with and without the invertebrate community (Liu et al. 2016). The 

invertebrate feeding on biofilm components could influence the microbial community 

composition and metabolic intensities, and could possibly favor the microbial nitrate 

removal in the interstitial water. In addition, many invertebrate engineering activities 

can have various interactions with the biofilm communities (Jones et al., 1997; 

Mermillod-Blondin, 2011; Stief, 2013). Additionally, literatures show that oxygen 

concentration is also related to nitrate reduction and especially by influencing the 

denitrification pathway (Kemp and Dodds, 2002). However, in the present experiment, 

adding fauna in phase 2 did not introduce significant changes of the oxygen 

concentrations among treatments. Thus it was suggested that the significant 

enhancement of invertebrates on nitrate reduction might be not due to the hypoxia 

condition and was more likely the result of the fauna effect. 

Such diversity, considered with inter-community diversity (i.e. richness of 

community), inter-trophic groups diversity as well as intra-community compositions, 



Chapter III: The relationship between invertebrate community and the nitrate removal function in the condition of stress 

163 

is beginning to be recognized, as a biotic driver that promotes nitrate removal in 

aquatic sediments as in soil (Freckman and Virginia, 1997; Lecerf and Richardson, 

2010). Biodiversity in general is presently recognized as positively controlling the 

ecosystem functions (Cardinale, 2011; Cardinale et al., 2012; Wagg et al. 2011), 

reliability (Naeem and Li, 1997) and performances (Balvanera et al., 2006). 

III.2.6.2 NO3--N reduction with DIM stress (Phase 3 and 4) 

Under the stressful condition, the above mentioned positive biotic drivers of 

nitrate reduction (three interacting communities) may also exist. In addition, the 

experimental conditions that differ from in situ physico-chemical properties of the 

natural habitat may cause drift effects in the micro-ecosystems with time, and thus may 

affect the nitrate reduction function. Of course the introduction of DIM as a source of 

chemical contamination may have potential negative impaction on this function. Since 

DIM concentrations were still detectable in all three treatments at the end of the 

experiments, thus it was assumed that the fungicide was present during the whole 

experiment period in the water of all the microcosms. The decreases of DIM 

concentrations were observed at the end of the experiments. This was probably due to 

the physico-chemical adsorption on the inert matrix of sediment and the DIM 

biodegradation capacity of the heterotrophic biofilm. Besides, the capacity of biofilm 

to transform pesticide such as DIM into related metabolites was previously 

demonstrated in the similar microcosms (Sánchez-Pérez et al., 2013). In the present 

experiment, DIM concentration at the end was significantly higher in SBM and in 

SBMM than in SB, which was not the case at the beginning. DIM metabolites are 

identified from the literature but without available information of their relative toxicity 

(Sánchez-Pérez et al., 2013). It was suspected that when DIM was degraded in the 

microcosm conditions, the potential differences existing in their metabolites may 

induce different toxic effects on these micro-ecosystems. 

Yet, since the used concentration of DIM in this study was below the NOEC 

concentration for invertebrates (5 μg /l), one can consider that there was no direct toxic 
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effect of DIM on the invertebrate communities. However, indirect effects of DIM on 

invertebrates may exist by changing taxonomic and functional structures of the 

community (Lunn, 2007; Oliveira et al., 2013). The occurrence of DIM in the 

interstitial water may also theoretically affect the efficiency of the microbial 

communities’ activities (Sabater et al., 2016).  

The pattern of NO3
--N reduction rates recorded during phase 2 

(SBMM>SBM>SB) was cancelled in phase 3 after pesticide addition. Then, NO3
--N 

reduction rates returned in phase 4 with the similar pattern (SBMM>SBM>SB) that 

was recorded before fungicide addition (phase 2). For practical reasons, the control 

treatments without DIM were not included in the experimental setup. However, we 

previously conducted another experiment (section II.2) with similar sediment columns 

and different community compositions but without toxic stress (see the detailed 

comparison between these two experiments in Annex II of this manuscript). This 

previous monitoring of NO3
--N reduction rates with the complete invertebrate 

community like in SBMM treatment indicated the continuous increase of the intensity 

of this function during the time of the experiment (i.e. 28 days). Thus, in the present 

experiment, the decrease of NO3
--N reduction rates in phase 3 more likely resulted 

from the fungicide impaction instead of the drift effects with time.  

The nitrate reduction rate recorded in the single biofilm treatment (SB) in phase 3 

remained similar to previous measures of this function before the pesticide addition 

(phase 2). NO3
--N reduction rate in SBM and SBMM treatments were lower than 

before pesticide addition. It suggested that microbial compartment conserved its 

metabolic activity and may be less sensitive to stressful conditions than the benthic 

invertebrate community. In phase 3, there was no evidence of the positive 

cross-communities’ interactions effects on the biofilm activity, since the NO3
--N 

reduction rates were not different with or without any invertebrate communities. It was 

supposed that DIM may have influence on the communities’ compositions and on the 

functional links between the organisms (microbes and invertebrates). This potential 

response to the DIM addition suggested that the cross-communities’ or the 

inter-trophic groups’ interactions may be affected by the stressful conditions. 
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Contrasting conclusions on biodiversity-ecosystem function relationship under 

stressful conditions are reported in the literatures, ranging from positive (Goodsell and 

Underwood, 2008) to negative effects (Pfisterer et al., 2002; Caldeira et al., 2005; 

Downing and Leibold, 2010) of the biodiversity on different functions. This variation 

is mainly explained by the effects of the stress intensity that modulated the biodiversity 

influence. Steudel et al. (2012) concluded that positive effects of biodiversity on 

various ecosystem functions decreased with increasing stress intensity. In one recent 

study of interactions between microbial and invertebrate communities under sublethal 

contamination in infiltration columns, Mermillod-Blondin et al. (2013) demonstrated 

that the inhibition of tubificid worms influenced on biogeochemical processes by 

benzo(a)pyrene; this toxic effects being observed on the nitrate reduction function and 

related microbial activity. 

Following the cancelling of the cross-community effects on NO3
--N reduction in 

phase 3 of the experiment, the initial pattern between treatments of NO3
- -N reduction 

rates, returned in phase 4 with optimal reduction in SBMM condition. The phase 3 with 

short-term effect of the POP may be identified as the potential response to the induced 

stress on the microsystem. The recovery of the function with time after the introduction 

of stress was named the stress-response buffering effect by Steudel et al. (2012). This 

time effect suggested the possible development of acclimated processes (or adaptation) 

in the biotic compartments allowing the return of biotic activities and interactions. 

Although the pesticide stress still existed at the end of our experiments, the present 

time effects may be in line with several studies which have demonstrated how 

biodiversity confers resilience and resistance capacities of communities and 

ecosystems after perturbations, such as drought periods in streams (Hershkovitz and 

Gasith, 2013) or grasslands (Tilman et al., 1994; Walker et al., 1999; Fritz et al., 2005) 

refer to the diversity stability debate (McCann, 2000).  

It was reported that the strength of the species and communities’ interactions 

seems to be more important than the occurrence of the diversity itself in the processes 

that explain the ecosystem resilience (McCann, 2000). Diversity in general may be not 

the driver of this relationship but could contribute to ecosystem stability. This stability 
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would depend on the ability of communities to contain species or functional groups 

that are able to response differently facing environmental stresses or perturbations 

(McCann, 2000). 

During phase 4, the SBM treatment showed a tendency for increased NO3
--N 

reduction rates. The cross-communities’ interactions may also be the source of the 

significant increase in NO3
- -N reduction rates observed in SBMM compared to SB 

conditions. Since no significant differences of the O2 concentrations were detected 

between SBMM and SB treatment in phase 4, this change in the reduction rates may be 

attributed to the invertebrate effects on the biofilm activity. Large densities of rotifers 

in the columns at the end of the experiment suggested their abilities to resist to stress 

conditions (Majdi et al., 2011). The feeding activities of rotifers were able to induce 

change in the microbial flora and/or stimulate microbial growth (Schmid-Araya and 

Schmid, 2000; Giere, 2009). In the previous experiment under similar conditions but 

without toxic stress, meiofauna did stimulate NO3
--N reduction (Liu et al., 2016). Thus, 

considering the development of these organisms in the present new experimental 

conditions and the concomitant nitrate reduction rising in phase 4, it was suggested that 

rotifers may also have positive interactions with biofilm under the presence of POPs in 

the water. 

From the present results, it is not possible to deduce if, and in how far the positive 

effect of the macrofauna community on the NO3
- -N reduction rates profits or not from 

the presence of the meiofauna community, under the stress of DIM. This type of 

demonstration would require a specific treatment with sediment, biofilm and 

macrofauna without meiofauna development, which is technically impossible to obtain. 

It was suggested that a positive interaction may exist between meio- and macrofauna, 

which may be envisaged through various pathways such as meiofauna providing a high 

quality food resource for macrofauna, or the meiofauna (and its potential positive 

effect on NO3
--N reduction) being kept at an active state by macrofauna predation 

(Giere, 2009).  

For macrofaunal effect on nitrate reduction, concerning the macrofaunal taxa, 

tubificid worms, as important ecological engineers, have been demonstrated to 
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stimulate aerobic respiration, denitrification, dehydrogenase and hydrolytic activities 

of microorganisms (Pelegrí and Blackburn, 1995; Mermillod-Blondin et al., 2001, 

2005; Nogaro et al., 2007, 2009). Oligochaetes, the main macrofaunal group at the end 

of this experiment, could facilitate the transport of water and nutrients inside sandy 

zones, or anaerobic parts of the sediment columns, thus also stimulating the microbial 

activities such as denitrification (Mermillod-Blondin et al., 2002; Mermillod-Blondin 

and Rosenberg, 2006). Such effects may be inhibited in polluted sediments but 

Oligochaetes have a high level of resistance to unfavorable treatments, especially 

organic pollution associated with severe hypoxic treatments (Brinkhurst and Cook, 

1974; Ciutat and Gerino, 2005).  

The presence of the several specific functional groups at the end of the experiment 

may further suggest the influence of other macro-invertebrate activities on nitrate 

reduction via ecological engineering (bioturbation) and feeding effects which may be 

still efficient under stress. Concerning the locomotion functional groups that may be 

associated with bioturbation activities, the dominating groups at the end of our 

experiment were burrowers and interstitial invertebrates (here indicating the organisms 

preferring to live deeper than burrowers). Their dwelling activities can indirectly 

modulate the availability of resource flows to microorganisms by causing physical 

state changes in abiotic materials (Jones et al., 1997; Mermillod-Blondin et al., 2003). 

It was reported that invertebrates can modify the hydrodynamics in sand-gravel 

systems, where microbial processes are largely influenced by the biologically mediated 

physical flux of water (Boulton et al., 1998). 

Concerning macrofaunal feeding activities, there were three main groups detected 

at the end of the experiment: deposit feeders, scrapers and predators. In our experiment, 

deposit feeders and scrapers were the major macrofaunal groups consuming the 

biofilm microorganism (accounting for half of the macro-invertebrate community). 

They could remove dead parts of interstitial biofilm and thus potentially keeping the 

biofilm microorganisms in an active physiological state (Mermillod-Blondin et al., 

2003). Besides, predators may reduce grazers’ biomasses and have a cascade effect on 

microbial communities (Wojdak, 2005; Duffy et al., 2007). But from our present 
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results, the influence of predators on the communities and the ecosystem function was 

difficult to predict. Yet, the importance of higher level interactions in food webs (for 

example microbial interaction with herbivory, omnivory and predation) for 

understanding the relationship between diversity and stability of the whole ecological 

community was highlighted in the studies on grassland productivity focusing on 

mycorrhizal fungi (Heijden et al., 1998) or testing soil community response to a 

perturbation (Fagan, 1997). Specially, multi-trophic level experiments suggested the 

influences of the upper levels (mainly shredders) on the microbial activity 

(hyphomycetes) in leaf-litter breakdown processes (Lecerf et al., 2006; Bastian et al., 

2008; Lecerf and Richardson, 2010).  

In this present hyporheic system, the relative importance of ecological 

engineering and feeding effects on nitrate reduction was difficult to distinguish, since 

different bioturbation modes (e.g. Oligochaete with gallery building and Chironomidae 

with U-shaped burrow building) and feeding habits (e.g. scrapers and predators) may 

exist simultaneously and generate various cross-communities as well as 

inter-communities’ interactions.  

III.2.6.3 Denitrification rates  

Denitrifying bacteria communities are present and active in the hyporheic zones 

(Iribar, 2007; Peyrard et al., 2011; Yao et al., 2016) and bacterial denitrification is 

reported as one of the major pathways of nitrate reduction in hyporheic habitats. 

Nitrate reduction in the hyporheic microcosms theoretically included bacterial 

denitrification, ANAMMOX and DNRA, and microbial assimilative uptake. In the 

present experiment, the positive invertebrate effects on NO3
--N reduction under DIM 

stress may be the consequence of increased denitrification and/or the other pathways. 

The significantly higher potential denitrification rates, measured in both SBM and 

SBMM than in SB treatments, indicated the contribution of meiofauna in processes 

responsible for the acceleration of denitrification rates. This was consistent with the 

results of Bonaglia et al. (2014), reporting how meiofaunal bioturbation stimulates 

denitrification in marine sediments.  
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III.2.7 Conclusion 

The interactions between invertebrates and microorganisms living in streambed 

sediments are shown in the literature to play key roles in the regulation of nutrient and 

organic matter fluxes in aquatic ecosystems mainly in experimental conditions without 

stress. Current investigations for understanding the biodiversity effects on system 

resilience in natural and facing stress or perturbation have been developed primarily in 

the context of single trophic level communities. The present study showed the positive 

effects of invertebrates and the cross-community interactions on a hyporheic 

ecosystem function (nitrate reduction) and suggested their relevance in the stress 

adaptation capacity of these systems.  

By recording the cross-community effects on nitrate reduction under stressful 

experimental conditions, this study highlighted the time effects on the recovery of the 

invertebrates-biofilm interactions that was first cancelled and then returned after a 

longer period of time.  

The observed enhancement in nitrate reduction with increasing vertical diversity 

(SBMM versus SB) under the stress of fungicide could be explained by via top-down 

control of invertebrate activities on biofilm microbes and/or bioturbation that changed 

the physical microenvironment of the hyporheic sediment habitat. It suggested that the 

same type of functional interactions concerning invertebrates and biofilm may need 

time to be restored after pesticide effect and/or participate to the restoration of the 

nitrate reduction function. Also, the cross-community interactions between meio- and 

macrofauna may contribute to such enhancement.  

When testing the diversity and functional relationships, the results suggested that 

more considerations should be paid to the number of trophic levels in the manipulated 

biodiversity, especially when the experiment includes microbial compartment. Also, 

the present results suggested that community diversity effects might be underestimated 

when meiofauna is not included in the treatments of studies about nutrient retention. 

Further studies with more communities’ combinations should be developed to balance 

the studies on the effects of the cross-community interactions compared to the 
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intra-community (i.e. interspecific) interactions on the efficiency of the hyporheic 

habitat functioning. This experiment was run in contamination level under NOEL 

threshold, it suggested a response effect, followed by the recovery of the essential 

activity that permitted the function to restore under stress. The present study may 

suggest that the biodiversity or functional groups that generates the cross-community 

interactions could resist or adapt to the stress, or restore after stress, probably when the 

contamination remains under a certain threshold level. This observation suggested the 

existence of resistant species in the benthic communities which might contribute to 

ecosystem functioning under stressful conditions. 

The present study suffered from some limitations which should be taken into 

consideration in future experiments but also opens some suggestions for future 

research in the BEF field. In future, it would be worthwhile to add non-toxic controls in 

the experiments in order to obtain more precise evidence to distinguish the impacts of 

toxic and time (and/or laboratory adaption) on the nitrate removal function and 

invertebrate community. While we got proof that the dynamics of the nitrate removal 

was different between non - toxic and toxic incubations, it would be interesting to be 

able to evaluate, at the same time, the toxicity effect on the communities involved in 

such experiments. 

III.2.8 Annex: DOC reduction rates   

The DOC results were given here as additional information related to this paper. 

However, since they were not the main topic of this paper, they were not discussed 

here.  

DOC reduction rates showed significant changes with time (RM-ANOVA, 

F=41.9, time effect, p<0.001) (Table III.2-annex). After pesticide addition (phase 3), 

DOC reduction rates were significantly higher than those in phase 2 and 4 (Bonferroni 

post host tests, t=8.0, p<0.001 and t=7.8, p<0.001 respectively) (Figure III.2-annex). 

DOC reduction rates were significantly different between treatments (RM-ANOVA, 

F=7.3, treatment effect, p=0.01) (Table III.2-annex). DOC reduction rates of SBMM 



Chapter III: The relationship between invertebrate community and the nitrate removal function in the condition of stress 

171 

treatment (58.7 ± 9.1, mean ± SE, n=12) was significantly higher than those of SB 

treatment (49 ± 3.9) (Bonferroni post host tests, t=3.7, p=0.015). The significant 

interactions effect suggested that DOC reduction rates varied inconsistently over time 

between the three treatments (RM-ANOVA, treatment x time effect, F=4.06, p=0.01, 

Table III.2-annex).  

When testing phase individually, only during phase 3, DOC reduction rates of 

SBMM treatment were significantly higher than those of SB treatment (Bonferroni 

post host test, t=3.76, p=0.004). No significant differences of DOC reduction rates 

between treatments were observed during phase 2 and 4, respectively (Bonferroni post 

host test, p>0.05) (Figure III.2-annex).  

Table III.2-annex RM-ANOVA results for testing differences in DOC reduction rates with treatment 

as a main effect and time as a repeated factor (3 times). 

  Source d.f F P 
DOC 
reduction 
rates 

Treatment 2 7.3 0.01 
Time 2 41.9 <0.01 
Treatment x Time 4 4.06 0.01 

 

Figure III.2-annex DOC reduction rates (mg C. d-1 per microcosm) according the 3 treatments during 

the 4 experimental phases (see the description of each phase in Figure III.2-4). Bars represent mean ± 

standard error (n=4, except n=12 for SB in phase 1). “*” indicate significant differences from statistic 

tests between treatments. “F” indicates fungicide occurrence in the water  
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The DOC reduction rates in the experimental columns were assumed to mostly 

reflect the heterotrophic biofilm assimilation. This DOC reduction remained with high 

rates before and after pesticide addition in SB, SBM and SBMM. Unlikely for nitrate 

reduction rates and invertebrates, this reduction did not decrease but increased as a 

transient response to stress addition. Although the short-term effect of DIM on DOC 

rates during phase 3 may suggest a sensitivity of the biofilm to this stress, it was 

difficult to explain this time effect. The significant treatment effect on DOC was 

probably mainly due to this rapid response in phase 3. Since no major change occurred 

between treatments in the other phases, it was concluded that the invertebrates and 

biofilm interactions did not exert significant influences on the DOC reduction rates in 

the microcosms.  
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III.3.1 Abstract  

Alluvial wetlands provide an important regulating service, the water purification, 

through the removal of excess nutrients. In those habitats, nitrogen removal by the 

denitrifying bacterial community is hypothesized to interact with the co-existing 

invertebrate communities. Yet, few studies reported the infield relationship between 

invertebrate and microbial communities, where biotic and abiotic interactions are 

complex. We aimed at exploring the relationship between the invertebrate diversity and 

microbial denitrification process involved in the water purification service in an 

alluvial wetland. Subterranean water samplings were seasonally collected from April 

2013 to March 2014. Eleven hyporheic habitats were accessed through piezometers 

dispersed over a meander located in the alluvial plain of the Garonne River (Southwest 

of France). Physicochemical, hydraulic characteristics, bacterial and invertebrate 

communities were simultaneously investigated as related factors for potential 

denitrification rates. Significant spatial gradients of invertebrate diversity, potential 

denitrification rates, the concentrations of dissolved oxygen, dissolved organic carbon, 

ammonium and nitrate ions and conductivity were observed in the groundwater of the 

Monbequi meander. The autumn campaign (9th October), which was performed after a 

long period of hydrological stability and low discharge, showed that invertebrate 

diversity was significantly correlated with potential denitrification rates. An overall 

significant and positive correlation between invertebrate and bacterial communities’ 

compositions was found over the four seasons. When each season was considered 

independently, this correlation was only significant during the autumn campaign. Such 

observations suggested the positive cross-communities’ interactions that probably 

existed between the invertebrate diversity-bacterial communities’ composition and 

their activity of denitrification. The autumn campaign was suggested to be regarded as 

a potential “hot moment” to observe this biodiversity/function correlation, when 

biological influences on water purification processes were probably not concealed by 

stronger influences of physical factors. Furthermore, this study suggested that optimal 
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potential nitrate removal was supported by a combination of biotic and abiotic 

conditions: relatively low temperature, oxygen and nitrate concentrations, diverse 

invertebrate fauna, relatively high dissolved organic carbon and ammonium 

concentrations. 

III.3.2 Introduction  

The rapid growth of human populations and associated environmental changes 

inevitably affect and cause the rapid decline of biodiversity of terrestrial, marine and 

freshwater ecosystems. As a result, such biodiversity loss may impair ecosystem 

function and the delivery of ecosystem services for humanity (Millennium Ecosystem 

Assessment (MA), 2005; Hooper et al., 2005; Worm et al., 2006; Cardinale et al., 2012). 

Ecosystem services are the conditions and processes by which natural ecosystems and 

their species sustain and fulfill human needs (Daily, 1997). The relationship between 

these services and biodiversity thus received a growing interest (Kremen, 2005; 

Science for Environment Policy, 2015), in order to bridge the gap between ecological 

studies and managers and decision-makers (Griebler et al., 2014). Indeed, such 

knowledge is crucial, not only for effective conservation of biodiversity and related 

ecosystem services, but also for improvements of integrative and sustainable 

management of ecosystems. 

Several models and hypotheses were proposed to explore the relationship between 

biodiversity and ecosystem functions (BEF) and services, including null hypothesis 

(weak support by Giller and O’Donovan, 2002), linear relationship (Tilman, 1997), 

idiosyncratic model (Lawton, 1994), “rivet” hypothesis (Ehrlich and Ehrlich, 1981), 

redundant species and “insurance” relationship (Loreau et al., 2001). Two classic 

examples are: (i) different pollination service of wild and managed bees servicing 

different crops (Kremen et al., 2002); (ii) a distinct positive correlation between the 

number of plant species and various ecosystem functions (e.g. decomposition and 

primary production) in a long-term grassland experiment (Tilman et al., 2001). Most 

foci were given to terrestrial ecosystem services and the biodiversity that directly 
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provided these services. However, few assessments of biodiversity and aquatic 

ecosystem service relationships were reported (Lecerf and Richardson, 2010). They 

quantified that field surveys accounts for only 9 out of 45 BEF relationships in streams. 

On the other hand, most BEF studies in streams were based on experimental 

manipulations, especially on laboratory microcosms. The implication of 

environ-mental factors is unavoidable when moving from closed (laboratory 

experiments) to open systems (in situ experiments and field sur-vey), consequently 

increasing the difficulty to observe the BEF relationships. Furthermore, BEF 

relationship observations from field survey are rare especially from groundwater and 

concerning quantitative approaches of invertebrates and water purification capacity 

(Boulton et al., 2008). 

Water purification is an important natural regulating service (MA, 2005) that 

implies several biogeochemical processes in riverine systems. In agriculturally 

dominated watersheds, this natural purification service significantly contributes to 

attenuate the emission of diffuse nitrate loadings caused by fertilizers application and 

others non-point sources (Arrate et al., 1997; Sánchez-Pérez et al., 2003; Mander et al., 

2005; Lewandowski and Nützmann, 2010; Jégo et al., 2012). Many studies have 

examined nutrient dynamics in the natural water, with particular focus on nitrogen, 

because the increasing nitrogen contamination attracts attention, especially in 

groundwater (Peyrard et al., 2011; Bernard-Jannin et al., 2016). As they support 

important agricultural activities, groundwater of alluvial plains often suffers from 

nitrate pollution (Sánchez-Pérez et al., 2003; Liu et al., 2005; Almasri and 

Kaluarachchi, 2007). In the nitrogen dynamic, one hot issue is the nitrate removal. 

Several studies show that the hyporheic zone contributes to nitrogen retention and/or 

transformation. The land water continuum supports the purification of water by its 

ability to eliminate nitrates during their infiltration through the vegetation-soil system 

to groundwater, but also through diffusion from groundwater to surface water 

(Sánchez-Pérez et al., 1991a, 1991b; Takatert et al., 1999). Allu-vial wetlands play a 

key role in water quality regulation through the synergy in river–groundwater 

exchanges, living biota and bio-geochemical processes. As surface water contains rich 
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oxygen and organic matter and groundwater contains abundant nutriment elements, the 

mixed water between those two systems (the hyporheic zone) has a significant impact 

on water quality and biogeochemistry cycling (Sánchez-Pérez and Trémolières, 2003; 

Vervier et al., 2009; Marmonier et al., 2012).  

In the hyporheic zone of riverine systems, the major pathways that occur in the 

nitrate dynamic include denitrification, anaerobic ammonium oxidation (ANAMMOX), 

dissimilatory nitrate reduction to ammonium and microbial immobilization (Burt et al., 

1999; Hinkle et al., 2001; Rivett et al., 2008; Peyrard et al., 2011; Ligi et al., 2014). In 

the hyporheic medium of a river meander, the denitrification process can permanently 

remove nitrate from natural interstitial water (Bernard-Jannin et al., 2016). Regarded as 

one important pathway for nitrate removal, thus the denitrification can be used as a 

proxy for the water purification service. 

This microbial denitrification activity is being controlled not only by bottom up 

(e.g. nutrients, and temperature), but also by top-down (predation) factors. Previous 

studies revealed that invertebrates act as important mediators between nitrogen-cycle 

microbes and dissolved inorganic nitrogen (Ostroumov, 2011; Stief, 2013). These cross 

communities’ interactions work via grazing and gardening effects on the biofilm and 

associated microbes, thus contributing significantly to nitrogen cycling and removal 

(Marshall and Hall, 2004; Bonaglia et al., 2014; Liu et al., 2014). However, nearly all of 

these BEF studies have been synthetic, species-poor experiments, and subject to 

prompting criticism for missing direct relevance to natural ecosystems that are more 

complex, species-rich and open (Loreau et al., 2001; Ostfield and LoGiudice, 2003; 

Boulton et al., 2008). Very few studies showing the indirect contribution of invertebrate 

diversity on microbial denitrification activity are observed in fields, particularly in the 

hyporheic groundwater of alluvial wetlands in river floodplains. 

As the major nitrate attenuation process in groundwater of alluvial wetland, 

denitrification is not only influenced by biological effects as mentioned above (Iribar et 

al., 2008, 2015), but also by hydrological and physicochemical conditions (Jones and 

Holmes, 1996; Sánchez-Pérez and Trémolières, 1997, 2003; Sánchez-Pérez et al., 2003; 

Weng et al., 2003). These abiotic influences include potential direct controls by nitrate 
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availability (Martin and Mulholland, 2001; Kemp and Dodds, 2002), organic carbon 

supply (Lewandowski and Nützmann, 2010; Peyrard et al., 2011), dissolved oxygen 

concentration (Kemp and Dodds, 2002) as well as potential indirect controls by water 

temperature (Pattinson et al., 1998) and surface land use (Kemp and Dodds, 2009; 

Jahangir et al., 2010; Hoffmann et al., 2014). Hydrological regime with floods and 

droughts events is an important factor shaping the physical environment as well as 

biotic assemblages, especially in the hyporheic zones of alluvial wetlands. Hydrologic 

factors influence fine sediment charges (Wondzell and Swanson, 1999), and also 

control sediment permeability and residence time of water (Valett et al., 1996; Olsen 

and Townsend, 2005). These environmental variations and their complex interactions 

with biotic factors may obscure the links between biodiversity and denitrification in the 

natural ecosystem. 

The aim of this study was to explore the relationship between invertebrate 

diversity and denitrification in an alluvial wetland, where groundwater is connected to 

the river and subjected to nitrate pollution coming from agricultural land. We 

hypothesized that, if a positive relationship between invertebrate diversity and 

microbial denitrification function exists, this positive interaction may be explained by 

the positive cross-community effects between invertebrate and microbial communities’ 

compositions. So, the general temporal and spatial patterns of these alluvial wetland 

characteristics were firstly described, then the relationship between invertebrate 

diversity and potential denitrification activity in field conditions was tested. The results 

of this test were explained with the exploration of the relationship between invertebrate 

diversity and the microbial community composition. Finally, the biotic and abiotic 

factors which control the microbial denitrification activity were investigated. 

III.3.3 Materials and methods  

III.3.3.1 Study site and sampling strategy  

The study site is a riparian zone of 50 ha located within a mean-der of the Garonne 
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river close to the village of Monbequi, 50 km north of Toulouse city in the Southwest of 

France (43°53’30’’N; 1°12’25’’E) (Figure III.3-1). Water level and water discharge 

were recorded by a gauging station, located 2 km upstream of the study site, at 

Verdun-sur-Garonne. Mean annual water flow rate was 200 m3.s-1, varying from m3.s-1 

in late summer to 4000 m3.s-1 during the largest floods. Discharge peaks usually occur 

twice a year, during the spring due to snowmelt in the Pyrenees Mountains and in late 

autumn or early winter following rainfall events. The low water period generally lasts 

from August until October. Mean annual precipitation in the region is 660 mm. 

Agriculture is the dominant land use in the studied area. A small area of riparian forest, 

mainly composed of willows (Salix alba) and ash trees (Fraxinus excelsior), is located 

close to the river and separated from the agricultural fields by poplar (Populus alba) 

plantations (Figure III.3-1). The flood plain is heavily cultivated (maize, sunflowers, 

sorghum, etc.), leading to major nitrate influx into the groundwater. High 

concentrations of NO3
--N around 100 mg L-1 were reported in this groundwater 

(Sánchez-Pérez et al., 2003). The alluvial aquifer is composed of 4 to 7 m of 

non-calcareous quaternary sand and gravel deposits, overlying impermeable molassic 

bedrock (Lancaster, 2005). The aquifer is characterized by an average hydraulic 

conductivity of 0.1 to 0.5 m day-1 and a porosity of 0.30 (Peyrard et al., 2008). 

Ground-water flow velocities over the studied period ranged from 0.1 to 0.5 m day−1 

(Bernard-Jannin et al., 2016). Previous hydrodynamic modeling studies have shown 

that the groundwater was strongly connected to the river (Weng et al., 2003; Peyrard et 

al., 2008) and these main connectivities defined a potential active zone along the 

riparian zone. Water exchanges between the aquifer and the Garonne river are largely 

influenced by the river discharge (Sun et al., 2016). 
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Figure III.3-1 (a) Study area at Monbequi meander of the Garonne River floodplain, near Toulouse, 

France. The sampling sites of rivers and piezometers are labeled with their land-use type (see details in 

the text). The blue arrow indicates the flow direction of the river; (b) box plots (boxes represent the 

interquartile range, median values are indicated by the black lines, whiskers show the 10th and 90th 

percentiles, and individual outliers are shown as circles) indicate the water depth during this sampling 

period and across different land uses. Water depth is the distance from soil surface to groundwater level 

recorded in the piezometers  

Sediments, water, and invertebrates were sampled each four seasons from April 

2013 to March 2014, making up 4 campaigns each having different flow conditions 

(Fig III.3-2). All these samples were collected in a network of 11 piezometers (51 mm 

internal diameter with slots of 1 mm along the whole tube length) distributed over the 
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study site and two sampling points in the river (Figure III.3-1). These piezometers were 

inserted until reaching an impermeable substratum (3 - 8.4 m depth). Among the 11 

piezometers, 3 are located in agricultural lands (PI, P22 and P26) with an average water 

depth of 2.7 m; 6 in a poplar plantation (P3, P10, P11 P17,P18 and PE, the intermediate 

group; mean water depth of 3.6 m),located between the river and the agricultural zone, 

not belonging to the riparian areas; and 2 in the riparian zone (P6 and P13) with the 

lowest mean water depth (1.6 m).When the sampling was performed during the 

recession (like in the 4th campaign) the influence of the flood was still observed in the 

samples since it takes few days after the free water peak flow to have the same water 

bodies (or rather similar) flowing through the meander in the hyporheic water. 

 
Figure III.3-2 Daily discharge of Garonne River, recorded at 2 km upstream the study site with arrows 

indicating the different dates of sediment, water and invertebrates collection during the 4 seasonal 

campaigns from April 2013 to March 2014 

III.3.4.2 Invertebrate assemblage 

After groundwater level was recorded with a piezometric sensor, invertebrate 

communities were sampled in piezometers by pumping water according to the Bou–

Rouch method (Bou andRouch, 1967; Bou, 1974; Boulton et al., 2004) with a manual 

gar-den pump. The invertebrate samples were collected by pumping water from the 

bottom of the piezometers. This strategy allowed the collection of hyporheic ground 
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water and sediments samples that integrated the whole water depth covered by the 

piezometer. Invertebrates found in these samples were entering within the piezometer 

from the whole aquifer depth, which varied from 0.9 to 5.9 m depending on the seasons 

and the piezometers. For the river sampling sites, a Bou–Rouch pipe, fitted at the 

extremity with a perforated metal pipe with 9 holes of 10-mm diameter, was installed at 

around 35 cm deep in the sediments. At each sampling point (piezometer and river), 50 

L of water were pumped into a bucket through two successive nets with mesh sizes of 

250 µm and 50 µm for macrofauna and meiofauna collection, respectively. After 

collection, the invertebrates were kept in 70% alcohol at 4°C. Individuals within each 

taxon were then counted, with 1 individual as the minimum level for identification in 

the community. Most of the identifications were either obtained at family level (Tachet 

et al., 2002), except for Ostracods (Class level), Copepods (Subclass level), Amphipods, 

Isopods (order level), Oligochaetes (Class level) and Nematodes (Phylum level). The 

density of invertebrate organisms was calculated as the total number of individuals 

grouping macrofauna and meiofauna for each taxon per 50 L of water in each 

piezometer. 

III.3.3.3 Water and sediment sampling and physicochemical 

measurements 

After the collection of invertebrates, water was pumped with a thermal motor 

pump and the physicochemical parameters were directly measured in the water after 5 

min of the pumping to ensure that water chemistry was stable. Dissolved oxygen (DO), 

temperature (T), pH and electrical conductivity (EC) were measured using a portable 

meter (WTW Multi 3420) and specific probes. After measuring these parameters water 

samples were filtered through 0.45 µm cellulose acetate membrane filters and collected 

in PEHD bottles. Nitrate (NO3
-) and chloride (Cl-) were analysed by ion 

chromatography using a DIONEX system. Alkalinity (unfiltered water), ammonium 

ion (NH4
+), phosphate ion (PO4

3-), and Silica (SiO2) analyses were performed using 

standard methods. Water samples collected for dissolved organic carbon (DOC) were 
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filtered using rinsed 0.45 µm cellulose acetate membrane filters, stored in carbon free 

glass tubes, acidified with HCl and analysed using a platinum catalyzer at 650 °C 

(Shimadzu, Model TOC 5000). Finally, sediments were sampled by increasing 

pumping velocity during 5 to 10 min with the water flowing in a 50-L tank where 

sediments (mainly sand) settled before being collected together with100 mL of water in 

sealed sterile bags. In the river, physicochemical measurements (O2, T, pH and EC) and 

water were sampled directly from the stream. Sediments were collected manually using 

sterile gloves in the riverbed. All the samples were stored at 4 °C immediately after 

collection. For molecular microbiology analysis (DNA analysis), each sediment sample 

was sub-sampled (>50 mL in a sterile container), immediately frozen and stored at 

−80 °C until analysis. 

III.3.3.4 Potential denitrification: Denitrification Enzyme Assay 

(DEA) 

DEA assessments took place in the laboratory as soon as possible after sampling. 

Each sediment sample was treated as triplicate. Briefly, 25 mL of wet sediment and 50 

mL of deoxygenated milliQ water containing KNO3
- and sodium acetate in order to 

provide 100 mg N L-1 and 50 mg C L-1 final concentrations, respectively, were 

introduced in a gas tight 150 mL serum bottle. After complete deoxygenation (N2 

sparging), inhibition of N2O reductases was achieved by a 15 mL injection of C2H2. 

Incubations were per-formed in the dark at 14 °C (average temperature of the water in 

the aquifer). Care was taken to stay at atmospheric pressure in the serum bottles during 

the incubation (removal of gas phase before C2H2 addition and addition of N2to 

compensated samples). Gas samples from the gas phase of the serum bottle were taken 

after vigorous shaking, 30 min and 6h30 after C2H2 injection. N2O was proportioned by 

injection in a Varian CP 3800 gas chromatography fitted with an electron capture 

detector. Calculations were performed with N2O solubility coefficients from Weiss and 

Price (1980). After incubation, each sediment was dried (105 °C,24 h) and combusted 

(550 °C, 4 h) for assessment of the ash free dry mass or organic matter (OM). DEA 
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results were expressed in µg N-N2O h-1 g-1 of OM by averaging the rates of N2O 

production of the triplicates. The rate of N2O production (DEA), i.e. the maximum rate 

of denitrification that can take place when C and N are freely available, may be 

considered as a proxy for the maximum in situ rate of bacterial denitrification. 

III.3.3.5 Bacterial community structure 

DNA extraction 

Before the DNA extraction, the soil was gently centrifuged (3000 rpm for 5 min) 

to remove water phase. The power Soil DNA kit (MoBio Laboratories, Ozyme, St 

Quentin en Yvelines, France) was used to obtain metagenomic DNA following the 

manufacturer’s recommendations. DNA was eluted in 50 μL water and stored at -20°C 

until use. 

T-RFLP analysis 

The Bacteria universal primers 357F (5’-CCTACGGGAGGCAGCAG-3’) (Teske 

et al., 1996) and 926R (5’-CCGTCAATTCMTTTRAGT-3’) (Lane, 1991) were used to 

amplify the 16S rRNA gene. Forward primer was labelled at the 5’ end with 

carboxyfluorescein (FAM). The PCR conditions were initial denaturation (98°C for 30 

sec) followed by 30 cycles of denaturation (98°C for 10 sec), annealing (58°C for 30 s), 

and extension (72°C for 30 s) and a terminal extension at 72°C for 10 min. The reaction 

mixture contained 200 mM of dNTP, 0.5 µM of each primer, 0.25 µL of the Q5 

High-Fidelity Taq polymerase (New England Biolabs, Evry, France), 2.5 µL of 10X 

buffer and 1 µL of DNA template. Sterile distilled water was added to obtain a final 

volume of 25 µL. PCR products were visualized by agarose gel electrophoresis and 

purified with the PCR purification kit (GE Healthcare, Velizy-Villacoublay, France). 

The purified 16S rRNA amplified fragments (100 ng per sample) were digested by 3 U 

restriction enzymes (New England Biolabs) AluI at 37°C in a final volume of 10 μL for 

3 h. The digested products (1 μL) were mixed with 8.75 μL of deionized formamide and 
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0.25 μL of the Genescan ROX 500 size standard (Applied Biosystems). Fluorescently 

labelled fragments were separated and detected with ABI PRISM 3130xl Genetic 

Analyser (Applied Biosystems). Data were processed using GENEMAPPER software 

(version 1.4, Applied Biosystems) to produce raw T-RFLP profiles. These profiles 

were normalized and analysed using the online software T-REX to produce the final 

T-RF data matrix (Culman et al., 2009). Only terminal fragments whose size ranged 

from 35 bp to 500 bp and whose height was greater than 30 fluorescence units were 

considered for analysis (Volant et al., 2014). Lowest number of OTUs per sample was 3, 

except one sample in winter was 2. 

III.3.3.6 Bioindication and statistical analysis 

Bioindication  

Invertebrates 

Taxonomic Shannon index (Hinvertebrate) (Shannon and Weaver, 1949) takes into 

account both abundance and evenness of species present and it is the widespread metric 

used to assess environmental impacts on ecosystems (Gallardo et al., 2011). Hinvertebrate 

was used to quantify the diversity of invertebrates’ communities at each sampling 

location based on the density of invertebrate organisms of each taxon.  

Bacteria 

Bacterial richness corresponded to the number of T-RF (corresponding to peaks in 

the T-RFLP pattern and defined hereafter as OTU, Operational Taxonomic Unit) per 

sample. Presence–absence data were used in our analyses because abundance data for 

bacteria were not as accurate as the data for invertebrates (Wang et al., 2012).  

Datasets and statistical analysis 

Data sets of 11 piezometers sampled during 4 campaigns were used in this study 

(n=44 measurements for all the variables, except potential denitrification rates only 
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with 42 replicates). The measurements at the river sites were only performed as 

references in the spatial patterns.  

To compare values of the biotic (Hinvertebrate, potential denitrification rates, bacterial 

richness) and abiotic variables (temperature, NH4
+-N, DOC, O2

-, and NO3
--N and 

concentrations) between the 4 seasons and the spatial groups (according to surface land 

use, see Figure III.3-1), one-way ANOVA with Tukey’s HSD post hoc test or 

Kruskal-Wallis non-parametric (when data did not satisfy the normality and 

homoscedasticity assumptions) were performed. All these analyses were conducted 

with an error level of 0.05.  

Simple linear models were built to examine the relationship between the potential 

denitrification rate and Hinvertebrate across all the piezometers of the four campaigns 

respectively. Potential denitrification rate (Table III.3-2) was previously log10 (X+1) 

transformed.  

The relationship between invertebrate and bacterial communities compositions 

was examined using the Mantel (1967). The invertebrate communities were described 

as a matrix of taxonomic densities (30 taxa × 44 samples in piezometers of 4 

campaigns). The bacterial matrix provided comparable information level to the matrix 

of invertebrate community (115 t-RF × 44 samples in piezometers of 4 campaigns). 

Before running the correlation test, two distance matrices were calculated using 

Bray-Curtis method for invertebrate density matrix and bacterial OTUs matrix, 

respectively. Then Mantel tests were then performed with Spearman method to test the 

rank correlation between invertebrate and bacterial communities (1000 permutations). 

In order to estimate the affinity of invertebrate and bacterial communities for each 

campaign separately, the same method was used with the invertebrate dataset (30 taxa × 

11 samples in piezometers of one campaign) and the bacterial dataset (115 t-RF × 11 

samples in piezometers of one campaign). 

Finally, to study the environmental factors influences on potential denitrification 

rate, ten variables (listed in Table III.3-2) were considered as independent variables to 

identify their own effects to potential denitrification rates (dependent variable). Partial 

least squares (PLS) regression analysis was carried out (Leeuw, 2009) to deal with the 
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possible multicollinearity among the independent variables in this study (Carrascal et 

al., 2009). A PLS regression is a linear regression of one or more response variables 

onto a number of components called latent variables, which are linear combinations of 

the factors. Leave-one-out (LOO) cross-validation was performed to determine the 

number of components (latent variables) and Quenouille-Tukey jackknife was then 

used to estimate regression coefficients of variance and significant test for the 

regression parameters (Efron and Stein, 1982).  

We used “vegan” (Oksanen et al., 2013),“pls” (Leeuw, 2009) packages in R 

software (R Development Core Team, 2013) and Graph prism for all statistical analysis. 

III.3.4 Results and discussion 

III.3.4.1 Spatial and temporal distribution of biodiversity, potential 

denitrification and environmental characteristics 

Characteristics of main variables 

Variations in water depth (0.63–5.62 m), electrical conductivity (337–1331 

µS.cm-1) and SiO2 (6.1–23 mg.L-1) and O2
- (0.08–8.25 mg.L-1) were measured during 

the four campaigns and in all the piezometers (n=44). Water temperature (11.0–17.4°C) 

and pH (6.74–7.79) varied gently during sampling periods. In terms of solutes 

concentrations, NO3
--N (0.37–31.5 mg.L-1) and DOC (0.14–4.87 mg.L-1) spanned 

wider ranges than NH4
+-N (<0.01–0.94 mg.L-1 that included high values especially 

found in P6 only) and PO4
3--P (0.01–0.05 mg.L-1). Among the piezometers, potential 

denitrification rates ranged from 0.08 (P26 in summer) to 35.6 µg N2O-N h-1.g OM-1 

(P6 in spring), with an average of 4.34 ± 1.10 (Mean ± Standard Error (SE) , n=42). 

Thirty invertebrate taxonomic groups were identified in the piezometers. Crustaceans, 

particularly Copepods, dominated the invertebrate community and contributed for 74% 

(Copepods) of the total invertebrate abundance (ranging from 17 to 1443 individuals 

per 50 L water in each piezometer), followed by Ostracods (14%) and Amphipods (5%). 
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Others (12%) included Oligochaetes, Nematodes, Hydracariens, Bithyniidae, 

Tardigrades, Planorbidae and insect larvae. The dominant functional group was deposit 

feeders (69%), followed by predators (22%), shredders (8%) and filter feeders (1%). 

Scrapers, piercers, absorbers were poorly observed. A total of 115 bacterial OTUs were 

identified, with the number of OTUs per sample ranging from 2 to 30: the average value 

was 12.3 ± 0.9 OTUs per sample.  

Temporal patterns 

Generally, the four campaigns did not show many physicochemical differences 

with time over the four seasons except for temperature, NH4
+ -N and DOC 

concentrations (Fig III.3-3). The highest values of temperatures in autumn (average of 

15.4°C), while the lowest values were observed in spring, with average temperature of 

12.5°C (ANOVA; n=44; F=24.1, p<0.001). DOC concentrations were significantly 

higher in summer than those in autumn and in winter (Kruskal-Wallis; n=44; χ2=21.4, 

p<0.001). N-NH4
+ concentrations were significantly higher in autumn than those in 

winter (Kruskal-Wallis; n=44; χ2=9.9, p=0.02). Diversity of invertebrates and 

denitrification rates in this meander were not significantly different according to 

seasons (p>0.5). 
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Figure III.3-3. Box plots of biotic and abiotic parameters across 4 seasons in the piezometers. Boxes 

represent the interquartile range, median values are indicated by the black lines, whiskers show the 10th 

and 90th percentiles, and individual outliers are shown as circles. The tests of temporal variability on 

these 9 parameters over the year corresponding to F values (ANOVA) or chi-square values (Kruskal–

Wallis) with significance level (* p < 0.05; ** p < 0.01; *** p < 0.001) are given on the top right corner of 

each plot. 

Temporal changes in the hyporheic zone were mainly attributed to weather and 

hydrological variations (Boulton et al., 1998). Temperature varies seasonally in the 

hyporheic zone. The second main driver for temporal changes in this alluvial wetland 

may be hydrological events but these events might happen independently from seasons. 

The significantly higher concentrations of DOC observed in summer in the 

macro-porous sediments could be induced by the two flood peaks in June (2520 m3.s-1 

and 1700 m3.s-1). The others abiotic factors slightly varied according to seasons. These 

minor variations may be explained by relative stable environmental conditions in 
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alluvial groundwater compared with those in rivers. Indeed, groundwater conditions 

show longer water residence times, laminar flow, permanent darkness, and little 

changes in sediment bed structure (Boulton et al., 1998). In addition, bio-diversity in 

the aquifer is probably less disturbed by extreme events than that in the river, where the 

biodiversity is under fluvial dynamism pressure and directly affected by hydrology 

(Brunke and Gonser, 1997). The hyporheic zone may act as a refuge for invertebrates, 

sheltering the latter during adverse conditions (Wood and Boulton, 2010; Stubbington, 

2012). The organisms may develop more constant feeding strategies (i.e. deposit 

feeders in this meander) over the year and over the different taxonomic groups of 

species in the communities. The stability of the hyporheic zone sustained the refuge 

strategy for bacterial community and supportsits (OTUs) compositions (Febria et al., 

2012). The relative constant bacterial richness with time in the present study may 

coincide with Febria et al. (2012)’s results. Yet, it should be noted that in this study, the 

similarity of bacterial richness over the time was generated by the same OTUs numbers 

estimated at different seasons by pooling all piezometers together. However, this 

richness similarity did not include any information on the occurrence of common OTUs 

between different seasons in the groundwater of Monbequi meander. 

Spatial patterns  

Spatial differences of the focusing variables were investigated for the different 

land-use groups (agricultural, intermediate and riparian), seen in Figure III.3-4 with 

river sites as references and excluded in statistical tests about the spatial patterns. The 

spatial differences were more obvious in the meander than temporal differences. A 

gradual increase was found in Hinvertebrate along the spatial gradient (ANOVA; n=44; 

F=9.0, P<0.001), with the lowest values in agriculture group (Hinvertebrate = 0.6) and 

highest values in riparian group (Hinvertebrate =1.2). Similarly, the potential denitrification 

rates were significantly higher in the riparian piezometers group and presented a clear 

gradient along the three groups (ANOVA; n=42; F=18, P<0.001). O2 and NO3
--N 

concentrations were highest in the agriculture group (Kruskal-Wallis; n=44; χ2=14.0, 
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p<0.001; F=9.2, p<0.001, respectively). In contrast, DOC and N-NH4
+ concentrations 

were significantly higher in the riparian group than those in the agriculture group 

(Kruskal-Wallis; n=44; χ2=9.9, p=0.001; χ2=8.5, p=0.01, respectively). The values of 

conductivity were the lowest in intermediate group (ANOVA; F=5.3, p<0.01). Small 

increases in bacterial richness were observed from agriculture group to intermediate 

and riparian groups but were not significant (ANOVA; p>0.1). Temperature values 

were significantly lower in the riparian group than those in the intermediate group 

(ANOVA; F = 3.4, p = 0.05), yet the range of temperature variability was relatively 

smaller than that in the river. 

 

 

 

 

 

 

 

 

 

 

Figure III.3-4. Box plots of biotic and abiotic variables across different land use (with river group as a 

reference). Whiskers boxes building rules are the same as for Figure III.3-3. The tests of spatial 

variability of these 9 parameters over the year corresponding with F values (ANOVA) and chi-square 

values (Kruskal-Wallis) and significance level *: p<0.05; **: p<0.01; *** p<0.001) are given in the top 

right corner of each plot. 
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This spatial organization following land uses has been related to the processes 

concerning the hydrological connectivity and bio-geochemical activity in this meander 

during the present field study (Bernard-Jannin et al., 2016). 

The riparian group (P6 and P13) located downstream in the meander was covered 

with alluvial forest (Figure III.3-1); it had higher concentrations of NH4
+- N, lower O2 

concentrations, diverse fauna and higher potential denitrifications in the hyporheic 

water. These observations can be attributed to 3 reasons (i) a horizontal shifting mosaic 

of aquatic and terrestrial patches, generating alter-native aerobic/anaerobic conditions; 

(ii) abundant local resources, particularly carbon; (iii) no direct vertical pressure of 

agriculture, and hence less perturbed biogeochemical processes (Marshall and Hall, 

2004; Arscott et al., 2005). The groundwater below the riparian area could be 

considered as hot spots of microbial denitrification (Pusch et al., 1998; Iribar et al., 

2015). Riparian vegetation is known to favor the infiltration of DOC from degraded 

particulate organic matter, like woody debris, leaves and partially decomposed plant 

parts in the soil (Hill et al., 2004; Gurwick et al., 2008; Dosskeyet al., 2010). At this 

riparian group, more abundant food sources like DOC in this groundwater from both 

riparian soils and river water increased microbial denitrifying activity (Cannavo et al., 

2004; Peyrard et al., 2008; Zarnetske et al., 2011) and invertebrate diversity (Bonada et 

al., 2007; Masciopinto et al., 2007). Thus the more intense metabolic activities may 

explain the relative low O2 concentrations. 

At the intermediate group, a lower potential microbial denitrification activity was 

observed comparing to the riparian zone, which was probably due to the lower 

availability of soil organic carbon provided by the poplar plantation. Moreover, the 

deeper water depth (longer distance from soil to groundwater level) in the intermediate 

group could hinder the transfer of its available organic carbon content, unlike that in the 

riparian area, where a shorter water depth increased the availability of organic carbon 

contained in the topsoil layer (Sánchez-Pérez et al., 2003; Bernard-Jannin et al., 2016). 

The agriculture group was characterized by the highest NO3
- -N contaminations, 

and the lowest carbon sources and hydrological connectivity to river water. 

Hydrological connectivity has been reported to be involved in patterns and processes 
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across the alluvial system, such as transportation of solutes and organisms, 

reorganization of habitats, productivity and biodiversity (Amoros and Bornette, 2002). 

The lack of available carbon source and hydrological connectivity may heavily restrict 

the microbial activity and probably do not favor invertebrate diversity, according to the 

observations, i.e. lowest denitrification and Hinvertebrate among these three different 

groups. 

III.3.4.2 Biodiversity–ecosystem function relationships 

Invertebrate diversity–potential denitrification rates relationship 

Potential denitrification rates showed positive relationships with Hinvertebrate index 

in all campaigns. However, a significant and positive biodiversity-function relationship 

was observed only in the autumn campaign (October 2013, n = 10, R2 = 0.59, p = 0.001, 

Figure III.3-5).  

 

Figure III.3-5 Linear regressions between denitrification rates and invertebrates’ Shannon index in four 

campaigns during 2013 and 2014. Dotted lines show 95% confidence band. 
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The potential denitrification rates may be considered as a proxy for the maximum 

in situ rates of bacterial denitrification that can take place when carbon and nitrate are 

freely available. These findings in Figure III.3-5 were established in the groundwater 

ecosystem under strong agriculture pressure, and hence, the invertebrate diversity at 

Monbequi was considered to be gradually impaired by agricultural pressures. 

Denitrification process in hyporheic zone is mainly provided by the microbial 

community of the heterotrophic biofilms (Storey and Dudley Williams, 2004; Boulton 

et al., 2010), which is composed of a complex assemblage of organisms (bacteria, fungi, 

heterotrophic protozoan) embedded in a mucous matrix of exopolymeric substances 

(Findlay and Sobczak, 2000; Lear and Dopheide, 2012). These biofilms are important 

food sources for invertebrates, especially in the hyporheic medium (Barlocher and 

Murdoch, 1989; Ward, 1994). 

The positive relationship between faunal diversity and potential denitrification 

rates in autumn campaign could be explained in four aspects according to literatures. (i) 

A strong nutrient removal capacity by bacteria improves water quality and supports a 

healthy invertebrate community through detoxification effect. (ii) The presence of 

resources, especially DOC, increases bacterial growth. That in turn serves as food for 

invertebrates and directly and indirectly fuels denitrification activity as well (fueling 

and feeding) (Mauclaire et al., 2000; Marmonier et al., 2012). (iii) The presence of 

benthic macrofauna stimulates microbial nutrient dynamics through different types of 

invertebrate–microbe interactions as previously described in literatures: ecosystem 

engineering, grazing, and symbiosis (Mermillod-Blondin et al., 2000, 2001, 2003; 

Mermillod-Blondin and Rosenberg, 2006; Stief, 2013). (iv) Finally, physicochemical 

parameters including pollutants act as confounding factors (Balvanera et al., 2006) to 

bacteria and invertebrate communities and their interactive activities. When 

considering these possible explanations, the link between invertebrate community and 

denitrification may exist in both ways. The two first aspects establish the link from 

biofilm biomass and its activity of denitrification toward the invertebrate diversity with 

biofilm effects on water quality improvement (i) or feeding (ii). Inversely a distinct link 

considers how the invertebrates influence the bacterial diversity and activity (iii) and in 
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that way invertebrates are considered as regulators of the ecosystem function. In (iv), 

two-way symmetric interactions are possible since the observed relations are resulting 

from an external factor. 

Previous laboratory experiments showed the evidences of aspect (iii) 

(Mermillod-Blondin et al., 2000, 2003). In the sediment of Monbequi meander, deposit 

feeders as the dominant functional invertebrate group (mainly represented by Copepods 

and Amphipods), grazed particle-attached microbes and ingested detritus particles. In 

this way, bacterivorous macrofauna species may promote the regrowth of sediment 

bacteria, by the removal of the decaying parts of the biofilm. In addition, the 

ground-water invertebrates, especially larger ones such as Amphipods, Isopods and 

Syncarids in this study, can help to prevent clogging up the hyporheic flow paths via 

biofilm grazing and galleries digging (Song et al., 2007). Hence, the resources 

entrained by the water flow through the galleries in the hyporheic zone favor the fueling 

of bacteria. In the meantime, the biologically maintained porosity may also help to 

generate and sustain the interstitial environmental gradients, including alternative 

aerobic and anaerobic micro environmental conditions. Stief (2013) mentioned that 

ecosystem engineering by sediment-burrowing macrofauna stimulated benthic 

nitrification and denitrification, which together allowed nitrogen removal. Although 

these explanations are obviously in relation to above aspect (iii), it was emphasized that 

the three others explanations given previously to explain cross communities’ 

interactions were still probable. However, even if higher invertebrate diversity was 

associated to increased ecosystem functions, the present results did not support one 

direction of the relationship. It was likely that all links existed in the same ecosystem 

providing possible feedback loops of interactions between microbial activity and 

invertebrate diversity. 

Invertebrate and bacterial communities’ compositions relationship 

A significantly positive correlation between invertebrate and bacterial 

communities’ compositions was observed over the 4 campaigns when they were 
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considered altogether (Table III.3-1, rho = 0.20, p = 0.01). Considering each season 

separately, only the autumn campaign showed a significant correlation (rho = 0.40, p = 

0.05). 

Table III.3-1 Results of run with mantel tests of invertebrates and bacterial communities’ compositions 

in four campaigns and each campaign, respectively: rank correlation coefficients (rho) and related 

p-values 

Time of the related dataset (the number 
of samples in piezometer × campaign) 

Four 
campaigns 

(44) 

Spring 

 

(11) 

Summer 

 

(11) 

Autumn 

 

(11) 

Winter 

 

(11) 

Correlation coefficient (rho) 
(invertebrates and bacterial 
communities’ compositions) 
p-value 

0.20   

0.01 

0.06  

0.31 

0.18  

0.14 

0.40  

0.05 

0.30  

0.13 

Table III.3-1confirmed that invertebrate diversity was positively related to the 

interstitial biofilm with an additional relation on the bacterial community composition. 

This relationship suggested that some invertebrate-microbe interactions were able to 

influence the microbial richness and these interactions may act in synergy to favor 

microbial nutrient dynamic. This type of invertebrate influence was recognized as the 

so-called gardening effect on biofilm. Invertebrate fecal pellets production was likely to 

seed the substrate with bacteria, since the transit of the sediment into to invertebrate gut 

can add symbiotic microbial and mucus to the sediment (Mermillod-Blondin et al., 

2000; Stief, 2013), an organic carbon source being easily consumed by microorganisms. 

Thus invertebrates grazing, seeding and fueling of the biofilms generate the “gardening” 

effect, which reinforced the role of invertebrate community in the microbial process of 

denitrification via the biofilm activation. 

Our results showed that only during the autumn campaign, both bacterial activity 

(potential denitrification) and microbial communities compositions were positively 

associated with invertebrate diversity. Particularly different from the other three 

campaigns, the autumn campaign was performed after a long period of hydrological 

stability and low discharge. This more stable environment may favor the biodiversity 
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development and hence facilitate the investigation of the biologically based 

relationships. The autumn campaign at Monbequi could be regarded as a “hot moment” 

to examine BEF relationships. Balvanera et al., (2006) proposed that local 

environmental or unrecognized experimental factors may cause variations of 

biodiversity effects on ecosystem functions and obscure their BEF relationships 

(Revsbech et al., 2005). Therefore, it is difficult to obtain evidence of diversity effects 

on environmental heterogeneity, and unpredictable biotic and abiotic fluctuations. This 

may explain the lack of evidence of biodiversity effects during winter, spring and 

summer in this study. It is emphasized that the focusing BEF relationships may also 

occur during the rest of the year, but it was concealed by the environmental variation 

effects on denitrification. Indeed, no significant relationships between invertebrate 

diversity and both microbial communities’ compositions and denitrification rates were 

observed in the other three campaigns of our study when physicochemical factors like 

hydrology are more effective. This point partly coincides with Storey and Dudley 

Williams’s study (2004) that found no relationships between hyporheic invertebrate 

densities and microbial abundances and activities. The physicochemical conditions and 

proximity of streambed surface where suggested as more important factors than the 

abundance of food at controlling invertebrate distributions. 

Long-term period of low discharge may also facilitate this BEF observation. Water 

discharge through alluvial wetlands largely determines residence time and hence the 

availability of reactants, which are two limiting factors of denitrification in 

groundwater (Behrendt and Opitz, 1999; Venterink et al., 2003). During long periods of 

low discharge, biodiversity and biological interactions probably got time to recover and 

settle, and influence the ecosystem function (Coe, 2001; Wood and Boulton, 2010). 

Hence, the biological effects may overweight hydrological effects in these special 

conditions, like during autumn in the present survey. This observation coincided with 

Mermillod-Blondin (2011) ’s proposition explaining that invertebrates can 

significantly modify water and particle fluxes under low interstitial flow, whereas 

hydrological processes overweigh the slight influence of these ecosystem engineers 

with higher interstitial flow. 
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Influence of environmental factors on potential denitrification rate 

To identify the relative influences of the biotic and abiotic factors on 

denitrification, Leave-One-Out (LOO) cross-validated predictions were run previously 

to the following PLS model. Then, the first component of the PLS regression accounts 

for 31% of the information content of 10 predictor variables and explained 65% of the 

variance in potential denitrification rate (Table III.3-2). Seven independent variables 

were identified to be significantly associated with potential denitrification rate. At the 

meander scale, the independent variables that most significantly explained 

denitrification rates were invertebrate diversity and DOC with positive contributions, 

and O2 and NO3
- concentrations with negative effects (p<0.01). Temperature seemed to 

have negative influences on denitrification with lower effects, meanwhile NH4
+ was 

moderately favoring denitrification (p<0.05). 

Table III.3-2 Results of a partial least square model (PLS) carried out with denitrification rates (response 

variables, n=42) and variables which characterize environmental biotic and abiotic factors (predictor 

variables). Correlation coefficients and significance level (*: p<0.05; **: p<0.01; ***: p<0.001) between 

the original variables and the first component are shown. The percentages of explained variability in 

predictors and response variable are given for the first component of PLS 

First component Response Y1 (R2 65%) 

Independent variables    Estimate P value 

O2 -0.23 <0.001 *** 

Hinvertebrates 0.17 <0.001 *** 

NO3
--N -0.2 <0.001 *** 

DOC 0.18 <0.01 ** 

NH4
+-N 0.16 <0.05 * 

Temperature -0.12 <0.05* 

SO4
2--S 0.01 >0.1 

PO4
3--P 0.09 >0.1 

Water depth -0.08 >0.1 

Bacterial richness 0.08 >0.1 

R2 for total independent 

factors 
     31%   
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The set of environmental conditions associated with high rates of potential 

denitrification can be identified according to Table.III.3-2. This set was a combination 

of biotic and abiotic conditions: diverse invertebrate fauna, relatively lower 

temperature, O2, NO3
-, and higher DOC and NH4

+ concentrations. This optimal 

combination is mainly occurring in the riparian zone of the meander, actually 

associated with the higher potential of denitrification. In this agriculture-dominated 

wetland, the denitrification process was not limited by NO3
- concentrations with an 

average concentration over the meander of 12 mg NO3
--N L-1. In this meander, NO3

- 

concentrations were significantly lower in the riparian and intermediate groups, where 

meanwhile higher denitrification rates were observed at these same places. The 

negative relationship between denitrification and NO3
- concentrations could then partly 

be explained as a consequence (instead of an environmental condition) of the 

denitrification that occurred in the hyporheic water of the meander.  

III.3.6 Conclusion 

This study was carried out in a specific hydro-biogeochemical context of the 

alluvial wetland groundwater. Our results suggested that microbial community activity 

(potential denitrification) and composition were both positively correlated with 

invertebrate diversity in this habitat. Also, this study allowed the identification of the 

conditions that drove to the potential “hot moment” for this relationship visibility. 

These observed conditions during autumn season, after a long hydrological period of 

stability, can provide a useful reference for next in field investigations of this BEF 

relationship. The expression of this relationship may be concealed by the influence of 

environmental variables during the other campaigns. Further in field studies are needed 

to confirm such links and should be extended to a broader range of ecosystems and 

properties. 

For policy-makers and managers, some interesting suggestions can be extracted 

from the light of these findings that might help to ensure the maintenance of this 

ecosystem function. First, the potential bio-indication of invertebrate biodiversity for 
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denitrification function in alluvial wetland should lead to long-term monitoring of 

invertebrate diversity in alluvial wetland to identify hot places for nitrate sink. Secondly, 

considering the key role of both invertebrate and microbial communities as ecosystem 

service providers for water purification (MA, 2005; Kremen, 2005), better conservation 

of this biodiversity should be a priority, although the direction of the cross-communities’ 

relation was not determined yet. Particularly, the groundwater invertebrate diversity per 

se does not benefit any legal protection or any special regulation status of conservation 

so far. The conservation projects of the alluvial plains should be planned to protect or 

restore the whole interstitial biodiversity as well as the alluvial wetland as supporting 

habitat for this biodiversity. Moreover, a clear spatial gradient of the main 

characteristics (main solute concentrations invertebrate diversity and denitrification 

rate) of this alluvial wetland was observed according to its land uses. The observed 

natural ranges of biotic and abiotic variations may be useful as references to be 

approached in order to favor the water purification service delivery in further project of 

natural wetlands restoration or newly constructed wetland aiming to improve water 

quality. Furthermore, this study outlined the importance of riparian zones and 

hydrological connectivity in alluvial wetlands as support of diversity, ecosystem 

function of infield nitrate removal and the related natural service. For managers, one 

suggestion could be to enlarge the surface of the riparian forest. It may facilitate the 

development of a healthy biodiversity and optimize the efficiency of the meander to 

reduce nitrate loads passing through. 
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III.3.7 Additional  

Pesticides in the hyporheic zone of the alluvial flood plain at 

Monbequi site 

Pesticides are heavily applied to the surface of agricultural soils of the floodplain 

surrounding the Mombequi site (cultivated with maize, sunflowers, sorghum, etc.). 

These spreading mainly occur during spring rather than summer and autumn. One part 

of the pesticide transfers to streams via runoff and this overland flow occurs during 

precipitation events (Field et al., 2003; Shipitalo and Owens, 2006). The other part 

infiltrates into the soil and reaches the hyporheic zone by flowing thought the 

floodplain groundwater (Vidon et al., 2010). Pesticides transport may vary from days to 

several weeks following applications. Herbicides were observed as the dominant type 

of pesticides in the water and sediment of the Garonne River in the reach that include 

Monbequi site (Devault et al., 2007, 2009b).  

Although several studies have demonstrated the buffering effect of the alluvial 

wetlands as ecotone that may reduce the nutrient inflow to the rivers (Pinay et al., 1995; 

Clément et al., 2002; Sabater et al., 2003; Shipitalo and Owens, 2006), the ability of the 

alluvial wetland to retain and degrade herbicides (Devault et al., 2009a; Sánchez-Pérez 

et al., 2013) needs further investigations.  

The Attenagua project simultaneously includes the measurements of pesticides 

concentrations, biodiversity and denitrification. It is of interest to investigate the 

temporal and spatial patterns of pesticides in this alluvial wetland, because occurrence 

of agricultural pesticides in natural water are reported to temporarily or permanently 

impair biodiversity and/or ecosystem functions (Lauridsen et al., 2006; Rasmussen et 

al., 2008; Di Lorenzo and Galassi, 2013; Peters et al., 2013; Lorente et al., 2015). 

Specifically, potential denitrification was reported to be inhibited by some pesticides in 

the water and sediments (e.g. thiram and captan fungicides) (Milenkovski et al., 2010). 

Thus, the analysis of pesticides may provide complementary information to understand 
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the relationship between biodiversity and the denitrification function in the meander of 

Monbequi, where significant loads of these pollutants occur in the interstitial water. 

III.3.7.1 Materials and methods  

Pesticide analysis 

700 mL of unfiltered water samples from each piezometer were collected and 

frozen at -20°C at the arrival to the laboratory. The Research Institute of Pesticides and 

Water (IUPA) of the University Jaume I (Castellón, Spain) undertook the analyses. Six 

pesticide molecules (Simazine, Atrazine, Terbumeton, Terbutylazine, Metalaxyl, 

Metolachlor) and their metabolites products (Deisopropylatrazine, Deethylatrazine, 

Desethyl terbumetone, Desethyl terbutylazine, Metolachlor oxanilic acid, Metolachlor 

ethane sulfonic acid) were measured with a level of detection varying between 0.02 and 

0.1 μg L-1 (ppb). Three pharmaceuticals products (Carbamazepine, Irbesartan, 

Valsartan) and drugs (Benzoylecgonine) were also measured. This was achieved 

through the quantitative analysis method based on the use of tandem mass spectrometry 

(LC-MS/MS or GC-MS/MS with triple quadrupole analyser, depending on the selected 

compounds). One advantage of this technique is that the quantification of the relevant 

compounds at extremely low water concentrations is possible in a small volume of 

water. From the obtained data, a total pesticide concentration (ng L-1) was calculated in 

each sample using the sum of all pesticide molecules concentrations that were 

encountered in the samples and called P+M; where M is the sum of the concentration of 

all measured metabolites and P is the sum of the concentration of all measured initial 

pesticide molecules in the same sample.  

Statistics 

The effects of land use and season on pesticide concentrations were compared 

using a two-way ANOVA with land use and season as main effects and then Tukey 

post-hoc test were conducted. The pesticide concentrations were previously log 
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transformed to homogenize variances. Spearman correlation test was used to test the 

correlation between the pesticide concentrations and the potential denitrification rates 

across all the piezometers of the four campaigns together.  

III.3.7.2 Results and Discussions 

Pesticide concentrations ranged from 16 (P18 in spring) to 6893 ng L-1 (P26 in 

summer), with an average of 562 ± 195 ng L-1 (Mean ± SE, n=44) in all piezometers. 

Simazine, Atrazine and De-ethylatrazine occurred with the highest frequencies in the 

samples, while Terbumeton, Desethyl terbumetone, Desethyl terbutylazine, 

Carbamazepine and Benzoylecgonine were below the limit of detection in most cases. 

Metolachlor was observed to have the highest individual concentration in P26 (6261 ng 

L-1 in summer). 

Total pesticide concentrations show significant differences with time over the four 

seasons and with land uses (n=44; two-way ANOVA, F=4.9 and 13.6, respectively, 

p<0.05) (Table III.3-additional-1). Total pesticide concentrations in summer and in 

autumn were significantly higher than those in spring (Tukey post-hoc test, p=0.05 and 

p=0.005, respectively). Total pesticide concentrations were significantly highest in the 

agriculture piezometers group (Tukey post-hoc test, p<0.001) but did not exhibit 

significant interactions between land use and season (two-way ANOVA, F=1.4, land x 

season effect, p>0.05). The pesticide concentrations were significantly and negatively 

correlated to the denitrification rates during the four seasons (n=42, spearman test, rho= 

-0.44, p=0.003). 

Table III.3-additional-1 Results of two-way analysis of variance for pesticides concentrations in 

relation to land use, season and their interactions  

  Pesticide 

Factor F  P 

Land  13.6 <0.001 

Season 4.9 0.007 

Land*Season 1.4 0.23 
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The higher pesticide concentrations observed in summer and autumn (Figure 

III.3-additional-1), probably because the pesticides were applied in the agricultural part of 

this area mainly during spring. This temporal variation reflected the time delay for 

pesticides disposed at the surface to infiltrate into the hyporheic water due to the big 

floods during summer. It was reported that pesticides degradation may need months, so 

pesticides concentrations were also higher in autumn. Lowrance et al. (1997) found that 

most herbicides (atrazine and alachlor) transport in a Georgia riparian zone occurred 

during storm flow within the two months following herbicides application. 

 

Figure III.3-additional-1. Box plots of pesticide concentrations across seasons and land uses (with river 

group as a reference). Whiskers boxes building rules are the same as for Figure III.3-3 in the paper. 

Significance level *: p<0.05; **: p<0.01; *** p<0.001) are given. 

As mentioned in the context related to Figure III.3-4, different land types 

contributed to the spatial variabilities of biotic and abiotic variables including pesticide 

concentrations (Figure III.3-additional-2a). Natural woody vegetation in riparian zone 

and high connectivity with river could influence alluvial ecosystem through diverse 

processes including direct chemical uptake and indirect influences such as supply of 

organic matter to soils, modification of water movement, and stabilization of soil 

(Dosskey et al., 2010). Agricultural areas introduced more nutrients and pesticide 

pollutants in the hyporheic zone, while lowest connectivity limits the chances of water 

mixing with river water. The medium group was considered to be representative of a 
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mixed combination of river and agriculture effects. In the medium group, the microbial 

denitrification activity reduced compared to the riparian zone possibly due to the lower 

availability of DOC. Denitrification still remained at a medium level probably because 

it was less inhibited by the pesticides effect compared to agriculture zone. In the 

agriculture area, it was suspected that in addition to the excessive nitrates found in the 

underling water, the pesticides arrival in the same water may heavily reduce the 

microbial activity. This pesticides impaction may not favour the invertebrate 

community diversity neither. Therefore, significant increases across the spatial 

gradients from the agriculture to the riparian zones were observed in Shannon index of 

invertebrates together with denitrification rate and bacterial richness (increase but not 

significant), when pesticides concentrations varied in the inverse way. Indeed, the 

piezometers with the lowest Shannon index and denitrification rates had the highest 

pesticide concentrations (agriculture groups). On the other hand, pesticides can be 

lethal to the organisms in the hyporheic biota and toxicity of pesticides may affect the 

biofilm metabolism. Some pesticides can have long-lasting negative effects on the 

hyporheic communities, which may decrease their activities and abundances (Peters et 

al., 2013; Lorente et al., 2015). In the Garonne River meander, the high concentrations 

of contaminants leaching from the subterranean waters could cause a decrease in 

invertebrate diversity in the areas in contact with water flowing from the agricultural 

groundwater. This type of stress was suspected to probably affect the resilience of the 

hyporheic biota for the main biogeochemical processes that happen in this ecosystem 

such as nutrient recycling (Figure III.3-additional-2b).  
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Figure III.3-additional-2 (a) Trends of Shannon index, denitrification, DOC and pesticide 

concentrations over land uses of Monbequi meander and (b) Schematic diagram of the possible 

relations between microbial denitrification, environmental variables, invertebrate diversity and 

pesticide concentrations.  

In this alluvial wetland, the pesticide concentrations showed inverse trends with 

invertebrate diversity and denitrification rates, suggesting the possible adverse effects 

on both these biodiversity and function. This pesticide influence may be viewed as a 

confounding factor that have simultaneous effects on both elements of the 

biodiversity/function relationship. 

In addition to the results given in Table III-3.2, the favourable environmental 

conditions for denitrification could be the combination of diverse invertebrate fauna, 

relatively low temperature, NO3
-, oxygen and pesticide concentrations, and relatively 

high DOC and NH4
+ concentrations. 
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III.3.8 Annex  

Table III.3 annex Invertebrates densities in hyporheic samples. Densities are expressed as the number of individuals per 50 L of pumped water in the piezometers. Spring = 
10th, April, 2013; Summer = 1st, July, 2013; Autumn = 1st, October, 2013; Winter = 13th, January, 2014 

Piezo- 
meter Season Oligocheta Isopoda Amphipoda Malacostraca 

(Syncaride) 
Gasteropode 
(Bithyniidae) 

Gasteropode 
(Neritidae) 

Gasteropode 
(Planorbidae) 

Coleoptera 
(Elmidae) 

Coleoptera 
(Dryopidae) 

Coleoptera 
(adult) 

Diptera 
(Chironomidae) 

Diptera 
(Ceratopogonidae) 

Diptera 
(Anthomyiidae） 

Diptera 
(Blephariceridae) 

Diptera 
(Psychodidae) 

P10 Spring 22 1 22 0 0 0 0 0 0 0 0 0 0 0 0 

P11 Spring 14 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

P13 Spring 39 0 107 0 0 0 0 0 0 0 0 0 0 0 1 

P17 Spring 4 0 11 1 0 0 0 0 0 0 0 0 0 0 0 

P18 Spring 4 0 32 0 0 0 0 0 0 0 0 0 0 0 0 

P22 Spring 77 1 2 16 0 0 0 0 0 0 0 0 0 0 0 

P26 Spring 27 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

P3 Spring 1 0 38 26 1 0 0 0 0 0 0 0 0 0 0 

P6 Spring 63 0 2 0 0 0 0 0 0 0 0 0 0 0 0 

PE Spring 109 0 5 0 0 0 0 1 0 0 1 0 0 0 0 

PI Spring 25 0 9 3 0 0 0 0 0 0 0 0 0 0 0 

R1 Spring 35 0 2 0 0 0 0 0 0 0 0 0 0 0 0 

P10 Summer 5 0 64 0 0 0 0 0 0 0 0 0 0 0 0 

P11 Summer 7 0 7 0 0 0 0 0 0 0 0 0 1 0 0 

P13 Summer 18 2 36 0 0 0 0 0 0 0 0 0 1 0 0 

P17 Summer 4 0 76 0 0 0 1 0 0 0 0 0 0 0 0 

P18 Summer 15 0 29 0 0 0 2 0 0 0 0 0 0 0 0 

P22 Summer 9 0 20 0 0 0 0 0 0 0 0 0 0 0 0 

P26 Summer 8 2 19 0 3 0 0 0 0 0 0 0 0 0 0 
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P3 Summer 22 0 123 0 1 0 0 1 0 0 0 0 0 2 0 

P6 Summer 2 0 0 0 0 0 1 2 0 0 0 0 0 0 0 

PE Summer 8 2 44 0 0 0 0 0 0 0 0 1 0 0 0 

PI Summer 9 0 53 0 0 0 0 0 0 0 0 0 0 0 0 

R1 Summer 103 0 19 0 0 0 0 3 0 0 6 2 0 0 0 

P10 Autumn 3 0 42 0 0 0 0 0 0 0 1 0 0 0 0 

P11 Autumn 2 0 18 0 0 0 0 0 0 0 0 0 0 0 0 

P13 Autumn 0 0 29 0 0 0 0 0 0 0 0 0 0 0 0 

P17 Autumn 13 0 92 0 29 0 0 0 0 0 0 0 0 0 0 

P18 Autumn 14 0 4 0 1 0 0 0 0 0 0 0 0 0 0 

P22 Autumn 3 7 0 1 0 0 0 0 0 0 0 1 0 0 0 

P26 Autumn 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 

P3 Autumn 9 0 44 0 0 0 0 5 0 10 65 0 0 0 0 

P6 Autumn 103 0 4 0 0 0 0 2 0 0 0 0 0 0 0 

PE Autumn 0 1 107 0 0 0 0 0 0 0 0 0 0 0 0 

PI Autumn 1 0 27 0 0 0 0 0 0 0 1 0 0 0 0 

R1 Autumn 27 0 147 0 0 0 0 218 0 158 4148 2 0 0 0 

R2 Autumn 390 0 63 0 0 10 0 53 3 10 1745 8 0 0 0 

P10 Winter 0 0 45 10 0 0 0 0 0 2 0 0 0 0 0 

P11 Winter 11 0 40 0 3 0 0 0 0 0 4 0 0 1 0 

P13 Winter 13 0 73 4 0 0 0 0 0 0 0 0 0 0 0 

P17 Winter 3 0 17 1 0 0 0 0 0 0 0 0 0 0 0 

P18 Winter 6 0 87 0 0 0 0 0 0 0 0 0 0 0 0 

P22 Winter 1 0 3 3 0 0 0 0 0 0 0 0 0 0 0 

P26 Winter 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P3 Winter 10 0 311 3 0 0 0 0 0 0 1 0 0 0 0 
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P6 Winter 2 0 3 1 0 0 0 0 0 0 0 0 1 0 0 

PE Winter 2 1 22 0 0 0 0 0 0 0 0 0 0 0 0 

PI Winter 5 0 64 0 0 0 0 0 0 0 0 0 0 0 0 

R1 Winter 17 0 12 0 2 0 0 2   3 25 0 0 0 2 

 

Piezo
- 
meter 

Season Ephemeroptera 
(Oligoneuriidae) 

Ephemeroptera 
(Leptophlebiidae) 

Ephemeroptera 
(Potamanthidae) 

Ephemeroptera 
(Baetidae) 

Ephemeroptera 
(Caenidae) 

Trichoptera 
(Hydropsychidae) 

Trichoptera 
(Polycentropodid
ae) 

Trichoptera 
(Philopotamid
ae) 

Bivalve 
(Sphaeriidae) 

Hydrac
arien  Nematode Ostracod Copepod Tardigrade Cladocera 

P10 Spring 0 0 0 0 0 0 0 0 0 53 5 57 577 0 0 

P11 Spring 0 0 0 0 0 0 0 0 0 7 1 1 942 0 0 

P13 Spring 0 0 0 0 0 0 0 0 0 1 69 52 289 0 0 

P17 Spring 0 0 0 0 0 0 0 0 0 8 7 15 69 0 0 

P18 Spring 0 0 0 0 0 0 0 0 0 5 1 7 195 0 0 

P22 Spring 0 0 0 0 0 0 0 0 0 13 23 1 633 0 0 

P26 Spring 0 0 0 0 0 0 0 0 0 1 1 0 22 0 0 

P3 Spring 0 0 0 0 0 0 0 0 0 0 2 0 175 0 0 

P6 Spring 0 0 0 0 0 0 0 0 0 1 5 6 20 0 0 

PE Spring 0 0 0 0 0 0 0 0 0 1 11 0 18 0 0 

PI Spring 0 0 0 0 0 0 0 0 0 3 17 0 265 0 0 

R1 Spring 0 0 0 0 0 0 0 0 0 3 50 0 16 0 0 

P10 Summer 0 0 0 0 0 0 0 0 0 88 2 410 769 4 0 

P11 Summer 0 0 0 0 0 0 0 0 0 26 15 12 1198 26 0 

P13 Summer 0 0 0 0 0 0 0 0 0 0 25 58 348 0 0 

P17 Summer 0 0 0 0 0 0 0 0 0 5 20 8 679 0 0 

P18 Summer 0 0 0 0 0 0 0 0 0 4 102 8 235 0 0 

P22 Summer 0 0 0 0 0 0 0 0 0 7 37 0 1118 3 0 

https://en.wikipedia.org/wiki/Philopotamidae
https://en.wikipedia.org/wiki/Philopotamidae
https://en.wikipedia.org/wiki/Philopotamidae
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P26 Summer 0 0 0 0 0 0 0 0 0 0 3 4 143 1 0 

P3 Summer 0 0 0 0 0 0 0 0 0 8 2 1 781 0 0 

P6 Summer 0 0 0 0 0 0 0 0 0 0 2 4 5 1 0 

PE Summer 0 0 1 0 0 0 0 0 0 1 1 1 472 0 0 

PI Summer 0 0 0 0 0 0 0 0 0 3 6 2 764 0 0 

R1 Summer 0 0 1 2 1 0 0 0 0 5 427 3 115 0 0 

P10 Autumn 0 0 0 0 0 0 0 0 0 4 6 7 32 0 2 

P11 Autumn 0 0 0 0 0 0 0 0 0 14 4 3 469 1 0 

P13 Autumn 0 0 0 0 0 0 0 0 0 5 3 127 123 0 0 

P17 Autumn 0 0 0 0 0 0 0 0 0 50 15 54 232 0 0 

P18 Autumn 0 0 0 0 0 0 0 0 0 47 47 1 73 0 0 

P22 Autumn 3 1 0 0 0 0 0 0 0 3 14 0 447 0 0 

P26 Autumn 0 0 0 0 0 0 0 0 0 0 0 0 14 0 0 

P3 Autumn 0 0 0 5 13 0 0 0 2 0 7 5 387 0 17 

P6 Autumn 0 0 0 0 0 0 0 0 0 10 19 1 41 0 0 

PE Autumn 0 0 0 0 0 0 0 0 0 8 108 0 35 0 0 

PI Autumn 0 0 0 0 0 0 0 0 5 4 10 0 200 0 0 

R1 Autumn 0 2 0 5 207 0 3 3 655 12 78 162 1028 0 465 

R2 Autumn 5 10 0 125 33 30 105 13 255 3 148 20 323 0 0 

P10 Winter 0 0 0 0 0 0 0 0 2 16 22 43 1296 0 0 

P11 Winter 0 0 0 0 0 0 0 0 0 1 8 53 1319 0 0 

P13 Winter 0 0 0 0 0 0 0 0 0 2 41 556 754 0 0 

P17 Winter 0 0 0 0 0 0 0 0 0 2 8 5 265 0 0 

P18 Winter 0 0 0 0 0 0 0 0 0 2 3 13 1206 2 0 

P22 Winter 0 0 0 0 0 0 0 0 0 1 15 1 374 7 0 

P26 Winter 0 0 0 0 0 0 0 0 0 3 7 0 34 0 0 
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P3 Winter 0 0 0 0 0 0 0 0 0 0 10 1 902 0 0 

P6 Winter 0 0 0 0 0 0 0 0 0 0 8 61 44 2 0 

PE Winter 0 0 0 0 0 0 0 0 0 2 5 6 111 1 0 

PI Winter 0 0 0 0 0 0 0 0 0 0 3 9 327 0 0 

R1 Winter 0 3 2 0 2 3 0 0 65 9 38 8 677 15 0 
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III.4 Main discussion 

In summary, our laboratory findings suggested the contribution of 

cross-community and intra communities’ interactions between microbial, meio- and 

macro-invertebrate on the nitrate removal function under stressful conditions. The 

experimental studies suggested the requirement of a lap of time for the observation of 

this positive effect after the addition of stress. At the end of experiment, the existence of 

higher densities of rotifers and oligochaetes indicated the changes in the community 

structures under the applied artificial conditions were probably mainly due to the 

indoor experiment conditions with additional chemical stress. These changes in the 

invertebrate community suggested the implication of some resistant groups in the 

potential resistance and resilience capacity of the system. The occurrence of these 

groups, when comparing to the invertebrate traits identified in chapter II, suggested the 

involvement of potential invertebrate engineers, whose activities can probably favor 

the nitrate removal function. In the field, the co-variations between biodiversity, 

ecosystem function and abiotic factors including multiple stressors across spaces were 

observed. The significantly positive correlation between invertebrate taxonomic 

diversity and denitrification was observed during autumn, which was in a hydrological 

stability period and with long-term low discharge. This period could be identified as a 

potential “hot moment” for the invertebrate diversity and nitrate removal coincidence. 

The similar spatial gradients of biodiversity and denitrification functions suggested the 

occurrence of “hot places” in the meander for the diversity and the ecosystem function, 

where pesticides influence was lower and riparian forests covering at the surface. Even 

if we cannot conclude the sources of the correlation observed between invertebrate 

diversity and denitrification, our results could let suppose a potential balance between 

biodiversity effects and abiotic (i.e. hydrological) effects on ecosystem functions. It 

suggests that more investigations of simultaneously survey for all the biological 

communities and the biogeochemical processes involved in the nutrient cycling could 
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help at setting those functional links in the hyporheic zone. A significantly correlation 

between invertebrate assemblage and bacterial community structure was also observed. 

It may be considered as the evidence for a top-down control by invertebrates in the 

hyporheic zone and/or it may be due to their concomitant correlation to groundwater 

physico-chemistry and hydrology (Foulquier et al., 2011). It is difficult to distinguish a 

causal link from one to the other when studying their relationships in field conditions.  
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Résumé du chapitre IV 

Le chapitre IV présent la discussion et les conclusions générales rédigées à partir 

des recherches réalisées pendant ma thèse. La dernière partie donne quelques 

perspectives pour de futures recherches, en résumant les principales lacunes qui 

existent encore sur ce sujet. 

Conclusions  

Ce travail, centré sur l’exploration de la relation indirecte susceptible d’exister 

entre les invertébrés benthiques et la fonction de rétention des nitrates dans les rivières, 

produit des résultats cohérents intégrants à la fois une approche en laboratoire et en 

milieu naturel. Quand l’ensemble des communautés microbiennes, de meiofaune et de 

macrofaune sont rassemblées dans le réseau trophique vivant au niveau des sédiments 

de rivières, il existe plusieurs niveaux trophiques qui peuvent développer des 

interactions fonctionnelles des types trophiques mais également non trophiques comme 

la bioturbation (Sabater et al., 2002; Mermillod-Blondin et al., 2003; Stief, 2013). 

L’approche expérimentale en laboratoire en jouant sur le nombre de communautés 

présentes permet d’apporter la démonstration de l’existence de ces interactions entre 

communautés dans l’expression optimale de la fonction ciblée. La présence de 

communautés d’invertébrés dans les expériences de laboratoire a permis d’obtenir des 

taux d’élimination du nitrate du même ordre de grandeur que ceux mesurés en 

condition in situ dans un ensemble de cours d’eau. 

L’analyse des résultats obtenus en laboratoire a mis en évidence l’existence  

d’une influence positive des communautés invertébrés et des interactions 

inter-communauté avec le compartiment microbien sur la fonction d’élimination du 

nitrate avec ou sans source de stress. Les groupes taxonomiques connus dans la 

littérature pour participer plus particulièrement à l’expression de cette fonction sont les 

rotifères, les oligochètes tubificidés et les chironomidés (Freckman and Virginia, 1997; 
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Jones et al., 1997; Mermillod-Blondin et al., 2002; Nogaro et al., 2009; Gette-bouvarot 

et al., 2014; Liu et al., 2016). Ces groupes étant bien présents dans les communautés 

peuplant les microcosmes en fin d’expérience permettent de supposer l’implication de 

cette diversité fonctionnelle dans l’expression de la fonction de recyclage de l’azote.    

La relation entre la communauté d’invertébrés et l’élimination du nitrate a été 

observée en milieu naturel où la complexité des facteurs biotiques et abiotiques rend 

l’approche plus difficile. L’application d’une analyse des traits fonctionnels de la 

communauté d’invertébrés peuplant les sédiments de lits de rivière est venue confirmer 

l’existence d’interactions trophiques et non trophiques entre les invertébrés et le 

biofilm à l’origine des effets des invertébrés sur la fonction d’élimination du nitrate. 

Les modalités des traits sélectionnés ont conduit à l’identification des organismes 

invertébrés capables de modifier les flux d’eau et de nutriments dans le milieu 

hyporhéïque ainsi que la composition de la communauté microbienne : les brouteurs de 

biofilm avec des modes de vie interstitiels et basés sur une ressource détritique dans du 

sédiment macroporeux. Ce type d’organismes en accords avec les groupes 

taxonomiques identifiés précédemment confirme l’existence d’une relation de type 

“top-down” participant à l’influence observée des invertébrés sur la fonction cible.  

Cette relation a également été explorée en condition de stress en laboratoire et 

dans le milieu hyporhéique d’un méandre de la Garonne impacté par la présence de 

surface agricole à proximité. L’influence positive des interactions entre communautés 

sur le taux d’élimination des nitrates a été observée en laboratoire après application 

d’un stress chimique : le dimétomorphe en tan que fongicide. De plus, le retour à des 

taux de rétention similaires aux taux mesurés avant addition de pesticides, alors que la 

source de stress est toujours présente, suggère une possible résistance de certaines 

espèces d’invertébrés du milieu hyporhéique et avec un rôle prépondérant des 

interactions inter-communautés dans la capacité de résilience de ce milieu. De plus, les 

conditions environnementales conduisant à l’expression d’une relation positive entre la 

diversité des invertébrés et le taux de dénitrification dans l’eau interstitielle d’une zone 
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humide alluviale ont été identifiées. Dans ce milieu sous contrôle de facteurs physiques 

forts tels que l’hydrodynamisme, la relation diversité/fonction est visible uniquement 

pendant une période de temps particulière. Cette période se caractérise pour sa position 

temporelle en condition de stabilité hydraulique ce qui autorise la mise en place 

d’interactions fonctionnelles dans les communautés hyporhéiques. Durant cette période, 

une corrélation positive entre la richesse spécifique des communautés invertébrés et 

microbiennes est également observée, ce qui vient confirmer l’existence du lien de type 

“top down » identifié dans les autres milieux étudiés (Srivastava et al., 2009).  

En résumé, cette thèse apporte les conclusions suivantes, en compléments des 

études classiques sur l’effet de la diversité horizontale (interspécifiques) des 

communautés: 

1) l’influence indirecte des invertébrés sur la fonction d’élimination du nitrate est mise 

en évidence en conditions de laboratoire et permet son exploration en milieux 

naturels. Sous l’effet d’un stress cette influence conduit à la récupération d’un 

niveau optimal de la fonction étudié avec une période de réponse dont la durée 

devrait dépendre du niveau de stress. 

2) les communautés d’invertébrés de la méiofaune et de la macrofaune dans le réseau 

trophique du milieu hyporhéique jouent un rôle indirect dans l’expression de la 

fonction d’élimination du nitrate à travers la mise en place d’interactions trophiques 

et non trophiques avec le biofilm microbien et en compléments des contributions 

abiotiques.  

Ces résultats sur l’étude de cette relation diversité fonction dans ce milieu, quand 

ils sont rassemblés, permettent d’adresser les suggestions suivantes :  

- la biodiversité à l’origine de la relation doit être considérée systématiquement à 

l’échelle du réseau trophique complet (micro-, meio- et macrofaune) dans les 

habitats de fond de rivière et le milieu hyporhéïque en général pour une approche 

fonctionnelle de ces milieux.   

- la présence d’une biodiversité en invertébrés permet une résilience de la 
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communauté et de la fonction associée quand ce milieu est soumis à un stress 

chimique. Cette résilience conduit à une restauration naturelle des capacités de 

recyclage du nitrate qui doit participer au phénomène de résistance du milieu.  

- l’impact des pesticides influence la variabilité spatiale et la force de cette relation 

diversité verticale / fonction en milieu naturel. Cette source de stress a un impact 

négatif sur l’intensité de la fonction mesurée : le taux de dénitrification potentielle. 

- l’effet de l’hydrodynamisme influence la visibilité en fonction du temps de cette 

relation diversité / fonction en milieu naturel d’eau courante. Les moments propices 

à l’observation de cette fonction sont les périodes pendant lesquelles 

l’hydrodynamisme est suffisamment faible et depuis suffisamment longtemps pour 

permettre la mise en place des interactions entre micro-organismes et invertébrés 

dans le milieu interstitiel.  

Perspectives 

Le présent travail suggère que le nombre de communautés (ou de niveaux 

trophiques) impliquées doit être considéré autant que possible quand on teste le lien 

BEF pour l’étude de l’intensité de la fonction dans les habitats de surface et interstitiels 

des cours d’eau et dans les zones hyporhéiques, notamment en situation de stress.  

Ainsi, manipuler la diversité horizontale, verticale d'invertébrés et tester la 

fonction d’abattement des nitrates dans le milieu avec des conditions abiotiques 

similaires pourrait compléter les études classiques de BEF. De même, la présente 

étude suggère que les traits fonctionnels de la communauté des invertébrés peuvent 

aussi être inclus dans la surveillance des écosystèmes lotiques pour établir des liens 

associés à l’abattement du nitrate. Des études ultérieures devraient être menées pour 

étudier les traits de la communauté de la méiofaune en milieux hyporhéique et dans 

les eaux souterraines afin d’élaborer une base de donnée basée sur les traits de cette 

communauté et mettre en évidence les traits associés à l’abattement du nitrate. 
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De plus, en disposant d’un jeu de données avec des observations simultanées de 

facteurs biotiques (ex : les communautés microbiennes et invertébrés), de facteurs 

abiotiques (ex : hydromorphologie et physico-chimie) et de facteurs d’altération (ex : 

occupation du sol et mesure des pesticides) dans les conditions de terrain peuvent 

permettre de réaliser des analyses statistiques plus élaborées (ex : path analysis) pour 

discriminer les mécanismes biotiques et abiotiques impliqués dans l’abattement du 

nitrate. Un grand jeu de données permettrait également d’explorer la variabilité 

spatiale et temporelle des relations de biodiversité et du fonctionnement des 

écosystèmes. Une seconde étude portant sur la contribution des communautés 

biologiques de la zone hyporhéique aux processus biogéochimiques associés à la 

purification de l’eau, et ce à différents niveaux et types de stress chimiques (ex : 

acidification) affinerait la compréhension du rôle de cette zone dans les fonctions 

d’épurations de l’eau. 

Enfin, la fonction d’abattement du nitrate peut être utilisée comme un proxy du 

service de purification de l’eau, afin de convertir ce service en valeur économique par 

les méthodes de remplacement (La Notte et al., 2012, Acuña et al., 2013). Cette valeur 

monétaire pouvant être indicative pour les gestionnaires et contribuer à ainsi à 

promouvoir le maintien des fonctions écosystémiques et de la biodiversité associée. 
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IV.1 General discussion 

In this manuscript, the linkage between invertebrates and microbial communities 

was studied under natural and stressful conditions in order to depict the influence of the 

cross-community interactions on the nitrate removal function. The first section of this 

discussion (IV.1) compiles all the nitrate removal rates measured in our laboratory 

experiments and in the in situ approach, and further compares these results with the 

literature data. Based on this information, possible explanations for biotic and abiotic 

mechanisms involved in nitrate removal are discussed in section IV.2 with the special 

emphasize on invertebrate effects. Conclusion and perspectives are drawn in section 

IV.3.  

IV.1.1 Nitrate removal rates across sites  

The present research gathers nitrate removal rates at different scales to verify if the 

different measurements are consistent when up-scaling from the microcosms to the 

reach scale. The nitrate removal rates were not measured at the reach scale in large 

rivers in this PhD work but the parallel researches of Sun (2015) and Bernard-Jannin 

(2016) in Attenagua Project provided the estimation by modeling the nitrate retention at 

the reach scale in the Garonne river, allowing this comparison. In the present work as in 

the literature, different approaches were used to measure nitrate removal in laboratory 

conditions mimicking the hyporheic zone, stream channels and hyporheic waters of 

alluvial wetlands. Table IV-1 summarizes the nitrate removal values obtained in the 

different approaches of this thesis, which may be useful to compare with the estimation 

of the same function available in literatures (Table IV-2). 
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Table IV-1 Summary of the different approaches, main processes involved in and the values of nitrate removal rates measured in this thesis 

Sections  Time  Method of 
quantifica
tion 

Main 
microbial  
processes  

Site 
description 

Nitrate 
removal rate 
(as measured) 
 

Nitrate 

removal rate 

(expressed in 

mg 

N.m-2.min-1 

 Comments Main characterestics  

Section II.2  75 d 
(28 d 
with 
inverte
brates) 

concentration 
differences 
between two 
sampling 
dates 

fungi and 
bacteria 
uptakes, 
denitrification, 
ANNAMOX, 
DRNA, 
nitrification 

mimic hyporheic 
zone without 
fungicide 
influence 
 
Inbioprocess 
project 

3.8 ± 0.9 reduction 
(mg N l-1 

d-1) 

3.6± 0.29  SB      

Laboratory 
microcosm 

 6.6 ± 0.7 5.0± 0.93  SBM      
 9.0 ± 2.1 6.1± 1.8  SBMM      

Section II.3              
(9 streams 
in Europe) 

 1 year slug addition 
based on 
spiraling 
models 

algae, fungi and 
bacteria 
uptakes, 
denitrification, 
ANNAMOX, 
DRNA, 
nitrification 

a broad range of 
climate 
conditions, 
 
STREAMES 
project 

0.04 to 

10.75   

(Mean±SE: 

1.64 ± 2.35) 

uptake  
(mg 
N.m-2.min-1

) 

0.04 to 
10.75   
(Mean±S
E: 1.64 ± 
2.35) 

   Discharge 

(Q.m.s-1) 

NO3-N 

(mg.l-1) 

DOC 

(mg.l-1) 

Shannon 

   0.001-0.27 0.05-9.0 0.7-7.8 0.35-2.5 
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Section III.2  86 d 

(28 d 
with 
inverte
brates) 

the same as 
section II.2 

the same as 
section II.2 

mimic hyporheic 
zone with 
fungicide influence, 
 
 

Inbioprocess 
project 
 

4.2 ± 0.5 reduction 
(mg N 
l-1d-1) 

0.8± 0.1  SB, no 
fungicide 

phase 2     

Laboratory 
microcosm 

 7.2 ± 1.0 1.3± 0.13  SBM, no 
fungicide 

phase 2     

  8.2 ± 1.2 1.4± 0.4  SBMM, no 
fungicide 

phase 2     

  3.5 ± 0.3 0.7± 0.1  SB, with 
fungicide 

phase 4     

  4.7± 0.8 0.9± 0.2  SBM, with 
fungicide 

phase 4     

  5.0 ± 1.1 0.9± 0.2  SBMM, 
with 
fungicide 

phase 4     

Section 
III.3                 
(1 meander 
in France) 

 1 year Denitrificatio
n Enzyme 
Assay, DEA 

fungi and 
bacteria 
immbolization, 
denitrification, 
ANNAMOX, 
DRNA, 
nitrification 

combination of 
patches with 
surface 
agricultural 
occupation and 
riparian forest, 
ATTENAGU

A project 
 

 0.08 - 35.6  

(Mean±SE 

4.34 ± 1.10) 

denitrificati
on rate (µg 

N-N2Oh-1.g 

OM-1) 

9E-05 to 
0.02 
(0.004) 

 Land types Pesticide 

(mg.l-1) 

NO3-N 

(mg.l-1) 

DOC 

(mg.l-1) 

Shannon 

   0.5 ± 0.14   Agriculture  1497 ± 658 19± 1.2 0.9± 0.11 0.6± 0.06 

   3.1 ± 0.8   Intermediate  222 ± 38 10 ± 1.7 0.8 ± 0.08 0.8 ± 0.08 

   13.6 ± 4.0   Riparian  185 ± 57 6.3 ± 2.2 2.3 ± 0.1 1.25 ± 0.1 

   79.5 ± 33.3   River  245 ± 104 1.6 ± 0.16 1.6± 0.18 1.3 ± 0.13 
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The involved processes behind overall nitrate removal were not the same depending 

on the approach design. The particular process of denitrification was quantified in sections 

II.2, III.2 and III.3. This reduction represents just one of the major pathway for nitrate 

removal. The total nitrate removal was estimated in the microcosms by the variations of 

nitrate concentrations (sections II.2 and III.2), as well as by nutrient enrichment 

experiments (section II.3) in streams. In the infiltration columns, the measured nitrate 

removal processes were probably related to a majority of dissimilative processes including 

denitrification, ANAMMOX and DNRA (no light was acceding inside the microcosms). 

Due to light limitation in the hyporheic zones, autotrophic assimilative processes were 

assumed as less important in this framework (section II.2 and III.2), as well as in the 

hyporheic zone explored in the Garonne meander (section III.3). Yet, assimilative uptake 

might be more developed in in situ measurements in the surface running water at the reach 

scale due to additional algae uptake (section II.3).  

In Table IV-1, our laboratory results (i.e. the nitrate reduction rates) in SBMM 

treatments were assumed to resemble the most closely to in situ conditions and compared 

to SB and SBM treatments. These rates ranged between 0.8 and 2.4 mg N.m-2.min-1, with 

1.4 ± 0.4 as mean ± SE (n=10 that sum n=6 for section II.2 and n=4 for section III.2 without 

stress), when compiling all experimental measurements in this treatment. This average 

falls in the range of the in situ measurements obtained in this study at the reach scale, 

ranging from 0.04 to 10.75 mg N.m-2.min-1 with 1.64 ± 2.35 as mean ± SE (n=27) (section 

II.3). This consistency suggests that our microcosms may mimick a natural bed condition 

and probably reflect a real nitrate reduction capacity of the hyporheic zone (Figure IV-1).  
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Figure IV-1 Nitrate removal rates measured in our laboratory experiments (section II.2 and III.2) during 

Phase 2 after the introduction of invertebrates and in situ measurements (section II.3). Boxes represent the 

interquartile range, and the median values, whiskers show the 10th and 90th percentiles 

Our infield values of nitrate uptake rates (U) (section II.3) cover a large range that 

may also be compared with other data from the literature (Table IV-2). In Figure IV-2, 

Mulholland et al. (2008)’s U data reflect a compilation of the 72 streams from areas 

including different land uses in the USA (natural, urban and agricultural). The U values 

used in the present study from the STREAMES project fall in the higher range of similar 

measurements from Mulholland et al. (2008) and literatures from Table IV-2 (Simon et al., 

2005; O’Brien et al., 2007; Von Schiller et al., 2008a). Different biotic and abiotic variables 

are related as possible drivers of the nitrate removal function (Ensign and Doyle, 2006), 

which may explain these differences. In particular, the relative high nitrate removal rates in 

our streams were probably due to the relative high nitrate concentrations (section II.3), in 

consistence with the findings of Gücker and Pusch (2006). The high nitrate concentrations 

in our streams were probably induced by relative strong non-point source influences from 

agriculture on the selected stream reaches from the STREAMES project. Hyporheic zone 

size, the water flow velocity and its direction might also exert direct controls on the 

removal function at the reach scale (Hakenkamp and Morin, 2000; Datry and Larned, 

2008). In the STREAMES project (section II.3), the selection of stream reaches with the 

occurrence of large hyporheic zones may also have contributed to larger U values when 
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compared to literatures.  

Different techniques used in our studies (slug addition) and the one of Mulholland et 

al. (2008) (isotope) may also contribute to some degree to the differences of the results. 

Note that our values are just the apparent nitrate removal rates, considering the short term 

of the experiments.  

 

 

Figure IV-2 Comparison of the range of nitrate uptake rates (U) according to land uses from Mulholland et al. 

(2008) (n=72), and our results (n=27) from section II.3. Reference reaches related to the most natural and 

preserved reaches (n=24). Box plots display 10th, 25th, 50th, 75th and 90th percentiles, and individual data 

points outside the 10th and 90th percentiles. Land use had a significant effect on U (P=0.0013 of Kruskal–

Wallis test) with differences indicated by “a” and “b”) (Mulholland et al., 2008)



Chapter IV: General discussion, conclusion and perspectives 

 

249 

 

Table IV-2 Summary of the values of nitrate removal rates at the reach scale from literature with and without stress condition. In the column titled “Expressed in mg 
N.m-2min-1” rates are transformed into the same unit as our study values, allowing comparision 

Reference Method       Description UNO3--N rate Expressed 
in mg 
N.m-2.min-1 

Study sites Q (l/s) NO3--N 
(ug/l) 

Arnon et al. 
2015 

Pulse 
addition 

  Agriculture/
Urban 

0.23-18.32 mg m-2 s-1 1.2-720 1 stream in 
Israel 

  28-88 0-6500 

                      
Wollheim et al. 
2014 

Pulse 
addition 

  Connect with 
alluvial 
wetland 

91-453 mgN m-2 day-1 0.06-0.31 7 streams in 
USA 

  35-23
9 

61-260 

Von Schiller et 
al. 2008a 

15 N isotope All   0.045-1.07   0.003-0.06 3 Mediterranean 
streams 

    

      Forest 0.16 ugN m-2 s-1 0.009     8.8 172 
      Urban 1.07   0.064     11.6 394 
Klocker et al. 
2009 

15 N isotope All         5 stream2 in 
USA 

      

      Restored 
(recover 
hydroligical 
connecticity) 

6.7-26.3 ug N m-2 s-1 0.4-1.58 2 streams   2.2-16
.3  

1000-270
0 

      Urban 2.5-17.5   0.15-1.05 3 streams   2.6-4.
9  

500-1800 

      Agriculture 0.04   0.003     1.2 601 
Mulholland et 
al. 2008  

15 N isotope All   10 to 7E-05 µg N m-2 h-1 0.002-11.7 
(Median 
0.08) 

Review for 72 
streams of Linx II 
in USA  

0.2 - 
270 
(medi
an, 
20)  

0.1 - 
21200  

      Reference 10-7000     24 streams     0.1-600  
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      Urban 400-6E-04   0.007-1 24 streams     0.8-5000  
      Agriculture 300-7E-05   0.005-11.7 24 streams     0.8-21200 
O'Brien et al. 
2007 

15 N isotope All   0.01- 80 ugN m-2 s-1 0.0006- 4.8 9 streams in USA, 
part of Linx II 

    

      Forest 0.06-1.5   0.004-0.09 4 streams   1.3-26
.3 

0.9-8.6 

      Urban 0.05-80   0.003-4.8 3 streams   0.2-20
.1 

168-2900 

      Agriculture/u
rban 

2.0-8   0.12-0.45 2 streams   2.9-13
.4 

35-21000 

Duff et al. 
2008 

DEA: 
denitrificati
on 

  Agriculture 2.0 - 16.3  mg N m-2 h-1 0.03-0.27 3 streams in 
USA 

  144-4
43  

800-2900  

  assimilative     5.1   0.085 4 streams in 
USA 

      

Arango et al. 
2008 

Shortem 
addition 

All  0-1000   0-16.7 18 streams in 
USA 

      

      Forest 0-300 mg N m-2 h-1 0-5 6 streams     186-1113  
      Urban 0-250   0-4.2 6 streams     14-449  
      Agriculture 0-1000   0-16.7 6 streams     271-1749

7  
Gucker et al. 
2006 

Shortem 
addition 

  Agriculture 0.2-1.0 mg N m-2 min-1 0.2-1.0 2 streams in 
German 

  23-19
5 

3800-164
00 

Bernot et al. 
2006 

15 N isotope   Agriculture 0-0.002 mg N m-2 min-1   6 streams in 
USA 

  0-206
7  

<100-670
0  

Simon et 
al .2005 

Shortem 
addition 

  Forest 0.08-0.65 ug N m-2 s-1 0.005- 
0.04 

2 streams in New 
Zealand  

    

                      
Data in this 
thesis section 
II.3  

Pulse 
addition 

All   0.04 to 10.75   

(Mean±SE: 
1.64 ± 2.35)  

mg N m-2 min-1 0.04 to 
10.75   

(Mean±SE: 
1.64 ± 
2.35)  

9 streams in 
Europe 

  1-267 45-8980 
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      Forest 0.13-10.8   0.13-10.8     1-216 45-3580 

      Agriculture 0.035-5.1   0.035-5.1     2-267 243-8980 
Denitrification rates in hyporheic zone (or aquifer)   Expressed 

in mg 
N.L-1.day-1  
 

    

Leo, 2016      Modelling 6.10± 3 
  

mg N.L-1.day-1  
 

6.10± 3 Grannon river       

Sun, 2015 Modelling     6 to 133 kg N.ha-1.year-1   Grannon river       

Richard et al. 
2004 
 

DEA   00.013-0.016   

umol N L-1 d-1 18-22 USA    

Schipper and 
Vojvodić-Vuk
ović, 2000 

DAE   0.6-18.1 ngL-1 h-1 0.01-0.4 New zanland p   

Trudell et al. 
1986 
 

In situ DEA 
 

  0.2-3.1 
 

mg N.L-1.day-1  
 

0.2-3.1 
 

Canada    

Data in this 
thesis section 
III.3  

DEA     0.08 - 35.6  
(Mean±SE 
4.34 ± 1.10) 

µg N-N2Oh-1.g 
OM-1 min-1 

0.03-14.9 Grannon river       
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The denitrification rates in the alluvial wetlands in section III.3 showed comparable 

values with other studies using modelling methods (Sun, 2015; Bernard-Jannin, 2016), 

and these rates are low (Richard et al., 2004) or high compared to those obtained in other 

sites (Trudell et al., 1986; Schipper and Vojvodić-Vuković, 2000). The denitrification 

rates were spatially and temporally heterogeneous. In our study the denitrification rates in 

piezometers with forest as surface coverage was significantly higher than those in areas 

with agricultural land cover. As we discussed in section III.3, the low denitrification rates 

in agricultural zones may be the consequence of high pesticides concentrations, and 

consequently low invertebrate diversity. 

Few references report simultaneous records of nutrient and pesticides concentrations 

(Dale and Polasky, 2007; Mangiafico et al., 2009; Sabater et al., 2016). Furthermore, 

there were rare studies with simultaneous records of pesticide pression and nitrate 

removal or denitrification rates, and this lack probably, participated to the large 

uncertainty about the agriculture effects on the water purification service (Johnson et al., 

2012). Most of the retention and denitrification measurements only consider agricultural 

and/or urban perturbation as an indication for nitrate loading, but without records of 

pesticide concentrations as a stress (Table IV-2). Mulholland et al. (2008) reports that the 

total nitrate uptake rates increases from reference sites to agricultural streams, while in our 

measurements, the U was higher in natural streams than in agricultural streams (we 

consider the streams as agricultural streams when running within an area with more than 50% 

surface coverage by agricultural land). One of the explanations of this discrepancy may be 

the influence of other confounding factors including pesticide contamination of the water.  

To summarize, in general the observed nitrate removal values (including 

denitrification) in this study are comparable with the values in literatures. However, 

discrepancy exists about the relative influence of the main drivers of this removal, which 

may include pesticide impaction, so that the source of the spatial variation is still unclear. 

Nitrate concentration as well as hyporheic volume, discharge, land covers can serve as 

abiotic drivers for this removal function. Moreover, the pesticide contamination leaching 

from agricultural areas could inhibit the microbial processes in those places where the 

nitrate loads are also usually high. Beside, pesticide effects on invertebrate diversity and 
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activity are also recognized. This adds further complexity for understanding the nitrate 

uptake drivers with focus on the biodiversity influence in these field conditions. 

IV.1.2 Biotic and abiotic mechanisms involved in nitrate 

removal 

IV.1.2.1 Biotic mechanisms involved in nitrate removal  

Microbial community as the main direct provider of the nitrate removal function 

Microbial communities that include algae, bacteria and fungi and their biofilm 

aggregations are known as main contributors to the nitrate removal function in aquatic 

systems (Boulton et al., 1998; Sabater et al., 2002; Teissier et al., 2007). Liu et al. (2016) 

reports that the nitrate reduction rates measured in the heterotrophic biofilm treatment were 

significantly higher than those in the treatment without biofilm, providing an estimation of 

the nitrate reducing capacity of the hyporheic biofilm alone. Biofilm, by sheltering a 

consortium of microbial populations, is a major contributor to nitrate removal. Beside, the 

microbial biofilm growth changes the physical and chemical microhabitats of the 

interstitial media of the hyporheic zone. 

Also fungi, as a specific biofilm component may influence the nitrate removal 

processes. The diversity of hyphomycetes and protozoans populations have been 

highlighted in hyporheic zones (Bärlocher et al., 2007; Cornut et al., 2010), but their 

contributions to the nitrate removal function in riverine ecosystems have been so far little 

explored. 

Invertebrate community’s influence on nitrate removal  

This thesis focuses on the indirect relationship between invertebrate community and 

the nitrate removal function. As explained in the introduction of chapter II, this relationship 

probably exists in rivers through different types of linkages including bottom-up and 

top-down effects. An interesting debate exists in the literature about the robustness of the 

different links behind this relationship mainly comparing top-down versus bottom-up 
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effects of the biodiversity. Without any a priori on the relevance of both types of 

approaches (top-down versus bottom-up), we decided in this PhD work to focus on the 

top-down direction for 2 main reasons: (1) Starting from an experimental demonstration of 

the influence of invertebrate communities on nitrate removal, we were motivated to go and 

verify the existence of this influence in fields; (2) Top-down processes have been shown to 

be more important in detritus-consumer food webs (which may show similarities with the 

interstitial food web of the hyporheic zone) compared to plant herbivory food webs 

(Srivastava et al., 2009).  

This PhD work was the opportunity to examine the mechanisms that exist in the 

interstitial habitat and that may explain the existence or the visibility of this indirect 

relationship between invertebrate community and the nitrate removal function with a 

top-down direction. However, in field studies, the observation of this linkage is not easy 

because there exist, simultaneously, covariations of the biodiversity and the function with 

some abiotic confounding factors. The invertebrate compartment was assumed to be 

indirectly correlated to nitrate removal through a top-down control on microbial activities 

from in the field observation at Monbequi. In this alluvial wetland, the microbial structure 

was simultaneously observed as positively correlated to invertebrate assemblages. Despite 

of numerous studies on how biodiversity mediates ecosystem functions, whether and how 

microbial diversity influences the nutrient removal has rarely been investigated (Saleem et 

al., 2016).  

More precisely, from in laboratory experiments, the positive effect of invertebrates on 

microbial nitrate reduction suggested a top-down control on microbial communities, which 

may be explained by (i) the feeding process on the microbial community (trophic 

interactions) and/or (ii) the bioturbation processes on physio-chemical properties of 

micro-habitats which influence nitrate removal (non-trophic interactions) by the 

micro-organisms of the interstitial biofilm (Sabater et al., 2002; Mermillod-Blondin et al., 

2003; Stief, 2013).  

Our laboratory experiments (section II.2 and section III.2 in phase 2) showed that, 

under controlled environmental conditions without pesticide stress, nitrate reduction rates 

and its denitrification pathway can increase with the addition of the invertebrate 
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communities’ occurrence as a source of species, feeding groups, and community diversity 

(meio- and macro-invertebrates). These findings implied, in nutrient-rich microcosms, the 

roles of meio- and macro-invertebrate communities at the source of a web of 

cross-community interactions that mediate the nitrate reduction capacity of heterotrophic 

biofilm. The possible positive influences of meio- and macrofauna communities on the 

nitrate removal function will be discussed separately below.   

Meiofauna influences 

Meio-invertebrates are abundant in most of the benthic environments and could be 

closely linked to microbial communities and activities through trophic and/or non-trophic 

relationships (Hakenkamp and Morin, 2000; Liu et al., 2014, 2016).  

Our laboratory results showed that meio-invertebrate assemblages in these hyporheic 

microcosms can significantly enhance nitrate reduction with different initial densities 

(35296 ± 3956 (mean ± SE) and 1392 ± 171 ind. per microcosm in section II.2 and section 

III.2 respectively).  

Moreover, the significant positive effect of the meio-invertebrate community on NO3
- 

reduction rates may be mainly attributed to the influence of rotifers as the dominant taxa 

accounting for 84% of total density at the initial injection (section II.2) and 43% (section 

III.2) with other meiobenthic groups. The rotifer influence on nitrogen removal agreed 

with Liu et al. (2014)’s study. Rotifers may be refered at the source of trophic links with 

microbial community, since some of them are microphageous feeders with such feeding 

habits called primary consumers, but the diet of rotifers also consists of detrital materials. 

In turn, rotifers may also be prey to carnivorous secondary consumers, including as some 

interstitial macro-invertebrates.    

Other main meiofauna taxonomic groups in the experiments 2009 (section III.2) were 

nematodes, copepods, and tardigrades. In the hyporheic microcosms, the positive effect of 

the meio-invertebrate community on NO3
- reduction rates might again to some degree be 

attributed to the influence of rotifers, but is also possibly due to the presence of other taxa 

(e.g. the nematode effect shown by Bonaglia et al. (2014)) and/or complementarity 

inter-community effects (Cardinale et al., 2002). Indeed, nematodes are reported to be 



Chapter IV: General discussion, conclusion and perspectives 

256 

 

other dominant organisms in autotrophic biofilms, e.g. 20-319 ind. cm-2 (Majdi et al., 

2012), and it is known that nematodes can (1) assimilate bacteria and algae (e.g. Moens et 

al., 2005), (2) stimulate bacterial growth by mucus secretions (Riemann and Middelboe, 

2002) and (3) modify oxygen turn over (Mathieu et al., 2007). The influence of nematodes 

on microbial communities shown in autotrophic biofilms probably also exists on the 

microbial communities in heterotrophic biofilms. Perlmutter and Meyer (1991) 

demonstrated that some harpacticoid species were able to consume bacterial - C at one to 

four orders of magnitude higher rates than leaf-shedding macro-invertebrates. 

 As a resume, the meiofauna influence on nitrate removal may be more likely 

explained by its influence on the metabolism activity of the microbial consortium, which 

may directly participate to the control of the biogeochemical process intensity. 

Macrofauna influences 

The possiblely positive influences of macro-invertebrate community and their 

interactions with microbial and meio-invertebrate communities on nitrate removal capacity 

were firstly observed in laboratory experiments (section II.2 and III.2). The relative 

contribution of the relationship between macro-invertebrates and microbial communities 

on nitrate removal were then explored in the field survey of surface waters (section II.3). 

The laboratory findings were in agreement with the positive effects of 

macro-invertebrates on denitrification rates in other microcosms studies 

(Mermillod-Blondin et al., 2000, 2001, 2002, 2003; Mermillod-Blondin and Rosenberg 

2006; Stief 2013). These authors included 2 or 3 trophic levels (microorganisms as primary 

producers or decomposers, macro-invertebrate as consumers, and predators) and certain 

macro-invertebrate taxa of different functional groups (i.e. bioturbation modes) which 

were demonstrated to act as efficient ecological engineers (Jones et al., 1994). These 

studies raised concerns about the functional role of some invertebrate taxa on nutrient 

cycling in the macro-porous sediment.  

The whole macro-invertebrate community added in our microcosms were collected 

from the sediments of natural streams and then introduced in the microcosms with a 

density that was representative of the natural densities. In this way, it probably increased 
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not only the inter-specific diversity of invertebrates, but it also promoted the 

cross-community interactions when mixed with the meiofauna and the biofilm.  

Marshall and Hall (2004) reported invertebrates’ effects on nitrogen cycling in other 

hyporheic microcosms under the laboratory conditions, also using the whole community 

(macro- and meio-fauna) collected from field samples. They found that average net nitrate 

regeneration/uptake rates increased with increasing invertebrate biomass, showing that 

invertebrates suppressed nitrate uptake or stimulated in situ nitrate production. This was 

probably due to the much lower nitrate concentrations in their conditions (13.6 ug. L-1) 

compared to our conditions (10 mg.L-1), which may limit the denitrification rates. 

Moreover, the average seepage velocities in their microcosms were higher (0.15 to 0.89 cm. 

min -1, i.e 2.16 to 12.8 m. d-1) than those in ours (Darcy velocity = 1.39-1.59 m.d -1). This 

enhanced water velocity suggested a faster advective flow through the macro-porous 

sediments and thus possibly induced a lower influence of bioturbation activities on 

denitrification (Mermillod-Blondin and Rosenberg, 2006; Mermillod-Blondin, 2011). 

After the laboratory observations (section II.2 and III.2) of invertebrate influences on 

nitrate removal, the positive independent influences of macro-invertebrate assemblages on 

this function were statistically identified in surface waters at the reach scale (section II.3). 

Trait-based approaches enabled to identify the specific functional groups of 

macro-invertebrates which were associated with nitrate removal in streambeds (e.g. 

scrapers and interstitial organisms) and these findings coincided with our previous 

laboratory results.  

The positive relationship between macro-invertebrates and the nitrate removal 

function in laboratory and in field surveys could be explained based on the influences of 

key species and certain functional traits and modalities (bioturbation modes, feeding 

groups and the traits responding to abiotic conditions).  

Firstly, certain taxa such as some chironomidaes and oligochaetes known as 

ecological engineers, could involve in the denitrification and nitrate removal function 

through their bioturbation activities (Freckman and Virginia, 1997; Jones et al., 1997; 

Mermillod-Blondin et al., 2002; Nogaro et al., 2009; Gette-bouvarot et al., 2014). These 

taxa were observed in section II.2 and III.2. The importance of bioturbation activities on 
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ecosystem functions were previously demonstrated in many aquatic ecosystems, including 

many studies in marine sediments, and some studies in streams and hyporheic zones 

(Gilbert et al., 1998, 2003; Gerino et al., 2003; Navel et al., 2010). The different types of 

bioturbation are representative of several non-trophic interactions with microbial 

community with distinct influences on microbial denitrification process. For instance, 

Oligochaeta tubificids and Chironomidaes such as prodiamesa are both reported as 

bioturbators but with different modes of actions. The former can significantly influence 

denitrification by gallery digging in both diffused- and advection- dominated ecosystems, 

while the later one is building U-shaped burrows, only having significant contribution to 

denitrification in fine depositional sediments (diffusive sediment system) 

(Mermillod-Blondin et al., 2002; Mermillod-Blondin and Rosenberg, 2006; 

Mermillod-Blondin, 2011). However, both of them are highly frequent burrowers in all 

sediments according to Tachet et al. (2002)’s classification. This most widely used traits 

classification did not include the functional groups of bioturbation, which represent the 

different biological reworking mechanisms, i.e. biodiffusors, conveyors, 

inverse-conveyors, regenerators, gallery-diffusors as mentioned by Mermillod-Blondin et 

al. (2002) and Gerino et al. (2003). Only the trait “locomotion and substrate preference” in 

Tachet et al. (2002) provides some information about invertebrates’ dwelling activities, 

which may be associated with these bioturbation activities, but it does not provide more 

precise information. 

In the field, the occurrence of some specific feeding modalities such as “scrapers” 

with high densities could be the consequence of different biotic and abiotic responses to 

environmental variations, like abundant biofilms and little pollution. Yet what will these 

scrapers do in these systems? These traits, associated with trophic and non-trophic 

interactions with microbial communities could be regarded as “effect” traits and modalities 

for ecosystem functions facilitation. The occurrence of these traits, or the relative densities 

of these traits in the invertebrate community may provide relevant information on the 

functional influence of the invertebrate community on the stream ecosystem functioning 

regarding nutrient recycling. For instance, “shredder” richness could be used to indicate 

the decomposition function (Lecerf et al., 2006), since shredders cause litter fragmentation. 
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In analogy, we propose that scrapers, with a potential indirect influence on microbial 

community and activity, could also be regarded as “effect” modality for nitrate removal. It 

is proposed here that the relative frequencies of the scrapers in the invertebrate community 

may be used as indication for the benthic community to nitrate removal as well.  

Additionally, although the type of biofilm could be important to understand the 

pathway involved in biofilm nitrate removal (i.e. autotrophic or heterotrophic), the food 

trait classification in Tachet et al. (2002) did not include any information about biofilm 

type, which could be further usefull in this type of functionnal approach.  

Then, some ecological traits such as “substrate preference” were selected in section 

II.3 because they were correlated to nitrate removal, but can also indicate the abiotic 

conditions which may be related with nitrate removal. The macro-porous sediment was 

positively associated with high nitrate removal capacity, and inversely, fine sediments were 

associated with low capacity. This kind of traits could be regarded as “response” traits for 

the nitrate removal function.  

The cross-community effects on nitrate removal  

In this manuscript, the cross-community effects on the nitrate removal function were 

highlighted in the laboratory experiments. The results indicated the importance to integrate 

more trophic levels in further experimental studies of biodiversity influences on ecosystem 

functions. This agrees with a dominant positive relationship in the majority of BEF studies 

(Harrison et al., 2014), although most of the studies focused on horizontal diversity 

influence while we explored vertical diversity influence on ecosystem functions.  

The macrofauna can feed on meiofauna but the accounts are few in the literature 

(Schmid-Araya et al., 2002). O’Doherty (1988) experimentally removed macrofauna from 

areas of streambed and observed a variable response of meiofaunal abundance, suggesting 

that macrofauna may affect meiofaunal density to some degree. Some meiofauna taxa can 

also be predators (e.g. the rotifer Proales and the nematode Dorylaimus) but the preys of 

meiofauna are less well known than those of macrofauna. There may exist competitions 

and facilitations between macrofauna and meiofauna, which needs to be further explored 

(Piot et al., 2013).  
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As mentioned in the general introduction, many traditional BEF experiments in 

laboratory which manipulate the taxonomic (Cardinale, 2011) and sometimes functional 

diversity (De Bello et al., 2010), only considered one trophic level, and focused on the 

direct BEF relationship (i.e. the biodiversity directly influences the considered ecosystem 

function, like primary producer diversity for the productivity function) (Cardinale et al., 

2012). These authors mentioned that the composition of community (e.g. predators) may 

have larger impacts on ecosystem functions and their performance than species richness. 

Recent studies propose that BEF studies should integrate more trophic levels to consider 

the effect of the vertical biodiversity as well (Balvanera et al., 2006; Cardinale et al., 2012). 

In our study, the hyporheic invertebrate community sheltered several types of functional 

groups such as detritivores, scrappers, shredders and predators in addition to heterotrophic 

microorganisms. Considering such different functional feeding groups in the benthic 

assemblages, our study allowed to consider the complexity of food web (Naeem et al., 

1994) in the ecosystem function.  

Disregarding of these trophic interactions in small-scale experiments may lead to 

difficulties in the demonstration of effects at the species level. It is suggested that the 

experimental designs without community combinations probably underestimate the 

consequences of the species interactions of the ecosystem processes. This error might be 

even larger when the predator group is missing (Duffy et al., 2007; Jabiol et al., 2013).  

IV.1.2.2 Abiotic drivers involved in nitrate removal  

As above mentioned in section IV-1, literatures have reported the influences of abiotic 

(e.g. DOC, NH4
+ concentrations, temperature and the size of the transient zone) and biotic 

factors (e.g. biofilm biomass and metabolism) on nitrate removal in fields (Kemp and 

Dodds, 2002; Battin et al., 2003; Bernot and Dodds, 2005; Simon et al., 2005; Ensign and 

Doyle, 2006; Gücker and Pusch, 2006; Mulholland et al., 2008). In section II.3, a similar 

influence of abiotic and biotic factors on in-stream nitrate removal was statistically 

revealed. 

However, few studies explored, in field conditions, the occurrence of the indirect 

relationship between macrofauna and the nitrate removal function. This was probably due 
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to environmental variations that often cause changes on both biodiversity and ecosystem 

function, thus probably masking the BEF relationship and its directions (Balvanera et al., 

2006). Indeed, most infield studies report the influence of environmental factors on 

ecosystem function and/or biodiversity, which implies the existence of confounding factors 

that make biodiversity effects on ecosystem function even more difficult to depict (such 

discussion is given in section II.3 and III.3). This point is suggested by the survey in the 

Garonne meander where the correlation was only observed during stable hydrological 

conditions. It is suggested, in agreement with literatures, that the balance of the biotic and 

abiotic factors that drive the BEF relationship may not be constant with time and space. It 

is not demonstrated here, neither in the literature, whether this relationship persists or is 

cancelled when the physical factors are overweighing. In addition, the potential 

cross-community interactions settling in the hyporheic zone during low physical 

(hydrological) forcing may explain the visibility of the BEF relationship during this 

possible “hot moment”. The time effect on the BEF observation possibility is addressed 

here probably as resulting of the temporal variation of the balance between the effects of 

biotic and abiotic factors in this environment.  

IV.1.2.3 The relationship of biodiversity and ecosystem functions under 

stress 

The influences of meiofauna and macrofauna on nitrate removal was firstly 

investigated under stressful conditions in a laboratory experiment. This relationship in 

field conditions was then investigated in the alluvial wetland under agriculture pressure as 

sources of nitrate and pesticides. 

The laboratory results in section III.2 was explored with the assumption that the 

positive effect of invertebrates on nitrate reduction observed in previous laboratory 

conditions without stress (section II.2), would also exist in the similar experiments but with 

stress addition. The positive effects of biodiversity on nitrate reduction under stress 

coincided with the stress - gradient hypothesis (Fugère et al., 2012). These authors explain 

that the different conditions induced by the stressor may improve the interspecific and/or 

interactions between species. For instance, if one species can somewhat lower the stress 
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effects (e.g. by providing a refuge, by making a food item of poor quality more readily 

available) then another species may profit of this biological activity. Moreover, the 

experimental studies suggested the requirement of time laps (the second week after 

fungicide injection in section III.2) for the observation of this positive effect after the 

addition of stress. It is pointed out that time probably plays a significant role in the BEF 

settling or recovery (Cardinale et al., 2012).   

In the indoor experiment with additional chemical stress (section III.2), the existence 

of higher densities of rotifers and oligochaetes at the end of the experiments, indicated 

changes in the community structures under such artificial conditions. These changes also 

suggested the development of more resistant species that became dominant concomitant 

with the depletion of more sensitive species, like insect larvae. The specific feeding groups 

(e.g. deposit feeders) and locomotion group (e.g. interstitial organisms) of 

macro-invertebrates previously identifyed as potential ecological engineers in terms of 

nitrate retention activation were still observed at the end of experiment. Although our data 

did not directly testify the biofilm grazing and bioturbation effects, we cannot rule out such 

effects as cross-community interactions contributing to the observed recovery under 

stressful condition. 

However, the relative densities of these resistant functional groups seem more likely 

to increase under the stressful conditions. The intervention of these resistant groups as 

component of the initial community may contribute to the maintenance of 

cross-communities’ interactions under the stressful conditions. 

Our results suggested the importance of invertebrates and the related functional 

groups of bioturbation and feeding in this observed stress response and the recovery of the 

ecosystem function. The vertical biodiversity effect has been demonstrated on other 

ecosystem functions in other ecosystems under stress (Bastian et al., 2008). The recovery 

of nitrate reduction rates patterns in section III.2 suggested the possible resilience capacity 

of the ecosystem with multi-trophic levels in the interstitial community when facing 

stressful conditions.  

Furthermore, this study highlighted the importance of meiofauna interactions with 

biofilm under stress as, since significantly higher denitrification rates were obtained with 
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only the influence of these communities (compared to single biofilm treatment).  

Concerning the cross-community interactions mentioned above, microbial activity is 

also recognized to degrade some pesticides in the interstitial water (Grünheid et al., 2005; 

Sánchez-Pérez et al., 2013). In this way, pesticide stress could be reduced by the 

microorganisms, and other organisms may profit such as invertebrates. 

In the field study of an alluvial wetland (section III.3), the significant positive 

correlation between Shannon diversity and potential denitrification rate was observed in 

autumn. Our results showed that both the variations of invertebrate diversity and 

denitrification rate have similar trends in space and these trends were positively correlated 

with environmental factors such as DOC concentration. Both invertebrate diversity and 

denitrification rate increased when passing from agricultural to natural land types, and 

were negatively correlated with concentrations of pesticides and nitrates.  

The directions of the correlation between taxonomic diversity and ecosystem 

function under stressful conditions was not determined yet in this study, as discussed in 

detail in section III.3. The sensitivity of biological community structures to chemical 

pollution such as pesticides is suspected to indirectly influence the organisms’ activities 

that may drive to these correlations, as previously observed for leaf litter breakdown 

under fungicide (Rasmussen et al., 2012b). Moreover, pesticides targeting different 

organisms are likely to affect one or the other step of the process, and a mixture of 

contaminants might have effects (Harmon and Wiley, 2010; Schafer et al., 2011; Flores et 

al., 2014). 

Furthermore, it is difficult to distinguish the stress impaction of both ecosystem 

functions and biodiversity, or their relationship. One cannot simply attribute these 

variations in biodiversity or ecosystem functions to stress impact, because the gradients of 

pesticides in the field may also covariate with other physico-chemical and hydrological 

variables, such as hydrological connectivity in section III.3.  

Indeed, as mentioned in general introduction, some traditional BEF studies including 

stress influence are reported (Steudel et al., 2012), but rarely investigated, especially in 

animal ecology and freshwater ecosystems (Piscart et al., 2009; Cornut et al., 2012; Steudel 

et al., 2012; Woodward et al., 2012; Colas et al., 2016). This question is essential since it is 
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important to know the context dependency of this relationship, especially regarding rising 

water pollution. Schafer et al. (2007, 2012a, b) derive thresholds for the effects of 

pesticides on macro-invertebrate communities and the ecosystem function of leaf 

breakdown, probably the most studied river function under stress. Rasmussen et al. (2012b) 

suggested the complexity of ecotoxicological effects of pesticides in the field, where some 

toxic compounds may act on the habitat or food choice of an organism and other 

compounds may act on the organism itself, which eventually may increase the total 

ecotoxicological effect on the ecosystem structure and function. In general, there is an 

increasing evidence suggesting that indirect effects of chemical contaminants are more 

common than direct effects (Rohr et al., 2006). Moreover, Rasmussen et al. (2012c) 

reported that in agricultural streams where multiple stressors simultenously exist, 

pesticides can significantly reduced the rate of microbial leaf decomposition, while the 

quality and heterogeneity of physical habitats further influence the actual effect of 

pesticides on microbial leaf processing. Figure IV-3 shows, via a conceptual model, how 

stress could directly and indirectly affect ecosystem functions, for example, nitrate 

removal. 

 

Figure IV-3 A conceptual model showing that stress may directly and indirectly influence on ecosystem 

function (McMahon et al 2012) 

Many anthropogenic stressors could directly affect ecosystem functions (via abiotic 

conditions), as well as indirectly influence the functions via mediating through changes of 

the biodiversity (McMahon et al., 2012). It should be noticed that different species might 

show different sensitivity to the same stressor (e.g. nutrient enrichment globally stimulated 
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the algal-based food webs (algae and invertebrate grazers) but not the detritus-based food 

webs (bacteria and invertebrate shredders) (Artigas et al., 2013); The fungicides probably 

have different impacts on targetted fungi, non-target fungi and invertebrates (Dijksterhuis 

et al., 2011) and it is suspected that these different impacts may lead to different effects on 

ecosystem functions.  

The effect of stressors may be more or less strong whether they impact on affecting 

key species, which underpin the ecosystem function considered, or on species which 

contribute little to the ecosystem function. Also, some resistant species may develop to 

higher densities under stressful conditions and positively or negatively influence the 

function considered. This balancing effect between sensitive and more resistant species in 

one community facing stress is called the complementary buffer effect in Figure IV-3.  

The BEF relationship based on single trophic level may be different from the BEF 

based on multiple trophic levels that allow cross-community interactions, especially when 

facing stress arrival. When the web of cross community interactions exists, it is suspected 

to drive to more resistance to stress with time, consistently with our present results. Yet, 

this aspect is less explored in the literature. Duffy et al. (2007) and Reiss et al. (2009) 

highlighted the importance of more trophic levels in recovering the ecosystem functions 

under stress. Considering the resilience capacity of food webs, it is started to be recognized 

that increased complexity of food webs and interactions with more trophic levels allows to 

have more resistant species and/or stronger interactions, which may increase the stability 

of ecosystem facing stress (McCann, 2000; Duffy et al., 2007; Reiss et al., 2009).  

The laboratory experimental studies (section III.2) suggested the requirement of laps 

of time to observe the positive effect of these interactions after the addition of stress. The 

infield exploration depicted a seasonal effect for the link between invertebrate taxonomic 

diversity and denitrification visible (during only a given period of the year). Thus, these 

results may suggest certain time duration is necessary for the potential biodiversity and 

ecosystem function relationship settling or recovery. This shows the necessity for long time 

monitoring in order to detect this relationship for in situ as in laboratory survey.  
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IV.2 Conclusion 

This manuscript investigated the direct relationship between invertebrate and 

microbial cross-community interactions and the indirect relationship with the nitrate 

removal function in riverine ecosystems integrating both laboratory and field experiments. 

Herein several trophic groups of the benthic food web composed by the microbial, 

meiofauna and macrofauna communities were included, allowing exploring the 

relationship between their interactions and this ecosystem function.  

The laboratory results suggested positive influences of meio- and macro-fauna and 

cross-community interactions with biofilm on the nitrate removal function. Also, with the 

help of specific reports from the literature, some taxonomic groups which may be 

positively related to nitrate removal, considering their feeding and/or bioturbation 

activities (e.g. some rotifers, oligochaetes and chironomids) could be suggested. The use of 

intact invertebrate and microbial assemblages from real streambeds in the indoor 

sediments columns likely reflected processes occurring in the field, since the nitrate 

removal rates measured in these conditions were consistent with the in-stream estimations 

of this ecosystem function. 

This study allowed concluding that:  

- the larger the number of communities in the benthic assemblage, the higher is the 

nitrate retention rate suggesting a positive effect of the number of trophic groups and the 

foodweb complexity on this function;  

- the positive effect of multi-functional groups composition of the benthic community 

may be explained by the enhancement of the cross-community interactions when meio- 

and macro-invertebrates are occurring in the whole community; 

- the number of functional feeding groups constituting a vertical biodiversity may be 

as important as the horizontal biodiversity to assess the variation of the focused ecosystem 

function of nitrate removal; 

- this observation agreed with previous results on the effects of BEF studies 

mentioning that community composition is as important to consider in understanding the 

system’s performance as the species richness;  

- the application of trait-based approaches enabled to explain the link between 
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invertebrate diversity and nitrate removal via a top-down assumption (e.g. scrapers and 

interstitial organisms) and the abiotic filtering assumption (e.g. coarse sediments). For the 

former one, this study identified some modalities of invertebrates that may act as 

ecological engineers for the nitrate removal function in the detritus food web of the 

hyporheic zone. Scrapers and interstitial burrowers may support a close link with the 

biofilms through feeding and non-tropic interactions. 

The correlation between invertebrate communities and nitrate removal was observed 

in field experiments while also considering other biotic and abiotic factors influences on 

the nitrate removal function. In river environments, the biotic influence on the nitrate 

removal function may be as strong as the abiotic controls. 

Moreover, cross-community interactions that drive to nitrate removal showed the 

potentiality to resist and adapt to stress with time. In field conditions, even if we cannot 

attribute the observed positive correlation between invertebrate taxonomic diversity and 

denitrification to diversity effects, the combined effects of abiotic factors on the visibility 

and strength of this relationship could suggest the possible “hot moments” to observe this 

relation. These moments were found in the hyporheic water of alluvial wetlands happened 

during the period of hydrologic stability. At the same period, a positive correlation between 

invertebrate and bacterial community compositions was also observed, which coincided 

with the indirect link between invertebrate communities and the nitrate removal function. 

The “hot places” for biodiversity and ecosystem function were also identified and they 

were located in the connected parts of the wetland with riparian forest coverage and the 

lowest pesticide influence.  

IV.3 Perspective 

This work suggests that the number of communities (or trophic levels) should be 

considered as largely as possible when testing the BEF relationship for assessing the 

function intensity in surface and interstitial habitats of riverbeds and hyporheic zones, 

especially in face of stress. In the context of biodiversity erosion, more diverse benthic 

communities are preferred with special concerns for the water purification service 

sustainability or restoration.  
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Moreover, manipulating invertebrate horizontal diversity, vertical diversity and 

testing the nitrate removal function in the field with similar abiotic conditions could 

contribute to the traditional BEF studies. Additionally, abundant simultaneous records of 

biotic factors (e.g. microbial and invertebrate communities), abiotic factors (e.g. 

hydromorphological and physico-chemical) and stress (e.g. agricultural land use but with 

pesticide measurements) in field conditions could allow more advanced statistical analysis 

(e.g. path analysis) to distinguish the biotic and abiotic mechanisms involved in nitrate 

removal. Besides, more attentions should be given to meiofaunal communities when 

studying the nitrate removal function.  

The present study suggested that some functional traits of the invertebrate community 

could be included into actual biomonitoring of river ecosystems, allowing to establish 

more recognized linkages with nitrate removal. Further investigations of traits for 

meiofauna hyporheic/groundwater communities are still welcome, since, so far, a trait 

database for these communities is lacking. Besides, for the widely used Tachet et al. 

(2002)’s traits database on macro-invertebrates, the integration of bioturbation functional 

traits for invertebrates would be helpful. Also, considering biofilm types (autotrophic, 

heterotrophic) and the food sources they offer would be very welcome for analysing the 

BEF relation concerning the water purification service. 

Cross-community effects could also be considered in further study of the removal 

function for other nutrients (e.g. NH4
+, PO4

3-), taking into account the specific effects and 

processes implying these molecules in BEF functions. Via biofilm, these effects may 

influence the bioremediation capacity for diverse pollution (a spectrum of anthropic 

molecules), which depends on the composition and activity of biofilm. 

Concerning the water purification service, attentions should be paid to the 

participation of the biological communities in the hyporheic habitat, since they are 

interfering with the biogeochemical processes, and it is of interest to evaluate the 

contribution of these communities over a hydrological cycle, and under various levels and 

different types of chemical stress (e.g. acidification). Moreover, although in field 

demonstration of the adverse effects of pesticides on nitrate removal was not easy, the 

positive correlation between invertebrate diversity and denitrification observed in the river 
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meander suggested the possibility to use invertebrate Shannon index as an indicator of the 

denitrification function across stress gradients in field. This spatial consistency between 

biodiversity and ecosystem functions/services is also interesting to be developed, since it 

could provide arguments in conservation planning for biodiversity and ecosystem 

functions/services to decision makers (Mace et al., 2012).  

Additionally, when studying the relationship between biodiversity and ecosystem 

functions, it should be noticed that the biodiversity involved in a given function (e.g. 

bacteria, fungi, invertebrates in nitrate removal) might in fact participate in many functions 

(e.g. decomposition and nitrate removal). Therefore, in further studies for biodiversity and 

ecosystem functions relationships, simultaneous consideration of a variety of functions and 

biodiversity could be very useful for optimizing conservation strategies. 

It was previously demonstrated in laboratory conditions that resistant species or 

groups exist among the ecosystem engineers may contribute to these processes, which 

might be able to develop in the field interstitial communities facing chemical stress. This 

strategy is mentioned (usually), as the endurance strategy that permits to the species to 

persist by acquiring matched resistance and resilience adaptations in disturbed streambed 

(Hershkovitz and Gasith 2013). Thus, the activities of these interstitial engineers may be 

able to facilitate the resilience capacities. The chemical stress pressure, however, should 

remain under a certain threshold that permits the viability of this functional diversity 

(Schäfer et al., 2007). 

The nitrate removal function could be used as a proxy for the water purification 

service, which would allow to transform it into a monetary value using replacement 

methods (La Notte et al., 2012 a,b; Acuña et al., 2013). This economic value may be 

underestimated if the biodiversity involvement in the function is not taken into account in 

the economic valuation of water purification service. The knowledge about the potential 

relationship between biodiversity (e.g. microbial and invertebrate community) and nitrate 

removal capacity encourages the inclusion of the biodiversity compartments in this service 

valuation. Indeed, invertebrate and microbial communities are generally referred as 

“ordinary” or “elemental” biodiversity with functional implication rather that patrimonial 

values. However, their roles are not yet widely recognized or understood by the general 
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public. Considering the important roles of ordinary diversity as well as the abiotic factors 

related to this function, especially when facing stressful conditions, it should be paid more 

attentions to this streambed and sub-surface biodiversity to provide sustainable conditions 

for this ecosystem service. 
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a  b  s  t  r  a  c  t

This  study  highlights  the effects  of  interaction  between  microbial,  macro-  and  meiofauna  on NO3
−-N

and  DOC  reduction  in  macroporous  stream  sediment.  The  tested  hypotheses  are:  the  transformation  of
nutrients  and  dissolved  organic  matter  (1)  is  influenced  by the  presence  of  invertebrates,  (2)  is more
effective  when  the  diversity  of the  vertical  benthic  community  increases.

These hypotheses  were tested  using  microcosms  reproducing  a portion  of  a  river  bed  water-sediment
interface  that was  colonized  with  different  levels  of invertebrate  biodiversity.  Experimental  treatments
were  abiotic  sediment  (AS);  sediment  and  biofilm  (SB);  sediment,  biofilm  and  meiofauna  (SBM);  and
sediment,  biofilm,  meiofauna  and  macrofauna  community  assemblage,  which  corresponds  to  the  total
benthic  community  of  a  river  bed  (SBMM).  Reduction  rates  of  nitrates  (NO3

−-N)  and  dissolved  organic
carbon  (DOC)  in  the  microcosms  were  measured  and  considered  as a  function  of  the  different  levels  of
biodiversity.  Nutrient  reduction  rates  were  monitored  by their  decrease  from  the  aqueous  phase.  Nitrate
reduction  rates  increased  significantly  with  increasing  the  vertical  biodiversity  level. After  56 days  of
biofilm  development,  NO3

−-N  reduction  rates  ranged  from  3.76  ±  0.35  in  SB treatment  to  8.92  ±  0.69  mg  N
d−1 kg−1sediment  Fresh  Weight  (sed  FW)  in the  treatment  with  the maximum  biodiversity  (SBMM).
Denitrification  rates  increased  by a factor of  6 in  presence  of meiofauna  and  macrofauna  compared  to
that  measured  in sediment  without  invertebrates.  DOC reduction  rates  also  varied  significantly  with
biodiversity  levels  but  in  a lesser  extent  than  nitrate  reduction  rates  (41.89  ± 2.24  mg  C  d−1 kg−1sed  FW
with  biofilm  alone  (SB)  to  51.00  ±  1.39 mg  C  d−1 kg−1sed  FW  with  the  addition  of  meiofauna  community)
(SBM).

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Self-purifying capacity or water purification of rivers, as a part of
the waste assimilation ecosystem service of regulation, is defined
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as their ability to eliminate or breakdown excessive nutrients
and compounds that flow in the natural water (Costanza et al.,
1997; Haines-Young and Potschin, 2013). In a context of markedly
increased nitrogen and carbon loadings in most of the surface water
worldwide (Craig et al., 2008; Noe and Hupp, 2008), the study of the
river purification capacity associated to nutrient reduction by sedi-
ments remains a relevant research domain. A focus on nitrogen and
carbon reduction capacities of rivers leads to identification of river
compartments including their physical, chemical and biological
properties that actively participate to the nutrient transformation
pathways.

In rivers, some hydromorphological characteristics tend to facil-
itate biological and microbiological activities in the free flowing
water. For examples, the conditions of (1) low water depth, large
proportions of runs and riffles and (2) high granulometry (mainly

http://dx.doi.org/10.1016/j.ecoleng.2016.03.049
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composed of pebbles/gravels) and favour autotrophic biofilm
development (Ameziane et al., 2002; Battin, 2000; Sauvage et al.,
2003). However, when a hyporheic zone exists, the biofilm biomass
may  be largely extended with heterotrophic metabolisms in the
sediment. This interstitial and attached biomass is composed of
bacteria, protozoans and fungi. This biofilm is regarded as an impor-
tant organic matter storage site and absorption site for dissolved
organic matter (DOM) owing to its large internal surface area
(Koutny and Rulik, 2007). It is recognized to be the main driver
of the carbon and nutrient reduction as required for biomass pro-
duction and respiration (Baker et al., 2000; Battin et al., 2008).
Nitrogen and carbon reduction capacities are now established both
for autotrophic biofilm (Majdi et al., 2012b; Mulholland et al., 2004;
Ribot et al., 2013; Teissier et al., 2007) and for heterotrophic biofilm
in gravel bed sediments (Dahm et al., 1998; Iribar et al., 2015, 2008;
Peyrard et al., 2008). The hyporheic zone, a transition zone between
groundwater and streams (Orghidan, 1959), is now known as a site
of high biological heterotrophic activity that is critical for stream
ecosystem functioning (Boulton et al., 2010, 1998; Nogaro et al.,
2013). It is an important site for mineralization of organic matter
from surface waters. The importance of the hyporheic participation
to the global nutrient processing in a river depends, among other
factors, on the intensity of ground water/surface water (GW/SW)
exchanges linked to the porosity or the clogging of sediment. The
permanent water flow through these transition zones explains why
hyporheic biogeochemical processes are essential for mediating the
chemical quality of adjacent water compartments (Boulton et al.,
1998; Janauer, 2000; Sánchez Pérez et al., 2009; Vervier et al., 2009).

One of the major questions concerning the role of hyporheic
zones is how and to what extent biodiversity that lives in this
habitat is contributing to the riverine ecosystem functioning and
resilience. The activities and biodiversity of benthic invertebrates
are closely connected to microbial functions and related biogeo-
chemical processes in river beds. The general hypothesis is that
biodiversity contributes positively to ecosystem processes and
represents an insurance against environmental variations and dis-
turbances (Loreau et al., 2001). Bioturbation, as an inherent benthic
activity directly influences the physical structure and consequently
the biological and chemical nature of sediments. In fine sediments,
the biogeochemical processes dominated by microbial activity are
tightly linked to macrofauna and meiofauna. They are (1) particle
and solute displacements driven by macrofauna (Franç ois et al.,
2002; Gerino et al., 2003), (2) agglutination of detritus particles
by mucus secretions or proteolytic capacity stimulated by meio-
fauna (e.g. Nascimento et al., 2012; Riemann and Helmke, 2002).
In macro-porous hyporheic sediments, where particle sizes are
similar or larger than those of benthic organisms, bioturbation
is mainly performed by biofilm consumers and galleries diggers
that modify sediment porosity (Mermillod-Blondin et al., 2003;
Mermillod-Blondin and Rosenberg, 2006; Nogaro et al., 2007). A
change in porosity may  thus influence (1) pore water flow and the
associated solutes transport, (2) microbial metabolism pathways
and intensities, and consequently (3) solutes reduction.

Nutrient cycling and organic matter transformation within
the hyporheic zone are mediated mainly by microorganisms
which account for over 90% of the community respiration (Pusch,
1996). However, these microorganisms are under a top-down con-
trol by organisms of higher trophic level such as scraping or
shredding invertebrates (Saleem et al., 2016; Stief, 2013). So inter-
actions between microbial and invertebrate communities could
be considered as a controlling factor for biochemical processes
(Nogaro et al., 2008). Furthermore, the diversity of invertebrates
could also favour these processes (and thus the self-purification
capacity of hyporheic zone) (Nogaro et al., 2007). Influences
of cross-community interactions (i.e. microorganisms-meiofauna-
macrofauna) have been studied in ecosystemic description of

energy fluxes and trophic webs by in situ investigations in
autotrophic biofilms (Majdi et al., 2012b). Nevertheless, still few
well controlled experiments in the literature have explored the
effects of this biodiversity on ecosystem function e.g. excessive N
load transformation and organic matter degradation (Lillebø et al.,
1999; Marshall and Hall, 2004; Webb and Montagna, 1993) in het-
erotrophic biofilms.

The objective of this paper is to characterize the impact of
biodiversity and cross-community efficiency on the ecological pro-
cesses at the subsurface—surface water. Specifically, this study will
consist in characterizing the role of cross-communities (biofilm,
meiofauna, macrofauna) diversity on the reduction of nitrates and
dissolved organic carbon in hyporheic sediments.

2. Materials and methods

The methodology implemented here relies on laboratory exper-
imentation through the use of microcosms i.e. sediment columns
with water circulation to mimic  a river hyporheic ecosystem. To
test the role of biodiversity on nitrogen and carbon reduction
rates, analysis of these elements were performed in water flowing
through a series of microcosms reproducing a portion of water-
sediment interface. The effects of community combinations in
microcosms were tested by comparison of several experimental
conditions setting a gradient of increasing communities numbers.

2.1. Microcosm design

The microcosm design was following our previous study as
described in Sánchez Pérez et al. (2013). 20 Plexiglas columns
(height: 20 cm,  internal diameter: 6.8 cm)  were independently con-
nected to water tanks to form 20 experimental units or microcosms
(Fig. 1a). Abiotic sediment columns were filled with sand and gravel
in four successive layers. Their particulate sizes were in ranges
of 0.5–1 mm,  1–2 mm,  2–10 mm and 10–20 mm.  The thickness of
each layer was 2 cm,  which was  sieved manually with the corre-
sponding mesh before being autoclaved (20 min at 121 ◦C). The
total mass of sediment in each microcosm was  1000 ± 50 g. Mean
porosity was  34 ± 3%. A 300 !m filter was placed at the exit of the
microcosm to maintain the sediment in the column. Silicone tubes
(internal diameter = 3.2 mm)  were used for connection to a high-
density polyethylene tank with 15 L filtered water (90 !m) from
the Garonne River (France). The water was  collected before the
beginning of the experiment in the Garonne River on April 2008,
and conserved in a cold room at 4 ◦C. Peristaltic pumps (323Du
Watson Marlow) were responsible for a downward water circula-
tion in microcosms, realizing a constant infiltration flow rate of
7–8 mL  min−1 (Darcian velocity = 1.39-1.59 m d−1) similar to the
in situ range of water flow in hyporheic sediments (Peyrard et al.,
2008; Sánchez Pérez et al., 2003; Weng et al., 2003). Supplied
water was  aerated in tanks to maintain oxygen saturation. All the
microcosm-setups (n = 20) were placed in a dark room to avoid
phototrophic biofilm development. Room temperature was  fixed
at 15 ± 0.5 ◦C.

2.2. Experimental design

2.2.1. Treatment setup
The experimental design is shown in Fig. 1b. Four different bio-

diversity levels were set in the microcosms to allow comparison of
their functioning: abiotic sediment (AS); sediment and biofilm (SB);
sediment, biofilm and meiofauna (SBM); sediment, biofilm, meio-
fauna and macrofauna community assemblage that corresponds
to the total benthic community of a river bed (SBMM). Water cir-
culation was  activated in a total of 16 microcosms. After 40 days
of incubation, these microcosms were assigned to SB. Another 4
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Fig. 1. Microcosm design (a), treatment setup (b) and experimental design (c). Capital characters in bold were used to name the different treatment (b), i.e. AS = Abiotic Sedi-
ment,  SB = abiotic Sediment + Biofilm, SBM = abiotic Sediment + Biofilm + Meiofauna, and SBMM = abiotic Sediment + Biofilm + Meiofauna + Macrofauna. Note: layers showing
in  (b) are visual aids for treatment presentation. They were mixed properly, gently and homogenously as (a) shown.

microcosms were activated and started then as AS, to evaluate the
biofilm effect (AS × 4 vs SB × 16) during a 7-day period (Phase 1).
Sediment and water for AS were autoclaved just before the begin-
ning of water circulation to limit biofilm development in these
microcosms. At day 47, 16 SB microcosms were divided into three
treatments i.e. SB (n = 4), SBM (n = 6) and SBMM (n = 6). Phase 2
period was used to compare biodiversity effect and lasted for 7 days.

2.2.2. Biofilm incubation
For the treatments with biofilm, the experiment lasted 90 days.

To provide nutrients for constant biofilm growth, KNO3 and
CH3COONa·3H2O were added to each tank and adjusted to the
final concentrations (NO3

−-N, 10 mg  L−1, DOC, 30 mg  L −1) once
a week. This nitrate concentration was set to be high enough so
that metabolism may  not be limited by availability of inorganic
nutrients in the experimental water between 2 nutrient additions
(Muylaert et al., 2009). High acetate addition as carbon substrate
into the microcosms was used to prevent microbial growth limita-
tion during the experiment duration.

2.2.3. Invertebrate sampling and microcosm colonization
In situ invertebrate communities were collected in the Leze River

(a sub-tributary of the Garonne River, South West France). Organ-
isms, detritus and some sediment were collected with a “double
net” surber equipped with 55 and 250 !m mesh size nets that
make it able to sample meiofauna (55–250 !m) and macrofauna
(>250 !m)  simultaneously. The three fractions (organisms, detritus
and some sediments) were divided into subsamples of approx-
imately the same fresh weights, and were introduced together
at the top of the sediment into SBM and SBMM on day 47. A
set of three additional subsamples of these three fractions was
used for invertebrate identification and counting. Replicates of
these subsamples were dried (121 ◦C during 3 h) and introduced
in all microcosms without invertebrate biodiversity to supply the
same amount of sediment and organic matter as to the other
microcosms. These meio- and macrofauna inoculum subsamples
weighed approximately 8 and 89 g (dry weight) respectively.
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Fig. 2. Oxygen concentrations at the end of the experiment (mean ± SE). Sample numbers are n = 4 for AS, n = 16 for SB in Phase 1, and n = 4 for SB, n = 6 for SBM, and n = 6 for
SBMM in Phase 2. Different characters (“a”, “b”) resulting from statistic tests mark the treatments with significantly differences.

2.3. Experimental analysis

2.3.1. Biofilm biomass
The biomass of interstitial biofilm (including fauna when

present) was determined at the end of the experiment by ash free
dry mass (AFDM). A few grams (10%) of sediment of each column
taken at the top and bottom of the column were dried at 105 ◦C for
48 h and then burned off at 500 ◦C for 5 h. Ash free dry mass was
calculated as the difference between the dry weight and the ash
weight, to be used as a proxy of the biofilm biomass. The average
of the two sediment samples was used for each microcosm.

2.3.2. Physical-chemical analysis
For nitrate concentration, water samples from the tank were

filtered through cellulose acetate membranes (25 mm diameter,
0.2 !m and VWR) and analyzed by a high performance ion chro-
matographic analyser (DIONEX, DX500 and DX120). For dissolved
organic carbon concentration, water samples were filtered (What-
man GF/F glass-fiber, 0.7 !m,  25 mm diameter, and pre-combusted
at 500 ◦C for 4 h), acidified with concentrated hydrochloric acid (6N)
until pH < 2 (10 !L HCl per ml  of filtrate) and kept in 8 mL  glass tubes
(pre-combusted at 500 ◦C) in the refrigerator, then examined by
a Total Organic Carbon Analyzer (Shimadzu TOC-5000A). For dis-
solved O2 records, a measuring chamber containing an electrode
WTW  CellOx 325 beforehand calibrated was incorporated into the
water circulation at the outlet of the column.

2.3.3. Meio/macro fauna identification
Three more replicates of wet subsamples with fresh inverte-

brates were stored at the initial time for fauna quantification. At the
end of the experiment, 90% of the total sediment in each microcosm
of SBM and SBMM were used for identification and quantification of
the remaining communities. Samples were preserved in 5% forma-
lin until sorting of organisms. Meiofauna and macrofauna (Tachet
et al., 2002) were identified at the lowest taxonomic level as possi-
ble using a stereo dissecting microscope.

2.3.4. Aerobic respiration and denitrification
Aerobic respiration and denitrification were measured at the

end of the experiment following the slurry technique (Furutani
et al., 1984). About 10 g of wet sediment of each sediment layer
was placed in 150 mL  flasks supplemented with a feeding solution

in order to optimize microbial activity. For the measurements of
N2O production (denitrification), the incubation was under anaer-
obic conditions with a N2 atmosphere. The feeding solution was
a mixture of 5 mL  of a KNO3 (2.2 g L−1), glucose (7.5 g L−1) and
glutamic acid (7.3 g L−1) solution. For the measurements of CO2
production (respiration), the incubation was  realized under aer-
obiosis with 5 mL  of a feeding solution of glucose (7.5 g L−1) and
glutamic acid (7.3 g L−1). Then incubation flasks were filled with
helium (He). The sequence was repeated three times, and inside
pressure was adjusted to atmosphere. After removal of 15 mL  of He
from the incubation flasks, 15 mL  of C2H2 (10% v/v final volume) was
added to inhibit N2O reductase. All incubations were carried out at
20 ◦C, in the dark and gently shaken. At 3 h and 6 h, gasses (C CO2
and N NO2) were measured by gas chromatography on a MTI 200
microcatharometer and dry weights of the sediment samples used
were determined after drying at 60 ◦C to express the results as !g
of C or N per hour and per gram of dry weight sediment (!g h−1 g−1

sed DW).

2.4. Nutrient reduction rates

The definition of nutrient reduction rate is referred to the total
quantity of nutrient that is removed from water when passing
through the sediment of microcosms. It is estimated by the changes
of quanlities over time in the reservoir water. In this paper, the
nitrate reduction rate quantifies the sum of all the processes which
transform the nitrate and that can be happening during the water
flow through the sediment column, mainly denitrification, DNRA
and anammox pathways. The dissolved organic carbon DOC reduc-
tion rate in this paper is referring to all the microbial metabolism
processes of aerobic and anaerobic re-mineralization of DOC. It is
mainly occurring as an oxidation process of DOC. The differences
in NO3

−-N and DOC concentrations in the tank water between
two sampling dates (time interval: 7 days) and the fresh weights
of the sediment (sedFW) in each microcosm were used to calcu-
late the reduction rates, which were finally expressed as “mg  N or
C.d−1.kg−1 sed FW”.

2.5. Statistical analysis

The equality of variances of the dataset was tested using Levene
test. Log transformed dataset was  used if the assumption was vio-
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lated. For comparing certain variables in two treatments, a student
t-test or a Mann-whitney test was used depending on the equality
of the sample sizes of the datasets. ANOVA test was  used to analyze
differences between the three treatments. Tukey post-hoc test was
used to determine the different groups.

3. Results

3.1. Macrofauna and meiofauna

At the end of the experiment, the mean ash free dry weight of
sediments i.e. biofilm biomasses in SB and SBMM was 5.02 ± 0.39 g
and 5.18 ± 0.43 g respectively. No differences were found among
these treatments (p > 0.05). It indicates that the addition of inver-
tebrates did not have either positive or negative pressure on
hyporheic biofilm biomass in this study.

A total of 29 macrofaunal taxa were introduced into SBMM.  The
total macrofaunal density was ranging from 191 to 380 individuals
per microcosm. Diptera (Chiromidaes) dominated the macrofau-
nal community i.e. contributed to 70%, followed by Plecopteres
(12%), Coleoptera (5%), Oligochaeta (4%) and Hydrachnidiae (4%)
and a few Ephemeroptera (2%) and Tricoptera (1%). The domi-
nant functional groups of macroinvertebrate at the initial period
were scrapers (23%), deposit feeders (22%), shredders (20%), preda-
tors (20%), followed by filter feeders (9%) and parasites (4%). Total
density per microcosm at the end of the experiments (48 ± 18
ind. per microcosm) was lower than that at the beginning of
the macrofauna introduction (267 ± 25 ind. per microcosm). Tax-
onomic composition varied from the beginning compared with
the end of experiments. The dominated taxa were Diptera (40%),
followed by Oligochaeta (29%) and Hydracarien (14%)in the total
density of macrofauna at the end of the experiment. Predators
became the most numeric functional feeding group (50%) and fol-
lowed by deposit feeder (26%), Scraper (14%), absorber (4%) and
shredder (3%) in the total density at the end.

A total of 19 meiofaunal taxa were introduced into SBM
and SBMM.  The mean meiofaunal density at the beginning was
35296 ± 3956 ind. per microcosm. With a relative abundance of
84% in both SBM and SBMM,  rotifers were the most abundant
organisms introduced in the microcosms with the meiofauna frac-
tion, followed by Tardigrades (8%) and meiobenthic Chironomidae
larve (3%). Total density per microcosm at the end of the experi-
ment (5437 ± 3596 in SBMM and 5268 ± 2062 ind. per microcosm
in SBM) was lower than that at the beginning of the invertebrate
introduction. Rotifers became even more dominant (95% in SBM,
96% in SBMM).

3.2. O2 concentrations

At the end of Phase 1, mean O2 concentration in SB was
significantly lower than that in AS indicating a notable biofilm con-
sumption of O2 (Fig. 2). Significantly lower mean O2 concentration
was found in SBMM than in SB and SBM in Phase 2, highlight-
ing how the introduction of meio- and macrofauna increased O2
consumption.

3.3. NO3
−-N and DOC reduction rates

At water circulation starting i.e. before nutrient enrichment and
invertebrate addition, no differences in concentrations of NO3

−-N
and DOC between treatments were found (p > 0.05). Mean concen-
trations measured in all microcosms were equal to 3.7 ± 1.0 mg  L−1

for DOC and 1.8 ± 0.1 mg  L−1 for NO3
−-N. At the start of Phase 1 i.e.

after addition of KNO3 and CH3COONa in each microcosm, mean
concentrations of 31.2 ± 2.1 mg  L −1 for DOC and 11.2 ± 0.5 mg  L −1

Fig. 3. NO3
−-N reduction rates (a) and DOC reduction rates (b) at the end of the

experiment (mean ± SE). Sample numbers are n = 4 for AS, n = 16 for SB in Phase 1,
and  n = 4 for SB, n = 6 for SBM, and n = 6 for SBMM in Phase 2. Different characters (“a”,
“b”) resulting from statistic tests mark the treatments with significantly differences.

for NO3
−-N were detected with no significant differences between

treatments (p > 0.05).
In Phase 1, NO3

−-N reduction rate in SB was  significantly higher
than that in AS indicating a positive hyphorheic biofilm effect
(p < 0.05, Fig. 3a). NO3

−-N reduction rates in SB did not change
with time (p > 0.05), indicating a stable ability of mature biofilm
for NO3

−-N reduction. However, in Phase 2, with the introduction
of meiofauna, NO3

−-N reduction rate was  increasing significantly
i.e. SBM > SB (p < 0.05), and the addition of macrofauna resulted in
the significantly highest 3 NO3

−-N reduction rate 8.92 ± 0.69 mg N
d−1 kg−1 sed FW compared to the other treatments (p < 0.01). It
is implied that the increasing vertical biodiversity enhanced the
efficiency of NO3

−-N reduction in the microcosms.
In Phase 1, DOC reduction rate in SB was significantly higher than

in AS, implying a positive hyporheic biofilm effect, as on NO3
−-N

reduction (p < 0.05, Fig. 3b). Similarly, mean DOC  reduction rates
in SB did not vary in Phase 2 compared with reduction rates in
Phase 1 (p > 0.05). However, in Phase 2, mean of DOC reduction
rates in SBM was  51.00 ± 1.39 mg  C d−1 kg−1 sedFW, significantly
higher than reduction rates in SB (p < 0.01). Besides, DOC reduction
in SBM was  also significantly higher than that in SBMM (p < 0.05).

3.4. Microbial activities

Mean denitrification rate in SBMM was significantly higher (6-
fold) than that in SB (p < 0.01, Fig. 4a). No significant difference of
the mean respiration rates between SBMM and SB (p > 0.05, Fig. 4b)
was found.
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Fig. 4. Denitrification (a) and respiration (b) rates at the end of experiment
(mean ± SE). Sample numbers are n = 4 for SB, n = 6 for SBMM.  Different charac-
ters (“a”, “b”) resulting from statistic tests mark the treatments with significantly
differences.

4. Discussion

4.1. Hyporheic biofilm effect on nitrate and DOC reductions

Our results show notable nitrate and DOC reductions in the
treatment with only sterilized sediment and recirculating river
water, suggesting that processes going on during the 7-days early
biofilm development can remove nitrate and DOC from the water.
Heterotrophic bacteria may  be the early settlers in the hyporheic
space (Droppo et al., 2007). Previous studies also suggested that in
hyporheic biofilms, the ability of bacteria to acquire inorganic N is
responsible for the early nitrate and DOC decline in interstitial pore
water (Findlay and Sinsabaugh, 2003; Findlay et al., 2003).

Since early biofilm development happened in AS, the compari-
son of reduction rates between AS and SB is no longer considers
the absence and presence of biofilm, but the early (7-days age)
and mature (56-days age) biofilms. Thus, in our experiment, dur-
ing phase 1, nitrate and DOC reductions significantly increased
with biofilm age. Change in such reduction efficiencies achieved
by the heterotrophic consortium may  be due to changes of biofilm
biomass and 3-dimensional configuration and/or its species com-
position or populations activity levels. Among these biological
factors, biofilm thickness and therefore its biomass is one of major
factor that influences biofilm functioning and consequently water
quality (Battin et al., 2008; Sabater et al., 2002). Although data on
biofilm biomass evolution with time is not provided by the present
study, it is assumed that the biofilm biomass increased with time.
It can be thus envisaged that when biofilm biomass increases in
hyporheic zones, steep redox gradients may  occur and anoxic zones
may  be created where anaerobic pathways take place in deeper
layers. Thus redox gradients in the sediment could be one of the
explanations for nitrate and DOC cyclings success (Claret, 1998;
Nielsen et al., 1990; Triska et al., 1993).

4.2. Invertebrate community effect on nitrate and DOC reduction

Our results recorded a remarkable biodiversity effect on nitrate
reduction rates i.e. with increasing vertical biodiversity level i.e. the
number of occurring communities. Nitrate reduction efficiencies
were enhanced with additional invertebrate communities com-
pared to single biofilm treatment (SBMM > SBM > SB > AS, Fig. 3a).
This demonstrated not only the influence of biodiversity but
also the positive effect of interactions between invertebrates and
biofilm which we here call cross-communities effects. This is, to the
best of our knowledge, the first demonstration of such biodiversity
effect at the level of the communities on water quality in hyporheic
ecosystem.

The one-fold higher nitrate reduction rate in SBM than that in
SB indicated the role of the meiofaunal group in stimulating the
nitrate removal process. Unfortunately, the denitrification rate in
SBM is not available.

Meiofauna i.e. benthic rotifers – the most abundant group in our
microcosms – are primarily microphagous i.e. consuming microal-
gae, bacteria, protozoan and/or fungi (Duggan, 2001; Mialet et al.,
2013; Ricci and Balsamo, 2000). Thus, their effect on reduction
rates could be also interpreted as partly resulting from the meio-
fauna feeding (grazing and filtration) activity that could change the
microbial flora and/or stimulate the microbial growth (e.g. Aller and
Aller, 1992; Liu et al., 2015). Bonaglia et al. (2014) showed how the
presence of nematodes (without macrofauna) can increase nitrate
removal efficiency from marine sediments through enhancing bac-
terial denitrification rate. This meio-bioturbation activity provides
a rationale that meiofauna can stimulate the growth of denitrify-
ing bacteria in fresh water as in marine sediments. Consequently,
we suggest that the higher nitrate reduction rate in the presence
of meiofauna could indirectly result from the bioturbation activity
of rotifers, stimulating N- treating bacteria. Besides, bioturbation
activity of both meio-and macrofauna could modify the physical-
chemical properties of sediments, which also change the nutrient
reduction by sediments (Bonaglia et al., 2013, 2014; Ferguson and
Eyre, 2007).

The taxa composition of macrofauna varied from the beginning
to the end of the experiment, however, Diptera were dominant
throughout the experiment. Also a notable increase of Oligochaete
density percentage was  recorded in the composition, which may
due to their tolerance to the effect of nutrient loadings (Giere, 2009;
Verdonschot, 1996). The decrease of macrofauna density during the
experiment may  result in part from the high fraction of predators at
the end of the experiment. The meiofauna also showed a decrease
of total density during the experiment with increasing rotifer dom-
inance in the community. It is known that rotifers are resistant to
perturbed environment (Majdi et al., 2012a; Palmer et al., 1992).

The two-fold higher nitrate reduction rate in SBMM than that
in SB implied that macrofaunal organisms can facilitate the self-
depuration process in hyporheic zones. It may  be emphasized that
among the treatments in our experiments, SBMM could reflect
the in-situ condition of a river bed. Thus, comparison of N reduc-
tion with and without macrofauna indicates that the lack of either
macrofauna, or meiofauna could result in negative effect on nitrate
removal efficiency by biofilm. This demonstration may be useful
as argument for invertebrate biodiversity conservation by indicat-
ing that this complete biodiversity, with possible cross community
interactions, is a prerequisite for self-purification service efficiency.
Our results show that, not only macrofauna, but also meiofauna
are involved in this service performance, i.e. can indirectly inter-
fere with the relative efficiency of biofilm to improve water quality.
Diptera larvae, dominant in our experiments, are known as being
characteristic of one mode of bioturbation i.e. bioirrigation which
refers to the process of benthic organisms flushing their burrows
with overlying water (Roskosch et al., 2010). This may  result in
creating organic-rich microenvironments favorable for nitrate con-
sumption (Gilbert et al., 1995), because the burrows may trap labile
organic matter (Ford et al., 1999; Hansen et al., 1996; Michaud et al.,
2006). Thus, the contribution of macrofauna such as Diptera could
be the one of the accelerators of nitrate reduction in hyporheic
zones. Stief (2013) reviews three types of animal–microbe
interactions (i) ecosystem engineering, (ii) grazing, and (iii)
symbiosis, which attest of sediment dwelling invertebrates as
important mediators between nutrients in the water and microbes
in the benthos. Nitrate reduction rates increase between SBM and
SBMM also includes the possibility of the interactions between
macro- and meiofauna communities. Few studies provide the influ-
ence of such interactions on nitrogen concentration changes in
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aquatic ecosystems. Recently, Bonaglia et al. (2014) pointed out
that, in the presence of macrofauna (bivalves), high meiofauna den-
sities (mainly nematodes) do not stimulate denitrification, which
contrasts with our findings that denitrification rate was higher in
SBMM than SB. This underlies the need to understand this type of
interactions to better estimate their impact on nitrate reduction in
ecosystems.

Unlike for nitrate reduction rate, our results showed that
higher DOC reduction rates occurred in SBM than in both SB and
SBMM microcosms. No differences in DOC reduction were observed
between SB and SBMM.  This shows that the meiofauna activity
stimulated heterotrophic bacterial activity compared to the one
taking place in microbial mats only, but this stimulation was less
effective when meio- and macrofauna communities were com-
bined (SBMM). One other explanation is that biofilm growing in
treatment with invertebrate was stimulated, but a simultaneous
grazing pressure results in similar biofilm biomass in all condi-
tions. It is very likely that the potential increase of bacteria growth
stimulated by meiofauna inputs was responsible for the higher
DOC reduction since heterotrophic bacteria use DOC as a carbon
source. Besides, it is reported that meiofauna (rotifers) could import
a substantial amount of organic matter into river biofilm (Kathol
et al., 2011). Therefore, the decrease in DOC from water can also
be caused by meiofauna filtration activity. Macrofauna has been
reported to decrease both meiofauna activity and abundance in
marine sediments due to disturbance, predation or competition
for food (Alongi, 1985; Bonaglia et al., 2014; Branch and Pringle,
1987; Ólafsson et al., 1999). Besides, in running waters it is known
that macrofauna can affect nitrate reduction ability of phototrophic
biofilms negatively by reducing their biomass (Sabater et al., 2002).
It is thus possible that the observed negative effect of macrofauna
on DOC reduction was due to (1) the predation on meiofauna
which could limit the growth and activity of meiofauna, and fur-
ther indirectly the bacterial DOC reduction, and (2), by consuming
the biofilm biomass. Moreover, the equivalent respiration rates in
SB and SBMM supported the assumption that the bacteria activ-
ity is limited by the addition of macro and meiofauna community.
Michaud et al. (2006) reported a concomitant increase in nitrate
and DOC reduction rates with the presence of macrofaunal gallery-
diffusors, however, the biodiffusors had much less effect on DOC
flux. This suggests that the effect of macrofauna on DOC reduc-
tion is probably related to the functional groups i.e. the modes of
bioturbation (Michaud et al., 2005).

Most of the previous studies of invertebrates–microbial com-
munities interactions in biofilms underlined the macrofaunal
effects on nutrient reductions rates effects with a negative relation:
macro-consumers might substantially depress the global biomass
of the biofilm, and therefore the final outcome of the element
cycling (Marshall and Hall, 2004; Mulholland et al., 1994; Sabater
et al., 2002). The fact that we measured a positive relation sug-
gests that the interaction may  occur through other pathways e.g.
stimulating the growth of bacteria (Liu et al., 2015) which could
counterbalance the biomass reducing effect. The major possible
effect of biodiversity that explains the increase of metabolism
and its efficiency is then likely the results of cross-compartment
interactions.

4.3. Comparison with in situ nitrate reduction

In our study, the nitrate reduction rates in all treat-
ments were calibrated by microcosm area to allow comparison
with in situ investigations. The present results ranged from
0.10 to 2.34 mg  N m−2 min−1, averaged 0.91 ± 0.10 mg  N m−2 min−1

(mean ± SE, calibrated by microcosm area), which fall in the
range of those measured in 11 European rivers i.e. from 0.11
to 11.0 mg  N m−2 min−1 and averaged 1.94 ± 0.31 mg  N m−2 min−1

(n = 65, unpublished data,; Sánchez Pérez et al., 2009). This sug-
gests that our microcosms quite successfully mimicked a natural
river bed scenario and reflected a real nutrient reduction capacity
of the hyporheic zone. This is an opportunity to underline that the
fauna effect is inherently included in all in situ nitrate reduction
measurements.

5. Conclusion

This study aimed to emphasis the important roles of biodiver-
sity on biogeochemical (nitrogen and carbon) reduction efficiencies
in subsurface-surface water interface. This study shows that for
nitrate reduction rates especially, microbial community in interac-
tion with meiofauna and macrofauna in the hyporheic sedimentis
favouring the efficiency of this natural service of water purification.
This observation confirms that cross-community diversity effect
plays a role in the self-purifying service, and it should be considered
with the same attention as the intra-community diversity effect.
This study also provides a demonstration that a loss of this biodiver-
sity might threaten ecosystem’s functioning (Loreau, 2000; Loreau
et al., 2001; Petchey, 2004). Recent studies, indeed, have suggested
that the biodiversity decrease might reduce ecosystems’ services
through feedback mechanisms (Worm et al., 2006). Also, since
this experiment demonstrates the influence of hyporheic sediment
and related biodiversity on nutrient reduction, the preservation of
hyporheic zone in rivers looks like a primary condition to develop
this service in nature.
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Annex II  

Comparison between the experiments in 2008 and 2009  

Figure annex II-1 reports the timetables for the two experiments extract from the 

Inbioprocess project in 2008 without pesticide injection (section II.2) and in 2009 with 

pesticide injection (section III.2). The microcosm design was the same in these two 

experiments. These two experiments were conducted in similar experimental conditions 

(e.g. the same initial nitrate and DOC concentrations at the beginning of each phase and the 

same weight of sediments addition, see the detail in the materials and methods in section 

II.2 and III.2). The periods of time with invertebrates in microcosms were both 28 days for 

the two experiments. The sediments and invertebrate communities were both collected 

from the Leze river in France, but on different dates (April of 2008 and February of 2009).  

 

Figure annex II-1 Timetables for the experiments in 2008 (section II.2) and in 2009 (section III.2) 

respectively. The green marks indicate the days after the introduction of invertebrates  
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Biotic metrics 

From Figure annex II-2, total density of meiofauna at the initial time of the 

experiments in 2008 was significant higher than that in 2009 (t-test, t=8.6, p=0.001), while 

Shannon at the initial time of the experiments in 2008 was significant lower than that in 

2009 (t-test, t=15.2, p<0.001). No significant difference of meiofaunal richness was 

observed between the initial times in 2008 and 2009 (Mann-whitney test, p>0.05). 

Total density of macrofauna at the initial time of the experiments in 2008 was 

significant higher than that in 2009 (Mann-whitney test, p=0.02), while richness and 

Shannon of macrofauna at the initial time of the experiments in 2008 were significant 

lower than that in 2009 (Mann-whitney test, p=0.05 and p=0.02 respectively). 

Figure annex II-2 Means ± standard errors (SE) for density (a, b), richness (c, d), taxonomic Shannon index 

(e, f) of meiofauna (a, c, e) and macrofauna (b, d, f) (n=6 for macrofauna of SBMM treatment in 2008and n=3 

for the others), when introduced in the sediment columns “Initial” and at the “End” of the experiments in  

2008 (section II.2) and 2009 (section III.2). The biotic metrics meiofauna at SBM treatment in 2008 are not 

measured. *: Significant differences between treatments are indicated by t-test or Mann-whitney test (p < 

0.05) 



Annex 

 

305 

 

No significant differences of total density, richness and Shannon of meiofauna and 

macrofauna were detected between the end of experiments in 2008 and 2009 (t-test or 

Mann-whitney test, p>0.05) (Figure annex II-2).   

Invertebrate community compositions  

For meiofauna, the dominant group at initial time of 2008 and 2009 experiments was 

rotifer with different relative total densities (84 % and 46%, respectively). Rotifers were 

still dominant at the end of both experiments (96 % and 87%) (Table annex II-1). 

For macrofauna, the dominant group at the initial time of 2008 experiment was 

diptera (70 % of relative total density), while Dipteras only accounted for 24% in 2009 

(Table annex II-2). At the end of experiments, Dipteras were still dominant in 2008 and 

Oligocheta became the numerous group in 2009 (Table annex II-2).   

Table annex II-1 Density and composition of the taxonomic groups of meiofauna in 2008 and 2009, 

regarding the mean density (number of individuals per column) and corresponding percentage of the density 

at the beginning and the end of experiment  

 

 

 

 

 

 

 

 

 

density percentage density percentage density percentage density percentage density percentage
Rotiferes 30178 84% 675 46% 5249 96% 52028 80% 25303 87%
Nematode 1078 3% 192 13% 125 2% 12931 20% 3833 13%
Tardigrade 2874 8% 233 16% 15 0% 6 0% 0 0%
Copepode 130 0% 92 6% 37 1% 50 0% 21 0%
Cladocere 35 0% 25 2% 0 0% 0 0% 0 0%
Hydracarien 42 0% 8 1% 5 0% 0 0% 21 0%
Diptera 1101 3% 125 9% 10 0% 0 0% 0 0%
Oligochete 305 1% 17 1% 11 0% 0 0% 7 0%
Ephemeroptere17 0% 17 1% 5 0% 0 0% 0 0%
Plecoptere 0 0% 8 1% 0 0% 0 0% 0 0%

Taxonomic
Group

2009 Initial 2009 End
SBM SBMM

2008 Initial 2008 End
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Table annex II-2 Density and composition the taxonomic groups of macrofauna in 2008 and 2009, regarding 

the mean densities i.e. number of individuals per microcosm and corresponding percentage of the total 

density (in the brackets) at the beginning and the end of experiment 

Taxonomic Group 2008 Initial  2009 Initial  
  

2008 End  2009 End  
  

Diptera 188 (70%) 32 (24%)   19 (40%) 8 (11%) 

Coleoptere 12 (5%) 24 (18%)   4 (8%) 11 (15%) 

Hydracarien 8 (3%) 19 (14%)   7 (14%) 16 (21%) 

Oligochaete 10 (4%) 15 (11%)   14 (29%) 37 (50%) 

Ephemeroptere 5 (2%) 14 (10%)   0 (0%) 1 (1%) 

Plecoptere 31 (12%) 13 (9%)   0 (0%) 0 

Tricoptere 3 (1%) 9 (7%)   0 (0%) 1 (1%) 

Mollusque 0 (0%) 7 (5%)   0 (0%) 1 (1%) 
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