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d’optimisation

JURY
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Carlos CONCA Professeur
(Universidad de Chile)

Directeur de thèse
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RÉSUMÉ
SUR LE PROBLÈME INVERSE DE DÉTECTION D'OBSTACLES

PAR DES MÉTHODES D'OPTIMISATION

Cette thèse porte sur l'étude du problème inverse de détection d'obstacle/objet
par des méthodes d'optimisation. Ce problème consiste à localiser un objet in-
connu ω situé à l'intérieur d'un domaine borné connu Ω à l'aide de mesures de bord
et plus précisément de données de Cauchy sur une partie Γobs de ∂Ω. Nous étudions
les cas scalaires et vectoriels pour ce problème en considérant les équations de
Laplace et de Stokes. Dans tous les cas, nous nous appuyons sur une résultat
d'identi�abilité qui assure qu'il existe un unique obstacle/objet qui correspond à la
mesure de bord considérée.

La stratégie utilisée dans ce travail est de réduire le problème inverse à la min-
imisation d'une fonctionnelle coût: la fonctionnelle de Kohn-Vogelius.
Cette approche est fréquemment utilisée et permet notamment d'utiliser des méth-
odes d'optimisation pour des implémentations numériques. Cependant, a�n de bien
dé�nir la fonctionnelle, cette méthode nécessite de connaître une mesure sur tout le
bord extérieur ∂Ω.

Ce dernier point nous conduit à étudier le problème de complétion de don-
nées qui consiste à retrouver les conditions de bord sur une région inaccessible,
i.e. sur ∂Ω\Γobs, à partir des données de Cauchy sur la région accessible Γobs.
Ce problème inverse est également étudié en minimisant une fonctionnelle de type
Kohn-Vogelius. La caractère mal posé de ce problème nous amène à régulariser la
fonctionnelle via une régularisation de Tikhonov. Nous obtenons plusieurs pro-
priétés théoriques comme des propriétés de convergence, en particulier lorsque les
données sont bruitées.

En tenant compte de ces résultats théoriques, nous reconstruisons numérique-
ment les données de bord en mettant en oeuvre un algorithme de gradient a�n
de minimiser la fonctionnelle régularisée. Nous étudions ensuite le problème de dé-
tection d'obstacle lorsque seule une mesure de bord partielle est disponible. Nous
considérons alors les conditions de bord inaccessibles et l'objet inconnu comme les
variables de la fonctionnelle et ainsi, en utilisant desméthodes d'optimisation de
forme géométrique, en particulier le gradient de forme de la fonctionnelle
de Kohn-Vogelius, nous obtenons la reconstruction numérique de l'inclusion
inconnue.

En�n, nous considérons, dans le cas vectoriel bi-dimensionnel, un nouveau degré
de liberté en étudiant le cas où le nombre d'objets est inconnu. Ainsi, nous util-
isons l'optimisation de forme topologique a�n de minimiser la fonctionnelle de
Kohn-Vogelius. Nous obtenons le développement asymptotique topologique de
la solution des équations de Stokes 2D et caractérisons le gradient topologique de
cette fonctionnelle. Nous déterminons alors numériquement le nombre d'obstacles
ainsi que leur position. De plus, nous proposons un algorithme qui combine les
méthodes d'optimisation de forme topologique et géométrique a�n de déterminer



numériquement le nombre d'obstacles, leur position ainsi que leur forme.

Mots clés: Problème inverse géométrique, optimisation de forme, problème de
complétion de données, analyse de la sensibilité topologique, gradient topologique,
gradient de forme, fonctionnelle de Kohn-Vogelius, équation de Laplace, équations
de Stokes.



ABSTRACT
THE INVERSE PROBLEM OF OBSTACLE DETECTION VIA

OPTIMIZATION METHODS

This PhD thesis is dedicated to the study of the inverse problem of obstacle/ob-
ject detection using optimization methods. This problem consists in localizing
an unknown object ω inside a known bounded domain Ω by means of boundary
measurements and more precisely by a given Cauchy pair on a part Γobs of ∂Ω. We
cover the scalar and vector scenarios for this problem considering both the Laplace
and the Stokes equations. For both cases, we rely on identi�ability result which
ensures that there is a unique obstacle/object which corresponds to the considered
boundary measurements.

The strategy used in this work is to reduce the inverse problem into the mini-
mization of a cost-type functional: theKohn-Vogelius functional. This kind
of approach is widely used and permits to use optimization tools for numerical im-
plementations. However, in order to well-de�ne the functional, this approach needs
to assume the knowledge of a measurement on the whole exterior boundary ∂Ω.

This last point leads us to �rst study the data completion problem which
consists in recovering the boundary conditions on an inaccessible region, i.e. on
∂Ω\Γobs, from the Cauchy data on the accessible region Γobs. This inverse problem
is also studied through the minimization of a Kohn-Vogelius type functional. The
ill-posedness of this problem enforces us to regularize the functional via a Tikhonov
regularization. We obtain several theoretical properties as convergence properties,
in particular when data is corrupted by noise.

Based on these theoretical results, we reconstruct numerically the bound-
ary data by implementing a gradient algorithm in order to minimize the regularized
functional. Then we study the obstacle detection problem when only partial bound-
ary measurements are available. We consider the inaccessible boundary conditions
and the unknown object as the variables of the functional and then, using geo-
metrical shape optimization tools, in particular the shape gradient of the
Kohn-Vogelius functional, we perform the numerical reconstruction of the
unknown inclusion.

Finally, we consider, into the two dimensional vector case, a new degree of free-
dom by studying the case when the number of objects is unknown. Hence, we
use the topological shape optimization in order to minimize the Kohn-Vogelius
functional. We obtain the topological asymptotic expansion of the solution of
the 2D Stokes equations and characterize the topological gradient for this func-
tional. Then we determine numerically the number and location of the obstacles.
Additionally, we propose a blending algorithm which combines the topological and
geometrical shape optimization methods in order to determine numerically the num-
ber, location and shape of the objects.



Keywords: Geometrical inverse problem, shape optimization, data completion
problem, topological sensitivity analysis, topological gradient, shape gradient, Kohn-
Vogelius functional, Laplace equation, Stokes equations.



RESUMEN
EL PROBLEMA INVERSO DE DETECCIÓN DE OBSTÁCULOS

POR MÉTODOS DE OPTIMIZACIÓN

Esta tesis está dedicada al estudio del problema inverso de detección de ob-
stáculos/objetos utilizando métodos de optimización. Este problema consiste
en localizar un objeto desconocido ω dentro de un dominio acotado conocido Ω
por medio de mediciones en el borde, más precisamente dadas por un dato de tipo
Cauchy en una parte Γobs de ∂Ω. Estudiamos los casos escalares y vectoriales para
este problema, considerando las ecuaciones de Laplace y de Stokes. En ambos
casos nos apoyamos en resultados de identi�cabilidad, los cuales aseguran la exis-
tencia de un único obstáculo/objeto asociado a la medición de borde considerada.

La estrategia utilizada en este trabajo se basa en reducir el problema inverso a la
minimización de un funcional de costo: el funcional de Kohn-Vogelius. Esta
estrategia es utilizada frecuentemente y permite el uso de métodos de optimización
para las implementaciones numéricas. Sin embargo, en virtud de poder de�nir el
funcional, este método requiere conocer una medida sobre toda la frontera exterior
∂Ω.

Este último punto nos lleva a estudiar el problema de completación de datos
que consiste en recuperar las condiciones de borde sobre una región inaccesible, i.e.
sobre ∂Ω \ Γobs, a partir del conocimiento de los datos de Cauchy sobre la región
accesible Γobs. Este problema inverso es igualmente estudiado vía la minimización
de un funcional de tipo Kohn-Vogelius. Dado que este problema está mal puesto,
debemos regularizar el funcional por medio de una regularización de Tikhonov.
Obtenemos numerosas propiedades teóricas, como propiedades de convergencia, en
particular cuando los datos poseen ruido.

Teniendo en cuenta los resultados teóricos, reconstruímos numéricamente
los datos de borde por medio de la implementación de un algoritmo de tipo
gradiente para minimizar el funcional regularizado. Luego estudiamos el problema
de detección de obstáculos cuando solo se poseen mediciones parciales. Consideramos
las condiciones en el borde inaccesible y el objeto desconocido como variables del
funcional y entonces, usando herramientas de optimización geométrica, en
particular el gradiente de forma del funcional de Kohn-Vogelius, realizamos
la reconstrucción numérica del objeto desconocido.

Finalmente, consideramos, en el caso vectorial bidimensional, un nuevo grado de
libertad, al estudiar el caso en que el número de objetos es desconocido. Así, uti-
lizamos la optimización de forma topológica con el �n de minimizar el funcional
de Kohn-Vogelius. Obtenemos el desarrollo asintótico topológico de la solución
de las ecuaciones de Stokes 2D y caracterizamos el gradiente topológico de este
funcional. Determinamos entonces numéricamente el número de obstáculos como
su posición. Además, proponemos un algoritmo que combina los métodos de opti-
mización de forma topológica y geométrica, con el �n de determinar numéricamente
el número de obstáculos, su posición y su forma.



Palabras Clave: Problema inverso geométrico, optimización de forma, problema
de completación de datos, análisis de sensibilidad topológico, gradiente topológico,
gradiente de forma, functional de Kohn-Vogelius, ecuación de Laplace, ecuación de
Stokes.
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General Introduction

Inverse problems are an extensive, active and multidisciplinary research �eld
which touches several main areas of research: mathematics, physics, biology, medicine,
geophysics, etc. The term �Inverse Problem� appeared in the 1960's in geophysics,
however many problems which can be classi�ed into this area were studied long time
before. After their `classi�cation' in the 1960's, they become an active research �eld
in mid 1970's after the classical work of A.N. Tikhonov and V. Arsenin [83] and
their de�nitive impulse became in 1980's and 1990's where the study of this kind
of problems became a major object of interest of several other areas, for example:
Medical Imaging, Biology, etc. This kind of problems have also several industrial
applications, such as image processing, seismology, medical imaging, chemistry, �uid
mechanics, etc. Inverse problems can be described, roughly speaking, as the problem
of determine the causes of some phenomena from the knowledge of the e�ects of this
phenomena.

Shape optimization is an active �eld of applied mathematics which consists
basically in �nding the shape which is optimal in the sense that it minimizes a cer-
tain cost-type functional while satisfying some given constraints. One of the �rst
problems of this kind has been formulated by Newton in his famous Principia Math-
ematica in 1686, the problem consisted of determining, in dimension three, the shape
of an axis-symmetric body, with assigned radius and height, which o�ers minimum
resistance when it is moving in a �uid. After that and more recently in the beginning
of the 1900's, Hadamard developed a method in order to formulate the di�erential
of functions or functionals of the solution of some PDEs, with respect to boundary
variations. This approach has been widely used and became a standard as the �eld
was growing. The industrial applications and the interest on the subject made it
very popular in the last 40 years, particularly from aeronautical industry and civil
engineering. As the interest on the subject have been increased, the improvements
and propositions of new methods became necessary, the boundary variation method
resorts in the assumption of a �xed topology, so no topological changes are allowed.
To overcome this di�culty, two other main methods were developed: the �rst one,
the level set method was introduced in 1980's by Osher and Sethian (see [74]) as a
numerical tool to study topological changes. Roughly speaking their method con-
sists in studying the evolution of a function which represents the interface between
two medias while this function is perturbed in the normal direction relative to the
interface. The second method, the topological gradient method was introduced in
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1990's by Schumacher (see [76]). In this method the basic idea is to study how a
cost functional varies when a small obstacle is introduced in the domain of study.

In this thesis work we deal with the inverse problem of obstacle detection,
this is: Given a reference domain Ω, where a function u is governed by some PDE
(Laplace, Stokes), the aim is to determine the localization and shape of one or several
obstacles, which will be denoted by ω∗, inside the reference domain from boundary
measurements of the function u, this is, from the knowledge of u or some operator
applied to u into the boundary ∂Ω or a relatively open part of it. Typically we want
to recover ω∗ from given Cauchy data on (a part of) the boundary ∂Ω. In particular,
we focus our study in methods of resolution which `translate' the inverse problem into
an optimization problem, more precisely a shape optimization problem, based
on the minimization of a (shape) cost-type functional, where well-posed boundary
value problems are considered. This strategy allows to implement and perform
numerical simulations based on gradient algorithms, which at the same time acts as
a feedback to us in order to explore techniques of resolution compatibles with this
type of algorithms.

The obstacle inverse problem arises, for example, in mold �lling during which
small gas bubbles can be created and trapped inside the material (as it is mentioned
in [17]). We can also mention the fact that the most common devices used to spot
immersed bodies, such as submarines or banks of �sh, are sonars, using acoustic
waves: Active sonars emit acoustic waves (making themselves detectable), while
passive sonars only listen (and can only detect targets that are noisy enough). To
overcome those limitations, one want to design systems imitating the lateral line
systems of �sh, a sense organ they use to detect movement and vibration in the
surrounding water (as emphasized in [41]).

One of our scenarios will be the case where, in a system governed by the Laplace
equation, the boundary data is obtained only in an `accessible' part of the boundary,
however, as our strategy is based in considering well-posed boundary value problems
related with an equivalent optimization problem, we have to `complete' the avail-
able data in such a way that the solution is close to the `real one', in order to apply
an optimization method to determine the approximate location and shape of the
unknown obstacle(s) ω∗. The problem of reconstructing data into the unaccessible
part of the boundary from the data in the accessible part is known as the inverse
problem of data completion (or Cauchy problem). This data completion prob-
lem will be studied through the minimization of a Kohn-Vogelius functional. We
will study this problem in detail, theoretically and numerically in the case where
no obstacle has to be found and then the results of this analysis will be used in a
proposed method in which we perform the numerical obstacle detection with
partial boundary data, where the obstacle shape is reconstructed by using a ge-
ometrical shape optimization tool: the shape gradient. This latter object
measures the variation of the cost-type functional when a normal perturbation on
the obstacle shape is applied.

The other scenario in consideration will be the case when, having Dirichlet data
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over the full boundary ∂Ω and having Neumann data only on a part of the boundary,
we intend to detect the number, location and shape of an unknown number of
small obstacles inside the reference domain Ω when the system is governed by the
stationary Stokes equations in the bi-dimensional case. The problem is still stated
as the minimization of a Kohn-Vogelius type shape functional but, unlike the
partial data case, as we consider the number of obstacles as an unknown, we are
enforced to consider a di�erent point of view, as the classical shape gradient method
consider only a �xed topology. For this, with a topological asymptotic analysis,
we compute the topological gradient for the cost functional, which measures the
variation of the functional under topological perturbations of the reference domain,
this is, when a small obstacle is introduced. From the numerical point of view we
propose an algorithm which combines the topological and geometrical shape
optimization in order to obtain our �nal aim: detect the number, location and
shape of an unknown number of obstacles.

So, we can conclude that the main objective of this work is to develop methods in
order to localize unknown obstacles inside a reference domain by means of (possibly
partial) boundary measurements in several scenarios.

Let us introduce each considered problem in more detail.

The data completion problem and the inverse obstacle problem with par-
tial boundary data.

As we said before, the data completion problem is stated as: given a partial dif-
ferential operator in a domain Ω and overspeci�ed data on an `accessible' part of
the boundary, we want to recover the value of the boundary data on the remaining
part of the boundary. This problem is known in the literature as the data comple-
tion problem. We assume in this case that the di�erential operator involved is the
Laplacian and the given overspeci�ed data in the accessible part of the boundary
are Dirichlet and Neumann boundary conditions.

This problem arises in several areas of study in the scienti�c, engineering or in-
dustrial contexts, as a concrete examples we have: medical and geophysical imaging,
thermal or electrical inspection/prospection.

The data completion problem is known to be ill-posed, in the sense that the
solution dependence (and therefore the `missing data' dependence) on the given
data is not continuous, the famous example of Hadamard [55] is an example of this
behavior. This ill-posedness leads to di�culties for numerical resolution schemes,
small errors on the retrieved data will lead to big errors on the obtained solutions.
In order to deal with these di�culties a regularization technique is mandatory.

The data completion problem has been studied both in theoretical and numer-
ical approaches by several authors. In the theoretical setting we recall the works
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of Cimetière et al. [40] who consider a �xed point scheme for an appropriate op-
erator, in the works of Ben Belgacem et al. [19, 13, 20] a complete development
of both theoretical and numerical approaches is studied based on the study of the
Steklov-Poincaré operator covering even the noisy data case, where a Lavrentiev reg-
ularization is considered. We also mention Bourgeois et al. works [24, 26] in which
the approach is based on the quasi-reversibility (QR) method, a generalization to a
wider family of systems is presented by Dardé [45]. On the numerical side we men-
tion the work of Kozlov et al. [63] which propose the `classical' KMF algorithm used
widely for numerical simulations, several works consider modi�cations of the KMF
algorithm in order to improve their speed of convergence, as an example we mention
the work of Abouchabaka et al. [1]. In another approach, the work of Andrieux
et al. [12] considers the minimization of an energy-like functional and presents an
algorithm which is proved to be equivalent to the KMF algorithm formulation. The
work of Aboulaich et al. [2] consider a control type method for the numerical reso-
lution of the Cauchy problem for Stokes system and �nally we mention the work of
Han et al. [56] in which a regularization of an energy functional is considered for an
annular domain.

In our case, we consider an energy-like functional approach, similar as in the
work of Andrieux et al. [12]. We split the overdetermined system into two di�erent
systems: each one considers one of the boundary conditions on the `accessible part'
of the boundary, and we impose the `other' boundary condition on the `unaccessible
part' of the boundary. More precisely, we consider a Kohn-Vogelius energy-like
functional which measures the error between the solutions of our considered systems
for each imposed conditions on the `unaccessible part' of the boundary. We see
that, when there exists a solution, this will be characterized as the minimum of
our proposed functional, so our problem now is reduced to minimize the Kohn-
Vogelius functional. In order to handle with the ill-posedness previously mentioned
we consider a Tikhonov regularization of our problem.

We have obtained several results for our primary energy functional, as the exis-
tence of minimizers is not assured for any data we have de�ned a generalized concept
of solution whose existence is assured, moreover if this de�ned object satis�es some
conditions, the solution for the whole problem is assured. For the regularized func-
tional we have also several results, the existence of minimizers is assured for any data
thanks to the gained coercivity and in case of having compatible data we have a con-
vergence result. When we consider noisy date we have proven that we can consider
a strategy, using a slightly-modi�ed Morozov discrepancy principle (following the
work of Ben Belgacem et al. in [20]), for the choice of the regularization parameter
in order to have convergence to the unpolluted solution. From the numerical point
of view, using a gradient method via the di�erentiation of the regularized functional
with respect to its variables, we are able to perform simulations which show us that
the proposed method is e�ective in order to reconstruct the data into the inaccessible
part of the boundary.

As an application of the obtained results, we proposed a method in order to
solve the obstacle problem with partial boundary data for the Laplace operator.
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We extend the previously proposed Kohn-Vogelius functional in order to add the
obstacle as an additional variable of the functional, by means of an identi�ability
result we have an equivalent formulation between the detection of the obstacle (and
the completion of the data) and the minimization of the extended functional. The
use of a regularized extended functional is suggested in order to deal with the ill-
posedness of the data completion part and the convergence results apply analogously
to this extended functional. We implement an algorithm which uses the previous
gradient algorithm for the unknown boundary data, and a shape gradient algorithm,
based on the computation of the derivative of the regularized functional with respect
to a normal variation of the boundary of the obstacle (this is, using the boundary
variation method) in order to reconstruct the unknown obstacle only from partial
boundary measurements.

The main novelty of the proposed methods resides lies in the formalization and
rigorous analysis of a natural and `easy-to-implement' strategy in order to solve
the data completion problem. The division in two well-posed problems allows to
implement an algorithm with any �nite element library (such as FreeFEM++ [60]
for example) and the consideration of a Kohn-Vogelius approach allows to implement
optimization tools such as gradient methods. Moreover, we extend this method to
solve another inverse problem of interest for which we show positive results.

The inverse obstacle problem using topological shape optimization in a
2D Stokes �ow.

As we said before, in this part we work with the inverse problem of determining
the number, the position and the shape of relatively small objects inside a two
dimensional �uid. We assume that the �uid motion is governed by the steady-state
Stokes equations. In order to reconstruct the obstacles, we assume that a Cauchy
pair is given on a part of the surface of the �uid, that is a Dirichlet boundary
condition and the measurement of the Cauchy forces. Hence, the identi�ability
result of Alvarez et al. [6, Theorem 1.2] implies that this problem could be seen
as the minimization of a cost functional, which in our case will be a Kohn-Vogelius
type cost functional.

The small size assumption on the objects leads us to perform asymptotic ex-
pansions on the involved functional. For this, we will use the notion of topological
gradient which will determine a criterion in order to minimize the cost functional.
The topological sensitivity analysis consists in studying the variation of a cost func-
tional with respect to the modi�cation of the topology of the domain, for example
when we insert `holes' (or objects) in the domain. It was introduced by Schumacher
in [76] and Sokolowski et al. in [80] for the compliance minimization in linear elas-
ticity.

Topological sensitive analysis related to Stokes equations have been studied in the
past by several authors, especially relevant are the works of Guillaume et al. [54],
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Maatoug [57], Amstutz [9] with steady-state Navier-Stokes equations and [10] with
generalization for some non-linear systems and Sid Idris [77] which develops a de-
tailed work in the two-dimensional case. In all of these works the focus is set to
�nd topological asymptotic expansions for a general class of functionals where the
system satis�es only Dirichlet boundary conditions.

Closer works to our problem have been presented in the past by Ben Abda et
al. [17] and by Caubet et al. [36]. In the �rst reference they consider a Neumann
boundary condition on the small objects obtaining general results in two and three
dimensional cases, with a complete development of the theory only on the three
dimensional case. In the work of Caubet et al., they deal with the same problem
as the one we consider here but only again on the three-dimensional case. In our
two-dimensional case, due to the impossibility to have an asymptotic expansion of
the solution of Stokes equations by means of an exterior problem (phenomena which
is related to the Stokes paradox), we have to approximate it by means of a di�erent
problem. The deduction of this approximation is strongly in�uenced by the recent
work of Bonnaillie-Noël et al. [21]. Indeed the same problem appears for the Laplace
equation: it is based on the fact that the existence of a solution of the boundary
value problem 

−∆V = 0 in R2\ω
V = u0(z) on ∂ω
V → 0 at in�nity

(1)

is not guaranteed except when u0(z) = 0. The classical analysis of elliptic equation
in unbounded domain is made in the functional setting of weighted Sobolev spaces.
It is known that (1) has a unique solution in a space containing the constants,
hence this solution is the constant u0(z) which prohibits the condition at in�nity
if u0(z) 6= 0. Taking into account this, we can de�ne the asymptotic expansion for
the Stokes system which is a crucial part in order to obtain the desired expansion
for the functional involved. It is important to remark that (for a given real num-
ber u0(z)) several technical results which lead to the main result are di�erent to
the ones in the three-dimensional setting which involves additional di�culties to our
problem.

From the obtained theoretical results, we present some numerical simulations in
order to con�rm and deepen our theoretical results by testing the in�uence of some
parameters in our algorithm of reconstruction such as the shape and the size of the
obstacles. We also propose an algorithm which joins the topological optimization
procedure with the classical shape optimization method using the previous compu-
tation of the shape gradient for the Kohn-Vogelius functional made by Caubet et al.
in [37]. This blending method allows not only to obtain the number and qualitative
location of the objects, moreover it allows to approximate the shape of this ones.
Nevertheless, we precise that the geometrical shape optimization step will fail if the
previous topological step doesn't give the total number of objects.

To conclude, we also mention the recent developments on topological sensitivity
based iterative schemes made by Carpio et al. in [31, 32, 33]. We also refer to some

6



General Introduction

works using the level set method by Lesselier et al. in [64, 46, 47]. Combinations
of several shape optimization methods was also recently tested by several authors.
Allaire et al. propose in [4] to couple the classical geometrical shape optimization
through the level set method and the topological gradient in order to minimize
the compliance. The same combination is made for another problem by He et al.
in [59]. In [30], Burger et al. use also this combination for inverse problems. There,
the topological gradient is incorporated as a source term in the transport Hamilton-
Jacobi equation used in the level set method. Concerning the minimization of the
compliance, Pantz et al. propose in [73] an algorithm using boundary variations,
topological derivatives and homogenization methods (without a level set approach).

The main novelty in this second part, from the theoretical point of view is the com-
prehensive study of the topological asymptotic expansion of the solution of Stokes
equations for the considered boundary conditions, the important technical and con-
ceptual di�erences with the classical three (and superior) dimensional case gives to
the explored one a speci�c weight and importance. From the numerical point of
view, the implementation of an algorithm which combines the two considered shape
optimization approaches is new for the obstacle problem, and the results appear to
justify the potential of this technique.

We �nish this introduction by presenting an overview of each chapter, presenting
its main results:

PART I: The data completion problem and the inverse obstacle problem
with partial boundary data

Chapter 1: Theoretical analysis of the data completion problem for Laplace
operator.

In this chapter we consider the problem of reconstruct boundary data in an inac-
cessible part of the boundary from overdetermined boundary data in an accessible
part of the boundary, this problem is known in the literature as the data completion
problem or the Cauchy problem.

Consider a reference domain Ω governed by Laplace equation, whose boundary ∂Ω
is composed by two relatively open, non empty parts: an accessible one Γobs where
Dirichlet and Neumann measurements are given in a pair (gN , gD) ∈ H−1/2(Γobs) ×
H1/2(Γobs) and an unaccessible one Γi where no measurements can be made, these
parts satisfy Γobs ∪ Γi = ∂Ω. The data completion problem consists in recovering
data on the whole boundary, speci�cally on Γi from the over-determined data on
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Γobs. Formally speaking: Find u ∈ H1(Ω,∆) such that
−∆u = 0 in Ω

u = gD on Γobs
∂nu = gN on Γobs.

(2)

As (gN , gD) could be any data (obtained for example from experiments), such a
u may not exist. Due to this, we will recall the concept of compatible data.

De�nition 0.1 A pair (gN , gD) ∈ H−1/2(Γobs)×H1/2(Γobs) will be called compatible

if there exists (a necessarily unique) u ∈ H1(Ω,∆) harmonic such that u|Γobs =
gD, ∂nu|Γobs = gN .

The following relevant result states that the compatible data is dense in the set
of all possible data, which implies in particular the ill-posedness of the considered
inverse problem:

Lemma 0.2 (see [51]) For (gN , gD) ∈ H−1/2(Γobs)×H1/2(Γobs) given data, we have:

1. For a �xed gD ∈ H1/2(Γobs), the set of data gN for which there exists a function
u ∈ H1(Ω,∆), satisfying the Cauchy problem (1.1) is dense in H−1/2(Γobs).

2. For a �xed gN ∈ H−1/2(Γobs), the set of data gD for which there exists a function
u ∈ H1(Ω,∆), satisfying the Cauchy problem (1.1) is dense in H1/2(Γobs).

On the other hand this result is essential in the sense that it assures several
properties of the functional that we will consider in the formulation of our problem
as an optimization problem.

In order to introduce our strategy, we recall that a classical example from Hadamard
(see Chapter 1) shows that this problem is ill-posed in the sense that the solution
does not have a continuous dependence on the given data (gN , gD). Therefore, any
small perturbation of the (experimental) data may lead to considerable errors in the
obtained solutions. Our aim is then to develop a method which allows us to prevent
`wrong solutions'.

Let us de�ne the Kohn-Vogelius functional which will depend on the missing data
on Γi, following the idea proposed by Andrieux et al in [12].

To solve the problem (2), we will solve the following equivalent optimization
problem:

(ϕ∗, ψ∗) ∈ argmin
(ϕ,ψ)∈H−1/2(Γi)×H1/2(Γi)

K(ϕ, ψ) (3)

where K is the nonnegative Kohn-Vogelius cost functional de�ned by

K(ϕ, ψ) :=
1

2

∫
Ω

|∇ugDϕ −∇u
gN
ψ |

2 (4)

8
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where ugDϕ ∈ H1(Ω) and ugNψ ∈ H1(Ω) are the respective solutions of the following
problems

−∆ugDϕ = 0 in Ω
ugDϕ = gD on Γobs

∂nu
gD
ϕ = ϕ on Γi,

and


−∆ugNψ = 0 in Ω

∂nu
gN
ψ = gN on Γobs
ugNψ = ψ on Γi.

(5)

Notice that if the inverse problem (2) has a solution, then we have that K(ϕ, ψ) = 0
if and only if (ϕ, ψ) = (ϕ∗, ψ∗), and in this case we obtain: ugDϕ∗ = u and ugNψ∗ =
u+C, C ∈ R where u is the solution of the Cauchy problem in Ω. This justi�es the
proposed approach.

This strategy is similar to the one presented by Ben Belgacem et al. in [19].
However, their exposition is based in the solution of a variational problem, which
induces the minimization of a similar Kohn-Vogelius system in which they consider
only Dirichlet data in Γi as the unknown. This allows to work in the framework of
Steklov-Poincaré operator. Our strategy of considering both Dirichlet and Neumann
data in Γi as unknowns allows us to work in a `natural way' with the optimization
strategy throughout.

Our study begins proving some properties of the Kohn-Vogelius functional K, in
particular that:

inf
(ϕ,ψ)
K(ϕ, ψ) = 0,

for any data (gN , gD), compatible or not, is a key point to the analysis. The numerical
minimization of the Kohn-Vogelius functional may approach the value 0, even in the
case when there is no solution to the data completion problem.

As K is not coercive, and from the previous property, we cannot assume that the
functional reaches its minimum. From the exploration of the �rst order optimality
condition we de�ne, following Ben Belgacem idea in [19], a generalized notion of �rst
order optimality condition:

De�nition 0.3 We say that a sequence (ϕn, ψn) ⊂ H−1/2(Γi)×H1/2(Γi) is a pseudo-
solution of (3) if

lim
n→∞

sup
(ϕ̃,ψ̃)∈H−1/2(Γi)×H1/2(Γi)

|a((ϕn, ψn), (ϕ̃, ψ̃))− `(ϕ̃, ψ̃)|
‖(ϕ̃, ψ̃)‖H−1/2(Γi)×H1/2(Γi)

= 0, (6)

where a and ` are a bilinear and linear forms associated with the �rst order optimality
condition for a minimizer of the Kohn-Vogelius:

a
(

(ϕ, ψ), (ϕ̃, ψ̃)
)

=

∫
Ω

∇(vϕ − vψ) · ∇(vϕ̃ − vψ̃)

`(ϕ, ψ) =

∫
Ω

(∇ugD0 · ∇vψ +∇ugN0 · ∇vϕ) ,

and where vϕ := u0
ϕ, vψ := u0

ψ satis�es
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−∆vϕ = 0 in Ω

vϕ = 0 on Γobs
∂nvϕ = ϕ on Γi

and


−∆vψ = 0 in Ω
∂nvψ = 0 on Γobs
vψ = ψ on Γi.

(7)

Moreover, using the density Lemma 0.2, we can obtain an existence result of
this new object, which de�nes a criterion for the existence of solution of the data
completion problem:

Proposition 0.4 For any (gN , gD) ∈ H−1/2(Γobs)×H1/2(Γobs), there exists a pseudo-
solution (ϕ∗n, ψ

∗
n) ⊂ H−1/2(Γi) × H1/2(Γi) of (3). Moreover, any pseudo-solution

satis�es the following alternative:

1. ‖(ϕ∗n, ψ∗n)‖H−1/2(Γi)×H1/2(Γi)
is bounded and then weakly converges, up to a sub-

sequence, in H−1/2(Γi) × H1/2(Γi) to (ϕ∗, ψ∗) ∈ H−1/2(Γi) × H1/2(Γi) which
minimizes K. Therefore uϕ∗ solves the Cauchy problem (2) and we have also
the weak convergence uϕ∗n ⇀ uϕ∗ in H1(Ω);

2. ‖(ϕ∗n, ψ∗n)‖H−1/2(Γi)×H1/2(Γi)
diverges.

In order to overcome the possible numerical problems due to the non-coercivity
of the Kohn-Vogelius functional, and therefore the non-assured convergence to a
minimizer, and to deal with the ill-posedness of the problem stated in [18, 55],
we propose to consider a regularization of the Kohn-Vogelius functional. The most
natural regularization to overcome the non-existence of minimizers is the well known
Tikhonov regularization, which, by adding a small penalization term, adds coercivity
to the minimization problem.

Then, we introduce the regularized Kohn-Vogelius functional Kε : H−1/2(Γi) ×
H1/2(Γi)→ R given by, for ε > 0:

Kε(ϕ, ψ) := K(ϕ, ψ) +
ε

2

(
‖vϕ‖2

H1(Ω) + ‖vψ‖2
H1(Ω)

)
=: K(ϕ, ψ) +

ε

2
‖(vϕ, vψ)‖2

(H1(Ω))2 ,

(8)
where vϕ := u0

ϕ, vψ := u0
ψ satis�es (7).

We study this functional which is more `well-behaved' than its non-regularized
version, in particular we have the existence of minimizers for every ε > 0. Moreover,
our main result for this functional is the following convergence theorem in the case
that the data (gN , gD) is compatible:

Theorem 0.5 Let us suppose that (gD, gN) is compatible data related to uex and let
us denote by uϕ∗ε the function associated with ϕ∗ε minimizer of Kε. Then

lim
ε→0
‖uϕ∗ε − uex‖H1(Ω) = 0. (9)

We also have a result which relates the sequence formed by minimizers of the reg-
ularized Kohn-Vogelius functional for each ε with the previously de�ned concept of
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pseudo-solution, and moreover, de�nes an existence criterion to the data completion
problem based into the behavior of the sequence of minimizers:

Theorem 0.6 For each ε > 0, let (ϕ∗ε, ψ
∗
ε) ∈ H−1/2(Γi) × H1/2(Γi) the minimizer

of Kε. The sequence (ϕ∗ε, ψ
∗
ε)ε (ε→ 0) de�nes a minimizing sequence of K and there-

fore a de�nes a pseudo-solution of (3). If (ϕ∗ε, ψ
∗
ε)ε is bounded, then this sequence

converges in H−1/2(Γi)× H1/2(Γi) to (ϕ∗, ψ∗) minimizer of K.

All the presented results consider that, in the case of existence of solution, the
data (gN , gD) are perfect. This situation is far from the reality, as any real measure-
ment will lead to some degree of error (white noise, instrumental limitations, etc.),
due to this, we also have studied the case when the available data contains some
level of noise δ > 0, data which will be denoted (gδN , g

δ
D) (which may be compatible

or not) and will satisfy:

‖gD − gδD‖H1/2(Γobs)
+ ‖gN − gδN‖H−1/2(Γobs)

≤ δ. (10)

In this case, we should establish a relationship between the regularization pa-
rameter ε and the noise level δ in order to have convergence, this is known in the
regularization of inverse problems literature (see for example [48]) as a `parameter
choice rule', and in this case, we have the following result:

Proposition 0.7 Given (gN , gD) compatible data associated with exact solution
(ϕ∗, ψ∗). Let us consider ε = ε(δ) such that

lim
δ→0

ε(δ) = 0 and lim
δ→0

δ√
ε

= 0. (11)

Then, we have:

lim
δ→0
‖(ϕ∗ε,δ, ψ∗ε,δ)− (ϕ∗, ψ∗)‖H−1/2(Γi)×H1/2(Γi)

= 0,

where (ϕ∗ε,δ, ψ
∗
ε,δ) are the minimizer of the regularized Kohn-Vogelius functional with

noisy Cauchy data (gδN , g
δ
D).

This type of result gives us a relationship which ε and δ must meet in order to have
convergence in the noisy case (when the data available is compatible). However, in
the practice they don't respond to any criteria in particular. So, as a �nal analysis in
this chapter, we explore the possibility of de�ning a `choice parameter rule'. In our
case, this choice will relate the level of noise and the noisy solution of the regularized
Kohn-Vogelius functional `the approximate solution', to the regularization parameter
following the so-called Morozov discrepancy principle.

This principle is based on choosing the biggest ε = ε(δ, (ϕ∗ε,δ, ψ
∗
ε,δ)), in order to

have the highest possible regularity of the obtained solution, such that the Kohn-
Vogelius functional with the polluted data is at the same order of the discrepancy
measure, which is de�ned as the value (or discrepancy) when one evaluates the real

11
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solution into the Kohn-Vogelius functional with polluted data. Due to monotonicity
properties of the Kohn-Vogelius functional this parameter is uniquely de�ned, and
moreover, we conclude this chapter by proving that this strategy de�nes an ε(δ) that
satis�es the conditions of Proposition 0.7.

Chapter 2: Numerical resolution of the data completion problem.

In this chapter, we reconstruct numerically an harmonic function only from the
knowledge of Dirichlet and Neumann data in an `accessible' part of the boundary
Γobs. By considering the theoretical approach given in the previous chapter we
implement a gradient algorithm in order to minimize the regularized Kohn-Vogelius
functional Kε, the obtained results asserts that if we choose a small regularization
parameter the obtained solution will be close to the real solution, whenever it exists,
due to the convergence to the real solution as the regularization parameter ε → 0
and the monotone behavior of the Kohn-Vogelius functional with respect to ε.

In order to implement a gradient algorithm we begin by computing the partial
derivatives of the regularized functional and, using adjoint problems, we �nd descent
directions as the following proposition details:

Proposition 0.8 For all (ϕ, ψ), (ϕ̃, ψ̃) ∈ H−1/2(Γi)×H1/2(Γi), the partial derivatives
of the functional Kε(ϕ, ψ) are given by

∂Kε
∂ϕ

(ϕ, ψ) [ϕ̃] =

∫
Γi

ϕ̃ · (uϕ + εvϕ + wD − ψ)

and
∂Kε
∂ψ

(ϕ, ψ)
[
ψ̃
]

= 〈(∂νuψ + ε∂νvψ + ∂νwN − ϕ), ψ̃〉Γi
,

where, wN , wD ∈ H1(Ω) are the respective solutions of the following adjoint problems:
−∆wN = −εvψ in Ω
∂nwN = ∂nuϕ − gN on Γobs
wN = 0 on Γi

and 
−∆wD = εvϕ in Ω

wD = uψ − gD on Γobs
∂nwD = 0 on Γi.

In particular, the directions
(
ϕ̃, ψ̃

)
∈ H−1/2(Γi)× H1/2(Γi) given by:

ϕ̃ = ψ − uϕ|Γi
− εvϕ|Γi

− wD|Γi
,

and
ψ̃ = −vW |Γi

,

with W = ϕ− ∂νuψ|Γi
− ε∂νvψ|Γi

− ∂νwN |Γi
∈ H−1/2(Γi), are descent directions.

12
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The obtained expression for the descent directions allow us to implement a gradi-
ent algorithm. The implementation of the algorithm is made using the �nite element
library `FreeFEM++' [60].

We test the algorithm under two scenarios with their own interest. The �rst one
is when the accessible and unaccessible part of the boundary have common points,
this is, Γobs ∩ Γi 6= ∅. The regularity of the involved systems may become an issue
(see [75]) and the obtained results follows this behavior as the obtained error is at
least one order of magnitude higher than the more regular case. The second case
is when the accessible and unaccessible part of the boundary do not have common
points, this is, Γobs ∩ Γi = ∅. The classical regularity results from elliptic equations
are applicable and the obtained results are in concordance with this.

We explore additionally the case when the accessible boundary data contains
noise, the error between the real and obtained solution is higher in relation with the
unpolluted case, as expected, however the obtained solution is close to the real one.

In the case when the boundaries have common points we propose a method
in order to improve the convergence, the idea is to interpolate the value into the
unaccessible part of the boundary based on the value given in the common points,
simulations suggest that this improves the convergence, and in fact, they suggest
that the convergence is in�uenced by the initial guess for unaccessible data (ϕ0, ψ0).
When the boundaries do not have common points we consider (ϕ0, ψ0) = (0, 0), the
simulations suggests that the convergence to the real solution are not compromised
by this choice.

We give in Figure 1 below an example of reconstruction with Γobs ∩ Γi 6= ∅.

Figure 1: Example when Γobs ∩ Γi 6= ∅, real solution (left) and obtained solution
(right).

Chapter 3: Obstacle detection with incomplete data via geometrical
shape optimization.

13
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In this chapter we consider the numerical reconstruction of an obstacle by means
of partial boundary measurements from a harmonic function. We want to recon-
struct an obstacle which is supposed to be static, by reconstruct we mean determine
their position and shape. We will suppose that the obstacle ω is completely in-
side the reference domain Ω, governed by the Laplace equation, and we will obtain
Dirichlet and Neumann data into the accessible part of the boundary Γobs, while no
information is available into Γi, the unaccessible part of the boundary, these parts
are such that Γobs ∪ Γi = ∂Ω. We also assume the homogeneous Dirichlet boundary
condition is imposed on the boundary ∂ω of the obstacle.

Γi

Γobs

ω∗

Ω \ ω∗

Figure 2: Illustration of the problem.

Assuming that the obstacle ω∗ is regular enough, more precisely belongs to the
following set of admissible domains

D :=
{
ω ⊂⊂ Ω of class C1,1 such that Ω \ ω is connected

}
,

and given a Cauchy pair (gN , gD) ∈ H−1/2(Γobs) × H1/2(Γobs) such that (gN , gD) 6=
(0, 0), we introduce the following inverse problem:

Find a set ω∗ ∈ D and a solution u ∈ H1 (Ω\ω∗) ∩ C0
(

Ω\ω∗
)

of the following overdetermined boundary value problem:
−∆u = 0 in Ω\ω∗

u = gD on Γobs
∂nu = gN on Γobs
u = 0 on ω∗.

Identi�ability results (see [44, Proposition 4.4, page 87], for example) asserts that
this problem has a unique solution, whose proof is based on a unique continuation
argument. The important point here is to recall that we do not need any infor-
mation on the unaccessible boundary Γi. However, if we would like to solve it by
means of the minimization of a shape functional, we will need to consider well-posed
PDE problems, which in particular need data over the whole boundary ∂Ω. To
overcome this di�culty we propose to extend the previously studied problem: the
data completion problem. The basic idea resides in using an algorithm which in
�rst place `complete' the data in a way that the obtained solution is good enough

14
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to use it for the obstacle reconstruction by means of minimizing the Kohn-Vogelius
functional with geometrical shape optimization methods, which demands the solu-
tion of a well-posed problem, in this case, the completed one. To this end we extend
the data completion problem by adding the unknown object ω as a parameter to
the Kohn-Vogelius functional and its regularized version, with a prescribed Dirichlet
homogeneous condition over ∂ω. So, we will consider in this chapter the following
optimization problem:

(ω∗, ϕ∗, ψ∗) ∈ argmin
(ω,ϕ,ψ)∈D×H−1/2(Γi)×H1/2(Γi)

Kε(ω, ϕ, ψ)

where Kε is the nonnegative regularized Kohn-Vogelius cost functional de�ned by

Kε(ω, ϕ, ψ) := K(ω, ϕ, ψ) +
ε

2
‖(vϕ, vψ)‖2

H1(Ω\ω)

=
1

2

∫
Ω\ω
|∇uϕ −∇uψ|2 +

ε

2
‖(vϕ, vψ)‖2

H1(Ω\ω)

where uϕ ∈ H1(Ω\ω) and uψ ∈ H1(Ω\ω) satis�es the extended problems:
−∆uϕ(ω) = 0 in Ω\ω

uϕ(ω) = gD on Γobs
∂nuϕ(ω) = ϕ on Γi

uϕ(ω) = 0 on ∂ω

and


−∆uψ(ω) = 0 in Ω\ω
∂nuψ(ω) = gN on Γobs
uψ(ω) = ψ on Γi

uψ(ω) = 0 on ∂ω,

An analogous extension with an homogeneous Dirichlet condition on ∂ω, applies to
the problems solved by vϕ := u0

ϕ, vψ := u0
ψ.

The utilization of the regularized functional is justi�ed by the ill-posedness of
the data completion problem, as we have remarked in Chapter 1. However, it is
interesting to observe that the identi�ability result ensures that K(ω, ϕ, ψ) = 0
if and only if (ω, ϕ, ψ) = (ω∗, ϕ∗, ψ∗), where ω∗ is the real obstacle, and (ϕ∗, ψ∗)
correspond to the real Cauchy data in Γi for the harmonic function u for which the
given data (gN , gD) is taken.

In order to reconstruct the obstacle ω∗ we use a geometrical shape optimization
method in order to minimize the regularized Kohn-Vogelius functional: we use the
shape gradient of this functional. The shape gradient of a functional measures,
roughly speaking, the variation of the functional whenever we perform a small regular
perturbation of the boundary in the direction of exterior normal. In our case we have,
for properly de�ned perturbation directions, the following result for the regularized
Kohn-Vogelius functional:

Proposition 0.9 (First order shape derivative of the functional) For V ∈ U :={
θ ∈W2,∞(Rd) : Supp θ ⊂⊂ Ω

}
, an admissible perturbation direction, the regular-
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ized Kohn-Vogelius cost functional Kε is di�erentiable at ω in the direction V with

DKε(Ω\ω) · V = −
∫
∂ω

(∂nρ
u
N · ∂nuϕ + ∂nρ

v
N · ∂nvϕ)(V · n) +

1

2

∫
∂ω

|∇w|2 (V · n)

−
∫
∂ω

(∂nρ
u
D · ∂nuψ + ∂nρ

v
D · ∂nvψ)(V · n)

+
ε

2

∫
∂ω

(|∇vϕ|2 + |∇vψ|2 + |vϕ|2 + |vψ|2)(V · n),

where w := uϕ−uψ and where ρuD, ρ
u
N , ρ

v
D, ρ

v
N ∈ H1(Ω\ω) are the respective solutions

of the following adjoint states
−∆ρuN = 0 in Ω\ω

ρuN = gD − uψ on Γobs
∂nρ

u
N = 0 on Γi

ρuN = 0 on ∂ω,


−∆ρvN = −εvϕ in Ω\ω

ρvN = 0 on Γobs
∂nρ

v
N = 0 on Γi

ρvN = 0 on ∂ω

and 
−∆ρuD = 0 in Ω\ω
∂nρ

u
D = 0 on Γobs
ρuD = ψ − uϕ on Γi

ρuD = 0 on ∂ω,


−∆ρvD = −εvψ in Ω\ω
∂nρ

v
D = 0 on Γobs
ρvD = εψ on Γi

ρvD = 0 on ∂ω.

The utility of the adjoint problems introduced in the above result relies on obtain-
ing an expression of the shape gradient of the regularized Kohn-Vogelius functional
which depends explicitly on the perturbation direction V , which permits the com-
putation of this object from numerical point of view. It is important to remark that
the existence of shape derivative is not trivial, however the arguments are standard
with the same analysis as in [61].

In order to perform the numerical simulations, we consider an algorithm which in
�rst place performs the completion of the given data supposing we have a potential
obstacle ω and applying the same gradient algorithm as in Chapter 2, and then,
performing the update of the obstacle ω by using a shape gradient algorithm. For this
we follow the same strategy as in [3] or in [37], a regularization by parametrization
of the obstacle boundary ∂ω. Indeed, we need to regularize the functional with
respect to the shape since, according to [3, Theorem 2], the shape gradient has not
a uniform sensitivity with respect to the deformation direction. Hence, we restrict
ourselves to star-shaped domains and use polar coordinates for parametrization: the
boundary ∂ω of the object can be then parametrized by

∂ω =

{(
x0

y0

)
+ r(θ)

(
cos θ
sin θ

)
, θ ∈ [0, 2π)

}
,

where x0, y0 ∈ R and where r is a C1,1 function, 2π-periodic and without double
point. Taking into account the ill-posedness of the problem, we approximate the
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polar radius r by its truncated Fourier series

rN(θ) := aN0 +
N∑
k=1

aNk cos(kθ) + bNk sin(kθ),

for the numerical simulations. This regularization by projection permits to remove
high frequencies generated by cos(kθ) and sin(kθ) for k >> 1, for which the func-
tional is degenerated. Then, the unknown shape is entirely de�ned by the coe�cients
(ai, bi). Hence, for k = 1, . . . , N , the corresponding deformation directions are re-
spectively,

V 1 := V x0 :=

(
1
0

)
, V 2 := V y0 :=

(
0
1

)
, V 3(θ) := V a0(θ) :=

(
cos θ
sin θ

)
,

V 2k+2(θ) :=V ak(θ) :=cos(kθ)

(
cos θ
sin θ

)
, V 2k+3(θ) :=V bk(θ) :=sin(kθ)

(
cos θ
sin θ

)
,

θ ∈ [0, 2π). The gradient is then computed component by component using its
characterization, from the previous proposition:(

∇Kε(Ω\ω)
)
k

= DKε(Ω\ω) · V k, k = 1, . . . , 2N + 3.

We have tested our algorithm in several scenarios, with di�erent shapes to be
reconstructed with unpolluted and polluted given data. We obtain interesting results
in the reconstruction itself, however the data completion process seems to be of lower
precision than the one without the unknown obstacle.

We present a `di�cult' example in Figure 3 below, on the left we have the real
obstacle (a square) and on the right the obtained obstacle.

Figure 3: Detection of a square with incomplete boundary data: Positive results.
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PART II: The inverse obstacle problem using topological shape optimiza-
tion in a bidimensional Stokes �ow.

Chapter 4: Small object detection using topological optimization.

In this chapter we change our point of view. Our aim now is, considering a
region Ω containing a Newtonian and incompressible �uid with coe�cient of kine-
matic viscosity ν > 0 governed by the stationary 2D Stokes equations, reconstruct
an unknown number of small obstacles which are considered with a no-slip bound-
ary condition. Then, our aim is to determine the number, relative location and
approximate shape of each obstacle.

We have two main di�erences with the previous considered work: We are consid-
ering now a vectorial case and we are adding a new degree of freedom: the number
of obstacles, which implies that the topology of the problem can change during the
numerical reconstruction.

The hypothesis of small objects allows us to perform the so-called topological sen-
sitivity analysis (see [17]), in which we study the variation of a cost functional when
we add an obstacle to the domain of study. The precise object which measure this
variation is the so-called topological derivative introduced by Schumacher in 1995
(see [76]) and formalized by Sokolowski et al. in 1997 (see [80]). Posing the inverse
problem as the minimization of a Kohn-Vogelius type functional, the topological
sensitivity analysis will allow, based on the study of the topological derivative of the
Kohn-Vogelius functional, determine the number and relative location of the obsta-
cles inside the region Ω. In order to determine the shape of the obstacles we need
an additional tool, for example the shape gradient used in the precedent chapter,
however this additional feature will be considered in the numerical reconstruction in
the �nal chapter of this thesis.

Let ω ⊂ R2 a �xed bounded Lipschitz domain containing the origin, such that
ω ⊂ B(0, 1). For z ∈ Ω and 0 < ε << 1, we introduce:

ωz,ε := z + εω.

The aim of is to detect some unknown objects included in Ω. We assume that a
�nite number m∗ of obstacles ωz∗j ,ε∗j ⊂ Ω, j ∈ {1, . . . ,m∗} have to be detected.
Moreover, we assume that they are well separated (that is: ωz∗i ,ε∗i ∩ωz∗j ,ε∗j = ∅ for all
1 ≤ i, j ≤ m∗ with i 6= j) and have the geometry form

ωz∗k,ε∗k = z∗k + ε∗kω, 1 ≤ k ≤ m∗,

where ε∗k is the diameter and the points z∗k ∈ Ω, 1 ≤ k ≤ m∗, determine the location
of the objects.

Let f ∈ H1/2(∂Ω) such that f 6= 0 a measurement over the whole boundary

18



General Introduction

which satis�es the compatibility condition∫
∂Ω

f · n = 0. (12)

In order to determine the location of the objects, we also make a measurement
g ∈ H−1/2(O) on a part O of the exterior boundary ∂Ω with O ⊂ ∂Ω, O 6= ∂Ω.
Then, we denote ω∗ε :=

⋃m∗

k=1 ωz∗k,ε∗k and consider the following overdetermined Stokes
problem: 

−ν∆u+∇p = 0 in Ω\ω∗ε
divu = 0 in Ω\ω∗ε
u = f on ∂Ω
u = 0 on ∂ω∗ε

σ(u, p)n = g on O ⊂ ∂Ω.

(13)

Here u represents the velocity of the �uid and p the pressure and σ(u, p) represents
the stress tensor de�ned by

σ(u, p) := ν
(
∇u+ t∇u

)
− pI.

Thus we consider the following geometric inverse problem:

Find ω∗ε ⊂⊂ Ω and a pair (u, p)which satisfy the overdetermined problem (13).
(14)

To study this inverse problem, we consider two forward problems:
Find (uεD, p

ε
D) ∈ H1(Ω\ωε)× L2

0(Ω\ωε) such that
−ν∆uεD +∇pεD = 0 in Ω\ωε

divuεD = 0 in Ω\ωε
uεD = f on ∂Ω
uεD = 0 on ∂ωε

(15)

and 

Find (uεM , p
ε
M) ∈ H1(Ω\ωε)× L2(Ω\ωε) such that

−ν∆uεM +∇pεM = 0 in Ω\ωε
divuεM = 0 in Ω\ωε

σ(uεM , p
ε
M)n = g on O
uεM = f on ∂Ω\O
uεM = 0 on ∂ωε,

(16)

where ωε :=
⋃m
k=1 ωzk,εk for a �nite number m of objects located in z1, . . . , zm. These

two forward problems are classically well-de�ned.

Notice that, assuming that f , g are the real data (this is, obtained without error),
if ωε coincides with the actual domain ω∗ε , then u

ε
D = uεM in Ω\ωε. According to this

observation, we propose a resolution of the inverse problem (14) of reconstructing ω∗ε
based on the minimization of the following Kohn-Vogelius functional

FKVε (uεD,u
ε
M) :=

1

2

∫
Ω\ωε

ν|D(uεD)−D(uεM)|2,

19



General Introduction

where D(·) = ∇(·) + t∇(·).

We then de�ne
JKV (Ω\ωε) := FKVε (uεD,u

ε
M).

As we said before the topological sensitivity analysis consists in the study of the
variations of a design functional J with respect to the insertion of a small obstacle
ωz,ε at the point z ∈ Ω. The aim is to obtain an asymptotic expansion of J of the
form

J (Ωz,ε) = J (Ω) + ξ(ε)δJ (z) + o(ξ(ε)) ∀z ∈ Ω, (17)

where ε > 0, ξ is a positive scalar function intended to tend to zero with ε and where

Ωz,ε := Ω\ωz,ε,

with ωz,ε := z+εω. We summarize the notations concerning the domains in Figure 4.

O

Ω
∂Ωωz,ε

Ωz,ε

Figure 4: The initial domain and the same domain after inclusion of an object

In order to provide an asymptotic expansion of the Kohn-Vogelius functional JKV ,
we need �rst an asymptotic expansion of the solution of the Stokes problems (15)
and (16).

Unlike the three-dimensional case, the two-dimensional problem cannot be ap-
proximated by an `exterior problem', which in general in this case doesn't have
a solution which vanishes at in�nity. This kind of problem has been treated by
Bonnaillie-Noël and Dambrine in [21] for the Laplace equation in the plane: we
have followed this procedure in order to �nd a suitable approximation for the Stokes
problem.

It is important to remark that the topological sensitivity analysis will be consid-
ered only for a single obstacle, this is not a problem in our aim to detect several
obstacles because in the numerical algorithm we will apply the single obstacle result
iteratively: �rst on Ω, then on Ω \ ωz1,ε1 and so on.

Proposition 0.10 The respective solutions uεD ∈ H1(Ωz,ε) and uεM ∈ H1(Ωz,ε) of
Problems (15) and (16) admit the following asymptotic expansion (with the subscript
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\ = D and \ = N respectively):

uε\(x) = u0
\ (x) +

1

− log ε
(C\(x)−U \(x)) +OH1(Ωz,ε)

(
1

− log ε

)
,

where (U \, P\) ∈ H1(Ω) × L2
0(Ω) solves the following Stokes problem de�ned in the

whole domain Ω 
−ν∆U \ +∇P\ = 0 in Ω

divU \ = 0 in Ω
U \ = C\ on ∂Ω,

(18)

with
C\(x) := −4πνE(x− z)u0

\ (z), (19)

where E is the fundamental solution of the Stokes equations in R2 given by

E(x) =
1

4πν

(
− log ‖x‖I + er

ter
)
, P (x) =

x

2π ‖x‖2 ,

with er =
x

‖x‖
; that is −ν∆Ej + ∇P j = δej, where Ej denotes the jth column of

E, (ej)
2
j=1 is the canonical basis of R2 and δ is the Dirac distribution. The notation

OH1(Ωz,ε)

(
1

− log ε

)
means that there exist a constant c > 0 (independent of ε) and

ε1 > 0 such that for all 0 < ε < ε1∥∥uε\(x)− u0
\ (x)− hε(C\(x)−U \(x))

∥∥
1,Ωz,ε

≤ c

− log ε
.

In order to perform the asymptotic expansion of the Kohn-Vogelius functional
using the previous result, we need to rewrite the functional di�erence JKV (Ωε) −
JKV (Ω) to obtain a decoupled expression. This is, an expression in which each
integral only depends on uεD,u

0
D or uεM ,u

0
N , without mixed terms. The following

lemma shows the desired decomposition:

Lemma 0.11 We have

JKV (Ωε)− JKV (Ω) = AD + AM , (20)

where

AD :=
1

2
ν

∫
Ωε

D(uεD − u0
D) :D(uεD − u0

D)

+ ν

∫
Ωε

D(uεD − u0
D) :D(u0

D)− 1

2
ν

∫
ωε

|D(u0
D)|2

and

AM :=

∫
∂ωε

[
σ(uεM − u0

M , p
ε
M − p0

M)n
]
· u0

M −
1

2
ν

∫
ωε

|D(u0
M)|2.

Finally, using Proposition 0.10 in Lemma 0.11 we can obtain the desired result:
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Theorem 0.12 For z ∈ Ω, the functional JKV admits the following topological
asymptotic expansion

JKV (Ωz,ε)− JKV (Ω) =
4πν

− log ε
(|u0

D(z)|2 − |u0
M(z)|2) + o

(
1

− log ε

)
,

where u0
D ∈ H1(Ω) and u0

M ∈ H1(Ω) solve respectively Problems (15) and (16) with
ωε = ∅ and o(f(ε)) is the set of functions g(ε) such that limε→0

g(ε)
f(ε)

= 0. Therefore,
we have

ξ(ε) =
1

− log ε
and δJKV (z) = 4πν(|u0

D(z)|2 − |u0
M(z)|2)

in the general asymptotic expansion (17).

It is interesting to notice that, unlike the 3-dimensional case, the obtained ex-
pression is valid for any possible admissible geometry of ω. Which is in concordance
with the literature (see for example [9, 10, 53, 54]).

With the obtained results we have to remark that, using expression (17)

J (Ωz,ε)− J (Ω) = ξ(ε)δJ (z) + o(ξ(ε)) ∀z ∈ Ω,

thus, the functional will decrease its value if we add an obstacle with shape ωε in
z ∈ Ω such that δJ (z) < 0. Moreover, this means that the minimization of J will
be equivalent to the inclusion of an obstacle centered in the point z where δJ (z) is
the most negative. In the �nal chapter we will implement an algorithm in which we
use this criterion to perform the numerical resolution of the considered problem.

Chapter 5: Numerical detection of obstacles: Topological and mixed op-
timization method.

In this chapter we perform the numerical reconstruction of an unknown number
of obstacles immersed in a stationary �uid governed by the incompressible 2D Stokes
equations from boundary measurements. Using the Kohn-Vogelius functional and
its topological derivative, obtained in the previous chapter and summarized into
Theorem 0.12, we are capable to minimize the functional using a topological gradient
algorithm, which allows to obtain the number and relative location of the desired
obstacles.

We implement and explore the capabilities of the topological gradient algorithm
using FreeFEM++ [60], the basic idea of the algorithm is, for a given domain,
analyze the value of the topological derivative and insert an obstacle in the point
z ∈ Ω where the topological gradient of the Kohn-Vogelius functional δJKV (z) is the
most negative, and iterates this procedure until the functional begins to increase.
We naturally implement some thresholding conditions in order to avoid adding two
potential obstacles too close (we increase the size of the actual one in that case)
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and avoid adding a potential obstacle which may cross the boundary (we force the
object to be a little more `inside' the domain).

We test the algorithm under several situations:

1. When the obstacles are far between them and close to the boundary:
The obtained results are positive, the algorithm is capable to determine the
number and relative location of the obstacles.

2. When the obstacles have other geometry than circles: The obtained
results are interesting, (small) squares are properly detected in number and
relative location. A more challenging problem is considered with a `donut'
and a circle far from each-other, both are detected and the relative size of the
`donut' is properly estimated by the algorithm.

3. When the obstacles are far from the boundary: Similarly to the results
obtained by Caubet et al. in [36], we have seen that, if the obstacle is far from
the boundary, then the obtained results may be wrong, in relative location or
even in the capability of detect the obstacle.

4. When the size of the obstacles is `big': As one can expect, if the size of
the obstacle becomes too big, the asymptotic expansion cannot be longer valid.
Numerically the results are diverse: wrong number of obstacles is predicted,
or wrong size of the obstacles is predicted.

5. When we introduce noise to the boundary data: We have tested our
algorithm in the case when the boundary data is polluted by noise, simulations
shown that a relative high amount of noise is allowed (25%) to obtain correct
estimates of the number of obstacles and their relative location, in the best
case proposed: small obstacles close to the boundary.

We present two examples in Figures 5 and 6 below.

Figure 5: Detection of small circle and `donut': Positive results.

Additionally, in order to improve the quality of the obtained results, we propose a
new algorithm, which combines the capabilities of the topological gradient algorithm
with the capabilities of an algorithm tested before: the shape gradient algorithm.
The idea is to combine the capability of the topological gradient algorithm to de-
termine the number and relative position of obstacles inside the domain of reference
with the capability of the shape gradient algorithm to determine the relative shape
of the obstacles, when the number of them is known.

23



General Introduction

Figure 6: Bad Detection for a `very big sized' object

Our mixed optimization method performs in �rst place a topological optimization,
in order to �x the topology of the domain, this is, to �x the number of obstacles and
their relative location, and then, we execute the shape gradient algorithm, which we
can compute in this case, thanks to the following expression of the shape derivative
of the Kohn-Vogelius functional (see [37, Proposition 2] for the existence proof and
computation):

Proposition 0.13 (First order shape derivative of the functional) For V an ad-
missible deformation, the Kohn-Vogelius cost functional JKV is di�erentiable at ω
in the direction V with

DJKV (Ω\ω) · V = −
∫
∂ω

(σ(w, q) n) · ∂nuD(V · n) +
1

2
ν

∫
∂ω

|D(w)|2 (V · n) (21)

where (w, q) is de�ned by

w := uD − uM and q := pD − pM .

As in Chapter 3, due to the ill-posedness of the reconstruction of the boundary
(in this particular case, see [37] for a detailed explanation), we have to take the same
considerations on the boundary parametrization using truncated Fourier series.

The performed simulation (see Figure 7) shows an improvement in the shape
of the obtained obstacle in comparison with the real obstacle and an improvement
on the value of the Kohn-Vogelius functional, which justi�es the extension of the
topological gradient algorithm.

Publications
The studies in this manuscript have resulted in two articles: one is already published
and one will be submitted shortly:

• On the detection of several obstacles in 2D Stokes �ow: topological sensitivity
and combination with shape derivatives, written with F. Caubet and C. Conca
(see [35]).
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Figure 7: Detection with the combined approach (the initial shape is the one ob-
tained after the �topological step�) and zoom on the improvement with the geomet-
rical step for the obstacle in the right.

• A Kohn-Vogelius approach to study the data completion problem and the in-
verse obstacle problem with partial Cauchy data for Laplace's equation, written
with F. Caubet and J. Dardé. (to be submitted).
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Notations

General Notations

d : Natural number, dimension of the space of work.
Ω : Open bounded connected subset of Rd with Lipschitz boundary,

set of reference.
∂Ω : Boundary of Ω.

n : Exterior normal of ∂Ω.
∂n : Normal derivative.

u, (u, p) : Solutions of the considered PDEs (Laplace: u, Stokes: (u, p))
on Ω \ ω (Ω in Chapter 1 and 2).

t∇u : Transpose matrix of ∇u.
Lp : Lebesgue spaces, p ≥ 1 with norm ‖ · ‖Lp .

Wm,p : Sobolev spaces, m ∈ R, p ≥ 1 with norm ‖ · ‖m,p.
Hm := Wm,2, with norm ‖ · ‖m and seminorm | · |m.

Lp,Hm, etc. : Spaces of vector functions.

L2
0(Ω) := L2(Ω)/R, characterized by p ∈ L2

0(Ω)⇔ p ∈ L2(Ω) ∧
∫

Ω

p(x)dx = 0.

C : Positive (unless speci�ed) constant.

Chapter 1

Γobs : Accessible part of the boundary Γobs ⊂ ∂Ω.
Γi : Unaccessible part of the boundary Γi ⊂ ∂Ω.

(gN , gD) : Cauchy data in Γobs, (gN , gD) ∈ H−1/2(Γobs)× H1/2(Γobs).
(gnD, g

n
N) : Sequence of Cauchy data in H−1/2(Γobs)× H1/2(Γobs).
uex : Exact solution of the data completion problem.

(ϕ, ψ) : Cauchy data in Γi.
(ugDϕ , ugNψ ) : Solutions of mixed boundary problems.

(uϕ, uψ) := (ugDϕ , ugNψ ).

(vϕ, vψ) := (u0
ϕ, u

0
ψ).

K(ϕ, ψ) : Kohn-Vogelius functional de�ned in H−1/2(Γi)× H1/2(Γi).
(ϕ∗, ψ∗) : Minimizer of Kohn-Vogelius functional.
(ϕn, ψn) : Sequence of Cauchy data in H−1/2(Γi)× H1/2(Γi).
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a((ϕ1, ψ1), (ϕ2, ψ2)) : Bilinear form associated with the optimality condition of K.
`gD,gN ((ϕ, ψ)) : Linear form associated with the optimality condition of K.

`((ϕ, ψ)) := `gD,gN ((ϕ, ψ)).
`n((ϕ, ψ)) := `g

n
D,g

n
N ((ϕ, ψ)).

γ0 : Trace operator.
ε : Regularization parameter.

Kε(ϕ, ψ) : Regularized Kohn-Vogelius functional.
(ϕ∗ε, ψ

∗
ε) : Minimizer of Kε.

b((ϕ1, ψ1), (ϕ2, ψ2)) : Bilinear form associated with the regularizing term of Kε.
δ : Level of noise.

(gδN , g
δ
D) : Cauchy data with noise of level δ.
Kδ : Kohn-Vogelius functional associated to the data (gδN , g

δ
D).

Kδε : Regularized Kohn-Vogelius functional associated with the
data (gδN , g

δ
D).

(ϕ∗ε,δ, ψ
∗
ε,δ) : Minimizers of Kδε.
`δ := `g

δ
D,g

δ
N .

d`δ := `δ − `.
(dgN , dgD) := (gδN − gN , gδD − gD).

ε(δ) : Regularization parameter with dependence on the noise level.
ε(δ, (ϕ∗ε,δ, ψ

∗
ε,δ)) : Regularization parameter with dependence on the noise level

and the solution to that noise level.

Chapter 2

∂Kε
∂ϕ

: Partial derivative of Kε with respect to ϕ ∈ H−1/2(Γi).

∂Kε
∂ψ

: Partial derivative of Kε with respect to ψ ∈ H1/2(Γi).

(wN , wD) : Solutions of adjoint problems.
{p1, p2} : Common points between Γobs and Γi.

(ϕ̃, ψ̃) : Descent directions for gradient method to minimize Kε.
kmax : Maximum number of iterations.
tol : Tolerance parameter.
αi : Step size parameter for descent directions, i = 1, 2, 3.

(ϕ0, ψ0) : Initial guess for the unknown data.
(ϕk, ψk) : Obtained guess for the unknown data at step k.

σ : Level of noise.
gσ : Data with level of noise σ.
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Chapter 3

D : Set of admissible obstacles.
ω : Admissible obstacle (in D).
ω∗ : Real obstacle.

C0(O) : Set of continuous functions up to the boundary of O.
(ω, ϕ, ψ) : Triplet of admissible obstacle, Neumann data and Dirichlet data

over Γi.
K(ω, ϕ, ψ) : Kohn-Vogelius functional with shape dependance.
Kε(ω, ϕ, ψ) : Regularized Kohn-Vogelius functional with shape dependance.

K(ω) := K(ω, ϕ, ψ).
Kε(ω) := Kε(ω, ϕ, ψ).

(ω∗, ϕ∗, ψ∗) : Optimal triplet: Real obstacle, real Neumann and Dirichlet data.
which is also a minimizer of K(ω, ϕ, ψ).

V : Set of admissible deformation directions.
U : Deformation direction (in V ).
d0 : Positive real parameter.

Ωd0 : A C∞ domain compactly contained in Ω.
DKε(ω) · V : Shape gradient of Kε in ω with deformation direction V .

w := uϕ − uψ.
ρuN , ρ

u
D : Solutions of adjoint problems related to uψ, uϕ.

ρvN , ρ
v
D : Solutions of adjoint problems related to vψ, vϕ.

u′ϕ, u
′
ψ : Shape (Eulerian) derivative of uϕ, uψ.

v′ϕ, v
′
ψ : Shape (Eulerian) derivative of vϕ, vψ.
w′ := u′ϕ − u′ψ.

r(θ) : Polar radius of the parametrizacion of ∂ω.
rN(θ) : Truncated Fourier series expansion of r(θ).
aNi , b

N
i : Fourier series coe�ciens of rN(θ).
ωk : Obstacle shape after k iterations.

(ϕ0, ψ0) : Initial guess for the unknown data.
(ϕk, ψk) : Obtained guess for the unknown data at step k.

(ukD, u
k
N) := (uϕk , uψk).

(vkD, v
k
N) := (vϕk , vψk).

D((x0, y0), r) := {(x, y) ∈ R2 : (x− x0)2 + (y − y0)2 ≤ r2} .
∂D((x0, y0), r) := {(x, y) ∈ R2 : (x− x0)2 + (y − y0)2 = r2} .

Chapter 4

ν : Real positive number, kinematic viscocity.
ω : A bounded Lipschitz domain in R2 such that 0 ∈ ω, shape of reference.
ε : A small parameter, 0 < ε << 1.

ωz,ε := z + εω, small obstacle with relative center z ∈ Ω and relative size ε.
m∗ : Number of obstacles to be detected.
O : (Relatively) open subset of the boundary ∂Ω.
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ω∗z,ε : Real small obstacle with relative center z ∈ Ω and relative size ε.
ω∗ε := ∪m∗k=1ω

∗
zk,εk

, collection of real objects.
Ωz,ε := Ω \ ωz,ε

σ(u, p) : Cauchy stress tensor.
σ(u, p)n : Cauchy forces.

f : Dirichlet data over ∂Ω.
g : Neumann data over O ⊂ ∂Ω.

D(·) := (∇(·) + t∇(·))
(uεD, p

ε
D) : Solution of the Dirichlet problem in Ωz,ε.

(uεM , p
ε
M) : Solution of the mixed problem in Ωz,ε.

(u0
D, p

0
D) : Solution of the Dirichlet problem in Ω.

(u0
M , p

0
M) : Solution of the mixed problem in Ω.

JKV (Ω\ωε) : The Kohn-Vogelius functional evaluated with an obstacle ωε.
(E,P ) : Fundamental solution of the Stokes equation in R2

ξ(ε) : A positive scalar function intended to tend to zero with ε
δJKV (z) : Topological derivative of the Kohn-Vogelius functional in the point z.

Chapter 5

f : Dirichlet data over ∂Ω.
g : Neumann data over O ⊂ ∂Ω.

JKV : The Kohn-Vogelius functional.
ωε : Obstacle(s) inside the domain of reference Ω.

δJKV : The topological gradient of the Kohn-Vogelius functional.
(uεD, p

ε
D) : Solution of the Dirichlet problem in Ωz,ε.

(uεM , p
ε
M) : Solution of the mixed problem in Ωz,ε.

(u0
D, p

0
D) : Solution of the Dirichlet problem in Ω.

(u0
M , p

0
M) : Solution of the mixed problem in Ω.

(uD, pD) := (uεD, p
ε
D).

(uM , pM) := (uεM , p
ε
M).

P ∗ := argminP∈Ω δJKV (P ).
B(P, r) := {P ′ ∈ Ω such that ‖P ′ − P‖ < r} .

gσ : Vector �eld polluted with noise of amplitude σ > 0.
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Part I

The data completion problem and

the inverse obstacle problem with

partial boundary data
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Chapter 1

Theoretical analysis of the data

completion problem for Laplace

operator

In this chapter we present the data completion problem for the Laplace operator,
this is, the problem of reconstructing boundary data in an inaccessible part of the
boundary from overdetermined boundary data in an accessible part of the boundary.
We deal with this problem by considering a Kohn-Vogelius strategy: We split the
overdetermined problem in two subproblems, each one has one of the overdetermined
boundary data, and, in order to have well-posed problems we impose boundary data
into the inaccessible part of the boundary, then, we measure the error between these
functions which will be zero only when we have chosen the exact boundary data into
the unaccessible part of the boundary. Therefore, we restate the inverse problem as
an optimization problem: the minimization of the cost-type functional, the Kohn-
Vogelius functional. Additionally, due to the ill-posedness of the problem we propose
a regularization of the minimization problem, considering a Tikhonov regularization
of the functional, which transforms the initial minimization problem into another
one which always has solution. We study convergence properties for this regularized
functional in case when the given overdetermined data is perfect and in the case
when the data is polluted by noise.

This chapter is divided in three sections. In the �rst one we present the prob-
lem, the corresponding notations and we present the inverse problem equivalently
as the minimization of a cost-type functional: The Kohn-Vogelius functional. In
the second section we explore the properties of the Kohn-Vogelius functional and
present, in order to overcome the exponential ill-posedness of the problem (see [18]),
the regularized Kohn-Vogelius functional, based in a Tikhonov regularization. We
study this new functional, obtaining in particular the convergence of its minimizers
to the minimizer of the original Kohn-Vogelius functional when the regularization
parameter tends to zero. We also explore monotony properties of this functional, and
some others related, viewed as a function of the regularization parameter. Finally,
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1.1. The problem setting

in the last section, we explore the problem when the Cauchy data into the observ-
able part of the boundary contains noise. We see that, in order to have convergence
to the original solution (with respect to the unpolluted data), we have to establish
some requirements between the noise level and the regularization parameter. We
de�ne an strategy to relate the level of noise and the regularization parameter and
we prove that this strategy e�ectively provides convergence to the solution of the
Cauchy problem when it exists.

Our main references to this work are [12, 13, 20, 18, 19], in [12] Andrieux et al.
propose the strategy of solving the problem by the restatement as an optimization
problem, however the analysis is purely numerical. In [19] Ben Belgacem et al.
propose a similar strategy but focused in a variational formulation instead of an
optimization one and focused in only reconstruct the Dirichlet data. We perform a
complement between our main references, performing a theoretical analysis of the
work of Andrieux et al. using several tools from the works of [13, 20, 19], and, the
most interesting improvement is the development of an extension of the strategy of
Andrieux et al., by considering even noisy cases and proposing strategies to deal
with them.

1.1 The problem setting

Introduction of the general notations. For a bounded open set Ω of Rd (d ∈
N∗) with a boundary ∂Ω, we remark that the notation

∫
Ω

u means
∫

Ω

u(x)dx which

is the classical Lebesgue integral. Moreover, we use the notation
∫
∂Ω

u to denote the

boundary integral
∫
∂Ω

u(x)ds(x), where ds represents the surface Lebesgue measure

on the boundary. The aim is to simplify the notations when there is no confusion.
We also introduce the exterior unit normal n of the domain Ω and ∂nu will denote
the normal derivative of u.

For s ≥ 0 we denote by L2(Ω), L2(∂Ω), Hs(Ω), Hs(∂Ω), Hs
0(Ω), the usual Lebesgue

and Sobolev spaces of scalar functions in Ω or on ∂Ω. The classical scalar product,
norm and semi-norm on Hs(Ω) are respectively denoted by (·, ·)Hs(Ω), ‖·‖Hs(Ω) and
|·|Hs(Ω). Moreover, we introduce the space H1(Ω,∆) given by

H1(Ω,∆) :=
{
u ∈ H1(Ω) : ∆u ∈ L2(Ω)

}
.

This space endowed with the scalar product

(u, v)H1(Ω,∆) := (u, v)H1(Ω) + (∆u,∆v)L2(Ω)

is an Hilbert space. As a subspace of H1(Ω), we can de�ne a trace for each u ∈
H1(Ω,∆). Additionally we can de�ne a normal derivative on the boundary ∂Ω of Ω
which de�nes a continuous application into H−1/2(∂Ω) and we have an integration
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1.1. The problem setting

by parts formula. These results can be found into appendix A.1. We can �nally
note that this space is an intermediate one between H1(Ω) and H2(Ω), i.e.

H2(Ω) ⊂ H1(Ω,∆) ⊂ H1(Ω).

The data completion problem Let Ω be a bounded connected (at least) Lips-
chitz open set of Rd (in applications we will consider d = 2 or d = 3) with boundary
∂Ω which has two components: the nonempty (relatively) open sets Γobs and Γi,
such that Γobs ∪ Γi = ∂Ω. We will say that Γobs is the observable part of ∂Ω where
we will be able to obtain measurements on our system, the Cauchy datum (gN , gD),
and Γi will be considered as the inaccessible part of the boundary ∂Ω, where we
cannot obtain any information of our system.

∂Ω

Γobs

Ω

Figure 1.1: An example domain

The data completion problem consists of recovering data on the whole boundary,
speci�cally on Γi from the over-determined data on Γobs, this is: �nd u ∈ H1(Ω,∆)
such that 

−∆u = 0 in Ω
u = gD on Γobs

∂nu = gN on Γobs,
(1.1)

naturally, as (gN , gD) could be any data (obtained for example from experiments),
such a u may not exist, so we need to specify if we are in the favorable case or not:

De�nition 1.1 A pair (gN , gD) ∈ H−1/2(Γobs)×H1/2(Γobs) will be called compatible

if there exists (a necessarily unique) u ∈ H1(Ω,∆) harmonic such that u|Γobs =
gD, ∂nu|Γobs = gN .

Remark The uniqueness result of such a solution is classical and is based on a
unique continuation result, we refer to [44, Chapter 1] for a detailed proof.

The following relevant result states that, if a given pair (gN , gD) is not compatible,
we may approximate it by a sequence of compatible data, which implies in particular
the ill-posedness of the considered inverse problem:

Lemma 1.2 For (gN , gD) ∈ H−1/2(Γobs)× H1/2(Γobs) given data, we have:
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1. For a �xed gD ∈ H1/2(Γobs), the set of data gN for which there exists a function
u ∈ H1(Ω,∆), satisfying the Cauchy problem (1.1) is dense in H−1/2(Γobs).

2. For a �xed gN ∈ H−1/2(Γobs), the set of data gD for which there exists a function
u ∈ H1(Ω,∆), satisfying the Cauchy problem (1.1) is dense in H1/2(Γobs).

Proof. See Fursikov [51, Chapter 3] or Andrieux [12]

Remark Let us explore the Cauchy problem: this problem is ill-posed in the sense
of Hadamard, this is, if the data (gN , gD) is compatible, the associated solution
u ∈ H1(Ω,∆) does not depend continuously of the compatible data, as the classical
example of Hadamard [55] shows:

Let us consider Ω = (0, π) × (0, π) and Γobs = {0} × (0, π) and for n ∈ N∗ take
un(x, y) = 1

n2 sin(ny) sinh(nx). It is immediate to see that un is harmonic in Ω for
all n ∈ N∗ and ∂nun(x, y) = − 1

n
sin(ny) on Γobs.

Now, we have:

‖∂nun‖H−1/2(Γobs)
≤ ‖∂nun‖L2(Γobs) =

(∫
Γobs

1

n2
sin2(ny)ds(y)

)1/2

=
1

n

√
π

2
→n→∞ 0,

and

‖un‖L2(Ω) =

(∫
Ω

1

n4
sin2(ny) sinh2(nx)dxdy

)1/2

=

(
π

2n4
·
(

sinh(2πn)

4n
− π

2

))1/2

,

therefore:
‖un‖L2(Ω) →∞ as n→∞

Noticing that we have:
‖un‖H1(Ω,∆) ≥ ‖un‖L2(Ω),

We deduce that is impossible to have a continuous dependence, i.e. we cannot
�nd a constant c > 0 such that:

‖u‖H1(Ω,∆) ≤ c
(
‖u‖H1/2(Γobs)

+ ‖∂nu‖H−1/2(Γobs)

)
.

Moreover, with this example we will be able to see that the operator A : u ∈
H1(Ω,∆) → (u|Γobs , ∂nu|Γobs) ∈ H1/2(Γobs) × H−1/2(Γobs) is not surjective, which in
particular proves that there exists data (gN , gD) which is not compatible.

Proposition 1.3 The operator A is not surjective.

Proof. By contradiction, let us suppose that A is surjective. The uniqueness of the
problem (and the linearity) implies that A is bijective and continuous from H1(Ω) to
Y := H1/2(Γobs)×H−1/2(Γobs) which are Banach spaces. By open mapping theorem
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1.2. Theoretical results concerning the data completion problem

(to be more speci�c, a classic corollary of it) we deduce the continuity of A−1, which
is equivalent to the existence of a constant C > 0 such that:

‖u‖H1(Ω) ≤ C‖Au‖Y ,

which is a contradiction with the previously proven ill-posedness of the problem.

The Kohn-Vogelius functional. In order to solve this problem our idea is to de-
�ne a well-appropriated Kohn-Vogelius functional which will depend on the missing
data in Γi, following the idea proposed by Andrieux et al. in [12].

Hence, in order to solve the initial inverse problem (1.1), we will focus on the
following optimization problem:

(ϕ∗, ψ∗) ∈ argmin
(ϕ,ψ)∈H−1/2(Γi)×H1/2(Γi)

K(ϕ, ψ) (1.2)

where K is the nonnegative Kohn-Vogelius cost functional de�ned by

K(ϕ, ψ) =
1

2

∫
Ω

|∇ugDϕ −∇u
gN
ψ |

2 (1.3)

where ugDϕ ∈ H1(Ω) and ugNψ ∈ H1(Ω) are the respective solutions of the following
problems

−∆ugDϕ = 0 in Ω
ugDϕ = gD on Γobs

∂nu
gD
ϕ = ϕ on Γi,

and


−∆ugNψ = 0 in Ω

∂nu
gN
ψ = gN on Γobs
ugNψ = ψ on Γi.

(1.4)

Indeed, if the inverse problem (1.1) has a solution, then we have that K(ϕ, ψ) = 0 if
and only if (ϕ, ψ) = (ϕ∗, ψ∗) (and we can notice that, in this case, using Holmgren
Theorem: ugDϕ∗ = u and ugNψ∗ = u + C, C ∈ R where u is the solution of the Cauchy
problem in Ω). Thus, from now, we focus on the optimization problem (1.2).

In the rest of the following chapters, we will note uϕ and uψ instead of ugDϕ and ugNψ .
We will only precise the dependence with respect to gD and gN when it is necessary.
Moreover, we introduce the notations vϕ := u0

ϕ and vψ := u0
ψ. Indeed, they will play

an important role in the following. We precise that they satisfy respectively
−∆vϕ = 0 in Ω

vϕ = 0 on Γobs
∂nvϕ = ϕ on Γi

and


−∆vψ = 0 in Ω
∂nvψ = 0 on Γobs
vψ = ψ on Γi.

(1.5)

1.2 Theoretical results concerning the data comple-

tion problem

Let us consider a given Cauchy pair (gN , gD) ∈ H−1/2(Γobs)× H1/2(Γobs) (it may be
compatible or not). Hence, the previous Kohn-Vogelius functional (1.3) is de�ned,
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1.2. Theoretical results concerning the data completion problem

for (ϕ, ψ) ∈ H−1/2(Γi)× H1/2(Γi), using the previously de�ned notation as:

K(ϕ, ψ) =
1

2

∫
Ω

|∇uϕ −∇uψ|2 (1.6)

and the previous problems (1.4) become
−∆uϕ = 0 in Ω

uϕ = gD on Γobs
∂nuϕ = ϕ on Γi

and


−∆uψ = 0 in Ω
∂nuψ = gN on Γobs
uψ = ψ on Γi.

(1.7)

Remark We can note that these two problems are natural. They permit to split the
overdetermined objective system (1.1) into two systems where we impose boundary
conditions on the unaccessible part of the boundary. These problems have the
advantage of being well-posed, and as we will see, if we chose properly the imposed
boundary conditions on the unaccessible part of the boundary we will be able to
reconstruct the desired solution of our main problem (1.1).

Remark We can notice that (assuming enough regularity, if not we obtain a similar
expression with duality products), after integration by parts, we get:

K(ϕ, ψ) =
1

2

∫
Γobs

(∂νuϕ − gN) (gD − uψ) +
1

2

∫
Γi

(ϕ− ∂νuψ) (uϕ − ψ).

This expression shows that the cost functional K measures the error between uϕ and
uψ as integrals only involving the boundary of the domain Ω.

1.2.1 Properties of K

We �rst explore the properties of the Kohn-Vogelius functional K : H−1/2(Γi) ×
H1/2(Γi)→ R given by (1.6).

Proposition 1.4 The functional K satis�es the following properties.

1. K is continuous, convex, positive, and its in�mum is zero.

2. When K(ϕ, ψ) reaches its minimum with (ϕ∗, ψ∗) = argmin(ϕ,ψ)K(ϕ, ψ) we
have: uϕ∗ = uψ∗ + C = uψ∗+C where C is any constant in R. Therefore
(ϕ∗, ψ∗ + C) is also a minimizer of K. Moreover, in this case, uϕ∗ solves the
Cauchy problem.

3. If we restrict K to the space H−1/2(Γi)×H1/2(Γi)/R then a minimizer of K is
unique.

4. The �rst order optimality condition for (ϕ∗, ψ∗) ∈ H−1/2(Γi)×H1/2(Γi) to be a
minimizer is, for all (ϕ̃, ψ̃) ∈ H−1/2(Γi)× H1/2(Γi),∫

Ω

∇(vϕ∗ − vψ∗) · ∇(vϕ̃ − vψ̃) =

∫
Ω

(
∇ugD0 · ∇vψ̃ +∇ugN0 · ∇vϕ̃

)
(1.8)
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Proof. We prove each statement.

1. Continuity, convexity and positiveness are obvious.

To prove that inf(ϕ,ψ)K(ϕ, ψ) = 0, we have to consider two cases. If the
pair (gN , gD) is compatible, this is direct since, choosing ϕ∗ := ∂nuex|Γi

and
ψ∗ := uex|Γi

, we obtain immediately K(ϕ∗, ψ∗) = 0. Let us now focus on the
non-compatible case. Thanks to the density lemma 1.2, we can approximate
gD by a sequence (gnD)n in a way that the pairs (gN , g

n
D)n are compatibles for

all n ∈ N. For each n, consider (ϕ∗n, ψ
∗
n) the minimizer of the Kohn-Vogelius

function for the data (gN , g
n
D) which implies that ∇ug

n
D
ϕ∗n

= ∇ugNψ∗n . Then we
have:

K(ϕ∗n, ψ
∗
n) = 1

2

∣∣∣ugDϕ∗n − ugNψ∗n ∣∣∣2H1(Ω)
= 1

2

∣∣∣ugDϕ∗n − ugnDϕ∗n∣∣∣2H1(Ω)
= 1

2

∣∣∣ugD−gnD0

∣∣∣2
H1(Ω)

≤ C‖gD − gnD‖2
H1/2(Γi)

−→
n→∞

0,

which concludes the proof.

2. The �rst and second assertions are obvious from the de�nition of the functional
K. To see that uϕ∗ solves the Cauchy problem, �rst notice that uϕ∗ satis�es
(as this is equal to uψ∗ up to a constant) the system:

−∆uϕ∗ = 0 in Ω
uϕ∗ = gD on Γobs

∂nuϕ∗ = gN on Γobs
∂nuϕ∗ = ϕ∗ on Γi.

Therefore uϕ∗ solves the Cauchy problem (1.1).

3. This comes from the de�nition of quotient space.

4. A standard computation gives the directly the left hand side, the right hand
side becomes ∫

Ω

∇(ugN0 − u
gD
0 ) · ∇(vϕ − vψ),

and we get the result noticing that∫
Ω

∇ugD0 · ∇vϕ̃ = 0 and
∫

Ω

∇ugN0 · ∇vψ̃ = 0.

For a given Cauchy pair (gN , gD), we introduce the bilinear form a :
(
H−1/2(Γi)× H1/2(Γi)

)2 →
R and the linear form ` : H−1/2(Γi) × H1/2(Γi) → R respectively de�ned, for all
(ϕ, ψ), (ϕ̃, ψ̃) ∈ H−1/2(Γi)× H1/2(Γi), by

a
(

(ϕ, ψ), (ϕ̃, ψ̃)
)

=

∫
Ω

∇(vϕ − vψ) · ∇(vϕ̃ − vψ̃)

`(ϕ, ψ) =

∫
Ω

(∇ugD0 · ∇vψ +∇ugN0 · ∇vϕ)

=

∫
Ω

∇(ugN0 − u
gD
0 ) · ∇(vϕ − vψ).

(1.9)
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Then, note that the optimality condition (1.8) can be rewritten as

a((ϕ∗, ψ∗), (ϕ̃, ψ̃)) = `(ϕ̃, ψ̃) , ∀(ϕ̃, ψ̃) ∈ H−1/2(Γi)× H1/2(Γi). (1.10)

By the fact that K is not coercive, we cannot assume that K reaches its minimum
in general. Anyway, we can consider the following de�nition which generalizes the
concept of �rst order optimality condition:

De�nition 1.5 We say that a sequence (ϕn, ψn) ⊂ H−1/2(Γi)×H1/2(Γi) is a pseudo-
solution of (1.2) if

lim
n→∞

sup
(ϕ̃,ψ̃)∈H−1/2(Γi)×H1/2(Γi)

|a((ϕn, ψn), (ϕ̃, ψ̃))− `(ϕ̃, ψ̃)|
‖(ϕ̃, ψ̃)‖H−1/2(Γi)×H1/2(Γi)

= 0. (1.11)

Using the density Lemma 1.2, we can prove that there always exists a pseudo-
solution of (1.2). Moreover, we can assert an alternative in which, given a condition
over a pseudo-solution we can obtain the existence and (weakly-)convergence to the
solution of the Cauchy problem. In order to assert and prove the result, we need a
preliminary lemma.

Lemma 1.6 Let η ∈ H−1/2(Γobs) such that ∀ψ ∈ H1/2(Γi) we have:

〈η, vψ〉Γobs = 0,

then η = 0.

Proof. Let us consider the following well-posed problem:
−∆wη = 0 in Ω
∂nwη = η on Γobs
wη = 0 on Γi.

By hypothesis we have ∀ψ ∈ H1/2(Γi)

0 = 〈η, vψ〉Γobs = −〈∂nwη, ψ〉Γi
+

∫
Ω

∇vψ · ∇wη,

however, we also have due to the boundary conditions satis�ed by wη and vψ∫
Ω

∇vψ · ∇wη = 〈∂nvψ, wη〉∂Ω = 〈∂nvψ, wη〉Γi
+ 〈∂nvψ, wη〉Γobs = 0,

therefore, ∀ψ ∈ H1/2(Γi)
0 = 〈∂nwη, ψ〉Γi

,

then wη satis�es 
−∆wη = 0 in Ω
∂nwη = η on Γobs
∂nwη = 0 on Γi

wη = 0 on Γi,

and by Holmgren theorem we conclude wη = 0, which implies in particular η = 0

40



1.2. Theoretical results concerning the data completion problem

Proposition 1.7 For any (gN , gD) ∈ H−1/2(Γobs)×H1/2(Γobs), there exists a pseudo-
solution (ϕ∗n, ψ

∗
n) ⊂ H−1/2(Γi) × H1/2(Γi) of (1.2). Moreover, any pseudo-solution

satis�es the following alternative:

1. ‖(ϕ∗n, ψ∗n)‖H−1/2(Γi)×H1/2(Γi)
is bounded and then weakly converges, up to a sub-

sequence, in H−1/2(Γi) × H1/2(Γi) to (ϕ∗, ψ∗) ∈ H−1/2(Γi) × H1/2(Γi) which
minimizes K. Therefore uϕ∗ solves the Cauchy problem (1.1) and we have also
the weak convergence uϕ∗n ⇀ uϕ∗ in H1(Ω);

2. ‖(ϕ∗n, ψ∗n)‖H−1/2(Γi)×H1/2(Γi)
diverges.

Proof. Thanks to the density Lemma 1.2, we approximate gN by a sequence (gnN)n
such that the pairs (gnN , gD) are compatible for all n ∈ N. Let us call `n the linear
form in H−1/2(Γi)× H1/2(Γi) associated with the pair (gnN , gD), i.e.,

`n(ϕ, ψ) :=

∫
Ω

∇ugD0 · ∇vψ +∇ug
n
N

0 · ∇vϕ = −
∫

Ω

∇
(
ugD0 − u

gnN
0

)
· ∇ (vϕ − vψ) .

As (gnN , gD) is compatible for all n, we call (ϕ∗n, ψ
∗
n) the minimizing pair for the

Kohn-Vogelius considered functional (related to the data (gnN , gD)). Then, for each
n, from the �rst optimality condition (1.10),

a((ϕ∗n, ψ
∗
n), (ϕ, ψ)) = `n(ϕ, ψ), ∀(ϕ, ψ) ∈ H−1/2(Γi)× H1/2(Γi),

or equivalently

a((ϕ∗n, ψ
∗
n), (ϕ, ψ))− `(ϕ, ψ) = `n(ϕ, ψ)− `(ϕ, ψ), ∀(ϕ, ψ) ∈ H−1/2(Γi)× H1/2(Γi).

We can estimate the right side of this equality to get

|`n(ϕ, ψ)− `(ϕ, ψ)| =

∣∣∣∣∫
Ω

∇ugD0 · ∇vψ +∇ugN0 · ∇vϕ −∇u
gD
0 · ∇vψ −∇u

gnN
0 · ∇vϕ

∣∣∣∣
=

∣∣∣∣∫
Ω

∇ugN−g
n
N

0 · ∇vϕ
∣∣∣∣ ≤ C‖(ϕ, ψ)‖H−1/2(Γi)×H1/2(Γi)

· ‖gN − gnN‖H−1/2(Γi)
,

which implies, for all n and all no null (ϕ, ψ) ∈ H−1/2(Γi)× H1/2(Γi),

|a((ϕ∗n, ψ
∗
n), (ϕ, ψ))− `(ϕ, ψ)|

‖(ϕ, ψ)‖H−1/2(Γi)×H1/2(Γi)

≤ C‖gN − gnN‖H−1/2(Γi)
.

Thus, we conclude that the constructed (ϕ∗n, ψ
∗
n) ⊂ H−1/2(Γi)×H1/2(Γi) is a pseudo-

solution.

Now, let (ϕ∗n, ψ
∗
n) be a bounded pseudo-solution. De�ne, for n ∈ N:

Sn := sup
(ϕ,ψ)∈H−1/2(Γi)×H1/2(Γi)

|a((ϕ∗n, ψ
∗
n), (ϕ, ψ))− `(ϕ, ψ)|

‖(ϕ, ψ)‖H−1/2(Γi)×H1/2(Γi)

.

We have, for (ϕ, ψ) ∈ H−1/2(Γi)× H1/2(Γi) \ {(0, 0)}:

|a((ϕ∗n, ψ
∗
n), (ϕ, ψ))− `(ϕ, ψ)| ≤ Sn‖(ϕ, ψ)‖ → 0, as n→ 0.
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so, we have for (ϕ, ψ) ∈ H−1/2(Γi)× H1/2(Γi) \ {(0, 0)}:

lim
n
a((ϕ∗n, ψ

∗
n), (ϕ, ψ)) = `(ϕ, ψ).

Now, as the sequence (ϕ∗n, ψ
∗
n)n is bounded, we have the existence of (ϕ∗, ψ∗) ∈

H−1/2(Γi)× H1/2(Γi) such that:

ϕ∗n ⇀ ϕ and ψ∗n ⇀ ψ∗, weakly in H−1/2(Γi) and H1/2(Γi) respectively, as n→∞.

As a(·, (ϕ, ψ)) is a continuous linear functional in H−1/2(Γi)×H1/2(Γi), it is weakly
continuous, so we obtain by taking the limit n → ∞, for any (ϕ, ψ) ∈ H−1/2(Γi) ×
H1/2(Γi) \ {(0, 0)}:

a((ϕ∗, ψ∗), (ϕ, ψ)) = `(ϕ, ψ),

which is equivalent to ∫
Ω

∇(uϕ∗ − uψ∗) · ∇(vϕ − vψ) = 0,

integrating by parts we obtain, ∀(ϕ, ψ) ∈ H−1/2(Γi)× H1/2(Γi) \ {(0, 0)}:

〈∂nuϕ∗ − gN ,−vψ〉Γobs + 〈ϕ∗ − ∂nuψ∗ , vϕ − ψ〉Γi
= 0. (1.12)

Now, take ψ = 0 in (1.12), so we obtain, for ϕ 6= 0 in H−1/2(Γi):

〈ϕ∗ − ∂nuψ∗ , vϕ〉Γi
= 0,

the same applies by de�nition if ϕ = 0. with a analogous argument as in Lemma
1.6 we conclude that

∂nuψ∗ = ϕ∗ in H−1/2(Γi),

then (1.12) is reduced to, for ψ ∈ H1/2(Γi)

〈∂nuϕ∗ − gN ,−vψ〉Γobs = 0,

using Lemma 1.6 we obtain that

∂nuϕ∗ = gN in H−1/2(Γobs),

and then uϕ∗ solves: 
−∆uϕ∗ = 0 in Ω

uϕ∗ = gD on Γobs
∂nuϕ∗ = gN on Γobs
∂nuϕ∗ = ϕ∗ on Γi,

this is, uϕ∗ is the unique solution of the Cauchy problem (1.1).
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On the other hand, we have proved that ∂nuψ∗ = ϕ∗ = ∂nuϕ∗ in H−1/2(Γi), so,
uψ∗ solves: 

−∆uψ∗ = 0 in Ω
∂nuψ∗ = gN on Γobs
∂nuψ∗ = ϕ∗ on Γi

uψ∗ = ψ∗ on Γi.

Taking w := uψ∗ − uϕ∗ ∈ H1(Ω), we have{
−∆w = 0 in Ω
∂nw = 0 on ∂Ω,

this implies uψ∗ = uϕ∗+C with C ∈ R and therefore the pair (ϕ∗, ψ∗) is a minimizer
of the Kohn-Vogelius functional: K(ϕ∗, ψ∗) = 0.

In order to obtain the weak convergence uϕ∗n ⇀ uϕ∗ , we �rst notice that, as
(ϕ∗n, ψ

∗
n) is bounded in H−1/2(Γi)×H1/2(Γi), then the sequences (uϕ∗n , uψ∗n) are bounded

in H1(Ω), therefore there exists (u1, u2) ∈ H1(Ω)× H1(Ω) such that

uϕ∗n ⇀ u1 and uψ∗n ⇀ u2,

weakly in H1(Ω). By weak-continuity of trace and normal derivative operators and
the uniqueness of the weak limit, we conclude that u1 = uϕ∗ = uex and u2 = uψ∗

Finally, we have the following result about the minimizing sequences of K:

Proposition 1.8 For any (gN , gD) ∈ H−1/2(Γobs)×H1/2(Γobs), let (ϕn, ψn) ⊂ H−1/2(Γi)×
H1/2(Γi) a minimizing sequence of K. Then (ϕn, ψn) is a pseudo-solution of (1.8).

Proof. Let us take a minimizing sequence for K.For t ∈ R and (ϕ, ψ) ∈ H−1/2(Γi)×
H1/2(Γi), we have

K((ϕn, ψn) + t(ϕ, ψ)) =
1

2
|uϕn+tϕ − uψn+tψ|2H1(Ω) =

1

2
|uϕn − uψn + t(vϕ − vψ)|2H1(Ω)

=
1

2
|uϕn − uψn|2H1(Ω) +

t2

2
|vϕ − vψ|2H1(Ω)

+t

∫
Ω

∇ (uϕn − uψn) · ∇ (vϕ − vψ) dx

=
1

2
|uϕn − uψn|2H1(Ω) +

t2

2
|vϕ − vψ|2H1(Ω)

+t a((ϕn, ψn), (ϕ, ψ))− `(ϕ, ψ).

Notice that this expression can be seen as the polynomial at2 + bt + c and should
be greater than 0 by the positiveness of the K functional. Thus, we must have
b2 − 4ac ≤ 0 or equivalently

(a((ϕn, ψn), (ϕ, ψ))− `(ϕ, ψ))2 − 4
1

2
|vϕ − vψ|2H1(Ω)

1

2
|uϕn − uψn|2H1(Ω) ≤ 0,
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for all (ϕ, ψ) ∈ H−1/2(Γi)× H1/2(Γi). This leads

(a((ϕn, ψn), (ϕ, ψ))− `(ϕ, ψ))2 ≤ C ‖(ϕ, ψ)‖2
H−1/2(Γi)×H1/2(Γi)

|uϕn − uψn|2H1(Ω)

and �nally

∀(ϕ, ψ) ∈ H−1/2(Γi)× H1/2(Γi),
(a((ϕn, ψn), (ϕ, ψ))− `(ϕ, ψ))2

‖(ϕ, ψ)‖2
H−1/2(Γi)×H1/2(Γi)

≤ C K(ϕn, ψn).

We conclude taking supremum over (ϕ, ψ) ∈ H−1/2(Γi)×H1/2(Γi) and passing to the
limit when n→∞.

Remark Using this result with Proposition 1.7 we conclude that, if we have a
bounded minimizing sequence (ϕn, ψn)n of the functional K, then, the Cauchy prob-
lem (1.1) has a solution and we have the weak convergence uϕn ⇀ uex as n→∞.

1.2.2 The Regularized Functional Kε and its properties.

As mentioned above, it may be possible that our minimization problem does not have
solution due to the lack of coercivity of the Kohn-Vogelius functional. Additionally,
as recalled in Section 1.1, the data completion problem is ill-posed in the sense that,
in case of the existence of solution, there is not a continuous dependence on the
given data. Thus, any little error in the measurement of the data (which is natural
in any application) could lead to a big error in the obtained solution in relation with
the real one (see [18, 55] for details).

In order to overcome these di�culties, we can consider a regularization of the
considered functional. In our case, we will consider a Tikhonov regularization, which,
roughly speaking, allows us to get coerciveness to the new functional and a better
behavior with respect to noisy data. There is an extensive literature related to
this type of regularization: we recommend (as we followed this approach) the book
of Engl et al. [48] which describes in detail and in full generality the considered
regularization.

Hence, let us consider now the regularized Kohn-Vogelius functionalKε : H−1/2(Γi)×
H1/2(Γi)→ R given by

Kε(ϕ, ψ) := K(ϕ, ψ) +
ε

2

(
‖vϕ‖2

H1(Ω) + ‖vψ‖2
H1(Ω)

)
=: K(ϕ, ψ) +

ε

2
‖(vϕ, vψ)‖2

(H1(Ω))2 ,

(1.13)
where K is the previous Kohn-Vogelius functional given by (1.6). The regularizing
term adds coerciveness to the functional which leads to important advantages. For
example, we can always obtain a pair (ϕ∗ε, ψ

∗
ε) which minimizes Kε. The immediate

question is how can we relate this optimal pair to the possible optimal pair (ϕ∗, ψ∗)
of K. We will explore in this section several properties of the regularized functional
Kε and we start with a list of basic ones.
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Proposition 1.9 Given ε > 0, the functional Kε satis�es the following properties.

1. Kε(ϕ, ψ) is continuous, strictly convex and coercive in H−1/2(Γi) × H1/2(Γi).
Therefore, there exists

(ϕ∗ε, ψ
∗
ε) = argmin

(ϕ,ψ)

Kε(ϕ, ψ).

2. The optimality condition for (ϕ∗ε, ψ
∗
ε) to be a minimizer of Kε is: for all (ϕ̃, ψ̃) ∈

H−1/2(Γi)× H1/2(Γi),

a((ϕ∗ε, ψ
∗
ε), (ϕ̃, ψ̃)) + ε · b((ϕ∗ε, ψ∗ε), (ϕ̃, ψ̃)) = `(ϕ̃, ψ̃) (1.14)

where a(·, ·) and `(·) are previously de�ned by (1.9) and b(·, ·) is de�ned by:

b((ϕ1, ψ1), (ϕ2, ψ2)) = ((vϕ1 , vψ1), (vϕ2 , vψ2))H1(Ω)×H1(Ω). (1.15)

3. The bilinear form b de�nes an inner product in H−1/2(Γi) × H1/2(Γi) which
associated norm is equivalent to the standard one in that space.

Proof. We prove each statement:

1. The continuity and convexity are obvious. In order to see that Kε is coercive,
let us suppose it is not. Then, there exists a sequence (ϕn, ψn)n and a constant
C > 0 such that:

lim
n→∞

‖(ϕn, ψn)‖H−1/2(Γi)×H1/2(Γi)
= +∞ and Kε(ϕn, ψn) < C.

This implies ‖vϕn‖H1(Ω) < C and ‖vψn‖H1(Ω) < C for all n which, by the conti-
nuity of trace and normal derivative operators, implies ‖(ϕn, ψn)‖H−1/2(Γi)×H1/2(Γi)

<
C which is in contradiction with the original assumption.

The existence of minimizers comes from the continuity, convexity and coer-
civeness of Kε (see, e.g., [28, Chapter 3]).

2. As in the proof of Proposition 1.4, the result comes from a standard compu-
tation.

3. The fact that b de�nes an inner product is immediate from its bilinearity and
the well-posedness of the problems solved by vϕ and vψ. The equivalence of
norms comes from the continuity of the trace and normal derivative operator
and the well-posedness of the problems solved by vϕ and vψ.

In the case when (gD, gN) is compatible, we have the following convergence result:

Theorem 1.10 Let us suppose that (gD, gN) is compatible data related to uex and
let us denote by uϕ∗ε the function associated with ϕ∗ε minimizer of Kε. Then

lim
ε→0
‖uϕ∗ε − uex‖H1(Ω) = 0. (1.16)
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Proof. Let us recall that

Kε(ϕ, ψ) = K(ϕ, ψ) +
ε

2
‖(vϕ, vψ)‖2

(H1(Ω))2 and (ϕ∗ε, ψ
∗
ε) := argmin

(ϕ,ψ)

Kε(ϕ, ψ)

and let us de�ne ϕex := ∂nuex|Γi
and ψex := uex|Γi

. Notice that we have K(ϕex, ψex) =
0 and K(ϕ∗ε, ψ

∗
ε) ≤ Kε(ϕ∗ε, ψ∗ε) ≤ Kε(ϕex, ψex) = ε

2
‖(vϕex , vψex)‖2

(H1(Ω))2 . This implies:

|uϕ∗ε − uψ∗ε |
2
H1(Ω) ≤ ε

(
‖vϕex‖2

H1(Ω) + ‖vψex‖2
H1(Ω)

)
, (1.17)

‖vϕ∗ε‖
2
H1(Ω) + ‖vψ∗ε‖

2
H1(Ω) ≤ ‖vϕex‖2

H1(Ω) + ‖vψex‖2
H1(Ω). (1.18)

Now, let us consider an arbitrary sequence of positive numbers (εn)n such that
lim
n→∞

εn = 0. From (1.18) we have that the sequences (vϕ∗εn )εn and (vψ∗εn )εn are

bounded in H1(Ω). Then there exist subsequences, which will be denoted as the
original sequences, such that vϕ∗εn ⇀ vϕ∗ and vψ∗εn ⇀ vψ∗ in H1(Ω). This implies

uϕ∗εn = ugD0 + vϕ∗εn ⇀ ugD0 + vϕ∗ = uϕ∗ and uψ∗εn = ugN0 + vψ∗εn ⇀ ugN0 + vψ∗ = uψ∗ .

Moreover, by (1.17), letting n → ∞, we have, for C ∈ R: uϕ∗ = uψ∗ + C = uψ∗+C .
By continuity of trace and normal derivative trace operator, we have: vϕ∗|Γobs = 0
and ∂nvψ∗|Γobs = 0. Then uϕ∗ |Γobs = gD and ∂nuψ∗|Γobs = gN and, since ∂nuϕ∗|Γobs =
∂nuψ∗|Γobs = gN , the function uϕ∗ ∈ H1(Ω) satis�es

−∆uϕ∗ = 0 in Ω
uϕ∗ = gD on Γobs

∂nuϕ∗ = gN on Γobs.

therefore, by uniqueness of the Cauchy problem, we have uϕ∗ = uex and, in particu-
lar, uψ∗ = uex + C for some C ∈ R.

So, we have now:

uϕ∗εn ⇀ uex and uψ∗εn ⇀ uex + C. (1.19)

In order to obtain the strong convergence let us prove �rst the strong convergence
of vϕ∗εn to vϕex = vϕ∗ = uϕ∗ − ugD = uex − ugD . To this notice that

Kεn(ϕ∗εn , ψ
∗
εn) ≤ Kεn(ϕex, ψex + C) =

εn
2
‖(vϕex , vψex+C)‖2

(H1(Ω))2 .

Hence,
lim sup

n
‖(vϕ∗εn , vψ∗εn )‖(H1(Ω))2 ≤ ‖(vϕex , vψex + C)‖(H1(Ω))2 .

This result with the weak convergences (1.19) gives the desired strong convergence,
which implies the desired result up to a subsequence. A standard argument by
contradiction gives the result for the full sequence.

Remark We can note that we also have, for some C ∈ R,

uψ∗ε → uex + C in H1(Ω).
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We now prove a series of properties to our considered functionals when they are
considered as functions of the regularizing parameter ε. This properties will be useful
for next sections in which our aim will be to de�ne a regularizing parameter ε such
that we can obtain convergence properties when the data (gN , gD) is polluted with
noise. In order to obtain uniqueness of such a choice, we need to have for example,
monotony of the functionals involved when they are considered as a functions of ε.

Proposition 1.11 Let (ϕ∗ε, ψ
∗
ε) ∈ H−1/2(Γi) × H1/2(Γi) the minimizer of Kε. We

have the following statements.

1. The application F : ε→
(
uϕ∗ε , uψ∗ε

)
∈ H1(Ω)× H1(Ω) is continuous for ε > 0

and, if the data (gN , gD) is compatible, it could be continuously extended to 0
with F (0) = (uϕex , uψex).

2. The application F is (at least) in C2((0,∞),H1(Ω)×H1(Ω)). Its derivative is
given by F ′(ε) = (vϕ′ε , vψ′ε) where the pair (ϕ′ε, ψ

′
ε) ∈ H−1/2(Γi)×H1/2(Γi) is the

unique solution of

a((ϕ′ε, ψ
′
ε), (ϕ, ψ)) + εb((ϕ′ε, ψ

′
ε), (ϕ, ψ)) = −b((ϕε, ψε), (ϕ, ψ)),

∀(ϕ, ψ) ∈ H−1/2(Γi)× H1/2(Γi). (1.20)

Their second derivative is given by F ′′(ε) = (vϕ′′ε , vψ′′ε ) where the pair (ϕ′′ε , ψ
′′
ε ) ∈

H−1/2(Γi)× H1/2(Γi) is the unique solution of

a((ϕ′′ε , ψ
′′
ε ), (ϕ, ψ)) + εb((ϕ′′ε , ψ

′′
ε ), (ϕ, ψ)) = −2 · b((ϕ′ε, ψ′ε), (ϕ, ψ)),

∀(ϕ, ψ) ∈ H−1/2(Γi)× H1/2(Γi). (1.21)

3. The map ε 7→ 1
2
|uϕ∗ε − uψ∗ε |2H1(Ω) is strictly increasing for ε > 0.

4. The map ε 7→ 1
2
‖
(
vϕ∗ε , vψ∗ε

)
‖2

H1(Ω)×H1(Ω) is decreasing for ε > 0.

5. The map ε 7→ 1
2
|uϕ∗ε − uψ∗ε |2H1(Ω) + ε

2
‖
(
vϕ∗ε , vψ∗ε

)
‖2

H1(Ω)×H1(Ω) is increasing for
ε > 0.

6. If the data (gN , gD) is compatible, the map ε 7→ 1
2
‖
(
uϕ∗ε − uex, uψ∗ε − uex

)
‖2

H1(Ω)×H1(Ω)

is increasing for ε > 0.

Proof. Let us prove each statement.1

1. To prove the continuity, let h ∈ R such that ε+ h > 0, we have to prove that

‖uϕ∗ε+h − uϕ∗ε , uψ∗ε+h − uψ∗ε‖(H1(Ω))2 −→
h→0

0.

Then, let us consider the optimal pairs (ϕ∗ε+h, ψ
∗
ε+h) and (ϕ∗ε, ψ

∗
ε). Subtracting

the optimality conditions of both pairs, we obtain, for all (ϕ, ψ) ∈ H−1/2(Γi)×
H1/2(Γi),

a((ϕ∗ε+h − ϕ∗ε, ψ∗ε+h − ψ∗ε), (ϕ, ψ)) + ε · b((ϕ∗ε+h − ϕ∗ε, ψ∗ε+h − ψ∗ε), (ϕ, ψ))

= −h · b((ϕ∗ε+h − ϕ∗ε, ψ∗ε+h − ψ∗ε), (ϕ, ψ)).

1In this proof we use the notation (H1(Ω))2 := H1(Ω)×H1(Ω) for readers convenience.
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Choosing ϕ := ϕ∗ε+h − ϕ∗ε and ψ := ψ∗ε+h − ψ∗ε , we get:

|vϕ∗ε+h − vϕ∗ε − (vψ∗ε+h − vψ∗ε )|
2
H1(Ω) + ε‖(vϕ∗ε+h − vϕ∗ε , vψ∗ε+h − vψ∗ε‖

2
(H1(Ω))2

= −h · ((vϕ∗ε+h , vψ∗ε+h), (vϕ∗ε+h−ϕ∗ε , vψ∗ε+h−ψ∗ε ))(H1(Ω))2 .

Now, notice we have

|((vϕ∗ε+h , vψ∗ε+h), (vϕ∗ε+h−ϕ∗ε , vψ∗ε+h−ψ∗ε ))|(H1(Ω))2 ≤ ‖(vϕ∗ε+h , vψ∗ε+h)‖(H1(Ω))2

‖(vϕ∗ε+h−ϕ∗ε , vψ∗ε+h−ψ∗ε )‖(H1(Ω))2

which gives

‖(vϕ∗ε+h − vϕ∗ε , vψ∗ε+h − vψ∗ε )‖
2
(H1(Ω))2 ≤

|h|
ε
‖(vϕ∗ε+h , vψ∗ε+h)‖(H1(Ω))2

‖(vϕ∗ε+h − vϕ∗ε , vψ∗ε+h − vψ∗ε )‖(H1(Ω))2

and then

‖(vϕ∗ε+h − vϕ∗ε , vψ∗ε+h − vψ∗ε )‖(H1(Ω))2 ≤ |h|
ε
‖(vϕ∗ε+h , vψ∗ε+h)‖(H1(Ω))2 .

Moreover, by de�nition of Kε+h,

(ε+ h)‖(vϕ∗ε+h , vψ∗ε+h)‖2
H1(Ω) ≤ Kε+h(ϕ∗ε+h, ψ∗ε+h) ≤ Kε+h(0, 0).

Noticing that

Kε+h(0, 0) =
1

2
|ugD0 − u

gN
0 |2H1(Ω) ≤ C

(
‖gD‖2

H1/2(Γobs)
+ ‖gN‖2

H−1/2(Γobs)

)
,

we obtain

‖(vϕ∗ε+h − vϕ∗ε , vψ∗ε+h − vψ∗ε )‖(H1(Ω))2 ≤ |h|
ε
‖(vϕ∗ε+h , vψ∗ε+h)‖(H1(Ω))2

≤
(
‖gD‖2

H1/2(Γobs)
+ ‖gN‖2

H−1/2(Γobs)

) |h|
ε
√
ε+ h

−→
h→0

0, (1.22)

which concludes the proof.

2. First, the existence and uniqueness of the solution (ϕ′ε, ψ
′
ε) ∈ H−1/2(Γi) ×

H1/2(Γi) of Problem (1.20) is due to Lax-Milgram theorem. Indeed, the conti-
nuity of the bilinear form a(·, ·)+εb(·, ·) and of the linear form−b ((ϕ∗ε, ψ

∗
ε), (·, ·))

are due to the well-posedness of the problems solved by vϕ and vψ and the con-
tinuity of a(·, ·) + εb(·, ·) is due to the continuity of trace operator and normal
derivative operator.

Now, let us prove that the derivative of the function F is F ′(ε) = (vϕ′ε , vψ′ε).
For this, let h ∈ R such that ε + h > 0. From the optimality conditions for
(ϕ∗ε, ψ

∗
ε) and (ϕ∗ε+h, ψ

∗
ε+h) and the condition satis�ed from (ϕ′ε, ψ

′
ε), we obtain

a((ϕ∗ε+h − ϕ∗ε − hϕ′ε, ψ∗ε+h − ψ∗ε − hψ′ε), (ϕ, ψ))

+ ε · b((ϕ∗ε+h − ϕ∗ε − hϕ′ε, ψ∗ε+h − ψ∗ε − hψ′ε), (ϕ, ψ))

= h · b((ϕ∗ε − ϕ∗ε+h, ψ∗ε − ψ∗ε+h), (ϕ, ψ)).
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Taking ϕ := ϕ∗ε+h−ϕ∗ε−hϕ′ε and ψ := ψ∗ε+h−ψ∗ε−hψ′ε, we use Holder inequality
on the right side to get

|uϕ∗ε+h−ϕ∗ε−hϕ′ε − uψ∗ε+h−ψ∗ε−hψ′ε|
2
H1(Ω) + ε · ‖(vϕ∗ε+h−ϕ∗ε−hϕ′ε , vψ∗ε+h−ψ∗ε−hψ′ε)‖

2
(H1(Ω))2

≤ |h|‖(vϕ∗ε−ϕ∗ε+h , vψ∗ε−ψ∗ε+h)‖(H1(Ω))2 ‖(vϕ∗ε+h−ϕ∗ε−hϕ′ε , vψ∗ε+h−ψ∗ε−hψ′ε)‖(H1(Ω))2

and then,

‖vϕ∗ε+h−ϕ∗ε−hϕ′ε , vψ∗ε+h−ψ∗ε−hψ′ε‖(H1(Ω))2 ≤ |h|
ε
‖vϕ∗ε−ϕ∗ε+h , vψ∗ε−ψ∗ε+h‖(H1(Ω))2 .

Hence, using the previous bound (1.22), we obtain

‖uϕ∗ε+h − uϕ∗ε − h vϕ′ε , uψ∗ε+h − uψ∗ε − h vψ′ε‖(H1(Ω))2

≤ |h|
ε
C

|h|
ε
√
ε+ h

= C
h2

ε2
√
ε+ h

−→
h→0

0.

To conclude, the continuity of the application F ′ follows an identical proof of
the continuity of F and the proof for F ′′(ϕ, ψ) = (vϕ′′ε , vψ′′ε ) is analog to the
�rst derivative case.

3. Let us call g(ε) := 1
2
|uϕ∗ε−uψ∗ε |2H1(Ω) = 1

2
‖∇(uϕ∗ε−uψ∗ε )‖2

(L2(Ω))d . We have, thanks
to the optimality condition for (ϕ∗ε, ψ

∗
ε) and the system solved by (ϕ′ε, ψ

′
ε),

g′(ε) = (∇(uϕ∗ε − uψ∗ε ),∇(vϕ′ε − vψ′ε))(L2(Ω))d

= a((ϕ∗ε, ψ
∗
ε), (ϕ

′
ε, ψ

′
ε))− `(ϕ′ε, ψ′ε)

= −ε · b((ϕ∗ε, ψ∗ε), (ϕ′ε, ψ′ε))
= ε · a((ϕ′ε, ψ

′
ε), (ϕ

′
ε, ψ

′
ε)) + ε2 · b((ϕ′ε, ψ′ε), (ϕ′ε, ψ′ε))

= ε

∫
Ω

|∇vϕ′ε −∇vψ′ε|
2 + ε2‖(vϕ′ε , vψ′ε)‖

2
(H1(Ω))2 .

So, g′(ε) > 0 if ε > 0 and we conclude.

4. Let us call G(ε) := 1
2
‖(vϕ∗ε , vψ∗ε )‖2

(H1(Ω))2 . We have:

G′(ε) = ((vϕ∗ε , vψ∗ε ), (vϕ′ε , vψ′ε))(H1(Ω))2 = b((ϕ∗ε, ψ
∗
ε), (ϕ

′
ε, ψ

′
ε))

= −a((ϕ′ε, ψ
′
ε), (ϕ

′
ε, ψ

′
ε))− ε · b((ϕ′ε, ψ′ε), (ϕ′ε, ψ′ε)) ≤ 0.

So, G′(ε) ≤ 0 and we conclude.

5. Let us call h(ε) := Kε(ϕ∗ε, ϕ∗ε). From the previous computations, we have

h′(ε) = a((ϕ∗ε, ψ
∗
ε), (ϕ

′
ε, ψ

′
ε))− `(ϕ′ε, ψ′ε) + ε · b((ϕ∗ε, ψ∗ε), (ϕ′ε, ψ′ε))︸ ︷︷ ︸

=0

+
1

2
‖vϕ∗ε , vψ∗ε‖

2 ≥ 0.

So, h′(ε) ≥ 0 and we conclude.

6. Let us call H(ε) := 1
2
‖uϕ∗ε − uex, uψ∗ε − uex‖2

(H1(Ω))2 . We have

H ′(ε) = ((uϕ∗ε − uex, uψ∗ε − uex), (vϕ′ε , vψ′ε))(H1(Ω))2 ,

H ′′(ε) = ‖vϕ′ε , vψ′ε‖
2
(H1(Ω))2 + ((uϕ∗ε − uex, uψ∗ε − uex), (vϕ′′ε , vψ′′ε ))(H1(Ω))2 .
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Then, we have:

εH ′′(ε) = ε‖(vϕ′ε , vψ′ε)‖2
(H1(Ω))2 − a((ϕ∗ε, ψ

∗
ε), (ϕ

′′
ε , ψ

′′
ε ))

−2b((ϕ∗ε − ϕex, ψ
∗
ε − ψex), (ϕ

′
ε, ψ

′
ε))

= ε‖(vϕ′ε , vψ′ε)‖2
(H1(Ω))2 − 2H ′(ε)− a((ϕ∗ε, ψ

∗
ε), (ϕ

′′
ε , ψ

′′
ε ))

= ε‖(vϕ′ε , vψ′ε)‖2
(H1(Ω))2 − 2H ′(ε) + b((ϕ∗ε, ψ

∗
ε), (ϕ

′′
ε , ψ

′′
ε ))

= ε‖(vϕ′ε , vψ′ε)‖2
(H1(Ω))2 − 2H ′(ε) +−εa((ϕ′ε, ψ

′
ε), (ϕ

′′
ε , ψ

′′
ε ))

−ε2b((ϕ′ε, ψ
′
ε), (ϕ

′′
ε , ψ

′′
ε ))

= −2H ′(ε) + ε‖(vϕ′ε , vψ′ε)‖2
(H1(Ω))2 + ε · 2b((ϕ′ε, ψ′ε), (ϕ′ε, ψ′ε))

= −2H ′(ε) + 3 · ε‖(vϕ′ε , vψ′ε)‖2
(H1(Ω))2 .

So, we obtain (ε2H(ε))′ = ε(εH ′′(ε + 2H ′(ε))) = 3 · ε‖(vϕ′ε , vψ′ε)‖2
(H1(Ω))2 ≥ 0

which implies that the function ε 7→ ε2H ′(ε) is increasing. Moreover,

|ε2H ′(ε)| = ε2|((uϕ∗ε −uex, uψ∗ε −uex), (vϕ′ε , vψ′ε))(H1(Ω))2| ≤ Cε ‖uex‖H1(Ω) −→
ε→0

0.

Therefore H ′(ε) ≥ 0 and we conclude.

The following theorem relates the sequence of optimal values (ϕ∗ε, ψ
∗
ε) of Kε with

the functional K.

Theorem 1.12 For each ε > 0, let (ϕ∗ε, ψ
∗
ε) ∈ H−1/2(Γi) × H1/2(Γi) the minimizer

of Kε. The sequence (ϕ∗ε, ψ
∗
ε)ε (ε → 0) de�nes a minimizing sequence of K and

therefore a de�nes a pseudo-solution of (1.2). If (ϕ∗ε, ψ
∗
ε)ε is bounded, then this

sequence converges in H−1/2(Γi)× H1/2(Γi) to (ϕ∗, ψ∗) minimizer of K.

Proof. For all ε > 0, by de�nition of (ϕ∗ε, ψ
∗
ε) = argminKε(ϕ, ψ),

0 ≤ K(ϕ∗ε, ψ
∗
ε) ≤ Kε(ϕ∗ε, ψ∗ε) ≤ Kε(ϕ, ψ), ∀(ϕ, ψ) ∈ H−1/2(Γi)× H1/2(Γi).

Moreover, by de�nition of an in�mum, for η > 0, there exists (ϕη, ψη) ∈ H−1/2(Γi)×
H1/2(Γi) such that K(ϕη, ψη) ≤ η

2
. Inserting this pair in the �rst inequality, we have

0 ≤ K(ϕ∗ε, ψ
∗
ε) ≤ Kε(ϕ∗ε, ψ∗ε) ≤ Kε(ϕη, ψη) ≤

ε

2
‖(vϕη , vψη)‖2

H1(Ω) +
η

2
.

Taking ε∗ > 0 su�ciently small such that ε
2
‖(vϕη , vψη)‖2

H1(Ω) ≤
η
2
for all ε ∈ (0, ε∗),

we have:
0 ≤ K(ϕ∗ε, ψ

∗
ε) ≤ Kε(ϕ∗ε, ψ∗ε) ≤ η, ∀ε ∈ (0, ε∗).

Hence,
K(ϕ∗ε, ψ

∗
ε) −→

ε→0
0 (and Kε(ϕ∗ε, ψ∗ε) −→

ε→0
0).

Let us now assume that the sequence (ϕ∗ε, ψ
∗
ε)ε is bounded. Then, given any

sequence (εn)n such that εn → 0, we have from Proposition 1.7 that (ϕ∗εn , ψ
∗
εn) ⇀
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1.3. Theoretical results concerning the data completion problem with noise

(ϕ∗, ψ∗) weakly in H−1/2(Γi) × H1/2(Γi), where (ϕ∗, ψ∗) is the minimizer of K. In
order to obtain the strong convergence, notice that

0 ≤ εn
2
‖(ϕ∗εn , ψ

∗
εn)‖2

b ≤ Kεn(ϕ∗εn , ψ
∗
εn) ≤ Kεn(ϕ∗, ψ∗) =

εn
2
‖(ϕ∗, ψ∗)‖2

b ,

and then, passing to the lim sup,

lim sup
n
‖(ϕ∗εn , ψ

∗
εn)‖b ≤ ‖(ϕ∗, ψ∗)‖b.

Remark As we obtain the existence of a minimizer (ϕ∗, ψ∗) of K, we have the
existence of a solution uex ∈ H1(Ω) of the Cauchy problem. Therefore we also have,
from Theorem 1.10 the strong convergence uϕ∗ε → uex in H1(Ω) as ε→ 0. Moreover,
thanks to Proposition 1.11 part 6, this convergence is monotone.

1.3 Theoretical results concerning the data comple-

tion problem with noise

Let us consider again a given Cauchy pair (gN , gD) ∈ H−1/2(Γobs) × H1/2(Γobs) that
may be compatible or not. As one can expect, in real situations, the data (gN , gD)
cannot be measured with complete precision: noise is intrinsically attached with any
measurement method. So we just can expect to obtain (gδN , g

δ
D) as a measured data

which we will assume that satisfy the following condition:

‖gD − gδD‖H1/2(Γobs)
+ ‖gN − gδN‖H−1/2(Γobs)

≤ δ, (1.23)

where δ is the amplitude of noise on the data. Moreover, notice that we do not know
if the associated noisy data (gδN , g

δ
D) is compatible or not.

In the following, we explore the convergence of some minimizers of the Kohn-
Vogelius functional Kε associated to noisy data to the minimum of the same func-
tional without noise and also, when it is possible, to the solution of our Cauchy
problem. For this we will need to consider the following notation: when we have
noisy data (gδN , g

δ
D), we consider the Kohn-Vogelius functional associated with the

noisy data

Kδ(ϕ, ψ) =
1

2

∫
Ω

|∇ug
δ
D
ϕ −∇ug

δ
N
ψ |

2,

their regularization (noticing that the regularization term remains unchanged),

Kδε(ϕ, ψ) = Kδ(ϕ, ψ) +
ε

2
‖(vϕ, vψ)‖2

H1(Ω)×H1(Ω),

and the associated minimizers (ϕ∗ε,δ, ψ
∗
ε,δ). Also, we consider the linear form `δ asso-

ciated with the optimality condition for (ϕ∗ε,δ, ψ
∗
ε,δ) and we will introduce d`δ := `δ−`

which is the linear form associated with (dgN , dgD) := (gδN−gN , gδD−gD). We �nally
recall that (ϕ∗ε, ψ

∗
ε) := argminKε(ϕ, ψ). Moreover, if (gN , gD) is compatible, we note

(ϕ∗, ψ∗) := argminK(ϕ, ψ).
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1.3. Theoretical results concerning the data completion problem with noise

1.3.1 A convergence result

The most important result, in order to obtain the desired convergence from noisy
data to the solution of our problem, is the following:

Proposition 1.13 We have

‖(ϕ∗ε, ψ∗ε)− (ϕ∗ε,δ, ψ
∗
ε,δ)‖H−1/2(Γi)×H1/2(Γi)

≤ C
δ√
ε
. (1.24)

Proof. First, notice that

d`δ(ϕ, ψ) = (`δ − `)(ϕ, ψ) =

(∫
Ω

∇
(
ugD−g

δ
D − ugN−gδN

)
· ∇ (vϕ − vψ)

)
≤ |ugD−gδD − ugN−gδN |H1(Ω) |vϕ − vψ|H1(Ω) ≤ C δ |vϕ − vψ|H1(Ω),

Let us take ϕ̃ := ϕ∗ε,δ−ϕ∗ε and ψ̃ := ψ∗ε,δ−ψ∗ε in the optimality conditions associated
with (gN , gD) and (gδN , g

δ
D) and subtract the obtained equations, to get

a((ϕ̃, ψ̃), (ϕ̃, ψ̃)) + ε · b((ϕ̃, ψ̃), (ϕ̃, ψ̃)) = d`(ϕ̃, ψ̃).

Hence,
|vϕ̃ − vψ̃|

2
H1(Ω) + ε‖ϕ̃, ψ̃‖2

b ≤ C · δ · |vϕ̃ − vψ̃|H1(Ω)

and, since a2 + b2 ≥ 2ab,

|vϕ̃ − vψ̃|
2
H1(Ω) + ε‖ϕ̃, ψ̃‖2

b ≥ 2
√
ε |vϕ̃ − vψ̃|H1(Ω) ‖ϕ̃, ψ̃‖b.

Joining the previous results, we obtain:

‖ϕ̃, ψ̃‖b = ‖ϕ∗ε,δ − ϕ∗ε, ψ∗ε,δ − ψ∗ε‖b ≤ C · δ√
ε
,

which gives the result by the equivalence of norms ‖ · ‖b and ‖ · ‖H−1/2(Γi)×H1/2(Γi)
.

In the case of the compatibility of the data (gN , gD), we can deduce the following
result, which states in a very general way the conditions that the regularization
parameter ε must meet in order to have convergence in the noisy case.

Corollary 1.14 Given (gN , gD) compatible data associated with exact solution (ϕ∗, ψ∗).
Let us consider ε = ε(δ) such that

lim
δ→0

ε(δ) = 0 and lim
δ→0

δ√
ε

= 0. (1.25)

Then, we have:

lim
δ→0
‖(ϕ∗ε,δ, ψ∗ε,δ)− (ϕ∗, ψ∗)‖H−1/2(Γi)×H1/2(Γi)

= 0.

Proof. This result is direct from the triangle inequality, theorem 1.12 and proposi-
tion 1.13.
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1.3.2 Strategy for choosing ε

The last result gives us a guide on how our regularization parameter ε should be
chosen in order to have convergence to the real solution (when it exists) in the
noisy case. However, these conditions are general and do not respond to any precise
objective. In this section we explore a well-known criterion for choosing the regular-
ization parameter ε based on the de�nition of a discrepancy measure: the so-called
Morozov discrepancy principle (see [48] for more details in the general regularization
of inverse problems context). We follow the same strategy as Ben Belgacem et al.
in [20] which is in fact natural with our strategy of considering the Kohn-Vogelius
functional as the core of our work. Notice that we will consider the choice of our
parameter depending on the noise level δ and into the noisy solution (ϕ∗δ , ψ

∗
δ ), this

is ε = ε(δ, (ϕ∗δ , ψ
∗
δ )). This is called a a-posteriori choice parameter rule. One may

consider a a-priori choice parameter rule which is only based on the noise, this is
ε = ε(δ). However, in order to obtain optimal order of convergence, one must have
some abstract smoothness conditions on the real solution which is, in our opinion,
unrealistic in our setting. The interested reader can see [48] for more details on
those strategies.

First, let us assume that our problem has a solution, i.e. the Kohn-Vogelius
functional K associated with the compatible data (gN , gD) has a minimizer (ϕ∗, ψ∗).
Let us de�ne the discrepancy measure as the error in the Kohn-Vogelius functional
with noisy data when we evaluate it on the solution of our problem, this is:

Kδ(ϕ∗, ψ∗) =
1

2

∫
Ω

|∇ug
δ
D
ϕ∗ −∇u

gδN
ψ∗ |

2 =
1

2

∫
Ω

|∇udgD
0 −∇udgN

0 |2,

where the second equality is obtained by rewriting u
gδD
ϕ∗ = u

gδD−gD+gD
ϕ∗ = udgD

0 + ugDϕ∗ ,

with an analogous expression for u
gδN
ψ∗ and expanding and imposing the optimality

condition for each term. Now, from the well-posedness of the problems associated
with udgD

0 and udgN
0 and using (1.23) we obtain:

Kδ(ϕ∗, ψ∗) =
1

2

∫
Ω

|∇udgD
0 −∇udgN

0 |2 ≤ C δ2. (1.26)

Keeping this in mind, we rede�ne the noise amount to Kδ(ϕ∗, ψ∗) = δ2 and we will
consider the discrepancy principle based on this notion of noise. Notice that this
consideration basically says we will consider, for the discrepancy principle, that the
noise level will be taken in a sort of H1×H1 seminorm in Ω instead of an H1/2×H−1/2

norm in the unaccessible boundary Γi.

In Proposition 1.11 part 3, we have proved that the application ε 7→ Kδ(ϕ∗ε,δ, ψ∗ε,δ)
is strictly increasing and therefore injective. Moreover, it is easy to see that if
ε ∈ [0,∞) then Kδ(ϕ∗ε,δ, ψ∗ε,δ) ∈ [0,Kδ(0, 0)). Now, let us assume that there exists
τ > 1 such that τδ2 ∈ [0,Kδ(0, 0)). This demand is natural as we expect that the
data we have is not of the same order as the noise. Indeed, if this is the case, we
can simply take (ϕ∗, ψ∗) = (0, 0) as the exact solution. So, the discrepancy principle
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consists, in our case on choosing ε such that

ε = sup
{
ε : Kδ(ϕ∗ε,δ, ψ∗ε,δ) ≤ τδ2

}
. (1.27)

The idea of choosing the sup is based on the fact that a small regularization pa-
rameter involves less stability, so the natural strategy is to choose the biggest reg-
ularization parameter such that the discrepancy is in the order of the noise. The
injectivity and increasing monotonicity of the application Kδ implies that ε is simply
the parameter such that

Kδ(ϕ∗ε,δ, ψ∗ε,δ) = τδ2. (1.28)

Remark It is important to notice that the `rede�nition' of the noise estimate does
not involve, for real computations, the knowledge of the real solution (ϕ∗, ψ∗). In
fact, we only use the real solution in order when we evaluate it into the Kohn-
Vogelius functional with noisy data (gδN , g

δ
D) obtaining the estimate (1.26). We can

observe that this quantity only depends on constants and the error estimate δ, so,
by assuming that C ≤ 1 (which is itself a strong assumption, as C depends on
Poincaré inequality constant and trace theorem constant, this should be analyzed in
detail and is beyond the scope of this work) we can consider Kδ(ϕ∗, ψ∗) = δ2 as the
error measure between the real and measured data which leads to the discrepancy
principle formulation given by (1.27).

Now let us see that this a posteriori choice parameter rule has (the expected)
convergence properties.

Proposition 1.15 Given (gN , gD) compatible data associated with exact solution
(ϕ∗, ψ∗). If we consider the regularization parameter choice ε = ε(δ, (ϕ∗ε,δ, ψ

∗
ε,δ))

given by the Morozov discrepancy principle (1.28), then we have

lim
δ→0
‖(ϕ∗ε,δ, ψ∗ε,δ)− (ϕ∗, ψ∗)‖H−1/2(Γi)×H1/2(Γi)

= 0.

Proof. Given ε computed by the discrepancy principle, this is, given by (1.28). We
have by de�nition

Kδε(ϕ∗ε,δ, ψ∗ε,δ) ≤ Kδε(ϕ∗, ψ∗)
⇔ ε

2
‖(ϕ∗ε,δ, ψ∗ε,δ)‖2

b +Kδ(ϕ∗ε,δ, ψ∗ε,δ) ≤ ε
2
‖(ϕ∗, ψ∗)‖2

b +Kδ(ϕ∗, ψ∗)

and then using (1.26),

ε
2
‖(ϕ∗ε,δ, ψ∗ε,δ)‖2

b + τδ2 ≤ ε
2
‖(ϕ∗, ψ∗)‖2

b + δ2

⇔ ε
2
‖(ϕ∗ε,δ, ψ∗ε,δ)‖2

b − ε
2
‖(ϕ∗, ψ∗)‖2

b ≤ (1− τ)δ2 < 0.

So, we have:
‖(ϕ∗ε,δ, ψ∗ε,δ)‖2

b ≤ ‖(ϕ∗, ψ∗)‖2
b , ∀δ > 0.

This implies that the sequence (ϕ∗ε,δ, ψ
∗
ε,δ)δ is bounded in (H−1/2(Γi)×H1/2(Γi), ‖ ·‖b)

(and in (H−1/2(Γi)×H1/2(Γi), ‖ · ‖H−1/2(Γi)×H1/2(Γi)
) due to the equivalence of norms).

Therefore there exists (ϕ̃, ψ̃) ∈ H−1/2(Γi)×H1/2(Γi) such that (ϕ∗ε,δ, ψ
∗
ε,δ)δ converges,

54



1.3. Theoretical results concerning the data completion problem with noise

up to a subsequence, weakly in H−1/2(Γi) × H1/2(Γi) to (ϕ̃, ψ̃). On the other side,
taking lim sup in the last inequality we obtain:

lim sup
δ→0

‖(ϕ∗ε,δ, ψ∗ε,δ)‖b ≤ ‖(ϕ∗, ψ∗)‖b.

Now, taking the limit in the optimality condition (which is possible due to the con-
tinuity of the restricted continuous bilinear forms) we obtain that (ϕ̃, ψ̃) = (ϕ∗, ψ∗)
and we conclude.

The following corollary claims that the regularization parameter choice given by
the Morozov discrepancy principle satis�es the conditions of Corollary 1.14.

Corollary 1.16 The regularization parameter choice given by the Morozov discrep-
ancy principle satis�es

lim
δ→0

ε(δ) = 0 and lim
δ→0

δ√
ε

= 0.

Proof. The �rst condition is obvious from the de�nition of ε. Let us see the second
limit. From the previous proof, we have:

0 < 2(τ−1)
δ2

ε
≤ ‖(ϕ∗, ψ∗)‖2

b−‖(ϕ∗ε,δ, ψ∗ε,δ)‖2
b = ‖(vϕ∗ , vψ∗)‖2

H1(Ω)−‖(vϕ∗ε,δ , vψ∗ε,δ)‖
2
H1(Ω).

As τ > 1 we conclude by using Proposition 1.15.
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Chapter 2

Numerical resolution of the data

completion problem

In this chapter we perform a numerical reconstruction of the Dirichlet and Neumann
boundary data in an unaccessible part of the boundary Γi ⊂ ∂Ω for an harmonic
function from the Dirichlet and Neumann boundary data in an accessible part Γobs ⊂
∂Ω. As we have seen in the previous chapter, in order to retrieve the unaccessible
data, we have to minimize the Kohn-Vogelius functional. However, due to the ill-
posedness of the problem, we need to consider a regularization of the functional
via a Tikhonov regularization and we have proved that we have convergence of
the minimizers of the regularized functional to the actual minimizer of the Kohn-
Vogelius functional as the regularization parameter ε → 0 even when the data is
polluted by noise. In order to minimize the regularized functional, we will consider
a gradient type algorithm, so, we have to compute the derivatives of the regularized
Kohn-Vogelius functional and determine a descent direction.

We test our algorithm using an explicit harmonic function in two main scenar-
ios: when the boundary portions Γi and Γobs have points in common and when the
boundary portions are completely separated. Such comparisons arises as the regu-
larity theory for the mixed systems asserts that the regularity of the solutions are
di�erent on each case, when the boundaries `touches' between themselves, we have
less regularity and as we will see, the numerical errors are higher. We also test the
algorithm in the case when data corrupted by noise is available, in which case we
observe also an increase of the error between the real solution and the obtained after
the minimization.

This chapter is divided in three sections: In the �rst one we compute the deriva-
tives of the regularized Kohn-Vogelius functional and we compute descent directions
in order to implement a gradient algorithm. We introduce some adjoint systems
in order to simplify the computation of the descent directions and we conclude an
explicit form of them. In the second section we present the framework of the simula-
tions and the algorithm to be utilized. Finally, in the third section, we perform the
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2.1. Computation of the derivatives of Kε

simulations as previously described, this is, exploring the non-noisy and noisy cases
(explaining what `noise' means in our context), and the cases when the boundaries
have common points or not.

We refer to Chapter 1 for the notations. In particular, we recall that Ω is a
bounded connected Lipschitz domain of Rd (with d = 2 or d = 3) with boundary
∂Ω which has two components: the nonempty (relatively) open sets Γobs and Γi

such that Γobs ∪ Γi = ∂Ω. Then, in order to solve the data completion problem
(1.1), we consider, for a given Cauchy pair (gN , gD) ∈ H−1/2(Γobs) × H1/2(Γi) such
that (gN , gD) 6= (0, 0), the following regularized Kohn-Vogelius functional de�ned on
H−1/2(Γi)× H1/2(Γi)

Kε(ϕ, ψ) :=
1

2

∫
Ω

|∇ugDϕ −∇u
gN
ψ |

2 +
ε

2

(
‖vϕ‖2

H1(Ω) + ‖vψ‖2
H1(Ω)

)
,

where ugDϕ ∈ H1(Ω) and ugNψ ∈ H1(Ω) are the respective solutions of
−∆ugDϕ = 0 in Ω

ugDϕ = gD on Γobs
∂nu

gD
ϕ = ϕ on Γi,

and


−∆ugNψ = 0 in Ω

∂nu
gN
ψ = gN on Γobs
ugNψ = ψ on Γi,

(2.1)

and where vϕ := u0
ϕ and vψ := u0

ψ.

2.1 Computation of the derivatives of Kε

In order to perform the numerical minimization of the regularized functional Kε via
a gradient algorithm we have to compute its derivatives with respect to ϕ and ψ.

Proposition 2.1 For all (ϕ, ψ), (ϕ̃, ψ̃) ∈ H−1/2(Γi)×H1/2(Γi), the partial derivative
of the functional Kε(ϕ, ψ) are given by

∂Kε
∂ϕ

(ϕ, ψ) [ϕ̃] =

∫
Γi

ϕ̃ · (uϕ + εvϕ + wD − ψ) (2.2)

and
∂Kε
∂ψ

(ϕ, ψ)
[
ψ̃
]

= 〈(∂νuψ + ε∂νvψ + ∂νwN − ϕ), ψ̃〉Γi
(2.3)

where, wN , wD ∈ H1(Ω) are the respective solutions of the following adjoint problems:
−∆wN = −εvψ in Ω
∂νwN = ∂νuϕ − gN on Γobs
wN = 0 on Γi

(2.4)

and 
−∆wD = εvϕ in Ω

wD = uψ − gD on Γobs
∂νwD = 0 on Γi.

(2.5)
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2.1. Computation of the derivatives of Kε

In particular, the directions
(
ϕ̃, ψ̃

)
∈ H−1/2(Γi)× H1/2(Γi) given by:

ϕ̃ = ψ − uϕ|Γi
− εvϕ|Γi

− wD|Γi
, (2.6)

and
ψ̃ = −vW |Γi

, (2.7)

with W = ϕ− ∂νuψ|Γi
− ε∂νvψ|Γi

− ∂νwN |Γi
∈ H−1/2(Γi), are descent directions.

For reader's convenience, we recall that vϕ, vψ ∈ H1(Ω) are the respective solutions
of the following problems:

−∆vϕ = 0 in Ω
vϕ = 0 on Γobs

∂nvϕ = ϕ on Γi

and


−∆vψ = 0 in Ω
∂nvψ = 0 on Γobs
vψ = ψ on Γi.

(2.8)

Proof. Let (ϕ, ψ), (ϕ̃, ψ̃) ∈ H−1/2(Γi)× H1/2(Γi). Easy computations gives

∂Kε
∂ϕ

(ϕ, ψ) [ϕ̃] =

∫
Ω

∇vϕ̃ · (∇uϕ + ε∇vϕ −∇uψ) + ε

∫
Ω

vϕ̃ vϕ (2.9)

and

∂Kε
∂ψ

(ϕ, ψ)
[
ψ̃
]

=

∫
Ω

∇vψ̃ · (∇uψ + ε∇vψ −∇uϕ) + ε

∫
Ω

vψ̃ vψ, (2.10)

where vϕ̃, vψ̃ ∈ H1(Ω) are the respective solutions of
−∆vψ̃ = 0 in Ω

∂νvψ̃ = 0 on Γobs

vψ̃ = ψ̃ on Γi

(2.11)

and 
−∆vϕ̃ = 0 in Ω

vϕ̃ = 0 on Γobs
∂νvϕ̃ = ϕ̃ on Γi.

(2.12)

Then, using Green formula in the adjoints problem (2.4) and in problem (2.11) and
in the adjoints problem (2.5) and in problem (2.12), we get∫

Γi

ψ̃ ∂νwN = ε

∫
Ω

vψvψ̃ +

∫
Γobs

vψ̃ (gN − ∂νuϕ)

and ∫
Γi

ϕ̃ wD = ε

∫
Ω

vϕvϕ̃ +

∫
Γobs

∂νvϕ̃ (gD − uψ).

Thus, from the expression (2.9), we get

∂Kε
∂ϕ

(ϕ, ψ) [ϕ̃] =

∫
∂Ω

∂νvϕ̃ (uϕ + εvϕ− uψ) + ε

∫
Ω

vϕ̃ vϕ =

∫
Γi

ϕ̃ (uϕ + εvϕ− uψ +wD).
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With an analogous procedure for (2.10) we obtain (2.3).

Is important to remark that the formula for ϕ̃ should be understood as the repre-
sentative of the natural linear functional associated to the given expression (which is
in H1/2(Γi)) in order to be understood in the proper space. For the descent direction
ψ̃ we should notice the following, using the W notation:

∂Kε
∂ψ

[ψ̃] = 〈W, ψ̃〉,

however, from the variational formulation of vW , we have ∀u ∈ H1(Ω), u|Γobs = 0:∫
Ω

∇vW · ∇u = 〈W,u〉,

so, taking u = −vW , we obtain

−
∫

Ω

|∇vW |2 = 〈W,−vW 〉 < 0,

and we conclude.

2.2 Framework of the numerical simulations

To make the numerical simulations presented here, we use P1 �nite elements dis-
cretization to solve the Laplace's equations (1.7) and (2.8), and Poisson's equations
(2.4) and (2.5) related to the adjoint states.

The framework is the following: the exterior boundary is assumed to be the
boundary of the square Ω = [−0.5, 0.5]×[−0.5, 0.5]. Except when mentioned, we con-
sider here Γobs = ([−0.5, 0.5]×{−0.5})∪ ({−0.5}× [−0.5, 0.5])∪ ({0.5}× [−0.5, 0.5])
and Γi = [−0.5, 0.5]× {0.5}. The Cauchy data (gN , gD) will be chosen from explicit
harmonic functions. The inclusion of noise will depend on the test itself and is
described below.

In order to chose a suitable initial guess for the data (ϕ, ψ) into Γi we perform a
sort-of interpolation of the data based on the points p1, p2, where Γi∩Γobs = {p1, p2}.
For example, in our case when Γi is an horizontal line, we de�ne ψ as follows:

1. If u(p1) · u(p2) 6= 0, then ψ is the piecewise-polynomial of degree 2 such that:
ψ(p1) = u(p1), ψ(p2) = u(p2) and ψ((p1 + p2)/2) = 0.

2. If u(p1) · u(p2) = 0, then take ψ as the linear interpolation between the values
of u(p1) and u(p2).

In the case when there are no common points between Γobs and Γi we just simply
put homogeneous boundary conditions as the initial guess, this is (ϕ0, ψ0) = (0, 0).
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2.3. Simulations

In order to update the construction of (ϕ, ψ) to approach (ϕ∗ε, ψ
∗
ε), we follow a

gradient algorithm, for which the descent directions are given in detail in Proposi-
tion 2.1.

Algorithm

1. Let k = 0. Fix kmax (max. number of iterations) and tol (tolerance), build
(ϕ0, ψ0) as the initial guess of the missing data following the previously men-
tioned strategy.

2. Solve Problems (1.7) with (ϕk, ψk), extract the solutions uϕk , uψk and compute
K(ϕk, ψk).

• If K(ϕk, ψk) < tol: STOP.

• Else: continue to next step.

3. Solve Problems (2.4), (2.5) and (2.8) with (ϕk, ψk), extract the solutions vϕk ,
vψk , wN(ϕk, ψk) and wD(ϕk, ψk).

4. Compute the descent directions ϕ̃, ψ̃ using formulas (2.6), (2.7) with (ϕk, ψk)
and the solutions given in steps 2 and 3.

5. Update ϕk ← (ϕk − α1ϕ̃), ψk ←
(
ψk − α2ψ̃

)
.

6. While k ≤ kmax and Kε(ϕk, ψk)−Kε(ϕk−1, ψk−1) < tol, get back to the step 2,
k ← k + 1.

The step lengths α1, α2 can be set with a line search algorithm (e.g. via Wolfe
conditions or a golden ratio search) or set as �xed parameters. To conclude, we
remark that we have used the �nite elements library FreeFEM++ (see [60]) to
make the simulations. We present several simulations, with or without noise, in the
following sections and comment these results in Section 2.3.3

2.3 Simulations

2.3.1 Simulations without noise

We will explore the behavior of our algorithm for the data completion problem in
two basic situations, when the unaccessible boundary Γi is completely separated
from the accessible boundary Γobs, i.e. when Γobs∩Γi = ∅ and the opposite case, i.e.
when Γobs∩Γi 6= ∅. In all the involved cases we intend to approximate the harmonic
function

u(x, y) = y3 − 3x2y.

We remark that, in order to be able to perform the case Γobs∩Γi = ∅, our framework
slightly changes: in this case, Ω is the square [−0.5, 0.5]2 from where we remove a
disk centered in the origin with radius r = 0.25, i.e. Ω = [−0.5, 0.5]2\D((0, 0), 0.25),
and then we consider Γobs = ∂ ([−0.5, 0.5]2) and Γi = ∂D((0, 0), 0.25). We intend
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2.3. Simulations

to explore these two di�erent situations as the regularity of the solutions could be
di�erent, while for the �non touching boundaries� case the regularity results just
follow from classic elliptic regularity results, for the �touching boundaries� case the
regularity becomes a more delicate problem from theoretical and numerical point
of view (see the work of Savaré [75]). However, as explained by Savaré, when the
boundaries in the two-dimensional case have a non-empty intersection with an `in-
ternal intersection angle' less than π (in this case, the angle will be π

2
), we have

regularity estimates for the solution, which in any case are lower in comparison from
the `non touching' case.

We summarize the obtained results in Figure 2.1 and Table 2.1 for the case
Γobs ∩ Γi 66= ∅ and in Figure 2.2 and Table 2.2 for the case Γobs ∩ Γi = ∅.

Figure 2.1: Case Γobs ∩ Γi 6= ∅

Table 2.1: Touching boundaries, non noisy case.
Case Γobs ∩ Γi 6= ∅ initial error (k = 0) ε = 0.1 ε = 0.01 ε = 0.001

L2(Ω) rel. error
uD 0.0450 0.0343 0.0272 0.0255
uN 0.1244 0.0857 0.0860 0.0860

L2(Γi) rel. error
uD 0.0401 0.0411 0.0390 0.0381
uN 0.1679 0.0975 0.0985 0.0984

Table 2.2: Non touching boundaries, non noisy case.
Case Γobs ∩ Γi = ∅ initial error (k = 0) ε = 0.1 ε = 0.01 ε = 0.001

L2(Ω) rel. error
uD 0.0080 0.0051 0.0039 0.0052
uN 0.0103 0.0037 0.0037 0.0037

L2(Γi) rel. error
uD 0.0261 0.0128 0.0103 0.0129
uN 0.0155 0.0138 0.0137 0.0137

In each case, we obtain a small error between the exact solution and the ap-
proximated solution, which means that the reconstruction of the data (and of the
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2.3. Simulations

Figure 2.2: Case Γobs ∩ Γi = ∅

solution) is e�ective.

2.3.2 Simulations with noise

The framework here is the same as in the previous section: we explore the same
two di�erent settings with the same harmonic function as the real one. However we
introduce noise into the measurements in the following way for each one: given a
measure g in a region O ⊂ ∂Ω, we introduce the noisy version of g, denoted gσ, as:

gσ := g + σ
‖g‖L2(O)

‖u‖L2(O)

u,

where u is a random variable given by an uniform distribution in [−0.5, 0.5) and
σ > 0 is a scaling parameter. Notice that this de�nition implies that the data g is
contaminated by some relative error of amplitude σ in L2(O). So, the noisy data
into Γobs will be (gσN , g

σ
D). In the following simulations we will consider σ = 0.05,

which corresponds to a noise of 5% with respect to the original measurements.

The results are given in Figure 2.3 and Table 2.3 for the case Γobs∩Γi 66= ∅ and in
Figure 2.4 and Table 2.4 for the case Γobs ∩Γi = ∅. Here again, the reconstruction

Table 2.3: Touching boundaries, noisy case.
Case Γobs ∩ Γi 6= ∅ initial error (k = 0) ε = 0.1 ε = 0.01 ε = 0.001

L2(Ω) rel. error
uD 0.0793 0.0220 0.0317 0.0302
uN 0.1532 0.0874 0.0857 0.0879

L2(Γi) rel. error
uD 0.0544 0.0360 0.0450 0.0476
uN 0.1688 0.1034 0.0961 0.1049

of the data (and of the solution) is e�ective.
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2.3. Simulations

Figure 2.3: Case Γobs ∩ Γi 6= ∅

Figure 2.4: Case Γobs ∩ Γi = ∅

Table 2.4: Non touching boundaries, noisy case.
Case Γobs ∩ Γi = ∅ initial error (k = 0) ε = 0.1 ε = 0.01 ε = 0.001

L2(Ω) rel. error
uD 0.0399 0.0168 0.0374 0.0095
uN 0.0245 0.0050 0.0375 0.0037

L2(Γi) rel. error
uD 0.0465 0.0255 0.0530 0.0167
uN 0.0156 0.0138 0.0138 0.0137

2.3.3 Comments on the simulations

From these simulations we can observe that our algorithm is able to approximate
the desired harmonic function into Γi in the considered cases. Is interesting to notice
that the error order is almost one time higher into the case of touching boundaries in
contrast with non-touching boundaries, which is expected as we mentioned before.
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2.3. Simulations

For the noisy setting, we observe that our algorithm is robust for a reasonable (5%)
amount of noise, as the obtained approximations are with the same order of error in
both cases. We can also observe that the regularization parameter ε reveals more
consistent results for the values 10−2 and 10−3, which is in concordance with the
results obtained in [13].
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Chapter 3

Obstacle detection with incomplete

data via geometrical shape

optimization

In this chapter we perform a numerical reconstruction of an obstacle inside a domain
governed by the Laplace equation only from partial boundary measurements, this
is, from boundary measurements obtained from an accessible part of the boundary.
In order to perform this reconstruction we use a tool from geometrical optimization:
the shape gradient. The shape gradient of a functional allows to estimate how the
functional varies when a normal regular deformation is applied to the boundary of
the obstacle, therefore using this tool we can estimate the directions of perturbations
for which we can deform the obstacle in order to minimize the cost functional.

This chapter is divided in four sections: In the �rst one we recall the inverse
problem of obstacle detection and we describe this problem when we only have
boundary measurements from the accessible part of the boundary Γobs ⊂ ∂Ω as
the minimization of an ad-hoc regularized Kohn-Vogelius functional. In the second
section we present the shape derivative de�nition and we compute the �rst order
shape derivative of the Kohn-Vogelius functional, with the corresponding adjoint
states which will simplify the numerical implementation of the algorithm. In the
third section we present the framework for the simulations and the algorithm for the
obstacle reconstruction. Finally, in fourth section we perform several simulations
in order to explore the algorithm capacities under some initial con�gurations and
under the presence of noisy data.
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3.1. The inverse obstacle problem with partial Cauchy data

3.1 The inverse obstacle problem with partial Cauchy

data

Let Ω be a bounded connected (at least) Lipschitz open set of Rd (with d = 2 or
d = 3) with a boundary ∂Ω which has two components: the nonempty (relatively)
open sets Γobs and Γi, such that Γobs∪Γi = ∂Ω. We will say that Γobs is the observable
part of ∂Ω where we will be able to obtain measurements on our system, that is the
Cauchy data (gN , gD) ∈ H−1/2(Γobs) × H1/2(Γobs), and Γi will be considered as the
inaccessible part of the boundary ∂Ω where we cannot obtain any information of
our system.

Our aim is to detect an unknown object ω∗, referred as the obstacle, strictly
included in Ω from the measurements (gN , gD) on the observable part Γobs (see
Figure 3.1 for an illustration of the notations). This object ω∗ will be assumed as a

Γi

Γobs

ω

Ω\ω

Figure 3.1: An example domain for the obstacle problem.

bounded regular domain, speci�cally such that it belongs to the following family of
subsets of Ω:

D :=
{
ω ⊂⊂ Ω : ω is a simply connected open set, ∂ω is of class W2,∞,

d(x, ∂Ω) > d0 for all x ∈ ω, Ω\ω is connected} , (3.1)

where d0 is a �xed (small) parameter. Then, for a given nontrivial Cauchy pair
(gN , gD) ∈ H−1/2(Γobs)× H1/2(Γobs), we introduce the following inverse problem:

�nd a set ω∗ ∈ D and a solution u ∈ H1 (Ω\ω∗) ∩ C0
(

Ω\ω∗
)

of the following overdetermined boundary value problem:
−∆u = 0 in Ω\ω∗

u = gD on Γobs
∂nu = gN on Γobs
u = 0 on ω∗.

(3.2)

In the literature there exists several references to similar problems for many dif-
ferential operators. Here, we focus on the case of the Laplacian as an example of our
proposed method for a numerical reconstruction. The main novelty of our approach
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3.1. The inverse obstacle problem with partial Cauchy data

is that we do not assume any knowledge on the inaccessible part Γi. This means that
we cannot use directly a shape optimization approach by minimizing a shape cost
functional (see for example [3] for the EIT case or [37] for the Stokes case). Indeed,
the de�nition of a shape functional in order to solve this kind of inverse problems
uses the solution of a well-posed partial di�erential equation, in particular uses the
data on the whole boundary ∂Ω. However, the identi�ability result, which claims
that the solution of this inverse problem is unique, does not need any information
on Γi. Hence, our aim is to provide a reconstruction method of the object which
respects this identi�ability result that we recall below for reader's convenience1 (see
for example [25, Theorem 1.1] or [44, Proposition 4.4, page 87]):

Theorem 3.1 The domain ω and the function u that satisfy (3.2) are uniquely
de�ned by the Cauchy data (gN , gD) 6= (0, 0).

Thus, in order to solve the inverse obstacle problem, that is reconstruct the shape
ω∗, as a shape optimization problem, our idea is to use the previously explored
inverse problem: the data completion problem, that is reconstruct the function u.
The idea is to complete the data on the inaccessible part Γi which will permit to
de�ne a shape functional through some boundary value problems. In this chapter
we propose a strategy which integrates the completion of the data and the detection
of the unknown object in order to solve the inverse problem (3.2).

We will now focus on the numerical reconstruction of an unknown object ω∗ (i.e.
the obstacle), included into our domain of study Ω, which is characterized by an
homogeneous Dirichlet boundary condition, only from the knowledge of the Cauchy
data (gN , gD) measured into the observable part Γobs of ∂Ω. In order to study this
initial inverse problem (3.2), we extend the optimization problem (1.2) studied in
Chapter 1 by considering a new unknown: the obstacle ω∗, this is, by considering
the following optimization problem with an `extended' Kohn-Vogelius functional:

(ω∗, ϕ∗, ψ∗) ∈ argmin
(ω,ϕ,ψ)∈D×H−1/2(Γi)×H1/2(Γi)

K(ω, ϕ, ψ) (3.3)

where K is the nonnegative Kohn-Vogelius cost functional de�ned now by:

K(ω, ϕ, ψ) =
1

2

∫
Ω\ω
|∇uϕ(ω)−∇uψ(ω)|2 (3.4)

where uϕ(ω) := ugDϕ (ω) ∈ H1(Ω\ω) and uψ(ω) := ugNψ (ω) ∈ H1(Ω\ω) are rede�ned
as being the solutions of the following problems

−∆uϕ(ω) = 0 in Ω\ω
uϕ(ω) = gD on Γobs

∂nuϕ(ω) = ϕ on Γi

uϕ(ω) = 0 on ∂ω

and


−∆uψ(ω) = 0 in Ω\ω
∂nuψ(ω) = gN on Γobs
uψ(ω) = ψ on Γi

uψ(ω) = 0 on ∂ω.
(3.5)

1Note that Theorem 3.1 is true only assuming that ω has a continuous boundary (see [25,
Theorem 1.1]).
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It is important to recall that, if the inverse problem (3.2) has a solution, then
the identi�ability result 3.1 ensures that K(ω, ϕ, ψ) = 0 if and only if (ω, ϕ, ψ) =
(ω∗, ϕ∗, ψ∗) (and we can notice that, in this case, ugDϕ∗ = ugNψ∗ = u where u is the solu-
tion of the Cauchy problem in Ω\ω∗). Thus, from now, we focus on the optimization
problem (3.3).

We also rede�ne the functions vϕ := u0
ϕ and vψ := u0

ψ (which also depend on ω).
We precise that they satisfy now, respectively

−∆vϕ = 0 in Ω\ω
vϕ = 0 on Γobs

∂nvϕ = ϕ on Γi

vϕ = 0 on ∂ω

and


−∆vψ = 0 in Ω\ω
∂nvψ = 0 on Γobs
vψ = ψ on Γi

vψ = 0 on ∂ω.

(3.6)

However, taking into account our previous theoretical study of the data comple-
tion problem in Chapter 1, we have to regularize the Kohn-Vogelius functional K.
Hence, in the following, we will consider, instead of (3.3), the following optimization
problem

(ω∗, ϕ∗, ψ∗) ∈ argmin
(ω,ϕ,ψ)∈D×H−1/2(Γi)×H1/2(Γi)

Kε(ω, ϕ, ψ)

where Kε is the nonnegative Kohn-Vogelius cost functional de�ned by

Kε(ω, ϕ, ψ) := K(ω, ϕ, ψ) +
ε

2
‖(vϕ, vψ)‖2

H1(Ω\ω)

=
1

2

∫
Ω\ω
|∇uϕ −∇uψ|2 +

ε

2
‖(vϕ, vψ)‖2

H1(Ω\ω)

where uϕ ∈ H1(Ω\ω) and uψ ∈ H1(Ω\ω) are the respective solutions of Prob-
lems (3.5) and where vϕ ∈ H1(Ω\ω) and vψ ∈ H1(Ω\ω) are the respective solutions
of Problems (3.6).

Since we want to minimize the functional Kε, we have to compute this gradient
in order to make a descent method to reconstruct numerically the solution. The
partial derivatives of with respect to ϕ and ψ are given by Proposition 2.1 and we
will compute the shape gradient in the following subsection.

Remark We have to mention that all the results obtained into the study of the data
completion problem in Chapter 1 are extended in this case without any di�culty,
indeed, the convergence theorem 1.10 assures that:

lim
ε→0
‖uϕ∗ε − uex‖H1(Ω) = 0,

but the supplementary Dirichlet boundary condition over ∂ω also ensures the con-
vergence:

lim
ε→0
‖uψ∗ε − uex‖H1(Ω) = 0.
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3.2 Shape derivative of the Kohn-Vogelius functional

We recall that the set of admissible geometries D is given by (3.1). We also de�ne
Ωd0 an open set with a C∞ boundary such that

{x ∈ Ω ; d(x, ∂Ω) > d0/2} ⊂ Ωd0 ⊂ {x ∈ Ω ; d(x, ∂Ω) > d0/3} .

In order to de�ne the shape derivatives, we will use the velocity method introduced
by Murat and Simon in [69]. To this end, we need to introduce the following space
of admissible deformations

U :=
{
V ∈W2,∞(Rd); Supp V ⊂ Ωd0

}
.

In particular we are interested in the shape gradient of Kε de�ned by

DKε(ω) · V := lim
t→0

Kε ((I + tV )(ω))−Kε(ω)

t
.

We remark that in this section we will omit the dependence with respect to ϕ and
ψ of the functional Kε. We will write Kε(ω) instead of Kε(ω, ϕ, ψ). For details
concerning the di�erentiation with respect to the domain, we refer to the papers
of Simon [78, 79] and the books of Henrot and Pierre [61] and of Sokoªowski and
Zolésio [81].

We consider a domain ω ∈ D. Then, we have the following proposition.

Proposition 3.2 (First order shape derivative of the functional) For V ∈ U , the
regularized Kohn-Vogelius cost functional Kε is di�erentiable at ω in the direction
V with

DKε(Ω\ω) · V = −
∫
∂ω

(∂nρ
u
N · ∂nuϕ + ∂nρ

v
N · ∂nvϕ)(V · n) +

1

2

∫
∂ω

|∇w|2 (V · n)

−
∫
∂ω

(∂nρ
u
D · ∂nuψ + ∂nρ

v
D · ∂nvψ)(V · n)

+
ε

2

∫
∂ω

(|∇vϕ|2 + |∇vψ|2 + |vϕ|2 + |vψ|2)(V · n), (3.7)

where w := uϕ−uψ and where ρuD, ρ
u
N , ρ

v
D, ρ

v
N ∈ H1(Ω\ω) are the respective solutions

of the following adjoint states
−∆ρuN = 0 in Ω\ω

ρuN = gD − uψ on Γobs
∂nρ

u
N = 0 on Γi

ρuN = 0 on ∂ω,


−∆ρvN = −εvϕ in Ω\ω

ρvN = 0 on Γobs
∂nρ

v
N = 0 on Γi

ρvN = 0 on ∂ω

(3.8)

and
−∆ρuD = 0 in Ω\ω
∂nρ

u
D = 0 on Γobs
ρuD = ψ − uϕ on Γi

ρuD = 0 on ∂ω,


−∆ρvD = −εvψ in Ω\ω
∂nρ

v
D = 0 on Γobs
ρvD = εψ on Γi

ρvD = 0 on ∂ω.

(3.9)
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Proof. First, notice that the existence of the shape derivatives u′ϕ, v
′
ϕ, u

′
ψ, v

′
ψ ∈

H1(Ω\ω) is standard and is based on Implicit function theorem. We refer to [61,
Chapter 5] for details (see also [14] for example). Moreover, these shape derivatives
are respectively characterized as the solution of the following problems (see again [61,
Chapter 5]):
−∆u′ϕ = 0 in Ω\ω

u′ϕ = 0 on Γobs
∂nu

′
ϕ = 0 on Γi

u′ϕ = −∂nuϕ(V · n) on ∂ω,


−∆v′ϕ = 0 in Ω\ω

v′ϕ = 0 on Γobs
∂nv

′
ϕ = 0 on Γi

v′ϕ = −∂nvϕ(V · n) on ∂ω
(3.10)

and
−∆u′ψ = 0 in Ω\ω
∂nu

′
ψ = 0 on Γobs
u′ψ = 0 on Γi

u′ψ = −∂nuψ(V · n) on ∂ω,


−∆v′ψ = 0 in Ω\ω
∂nv

′
ψ = 0 on Γobs
v′ψ = 0 on Γi

v′ψ = −∂nvψ(V · n) on ∂ω.
(3.11)

Introducing w := uϕ− uψ and w′ := u′ϕ− u′ψ, we use Hadamard formula (see [61,
Theorem 5.2.2]) to get

DKε(Ω\ω) · V =

∫
Ω\ω
∇w′ · ∇w +

1

2

∫
∂ω

|∇w|2 (V · n)

+ ε

∫
Ω\ω

(
∇v′ϕ · ∇vϕ +∇v′ψ · ∇vψ + v′ϕ vϕ + v′ψ vψ

)
+
ε

2

∫
∂ω

(
|∇vϕ|2 + |∇vψ|2 + |vϕ|2 + |vψ|2

)
(V · n).

Using Green formula into the variational formulation of (3.8) and (3.10) and of (3.9)
and (3.11) respectively, we obtain:∫

Ω\ω
∇w · ∇u′ϕ + ε

∫
Ω\ω

(
∇v′ϕ · ∇vϕ + v′ϕ · vϕ

)
= −

∫
∂ω

∂nρ
u
N · ∂nuϕ(V · n)

−
∫
∂ω

∂nρ
v
N · ∂nvϕ(V · n)

and

−
∫

Ω\ω
∇w · ∇u′ψ + ε

∫
Ω\ω

(
∇v′ψ · ∇vψ + v′ψ · vψ

)
= −

∫
∂ω

∂nρ
u
D · ∂nuψ(V · n)

−
∫
∂ω

∂nρ
v
D · ∂nvψ(V · n),

which concludes the proof.
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3.3 Framework for the numerical simulations

Theorem 2 in [3] explains the di�culties encountered to solve numerically the re-
construction of ω. Indeed, the shape gradient has not an uniform sensitivity with
respect to the deformation direction. Hence, since the problem is severely ill-posed,
we need some regularization methods to solve it numerically, for example by adding
to the functional a penalization in terms of the perimeter (see [29] or [43]). Here,
we choose to make a regularization by parametrization using a parametric model of
shape variations.

As before, all the involved systems will be discretized using P1 �nite elements.
The framework will be the same as in Section 2.2 for the domain Ω and the bound-
aries Γobs and Γi. The real object ω∗ will be detailed on each simulation, as well
as their initial guess ω0. In order to have a suitable pair of Cauchy data and real
domain ω∗, we will use synthetic data: we �x a shape ω∗, we solve the Laplace's
equation in Ω\ω∗ with an explicit gD (we will use gD(x, y) = y3 − 3x2y) over ∂Ω
and homogeneous Dirichlet boundary condition over ∂ω using another �nite ele-
ments method (here a P2 �nite elements discretization) and we extract the Cauchy
data gN by computing the value ∂nu on Γobs.

For the obstacle numerical reconstruction, we follow the same strategy than in [3]
or in [37] that we recall for readers convenience. We restrict ourselves to star-shaped
domains and use polar coordinates for parametrization: the boundary ∂ω of the
object can be then parametrized by

∂ω =

{(
x0

y0

)
+ r(θ)

(
cos θ
sin θ

)
, θ ∈ [0, 2π)

}
,

where x0, y0 ∈ R and where r is a C1,1 function, 2π-periodic and without double
point. Taking into account of the ill-posedness of the problem, we approximate the
polar radius r by its truncated Fourier series

rN(θ) := aN0 +
N∑
k=1

aNk cos(kθ) + bNk sin(kθ),

for the numerical simulations. Indeed this regularization by projection permits to
remove high frequencies generated by cos(kθ) and sin(kθ) for k >> 1, for which
the functional is degenerated. Then, the unknown shape is entirely de�ned by
the coe�cients (ai, bi). Hence, for k = 1, . . . , N , the corresponding deformation
directions are respectively,

V 1 := V x0 :=

(
1
0

)
, V 2 := V y0 :=

(
0
1

)
, V 3(θ) := V a0(θ) :=

(
cos θ
sin θ

)
,

V 2k+2(θ) :=V ak(θ) :=cos(kθ)

(
cos θ
sin θ

)
, V 2k+3(θ) :=V bk(θ) :=sin(kθ)

(
cos θ
sin θ

)
,
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θ ∈ [0, 2π). The gradient is then computed component by component using its
characterization (see Proposition 5.1, formula (5.2)):(

∇Kε(Ω\ω)
)
k

= DKε(Ω\ω) · V k, k = 1, . . . , 2N + 3.

3.3.1 Algorithm

The algorithm in this part is basically the same as the one for the data completion
problem: we follow again a scheme of gradient algorithm but now we include also
the modi�cation of the shape of ω, so, it should be updated on each iteration by the
value of the shape derivative of our functional on each direction considered in the
parametrization of ω.

Algorithm

1. Let k = 0. Fix kmax (max. number of iterations) and tol (tolerance), build
(ϕ0, ψ0) as the initial guess of the missing data following the strategy mentioned
in Section 2.2 and �x ω0.

2. Solve problems (3.5) and (3.6) with (ωk, ϕk, ψk), extract the solutions
ukD(ωk, ϕk, ψk) := uϕk , u

k
N(ωk, ϕk, ψk) := uψk , v

k
D(ωk, ϕk, ψk) := vϕk ,

vkN(ωk, ϕk, ψk) := vψk and compute K(ωk, ϕk, ψk).

• If K(ωk, ϕk, ψk) < tol: STOP.

• Else: continue to next step.

3. Solve problems (2.4), (2.5) (de�ned into Ω \ ωk with homogeneous Dirichlet
condition over ∂ω), (3.8) and (3.9) with (ωk, ϕk, ψk), extract the solutions
wN(ωk, ϕk, ψk), wD(ωk, ϕk, ψk), ρ

u
D(ωk, ϕk, ψk), ρ

u
N(ωk, ϕk, ψk), ρ

v
D(ωk, ϕk, ψk)

and ρvN(ωk, ϕk, ψk).

4. Compute the descent directions ϕ̃, ψ̃ using formulas (2.6), (2.7) with (ϕk, ψk)
and the solutions given in steps 2 and 3.

5. Compute ∇Kε(Ω \ ωk) using formula (5.2),

6. Update ϕk ← (ϕk − α1ϕ̃), ψk ←
(
ψk − α2ψ̃

)
, ωk ← ωk − α3∇Kε(Ω \ ωk).

7. While k ≤ kmax and Kε(ϕk, ψk)−Kε(ϕk−1, ψk−1) < tol, get back to the step 2,
k ← k + 1.

As before, the step lengths α1, α2, α3 can be set with a line search algorithm (e.g.
via Wolfe conditions, or a golden ratio search) or set as �xed parameters. We precise
that we here use the adaptive method described in [37, Section 4.3]. It consists in
increasing gradually the number of parameters during the algorithm to a �xed �nal
number of parameters. For example, if we want to work with nineteen parameters,
we begin by working with two parameters during �ve iterations, then with three
parameters (we add the radius) during �ve more iterations, and then we add two
search parameters every �fteen iterations. The algorithm is then the same than the
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one described above only replacing step 6. by

ωk(1 : m)← ωk(1 : m)− αi∇Kε(Ω \ ωk)(1 : m),

where ωk(1 : m) represents the m �rst coe�cients parameterizing the shape ωk (the
same notation holds for ∇Kε(Ω \ ωk)(1 : m)). The number m grows to the �xed
�nal number of parameters following the procedure described previously.

To conclude, we remark that we have used, as before, the �nite element library
FreeFEM++ (see [60]) to make the simulations into this part and the noisy case
has the same considerations, in particular the construction of noise, as the ones of
the data completion part.

3.4 Simulations

For all the simulations in this part we consider Ω, Γobs and Γi as the ones described in
the framework (see section 3.3). In our �rst series of simulations (with and without
noise) we try to detect a disk centered in the origin with radius r = 0.25, this
is, ω∗ = D((0, 0), 0.25). We consider the initial object ω0 as the disk centered in
(−0.1, 0.1) with radius r = 0.20, this is: ω0 = D((−0.1, 0.1), 0.20). The number of
parameters is set to the maximum of 15, but the algorithm stops due to an increment
of the attained value of the Kohn-Vogelius when we introduce the fourth parameter
into the parametrization of ∂ω, this may be considered a valuable property of the
adaptive method: if we introduce the maximum number of parameters from the
beginning, the algorithm may stop immediately due to the excessive number of
parameters to detect the disk, which is described by a fewer quantity of parameters.

Table 3.1: Data completion for the object detection problem, non noisy case.
ε = 0.1 ε = 0.01 ε = 0.001

Approximated Center (-0.019,-0.006) (-0.022,-0.003) (-0.023,-0.002)

L2(Γi) relative error
uD 0.0958 0.0902 0.0899
uN 0.0919 0.0927 0.0928

Table 3.2: Data completion for the object detection problem, noisy case.
ε = 0.1 ε = 0.01 ε = 0.001

Approximated Center (-0.021,-0.017) (-0.021,-0.003) (-0.024,-0.001)

L2(Γi) relative error
uD 0.0998 0.0930 0.1033
uN 0.0946 0.0935 0.0953

In a second series of simulations, we consider now a much more complicated
obstacle to test the method: we try to detect a square with relative center C =
(0.0,−0.1) and side d = 0.4. The idea is to study the behavior of the method in
the case where a non regular obstacle is introduced. The initial object ω0 is set to
be the disk centered in (0.0, 0.0) with radius r = 0.2, this is: ω0 = D((0.0, 0.0), 0.2).
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Figure 3.2: Object detection without noise: Real solution and initial guess (up) and
obtained solutions uD, uN respectively (down).

As before, the number of parameters is set to the maximum of 15. This time the
algorithm reaches the number of 9 parameters until it stops as the functional begin
to increase, which is an expected property, as the increment on the number of active
parameters is linked with the deformation of the circle, in order to approximate the
corners of the square.

Table 3.3: Data completion for the object detection problem, non-noisy case.
ε = 0.1 ε = 0.01 ε = 0.001

Relative Center (-0.000,-0.071) (-0.000,-0.082) (-0.000,-0.086)

L2(Γi) relative error
uD 0.0758 0.0688 0.0666
uN 0.0901 0.0878 0.0869
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Figure 3.3: Object detection with noise: Real solution and initial guess (up) and
obtained solutions uD, uN respectively (down).

Table 3.4: Data completion for the object detection problem, noisy case.
ε = 0.1 ε = 0.01 ε = 0.001

Relative Center (0.012,-0.068) (-0.001,-0.087) (-0.000,-0.084)

L2(Γi) relative error
uD 0.0868 0.0727 0.0667
uN 0.0917 0.0905 0.0871

3.4.1 Comments on the simulations

We observe from these simulations that our algorithm is capable to correct the guess
localization of the introduced disk in order to obtain a very proximal location, the
data completion on Γi has the same order of error for the L2(Γi) norm, but we can
observe an error of the approximation of the real solution around the unaccessible
boundary. We remark that we do not compute the L2(Ω\ω∗)-error as the solutions
are not de�ned in the same region, then this quantity is not well de�ned. The
robustness for a reasonable (5%) amount of noise is also observed as the approxi-
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Figure 3.4: Object detection without noise: Real solution and initial guess (up) and
obtained solutions uD, uN respectively (down).

mation into both cases, for the object detection, is very similar to the one into the
unpolluted case.

It is interesting to remark that, as described before, the algorithm is capable to
notice that the number of active parameters could be wrong, as in the �rst series of
simulations the algorithm stops when trying to include more parameters than the
real ones (only 3, as we are approximating a circle). In the second series of examples
the algorithm continues until the inclusion of 9 parameters, which approximates
better the corners and the relative area covered by the square.
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Figure 3.5: Object detection with noise: Real solution and initial guess (up) and
obtained solutions uD, uN respectively (down).
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Part II

The inverse obstacle problem using

topological shape optimization in a

bidimensional Stokes �ow
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Chapter 4

Small object detection using

topological optimization for

bidimensional Stokes equations

In this chapter we change our point of view: We consider the problem of detecting
small obstacles immersed in a stationary two-dimensional �uid which is governed
by the incompressible Stokes equations. Here again we will formulate the inverse
problem as a shape optimization problem, by minimizing a shape cost-functional:
the Kohn-Vogelius functional. The smallness hypothesis leads us to consider a dif-
ferent tool than the shape gradient used before: the topological gradient. Using the
hypothesis of small obstacles, we can perform an asymptotic expansion, with respect
to the inclusion of a small obstacle into the domain of study, of the solution of the
involved systems and then of the considered cost functional. Into this asymptotic
expansion the topological gradient plays a key role which will allow us to determine
the number and relative location of the unknown obstacles.

This chapter is divided in four sections. In the �rst one we present the problem,
the corresponding notations and we characterize the resolution of the inverse problem
as the minimization of the Kohn-Vogelius functional adapted to this vector setting.
In the second section we present the main tool of our analysis: the topological gra-
dient and we present our main result: the topological asymptotic expansion for the
Kohn-Vogelius functional. In the third section we obtain an asymptotic expansion,
with respect to a topological variation, of the solution of the Stokes systems involved
in our problem. We discuss the heuristics which leads to the proposed expansions
and then we prove that, in fact, the ansatz satisfy the expected residual sizes. Fi-
nally, in the fourth section, we �nish the main proof, using the previous asymptotic
expansions of the involved Stokes systems solutions into a decoupled expression of
the variation of the Kohn-Vogelius functional.

Our main references to this work are [9, 17, 22, 36]. We remark that the fact
of being in a two-dimensional setting changes strongly the way that the asymptotic
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expansion of the solution for the Stokes system should be proposed and performed,
in this case the approximation by an exterior problem is no longer valid and we rely
to a similar procedure to the one presented by Bonnaillie-Noël and Dambrine [22] to
obtain the desired expansion in this case. Then the �nal part of the proof of the main
result is similar to the one exposed in [36], however as the approximation performed
is di�erent, some arguments should be modi�ed. Finally we remark the fact that,
unlike the three-dimensional case, the expression of the topological gradient that we
will obtain is independent of the shape of the obstacle(s), which has been seen in
several other cases (see for example [9, 10, 11, 17, 54]).

4.1 Framework

Let Ω be a bounded Lipschitz open set of R2 containing a Newtonian and incom-
pressible �uid with coe�cient of kinematic viscosity ν > 0. Let ω ⊂ R2 a �xed
bounded Lipschitz domain containing the origin, such that ω ⊂ B(0, 1). For z ∈ Ω
and 0 < ε << 1, we denote

ωz,ε := z + εω.

The aim of this work is to detect some unknown objects included in Ω. We assume
that a �nite numberm∗ of obstacles ωz∗j ,ε∗j ⊂ Ω, j ∈ {1, . . . ,m∗} have to be detected.
Moreover, we assume that they are well separated (that is: ωz∗i ,ε∗i ∩ωz∗j ,ε∗j = ∅ for all
1 ≤ i, j ≤ m∗ with i 6= j) and have the geometry form

ωz∗k,ε∗k = z∗k + ε∗kω, 1 ≤ k ≤ m∗,

where ε∗k is the diameter and the points z∗k ∈ Ω, 1 ≤ k ≤ m∗, determine the location
of the objects. Finally, we assume that, for all 1 ≤ k ≤ m∗, ω∗zk,εk is far from the
boundary ∂Ω.

Let f ∈ H1/2(∂Ω) such that f 6= 0 satisfying the compatibility condition∫
∂Ω

f · n = 0. (4.1)

In order to determine the location of the objects, we make a measurement g ∈
H−1/2(O) on a part O of the exterior boundary ∂Ω with O ⊂ ∂Ω, O 6= ∂Ω. Then,
we denote

ω∗ε :=
m∗⋃
k=1

ωz∗k,ε∗k ,

and consider the following overdetermined Stokes problem
−ν∆u+∇p = 0 in Ω\ω∗ε

divu = 0 in Ω\ω∗ε
u = f on ∂Ω
u = 0 on ∂ω∗ε

σ(u, p)n = g on O ⊂ ∂Ω.

(4.2)
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Here u represents the velocity of the �uid and p the pressure and σ(u, p) represents
the stress tensor de�ned by

σ(u, p) := ν
(
∇u+ t∇u

)
− pI.

We assume here that there is no body force and consider the homogeneous Dirich-
let boundary conditions on the obstacles, which is the so-called no-slip boundary
condition. Notice that, if divu = 0 in Ω, we have

−ν∆u+∇p = −div (νD(u)) +∇p = −div (σ(u, p)) in Ω,

with D(u) :=
(
∇u+ t∇u

)
. Thus we consider the following geometric inverse prob-

lem:

Find ω∗ε ⊂⊂ Ω and a pair (u, p)which satisfy the overdetermined problem (4.2).
(4.3)

To study this inverse problem, we consider two forward problems:
Find (uεD, p

ε
D) ∈ H1(Ω\ωε)× L2

0(Ω\ωε) such that
−ν∆uεD +∇pεD = 0 in Ω\ωε

divuεD = 0 in Ω\ωε
uεD = f on ∂Ω
uεD = 0 on ∂ωε

(4.4)

and 

Find (uεM , p
ε
M) ∈ H1(Ω\ωε)× L2(Ω\ωε) such that

−ν∆uεM +∇pεM = 0 in Ω\ωε
divuεM = 0 in Ω\ωε

σ(uεM , p
ε
M)n = g on O
uεM = f on ∂Ω\O
uεM = 0 on ∂ωε,

(4.5)

where ωε :=
⋃m
k=1 ωzk,εk for a �nite number m of objects located in z1, . . . , zm. These

two forward problems are classically well-de�ned. We refer to [27, 52] for the results
of existence and uniqueness of (uεD, p

ε
D). Notice that the compatibility condition

(4.1) associated with Problem (4.4) is satis�ed. The existence and the uniqueness
of (uεM , p

ε
M) is detailed in Appendix B, Section B.1. We underline the fact that

pεM does not need to be normalized to be unique due to the Neumann boundary
conditions imposed on O.

One can remark that, assuming that f , g are the real data (this is, obtained
without error), if ωε coincides with the actual domain ω∗ε , then u

ε
D = uεM in Ω\ωε.

According to this observation, we propose a resolution of the inverse problem (4.3)
of reconstructing ω∗ε based on the minimization of the following Kohn-Vogelius func-
tional

FKVε (uεD,u
ε
M) :=

1

2

∫
Ω\ωε

ν|D(uεD)−D(uεM)|2.

We then de�ne
JKV (Ω\ωε) := FKVε (uεD,u

ε
M).
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We can notice that, integrating by parts the expression of FKVε (uεD,u
ε
M), we get that

FKVε (uεD,u
ε
M) = ν

∫
O

(f − uεM) · (σ(uεD, p
ε
D)n − g). This expression shows that the

error can be expressed by an integral involving only the part of the boundary where
we make the measurement and reveals the coupling of the solutions via this func-
tional. Finally, we can notice that the Dirichlet error is weighted by the Neumann
error, and vice versa.

Remark In order to guarantee that the inverse problem of �nding ω∗ε and a pair
(u, p) satisfying (4.2) has a solution, we have to assume the existence of such a ω∗ε .
This means that the measurement g is perfect, that is to say without error. Then,
according to the identi�ability result [6, Theorem 1.2] proved by Alvarez et al., the
domain ω∗ε is unique. Notice that in [6], ω∗ε is assumed to have a C1,1 boundary but
we can only assume that it has a Lipschitz boundary in the Stokes case (see [14,
Theorem 2.1]). Hence, if we �nd ω∗ε such that JKV (Ω \ ω∗ε) = 0, then uεD = uεM in
Ω \ ω∗ε , i.e. uεD satis�es (4.2) and thus ωε = ω∗ε is the real domain.

In the following, for ε = 0, we will consider as a convention that ω0 = ∅ (instead
of ω0 =

⋃m
k=1 {zk}, which comes from the de�nition of ωε), and therefore: Ω0 = Ω.

Then, we will denote (u0
D, p

0
D) ∈ H1(Ω)×L2

0(Ω) and (u0
M , p

0
M) ∈ H1(Ω)×L2(Ω) the

respective solutions of the following systems:
Find (u0

D, p
0
D) ∈ H1(Ω)× L2

0(Ω) such that
−ν∆u0

D +∇p0
D = 0 in Ω

divu0
D = 0 in Ω
u0
D = f on ∂Ω

and 
Find (u0

M , p
0
M) ∈ H1(Ω)× L2(Ω) such that

−ν∆u0
M +∇p0

M = 0 in Ω
divu0

M = 0 in Ω
σ(u0

M , p
0
M)n = g on O
u0
M = f on ∂Ω\O.

4.2 The main result

From now on, we consider the problem of seeking a single obstacle ωz,ε := z + εω,
located at a point z ∈ Ω. Notice that in the case of several inclusions, we pro-
ceed by detecting the objects one by one. Thus, after detecting a �rst obsta-
cle ωz1,ε1 , we work replacing the whole domain Ω by Ω\ωz1,ω1 (and then we have
∂ωz1,ε1 ⊂ ∂ (Ω\ωz1,ω1) \O) and the results presented below (in particular the topo-
logical derivative) are still valid for a new inclusion ωz,ε. Note that, the asymptotic
expansion of the solution of elliptic boundary value problem in multiply perforated
domains is studied in [23, 66].
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4.2.1 Introduction of the needed functional tools

We recall that the topological sensitivity analysis consists in the study of the varia-
tions of a design functional J with respect to the insertion of a small obstacle ωz,ε
at the point z ∈ Ω (with no-slip boundary conditions). The aim is to obtain an
asymptotic expansion of J of the form

J (Ωz,ε) = J (Ω) + ξ(ε)δJ (z) + o(ξ(ε)) ∀z ∈ Ω, (4.6)

where ε > 0, ξ is a positive scalar function intended to tend to zero with ε and where

Ωz,ε := Ω\ωz,ε,

with ωz,ε := z + εω. We summarize the notations concerning the domains in Fig-
ure 4.1.

O

Ω
∂Ωωz,ε

Ωz,ε

Figure 4.1: The initial domain and the same domain after inclusion of an object

The computation of the topological gradient δJ in this work is mainly based on
the paper by Caubet and Dambrine [36] which deals with the presented problem
in the three-dimensional setting. The work of Bonnaillie-Noël and Dambrine [21],
which deals with asymptotic expansions for Laplace equation in a domain with sev-
eral obstacles, was the basis for the choice of the approximating problem in the two-
dimensional setting. We also have been inspired strongly by the works of Sid Idris
in [77] and [53, 54] (written with Guillaume), where the authors study topological
asymptotic expansions for Laplace and Stokes equations in two and three dimen-
sions, which provides us several techniques specially useful for the technical proofs
presented in the appendix. Finally, let us point out the works of Amstutz [9, 10],
where the author develops a topological asymptotic expansion for a cost functional
in the context of a �uid governed by the stationary Navier-Stokes equations, which
contribute to understand better the possibilities for the asymptotic expansion of the
solutions for our considered systems. It is important to mention that in all these
situations the problem involves only Dirichlet boundary conditions.

We recall the expression of the fundamental solution (E,P ) to the Stokes system
in R2 given by

E(x) =
1

4πν

(
− log ‖x‖I + er

ter
)
, P (x) =

x

2π ‖x‖2 , (4.7)
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4.3. Asymptotic expansion of the solution of the Stokes problem

with er =
x

‖x‖
; that is −ν∆Ej + ∇P j = δej, where Ej denotes the jth column of

E, (ej)
2
j=1 is the canonical basis of R2 and δ is the Dirac distribution.

4.2.2 The result

The following theorem gives us the expression of the topological gradient of the
Kohn-Vogelius functional JKV :

Theorem 4.1 For z ∈ Ω, the functional JKV admits the following topological
asymptotic expansion

JKV (Ωz,ε)− JKV (Ω) =
4πν

− log ε
(|u0

D(z)|2 − |u0
M(z)|2) + o

(
1

− log ε

)
,

where u0
D ∈ H1(Ω) and u0

M ∈ H1(Ω) solve respectively Problems (4.4) and (4.5) with
ωε = ∅ and o(f(ε)) is the set of functions g(ε) such that limε→0

g(ε)
f(ε)

= 0. Therefore,
we have

ξ(ε) =
1

− log ε
and δJKV (z) = 4πν(|u0

D(z)|2 − |u0
M(z)|2)

in the general asymptotic expansion (4.6).

Remark Notice that, contrary to the 3 dimensional case [36, Theorem 3.1] the
topological gradient doesn't depend on the geometry of ω. The formula applies for
all shapes in 2D. This phenomena is described by Finn and Smith in [50] and is
known as the Finn-Smith paradox, which is also consistent with the results obtained
by several authors in similar problems, see for example [9, 11, 17, 53, 54].

Remark For simplicity in what follows we will work with an origin-centered inclu-
sion, that means: ωz,ε = ω0,ε =: ωε also consider Ωε := Ω0,ε. The procedure for
all z ∈ Ω is exactly the same just by taking into account the change of variable
y = z + εx, instead of y = εx that we will use.

4.3 Asymptotic expansion of the solution of the Stokes

problem

In order to provide an asymptotic expansion of the Kohn-Vogelius functional JKV ,
we need �rst an asymptotic expansion of the solution of the Stokes problems (4.4)
and (4.5).

Unlike the three-dimensional case, the two-dimensional problem cannot be ap-
proximated by an `exterior problem', which in general in this case doesn't have

86



4.3. Asymptotic expansion of the solution of the Stokes problem

a solution which vanishes at in�nity. This kind of problem has been treated by
Bonnaillie-Noël and Dambrine in [21] for the Laplace equation in the plane: we
will follow this procedure in order to �nd a suitable approximation for the Stokes
problem.

We recall that we here focus on the detection of a single obstacle (see the beginning
of Section 4.2). This section is devoted to the proof of the following proposition:

Proposition 4.2 The respective solutions uεD ∈ H1(Ωz,ε) and uεM ∈ H1(Ωz,ε) of
Problems (4.4) and (4.5) admit the following asymptotic expansion (with the sub-
script \ = D and \ = M respectively):

uε\(x) = u0
\ (x) + hε(C\(x)−U \(x)) +OH1(Ωz,ε)

(
1

− log ε

)
,

where (U \, P\) ∈ H1(Ω) × L2
0(Ω) solves the following Stokes problem de�ned in the

whole domain Ω 
−ν∆U \ +∇P\ = 0 in Ω

divU \ = 0 in Ω
U \ = C\ on ∂Ω,

(4.8)

with hε := 1
− log ε

and
C\(x) := −4πνE(x− z)u0

\ (z), (4.1 bis)

where E is the fundamental solution of the Stokes equations in R2 given by (4.7).

The notation OH1(Ωz,ε)

(
1

− log ε

)
means that there exist a constant c > 0 (independent

of ε) and ε1 > 0 such that for all 0 < ε < ε1∥∥uε\(x)− u0
\ (x)− hε(C\(x)−U \(x))

∥∥
1,Ωz,ε

≤ c

− log ε
.

4.3.1 De�ning the approximation

As we mentioned above, the approximation should be done in a di�erent setting
compared to the three-dimensional case, following the same strategy as in [21]. This
basically consists in building `a correction term' to the solution given by E(x− z)u0

\

which has a logarithmic term and then tends to in�nity at in�nity and is not of �nite
energy in R2 \ ω. Therefore it has to be considered only in Ω. To this, we consider
the pair (U \,P \) ∈ H1(Ω)× L2

0(Ω) solution of Problem (4.8) and we combine these
solutions with unknown scale parameters a(ε) and b(ε). Imposing the desired scales
to the error function, we will be able to determine the scale factors a(ε) and b(ε)
which de�ne completely the approximation for uε\ . Here, we will detail the Dirichlet
case, the treatment of Neumann case is analogous.

Consider the solution (UD,PD) ∈ H1(Ω)× L2
0(Ω) of Problem (4.8) with \ = D.

The idea is to combine this solution and the function CD to build a proper corrector.
To build this, we search coe�cients a(ε) and b(ε), such that the error rεD de�ned by:

uεD(x) = u0
D(x) + a(ε)CD(x) + b(ε)UD(x) + rεD(x)
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4.3. Asymptotic expansion of the solution of the Stokes problem

is reduced with respect to Rε
D := uεD−u0

D. Notice that the remainder rεD satis�es:
−ν∆rεD +∇prεD = 0 in Ωε

div rεD = 0 in Ωε

rεD = −(a(ε) + b(ε))CD(x) on ∂Ω
rεD = −u0

D(x)− a(ε)CD(x)− b(ε)UD(x) on ∂ωε,

(4.9)

where prεD is de�ned in analogous way with pressure terms, that is

prεD(x) := pεD(x)− p0
D(x)− a(ε)ΠD(x)− b(ε)PD(x)

with ΠD(x) := −4πνP (x) · u0
D(0).

For x ∈ ∂Ω, we have:

rεD(x) = o(1)⇔ a(ε) + b(ε) = o(1),

Let us assume for a while that ω is a disk. Then, for x ∈ ∂ωε, there exists X ∈
∂B(0, 1) such that x = εX and we have

rεD(x) = o(1)⇔ −u0
D(εX)− a(ε)CD(εX)− b(ε)UD(εX) = o(1),

We can expand the terms UD(εX) and u0
D(εX) via Taylor expansions:

u0
D(εX) = u0

D(0) +O(ε) and UD(εX) = UD(0) +O(ε),

and thus, we get (noticing that O(ε) is contained in o(1)):

rεD(x) = o(1)⇔ −u0
D(0)− a(ε)CD(εX)− b(ε)UD(0) = o(1),

where i = 1, 2. Therefore, we have the linear system in unknowns (a(ε), b(ε)):{
a(ε) + b(ε) = 0

a(ε)CD(εX) + b(ε)UD(0) = −u0
D(0).

We easily get that b(ε) = −a(ε) which implies:

a(ε) (CD(εX)−UD(0)) = −u0
D(0).

This vectorial equality implies two possible choices for a(ε), recalling thatCD(εX) =
−4πνE(εX)u0

D(0), we get (for i, j ∈ {1, 2} , i 6= j)

a(ε) =
(u0

D(0))i

c1 (u0
D(0))i − log ε · (u0

D(0))i + c2 (u0
D(0))j + (UD(0))i

,

where c1 and c2 are two positive constants. This leads that a(ε) can be expressed as
a(ε) = 1

C−log ε
for another positive constant denoted by C in the two possible cases,

and then, we get the following scale:

1

− log ε
+O

(
1

log2 ε

)
=: hε +O

(
1

log2 ε

)
as ε→ 0.
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4.3. Asymptotic expansion of the solution of the Stokes problem

It is important to notice, as has been pointed out in [21, Remark 2.2], that this
construction is performed in the case of a disk, where |x| = ε for x ∈ ∂ωε. In the
general case, ω is not a ball and then log |x| 6= log ε for all x ∈ ∂ωε and one has to
add correctors as performed by Maz'ya et al. in [67, Section 2.4, p. 60�64]. This
correction of log ε is of order zero, is then negligible with respect to the logarithmic
term. The linear system in (a(ε), b(ε)) remains unchanged and so hε is still the same
rational fraction.

Hence, we approximate uεD by:

uεD(x) = u0
D(x) + hε(CD −UD) + rεD(x).

Analogously, we approximate uεM by:

uεM(x) = u0
M(x) + hε(CM −UM) + rεM(x).

4.3.2 An explicit bound of rεD and rεM with respect to ε

The Dirichlet case

Notice that, in this case, the remainder rεD satis�es:
−ν∆rεD +∇prεD = 0 in Ωε

div rεD = 0 in Ωε

rεD = 0 on ∂Ω
rεD = −u0

D − hε(CD −UD) on ∂ωε.

(4.10)

The key point to obtain a bound of rεD is the following lemma.

Lemma 4.3 Let ε > 0. For ϕ ∈ H1/2(∂ωz,ε), Φ ∈ H1/2(∂Ω), let (vε, qε) ∈
H1(Ωz,ε)× L2

0(Ωz,ε) be the solution of the problem
−ν∆vε +∇qε = 0 in Ωz,ε

div vε = 0 in Ωz,ε

vε = Φ on ∂Ω
vε = ϕ on ∂ωz,ε.

(4.11)

There exists a constant c > 0 (independent of ε) such that:

‖vε‖1,Ωz,ε
≤ c

(
‖Φ‖1/2,∂Ω + ‖ϕ(εX)‖1/2,∂ω

)
. (4.12)

The proof of Lemma 4.3 is decomposed in the following three lemmas which are
based in the ones presented in [77, Chapter 3]. We will use the notations introduced
in section B.3.2.
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4.3. Asymptotic expansion of the solution of the Stokes problem

Lemma 4.4 Let ε > 0. For Φ ∈ H1/2(∂Ω), let (vε, qε) ∈ H1(Ωz,ε)×L2
0(Ωz,ε) be the

solution of the Stokes problem
−ν∆vε +∇qε = 0 in Ωz,ε

div vε = 0 in Ωz,ε

vε = Φ on ∂Ω
vε = 0 on ∂ωz,ε.

(4.13)

Then there exists a constant c > 0 (independent of ε and Φ) and ε1 > 0 such that
for all 0 < ε < ε1

‖vε‖1,Ωz,ε
≤ c ‖Φ‖1/2,∂Ω . (4.14)

Proof. Let ε0 > 0. Consider vε0 solution of (4.13) for ε = ε0. It satis�es:

|vε0|1,Ωε0 =

∫
Ωε0

|∇vε0|2dx ≤ c(ε0)‖Φ‖1/2,∂Ω.

Now consider ṽε0 the extension by 0 of vε0 to all Ω, and consider v the solution of
the system 

−ν∆v +∇q = 0 in Ω
div v = 0 in Ω
v = Φ on ∂Ω,

i.e. when we consider ε = 0 in (4.13). Notice that, by minimization of energy, we
have:

|v|1,Ω ≤ |ṽε0|1,Ω = |vε0|1,Ωε0 .

Also, the well-posedness of the problem gives the existence of c > 0 (c = c(Ω)) such
that:

|v|0,Ω ≤ c‖Φ‖1/2,∂Ω.

Now, notice that if ε1 < ε0 we have ε1ω ⊂ ε0ω and then Ωε0 ⊂ Ωε1 , so, for all
ε ∈ (0, ε1), we have:

|vε|1,Ωε ≤ |ṽε0|1,Ωε = |vε0|1,Ωε0 ≤ c(ε0)‖Φ‖1/2,∂Ω.

Noticing that ṽε − v ∈ H1
0(Ω) and thanks to Poincaré inequality, we have:

|ṽε|0,Ω = |vε|0,Ωε ≤ |ṽε − v|0,Ω + |v|0,Ω ≤ c|ṽε − v|1,Ω + c‖Φ‖1/2,∂Ω

≤ c|vε|1,Ωε + c|v|1,Ω + c‖Φ‖1/2,∂Ω ≤ c(ε0,Ω)‖Φ‖1/2,∂Ω.

Also, denoting by ṽε0 the extension by zero of vε0 to Ωε, we get, by minimization of
energy that:

|vε|1,Ωε ≤ |ṽε0|1,Ωε = |vε0|1,Ωε0 ≤ c(ε0)‖Φ‖1/2,∂Ω.

Combining the last two inequalities we get the desired result.

From the previous Lemma, we get the following one:
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Lemma 4.5 Let ε > 0. For ϕ ∈ H1(Ω) such that divϕ = 0 in Ω, let (vε, qε) ∈
H1(Ωz,ε)× L2

0(Ωz,ε) be the solution of the Stokes problem
−ν∆vε +∇qε = 0 in Ωz,ε

div vε = 0 in Ωz,ε

vε = 0 on ∂Ω
vε = ϕ on ∂ωz,ε.

(4.15)

If there exists q ∈ L2
0(Ω) such that −ν∆ϕ+∇q = 0 in Ω, then there exists a constant

c > 0 (independent of ε and ϕ) and ε1 > 0 such that for all 0 < ε < ε1

‖vε‖1,Ωz,ε
≤ c ‖ϕ‖1/2,∂Ω . (4.16)

Proof. We consider the pair (vε := vε −ϕ, lε := qε − q). This satis�es:
−ν∆vε +∇lε = 0 in Ωz,ε

div vε = 0 in Ωz,ε

vε = −ϕ on ∂Ω
vε = 0 on ∂ωz,ε.

By the previous lemma, we have for all ε < ε1:

‖vε‖1,Ωz,ε ≤ c‖ϕ‖1/2,∂Ω.

Noticing that ϕ is de�ned in the whole domain and is the solution of the Stokes
system, we have:

‖ϕ‖1,Ωz,ε ≤ ‖ϕ‖1,Ω ≤ c‖ϕ‖1/2,∂Ω.

Therefore, we �nally get:

‖vε‖1,Ωz,ε ≤ ‖vε‖1,Ωz,ε + ‖ϕ‖1,Ωz,ε ≤ c‖ϕ‖1/2,∂Ω.

Lemma 4.6 Let ε > 0. For λ ∈ R2, let (vε, qε) ∈ H1(Ωz,ε)×L2
0(Ωz,ε) be the solution

of the Stokes problem 
−ν∆vε +∇qε = 0 in Ωz,ε

div vε = 0 in Ωz,ε

vε = 0 on ∂Ω
vε = λ on ∂ωz,ε.

(4.17)

There exists a constant c > 0 (independent of ε) such that:

‖vε‖1,Ωz,ε
≤ c

|λ|√
− log ε

. (4.18)
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Proof. Consider the following sets:

Γr :=
{
x ∈ R2 : ‖x‖ = r

}
and C(r1, r2) :=

{
x ∈ R2 : r1 < ‖x‖ < r2

}
.

Also, consider the following quantity:

r∗ := sup {r > 0 : B(0, r) ⊂ Ω} .

Let us now consider the pair (vε, lε), the unique solution of the system:
−ν∆vε +∇lε = 0 in C(1, r∗/ε)

div vε = 0 in C(1, r∗/ε)
vε = 0 on Γr∗/ε
vε = λ on Γ1.

Also, consider the functions v̂ε(y) = vε(x) and q̂ε(y) = 1
ε
qε(x) with y = x

ε
. The pair

(v̂ε, q̂ε) satis�es: 

−ν∆v̂ε +∇q̂ε = 0 in
Ω

ε

div v̂ε = 0 in
Ω

ε

v̂ε = 0 on ∂

(
Ω

ε

)
v̂ε = λ on ∂ω.

Notice that we have: ω ⊂ B(0, 1) ⊂ B
(
0, r

∗

ε

)
⊂ Ω

ε
. Now consider ṽε the extension

of vε to
Ω

ε
\ ω, by zero in the outer part (respect to the original domain) of the

extended domain and by λ in the inner part of the extended domain. Therefore, by
the principle of minimization of energy we have:

|vε|1,Ωε = |v̂ε|1,Ω
ε
\ω ≤ |ṽε|1,Ω

ε
\ω = |vε|1,C(1, r

∗
ε

). (4.19)

Let ψ := λ+4πνE λ
log(r∗/ε)

and q := 4πνP · λ
log(r∗/ε)

where (E,P ) is the fundamental
solution of Stokes equations in R2 given by (4.7). We have:

−ν∆ψ +∇q = 0 in C(1, r∗/ε)
divψ = 0 in C(1, r∗/ε)

ψ = erterλ
log(r∗/ε)

on Γr∗/ε

ψ = λ+ erterλ
log(r∗/ε)

on Γ1,

and a computation provides:

|ψ|1,C(1,r∗/ε) ≤ c
|λ|√
− log ε

.

Now, notice that the pair (vε−ψ, lε− q) is solution of the Stokes equations with
boundary condition − erterλ

log(r∗/ε)
in both boundaries of the domain. Therefore, using

the previous lemmas we get that:

|vε −ψ|1,C(1,r∗/ε) = |v̂ε − ψ̂|1,C(ε,r∗) ≤
c

− log ε
‖erterλ‖1/2,Γ∗r ≤

c|λ|
− log ε

.
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So, we get by (4.19):

|vε|1,Ωε ≤ |vε|1,C(1, r
∗
ε

) ≤ |vε −ψ|1,C(1, r
∗
ε

) + |ψ|1,C(1, r
∗
ε

)

≤ c
|λ|
− log ε

+ c
|λ|√
− log ε

≤ c
|λ|√
− log ε

.

Finally, consider ṽε the extension of vε to Ω by λ (notice that this extension is in
H1

0(Ω), therefore we can use Poincaré inequality). We have:

‖vε‖1,Ωε ≤ ‖vε‖0,Ωε + |vε|1,Ωε ≤ c‖ṽε‖0,Ω + |vε|1,Ωε
≤ c|ṽε|1,Ω + |vε|1,Ωε = (c+ 1)|vε|1,Ωε ≤ c

|λ|√
− log ε

.

Proof of Lemma 4.3. If ϕ is constant on ∂ωε and Φ = 0, the previous lemma gives
the desired result. If Φ 6= 0 another previous lemma gives the desired estimate. So,
let's focus on the case where ϕ is not constant. Let V the bounded solution of

−ν∆V +∇PV = 0 in R2 \ ω
divV = 0 in R2 \ ω
V = ϕ(εx) on ∂ω.

We have by (B.9) V = λ + W with λ ∈ R2 and W = O(1/r). Notice that this
impliesW (x

ε
) = O(ε). We de�ne zε := vε−W

(
x
ε

)
and pzε := qε− 1

ε
PW

(
x
ε

)
, where

PW is de�ned by (B.10) with y = x/ε. Notice that zε satis�es:
−ν∆zε +∇pzε = 0 in Ωε

div zε = 0 in Ωε

zε = Φ−W
(
x
ε

)
on ∂Ω

zε = λ on ∂ωε.

Using the previous lemmas we can bound the terms of this function, and λ can be
bounded thanks to (B.11). Finally we have thatW

(
x
ε

)
satis�es the desired estimate

by Lemma B.5 and we conclude by triangle inequality.

Using the lemmas we are now ready to prove the main proposition into the Dirich-
let case

Proof of Proposition 4.2, Dirichlet case. From lemma 4.3, we get:

‖rεD‖1,Ωε
≤ c

∥∥u0
D(εX) + hε(CD(εX)−UD(εX))

∥∥
1/2,∂ω

.

Notice that:

u0
D(εX) + hε(CD(εX)−UD(εX))

= u0
D(εx) +

1

− log ε
[(log(ε‖X‖)− er

ter) · u0
D(0)−UD(εX)]

= u0
D(εX)− u0

D(0) +
1

− log ε
[(log(‖X‖)− er

ter) · u0
D(0)−UD(εX)]

= ε∇u0
D(ζx) +

1

− log ε
[(log(‖X‖)− er

ter) · u0
D(0)−UD(εX)].
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4.3. Asymptotic expansion of the solution of the Stokes problem

We have used a Taylor expansion of u0
D in the last equality and ζx is some point in

the line which joins 0 and εX. Now, recalling that ∇u0
D is uniformly bounded and

using the boundness of UD and the other terms by their de�nition, we get that:

‖u0
D(εX) + hε(CD(εX)−UD(εX))‖1/2,∂ω ≤ cε+

c

− log ε
≤ c

− log ε
. (4.20)

Therefore:

‖rεD‖1,Ωε
= O

(
1

− log ε

)
,

which concludes the proof of Proposition 4.2 with \ = D.

The Neumann case

In this case, the reminder rεM satis�es:
−ν∆rεM +∇prεM = 0 in Ωε

div rεM = 0 in Ωε

rεM = 0 on ∂Ω \O
σ(rεM , prεM )n = 1

log ε
[σ(CM −UM ,ΠM − PM)n] on O

rεM = −u0
M − hε(CM −UM) on ∂ωε,

(4.21)

where the pressure associated to CM is de�ned explicitly by the expression

ΠM(x) := −4πνP (x) · u0
M(0). (4.22)

In order to be able to bound this rest, we use the following lemma.

Lemma 4.7 Let ε > 0. For ψ ∈ H−1/2(O), Φ ∈ H1/2(∂Ω\O) and ϕ ∈ H1/2(∂ωz,ε),
let (vε, qε) ∈ H1(Ωz,ε)× L2(Ωz,ε) be the solution of the Stokes problem

−ν∆vε +∇qε = 0 in Ωz,ε

div vε = 0 in Ωz,ε

σ(vε, qε)n = ψ on O
vε = Φ on ∂Ω\O
vε = ϕ on ∂ωz,ε.

(4.23)

There exists a constant c > 0 (independent of ε) such that:

‖vε‖1,Ωz,ε
≤ c

(
‖ψ‖−1/2,O + ‖Φ‖1/2,∂Ω\O + ‖ϕ(εX)‖1/2,∂ω

)
. (4.24)

As before, in order to prove this `key' lemma, we need a previous step:

Lemma 4.8 Let ε > 0. For ψ ∈ H−1/2(O), Φ ∈ H1/2(∂Ω\O) and λ ∈ R2, let
(vε, qε) ∈ H1(Ωz,ε)× L2(Ωz,ε) be the solution of the Stokes problem

−ν∆vε +∇qε = 0 in Ωz,ε

div vε = 0 in Ωz,ε

σ(vε, qε)n = ψ on O
vε = Φ on ∂Ω\O
vε = λ on ∂ωz,ε.

(4.25)
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4.3. Asymptotic expansion of the solution of the Stokes problem

Then there exists a constant c > 0 (independent of ε) and ε1 > 0 such that for all
0 < ε < ε1

‖vε‖1,Ωz,ε
≤ c

(
‖ψ‖−1/2,O + ‖Φ‖1/2,∂Ω\O + |λ|

)
.

Proof. Let ε > 0 and (vε, qε) ∈ H1(Ωz,ε) × L2(Ωz,ε) be the solution of Problem
(4.25). Let (V ε, Qε) ∈ H1(Ωz,ε)× L2(Ωz,ε) be the solution of

−ν∆V ε +∇Qε = 0 in Ωz,ε

divV ε = 0 in Ωz,ε

σ(V ε, Qε)n = 0 on O
V ε = Φ on ∂Ω\O
V ε = λ on ∂ωz,ε.

(4.26)

Let ṽε and Ṽ ε denote the respective extensions of vε and V ε to Ω by λ. Then, we

have for all Ψ ∈
{

Ψ ∈ H1(Ωz,ε), div Ψ = 0, Ψ ∂ωz,ε = 0, Ψ ∂Ω\O = 0
}

1

2
ν

∫
Ωz,ε

D(vε − V ε) :D(Ψ) = 〈ψ , Ψ〉O

and then taking Ψ = vε − V ε

1

2
ν
∥∥∥D(ṽε − Ṽ ε)

∥∥∥2

0,Ω
= 〈ψ , vε − V ε〉O .

Thus, there exists a constant (independent of ε) such that∥∥∥D(ṽε − Ṽ ε)
∥∥∥2

0,Ω
≤ c ‖ψ‖−1/2,O

∥∥∥ṽε − Ṽ ε

∥∥∥
1,Ω
.

Moreover, since vε − V ε = 0 on ∂Ω\O, Korn's inequality (see for example [72, eq.
(2.14) page 19]) leads ∥∥∥ṽε − Ṽ ε

∥∥∥
1,Ω
≤ c

∥∥∥D(ṽε − Ṽ ε)
∥∥∥

0,Ω

(with a constant c independent of ε). Hence,

‖vε − V ε‖2
1,Ωz,ε

=
∥∥∥ṽε − Ṽ ε

∥∥∥2

1,Ω
≤ c ‖ψ‖−1/2,O

∥∥∥D(ṽε − Ṽ ε)
∥∥∥

0,Ω

≤ c ‖ψ‖−1/2,O

∥∥∥ṽε − Ṽ ε

∥∥∥
1,Ω
≤ c ‖ψ‖−1/2,O ‖vε − V ε‖1,Ωz,ε

.

Thus,
‖vε − V ε‖1,Ωz,ε

≤ c ‖ψ‖−1/2,O .

Now, let us prove that ‖V ε‖1,Ωz,ε
≤ c

(
‖Φ‖1/2,∂Ω\O + |λ|

)
. For a �xed ε0 > 0,

Problem (4.26) is well-posed and admits a unique solution (V ε0 , Qε0) ∈ H1(Ωz,ε0)×
L2(Ωz,ε0) and there exists a constant c > 0 such that

‖V ε0‖1,Ωz,ε0
≤ c

(
‖Φ‖1/2,∂Ω\O + ‖λ‖1/2,∂ωz,ε0

)
.
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4.3. Asymptotic expansion of the solution of the Stokes problem

Notice that, by (B.2) we get that:

‖λ‖1/2,∂ωz,ε0
∼ 1

(ε0(− log ε0))1/2
‖λ‖L2(∂ωz,ε0 ) + [λ]p,∂ωz,ε0

.

The later term is zero, because λ is constant, so we get, by a change of variables
that:

‖λ‖1/2,∂ωz,ε0
∼ 1

(ε0(− log ε0))1/2
‖λ‖L2(∂ωz,ε0 ) =

1

(− log ε0)1/2
‖λ‖L2(∂ω)

= c(ε0, ∂ω)|λ|.

Let 0 < ε1 < ε0 such that Ωz,ε0 ⊂ Ωz,ε for all 0 < ε < ε1. Let Ṽ ε0 the extension of
V ε0 to Ω by λ. The solution V ε of (4.26) can be considered as the solution of the

following minimization problem: min
V ∈U

{
ν |V |1,Ωz,ε

}
, where

U :=
{
V ∈ H1(Ωz,ε), divV = 0 in Ωz,ε, V = λ on ∂ωz,ε, V = Φ on ∂Ω\O

}
.

Hence, for all 0 < ε < ε1, we have

|V ε|1,Ωz,ε ≤ c
∣∣∣Ṽ ε0

∣∣∣
1,Ωz,ε

= c |V ε0 |1,Ωz,ε0 ≤ c ‖V ε0‖1,Ωz,ε0
≤ c

(
‖Φ‖1/2,∂Ω\O + |λ|

)
.

Notice that ‖V 0‖1,Ω ≤ c ‖Φ‖1/2,∂Ω\O. Hence, using Poincaré inequality,

‖V ε‖0,Ωz,ε
=
∥∥∥Ṽ ε

∥∥∥
0,Ω
≤
∥∥∥Ṽ ε − V0

∥∥∥
0,Ω

+ ‖V 0‖0,Ω ≤ c
∣∣∣Ṽ ε − V0

∣∣∣
1,Ω

+ ‖V 0‖0,Ω

≤ c
∣∣∣Ṽ ε

∣∣∣
1,Ω

+ c ‖V 0‖1,Ω ≤ c |V ε|1,Ωz,ε + c ‖V 0‖1,Ω ≤ c
(
‖Φ‖1/2,∂Ω\O + |λ|

)
.

Hence, we have the announced result.

Proof of Lemma 4.7. The proof is similar to the one presented in the previous section
for the Dirichlet system. If ϕ is constant on ∂ωε, the previous lemma gives the
desired result. So, let's focus on the case where ϕ is not constant. Let V the
bounded solution of

−ν∆V +∇PV = 0 in R2 \ ω
divV = 0 in R2 \ ω
V = ϕ(εx) on ∂ω.

We have by (B.9) V = λ + W with λ ∈ R2 and W = O(1/r), notice that this
impliesW (x

ε
) = O(ε). We de�ne zε := vε−W

(
x
ε

)
and pzε := qε− 1

ε
PW

(
x
ε

)
, where

PW is de�ned by (B.10) with y = x/ε. Notice that the couple (zε, pzε) satis�es:
−ν∆zε +∇pzε = 0 in Ωε

div zε = 0 in Ωε

σ(zε, pzε)n = ψ − 1
ε
σ
(
W
(
x
ε

)
, PW

(
x
ε

))
n on O

zε = Φ−W
(
x
ε

)
on ∂Ω \O

zε = λ on ∂ωε.
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4.3. Asymptotic expansion of the solution of the Stokes problem

The previous lemma gives the existence of c > 0 independent of ε such that:

‖zε‖1,Ωε
≤ c

(∥∥ψ − 1
ε
σ
(
W
(
x
ε

)
, PW

(
x
ε

))
n
∥∥
−1/2,O

+
∥∥Φ−W (

x
ε

)∥∥
1/2,∂Ω\O + |λ|

)
≤ c

(
‖ψ‖−1/2,O + 1

ε

∥∥σ (W (
x
ε

)
, PW

(
x
ε

))
n
∥∥
−1/2,O

+ ‖Φ‖1/2,∂Ω\O

+O(ε) + ‖ϕ(εx)‖1/2,∂ω

)
.

Notice that we have, using the same argument as in (4.28):∥∥∥σ (W (x
ε

)
, PW

(x
ε

))
n
∥∥∥
−1/2,O

≤ c
∥∥∥(∇W )

(x
ε

)∥∥∥
0,Ω0

R

.

But:∥∥∥(∇W )
(x
ε

)∥∥∥
0,Ω0

R

= ε
∥∥∥(∇W (x

ε

))∥∥∥
0,Ω0

R

= ε2 ‖∇W ‖0,Ω0
R/ε
≤ ε4 ‖ϕ(εx)‖1/2,∂ω ,

where the last inequality comes from Lemma B.5. Notice that λ can be bounded
thanks to (B.11), so we have:

‖zε‖1,Ωε
≤ c

(
‖ψ‖−1/2,O + ‖Φ‖1/2,∂Ω\O +O(ε) + ε3 ‖ϕ(εx)‖1/2,∂ω

+‖ϕ(εx)‖1/2,∂ω

)
.

So, �nally, for ε small enough, we get:

‖vε‖1,Ωε
≤ ‖zε‖1,Ωε

+
∥∥W (

x
ε

)∥∥
1,Ωε

≤ c
(
‖ψ‖−1/2,O + ‖Φ‖1/2,∂Ω\O + ‖ϕ(εx)‖1/2,∂ω

)
+ c‖ϕ(εx)‖1/2,∂ω

≤ c
(
‖ψ‖−1/2,O + ‖Φ‖1/2,∂Ω\O + ‖ϕ(εx)‖1/2,∂ω

)
,

and we conclude.

Now, with the lemma proved, we are ready to �nish the proof of our main propo-
sition in the Neumann case:

Proof of Proposition 4.2, Neumann case. Thanks to lemma 4.7, we know that there
exists a constant c > 0 independent of ε, such that:

‖rεM‖1,Ωε
≤ c

(
1

− log ε

(
‖σ(CM ,ΠM)n‖−1/2,O + ‖σ(UM , PM)n‖−1/2,O

)
+
∥∥−u0

M(εX)− hε(CM(εX)−UM(εX))
∥∥

1/2,∂ω

)
. (4.27)

We have

‖σ(CM ,ΠM)n‖−1/2,O ≤ c|CM |1,Ω\B(0,1)

‖σ(UM , PM)n‖−1/2,O ≤ c|UM |1,Ωε .
(4.28)
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4.3. Asymptotic expansion of the solution of the Stokes problem

In fact, for all φ ∈ H1/2(O) and all η ∈ H1(Ω \ B(0,1)), extension of φ such that
η ∂Ω\O = 0, we have

〈σ(CM ,ΠM)n , φ〉−1/2,1/2,O = ν

∫
Ω\B(0,1)

D(CM) :∇(η)

≤ c ‖D(CM)‖0,Ω\B(0,1) ‖η‖1,Ω\B(0,1)

and, choosing η such that ‖η‖1,Ω\B(0,1) = ‖φ‖1/2,O, we obtain that

‖σ(CM ,ΠM)n‖−1/2,O ≤ c ‖D(CM)‖0,Ω\B(0,1) = c|CM |1,Ω\B(0,1).

The same procedure forUM in Ωε instead of Ω\B(0, 1) gives the bound for σ(UM , PM).

Remark Notice that we need to consider the set Ω \ B(0, 1) for σ(CM ,ΠM)n in
order to obtain a bound independent of ε: we need to consider a set su�ciently
away from zero, due to the de�nition of CM . For UM , we don't have this problem
because it is de�ned in the whole Ω.

Now we need estimates for the functions UM and CM . Notice that, from the
well posedness of the problem (4.8) with \ = N , we have:

‖UM‖1,Ω ≤ c‖CM‖1/2,∂ω.

But CM(x) = −4πνE(x)u0
\ (0) which is bounded if x is away from zero. The same

applies for the derivative of CM because ∇CM(x) = O(1/r). Therefore, on ∂ω, we
have |CM(x)| ≤ c and |∇CM(x)| ≤ c, and then:

‖UM‖1,Ω ≤ c.

For CM we will need a bound for the term |CM |1,Ω\B(0,1), for this, �rst notice that
|∇CM | = O(1/r) and let R big enough such that Ω ⊂ B(0, R), therefore:

|CM |1,Ω\B(0,1) ≤ |CM |1,B(0,R)\B(0,1) ≤ c

(∫
B(0,R)\B(0,1)

1

‖x‖2
dx

)1/2

= c (2π lnR)1/2 = c.

We �nally get:
‖UM‖1,Ω ≤ c and |CM |1,Ω\B(0,1) ≤ c.

Then, from (4.28),

‖σ(CM ,ΠM)n‖−1/2,O ≤ c and ‖σ(UM , PM)n‖−1/2,O ≤ c.

The other term of (4.27) is treated identically as in the Dirichlet case (see (4.20))
and therefore, we get:

‖rεM‖1,Ωε
≤ c

− log ε
+ cε+

c

− log ε
≤ c

− log ε
,

which concludes the proof of Proposition 4.2 with \ = N .
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Remark In order to understand the obtained asymptotic expansion, let us recall
some facts inside the proof for the Dirichlet case (similar observations applies to the
Neumann case): We have that the Dirichlet traces of hε(CD−UD) over ∂Ω and ∂ωε
are zero and λ + O(

√
−1/ log ε) (with λ ∈ R2), from which we obtain an H1(Ωε)

norm for hε(CD − UD) of size O(−1/ log ε) by Lemma 4.6, additionally we have
that the trace of rεD over ∂ωε is o(1) (see the end of the proof of Proposition 4.2)
which is coherent with the higher order obtained by the H1(Ωz,ε) norm of rεD, this
is, O(−1/ log ε).

4.4 Proof of Theorem 4.1

We recall that we will detail the proof only for the case of an origin-centered inclusion,
i.e. z = 0 (see Remark 4.2.2).

4.4.1 A preliminary lemma

First we need an estimate of the norm ‖·‖1/2,∂ωε
of an uniformly bounded function.

Here ‖·‖1/2,∂ωε
has to be seen as the trace norm

‖f‖1/2,∂ωε
:= inf

{
‖u‖H1(Ω\ωz,ε) , u ∈ H1(Ω\ωz,ε),u ∂ωz,ε = f

}
.

Lemma 4.9 Let ε ∈ (0, 1/2). If u ∈ H1(Ω) is such that its restriction to ω1 (i.e.
ωε for ε = 1) is C1, then there exists a constant c > 0 independent of ε such that

‖u‖1/2,∂ωε
≤ c√
− log ε

.

Proof. From Theorem B.2, there exists a constant c > 0 independent of ε such that

‖u‖1/2,∂ωε
≤ c

ε−1/2

√
− log ε

‖u‖L2(∂ωε)
+ c

(∫ ∫
∂ωε×∂ωε

|u(x)− u(y)|2

|x− y|2
ds(x)ds(y)

)

Since u is uniformly bounded on ∂ωε, we use the change of variables y = εx to prove
that there exists a constant c > 0 independent of ε such that

‖u‖L2(∂ωε)
≤ cε1/2.

Moreover, using the changes of variables x = εX and y = εY , the fact that u(εX) =
u(0) + ε∇(u)(ζX)X, ζX ∈ ωε and u(z + εY ) = u(z) + ε∇(u)(ζY )Y , ζY ∈ ωε (ζX
and ζY are some points in the lines which join 0 to εX and εY respectively due to
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4.4. Proof of Theorem 4.1

a Taylor expansion), there exists c > 0 independent of ε such that(∫ ∫
∂ωε×∂ωε

|u(x)− u(y)|2

|x− y|2
ds(x)ds(y)

)1/2

=

(∫ ∫
∂ω×∂ω

ε2 |ε (∇(u)(ζX)X −∇(u)(ζY )Y )|2

ε2 |X − Y |2
ds(x)ds(y)

)1/2

≤ cε.

Therefore, we get:

‖u‖1/2,∂ωε
≤ cε−1/2 · 1√

− log ε
· ε1/2 + cε ≤ c√

− log ε
.

4.4.2 Splitting the variations of the objective

Now, we turn our attention to the Kohn-Vogelius functional given by

JKV (Ωε) =
1

2
ν

∫
Ωε

|D(uεD)−D(uεM)|2.

We �rst recall the following decomposition:

Lemma 4.10 We have

JKV (Ωε)− JKV (Ω) = AD + AM , (4.29)

where

AD :=
1

2
ν

∫
Ωε

D(uεD − u0
D) :D(uεD − u0

D)

+ ν

∫
Ωε

D(uεD − u0
D) :D(u0

D)− 1

2
ν

∫
ωε

|D(u0
D)|2

and

AM :=

∫
∂ωε

[
σ(uεM − u0

M , p
ε
M − p0

M)n
]
· u0

M −
1

2
ν

∫
ωε

|D(u0
M)|2.

Proof. We integrate by parts and use the conditions satis�ed by (uεD, p
ε
D), (uεM , p

ε
M),

(u0
D, p

0
D) and (u0

M , p
0
M) to obtain this decomposition. For details see [36, Lemma 5.2].
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4.4. Proof of Theorem 4.1

4.4.3 Asymptotic expansion of AM

We follow here a similar strategy as the one used in the 3D case detailed for example
in [36], in contrast to that work we rely on the Stokes fundamental solution properties
and the de�nition of the approximation problem instead of single layer formulas
present in the 3D case. We know using elliptic regularity that ∇u0

M is uniformly
bounded on ωε. Thus

− 1

2
ν

∫
ωε

|D(u0
M)|2 ≤ c

∫
ω

ε2 = O(ε2). (4.30)

We recall that:

rεM(x) := uεM(x)− u0
M(x)− hε(CM(x)−UM(x))

prεM (x) := pεM(x)− p0
M(x)− hε(ΠM(x)− PM(x)),

where (UM , PM) ∈ H1(Ω)×L2
0(Ω) solves (4.8), CM is given by (4.1 bis) (with \ = N)

and ΠM is given by (4.22). Then the following equality holds∫
∂ωε

[
σ(uεM − u0

M , p
ε
M − p0

M)n
]
· u0

M =∫
∂ωε

[
σ(rεM , prεM )n

]
· u0

M + hε

∫
∂ωε

[σ(CM −UM ,ΠM − PM)n] · u0
M . (4.31)

Let us �rst focus on the �rst term in the right-hand side of (4.31). Using the same
argument as the one used in the deduction of (4.28), we get:∥∥σ(rεM , prεM )n

∥∥
−1/2,∂ωε

≤ c ‖D(rεM)‖0,Ωε
. (4.32)

Therefore, using the explicit upper bound of ‖u0
M‖1/2,∂ωε

given by Lemma 4.9, we
have ∣∣∣∣∫

∂ωε

[
σ(rεM , prεM )n

]
· u0

M

∣∣∣∣ ≤ ∥∥σ(rεM , prεM )n
∥∥
−1/2,∂ωε

∥∥u0
M

∥∥
1/2,∂ωε

≤ c√
− log ε

‖rεM‖1,Ωε .

Then, using the explicit upper bound of ‖rεM‖1,Ωε
given by Proposition 4.2, we obtain∣∣∣∣∫

∂ωε

[
σ(rεM , prεM )n

]
· u0

M

∣∣∣∣ ≤ c

log3/2 ε
= O

(
1

(− log ε)3/2

)
. (4.33)

For the other term∫
∂ωε

[σ(CM −UM ,ΠM − PM)n] · u0
M =

∫
∂ωε

[σ(CM ,ΠM)n] · u0
M

−
∫
∂ωε

[σ(UM , PM)n] · u0
M ,
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we study each term separately. For this recall that: u0
M(x) = u0

M(0)+ε∇u0
M(ζx), with ζx ∈

ωε. Then:∫
∂ωε

[σ(CM ,ΠM)n] · u0
M =

∫
∂ωε

[σ(CM ,ΠM)n] · (u0
M − u0

M(0) + u0
M(0))

= ε

∫
∂ωε

[σ(CM ,ΠM)n] · ∇u0
M(ζx)

+

∫
∂ωε

[σ(CM ,ΠM)n] · u0
M(0)

= O(ε) +

∫
∂ωε

[σ(CM ,ΠM)n] · u0
M(0).

We get the last equality because ∇u0
M is uniformly bounded and:∫

∂ωε

[σ(CM ,ΠM)n] =

∫
ωε

div (σ(CM ,ΠM)) = −
∫
ωε

(−ν∆CM+∇ΠM) = −4πνu0
M(0)

because of the de�nition of the pair (CM ,ΠM) = (−4πνEu0
M(0),−4πνP · u0

M(0))
in terms of the fundamental solution (E,P ) of Stokes equation. Analogously:∫

∂ωε

[σ(UM , PM)n] · u0
M = O(ε) +

∫
∂ωε

[σ(UM , PM)n] · u0
M(0),

because of the de�nition of the pair (UM , PM), we get:∫
∂ωε

[σ(UM , PM)n] =

∫
ωε

div σ(UM , PM) = 0.

Therefore:

hε

∫
∂ωε

[σ(CM −UM ,ΠM − PM)n] · u0
M =

4πν

log ε
|u0

M(0)|2 +O

(
ε

− log ε

)
. (4.34)

Gathering (4.30), (4.33) and (4.34), we obtain

AM =
4πν

log ε
|u0

M(0)|2 + o

(
1

− log ε

)
. (4.35)

4.4.4 Asymptotic expansion of AD

We recall that

AD =
ν

2

∫
Ωε

D(uεD−u0
D) :D(uεD−u0

D)+ν

∫
Ωε

D(uεD−u0
D) :D(u0

D)− 1

2
ν

∫
ωε

|D(u0
D)|2

and that:

rεD(x) := uεD(x)− u0
D(x)− hε(CD(x)−UD(x))

prεD(x) := pεD(x)− p0
D(x)− hε(ΠD(x)− PD(x)),
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4.4. Proof of Theorem 4.1

where (UD, PD) ∈ H1(Ω)×L2
0(Ω) solves (4.8), CD is given by (4.1 bis) (with \ = D

and z = 0) and the pressure associated to CD is de�ned explicitly by the expression

ΠD(x) := −4πνP (x) · u0
D(0).

Proceeding as in the previous section 4.4.3, we prove that

−1

2
ν

∫
ωε

|D(u0
D)|2 = O(ε2).

Moreover, using Green's formula, we have

ν

∫
Ωε

D(uεD − u0
D) :D(u0

D) = 2

∫
∂ωε

(
σ(u0

D, p
0
D)n

)
·
(
uεD − u0

D

)
= −2

∫
∂ωε

(
σ(u0

D, p
0
D)n

)
· u0

D = −ν
∫
ωε

|D(u0
D)|2 = O(ε2).

Now, let us study
1

2
ν

∫
Ωε

D(uεD − u0
D) :D(uεD − u0

D). Using Green's formula

ν

∫
Ωε

∣∣D(uεD − u0
D)
∣∣2 = 2

∫
∂ωε

[
σ(uεD − u0

D, p
ε
D − p0

D)n
]
·
(
uεD − u0

D

)
=−2

∫
∂ωε

[
σ(rεD, prεD)n

]
· u0

D

−2hε

∫
∂ωε

[σ(CD −UD,ΠD − PD)n] · u0
D.

Proceeding as in the previous section 4.4.3 (see inequality (4.33)), we use an inequal-
ity similar to (4.32), the asymptotic expansion of uεD given by Proposition 4.2 and
Lemma 4.9 to obtain∣∣∣∣∫

∂ωε

[
σ(rεD, prεD)n

]
· u0

D

∣∣∣∣ ≤ c ‖u0
D‖1/2,∂ω ‖rεD‖1,Ωε

≤ c

(− log ε)3/2
.

For the other term, we do similar computations as in AM to prove that∫
∂ωε

[σ(CD −UD,ΠD − PD)n] · u0
D = −4πνu0

D(0) +O(ε).

Therefore

AD =
4πν

− log ε
|u0

D(0)|2 + o

(
1

− log ε

)
. (4.36)

4.4.5 Conclusion of the proof: asymptotic expansion of JKN

Gathering (4.29), (4.35) and (4.36), we conclude the proof of Theorem 4.1:

JKV (Ωε)− JKV (Ω) =
4πν

− log ε
(|u0

D(0)|2 − |u0
M(0)|2) + o

(
1

− log ε

)
. (4.37)
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Chapter 5

Numerical detection of obstacles:

Topological and mixed optimization

method

In this chapter we perform a numerical reconstruction of small objects immersed in
a stationary two-dimensional �uid which is governed by the incompressible Stokes
equations. Our main tool in this reconstruction is the topological derivative of
the Kohn-Vogelius functional, introduced and computed in the previous chapter
(see Theorem 4.1) which allows us to perform the numerical minimization of the
functional.

As previously described, the topological derivative helps us to determine nu-
merically the number of inclusions and their relative location. Using a topological
gradient type algorithm, we detect small objects immersed in a two-dimensional
�uid by means of a boundary measurement. We test our algorithm under several
con�gurations in order to discover the advantages and limitations of our proposed
method. From this tests we have concluded that the quality of the reconstruction is
severely a�ected if the object(s) to be detected is(are) far from the boundary where
the measurements are made. The size of the objects and the the amount of noise into
the measurements could also be a relevant factor into the quality of the numerical
results.

Additionally we propose a second algorithm, which combines the topological
method with a tool that we have used in Chapter 2: the shape gradient. The
idea is to obtain an algorithm which allows to determine the number and relative lo-
cation of the inclusion(s) and also their approximate shape. We present an example
where we can observe a quantitative and qualitative improvement of the results.

This chapter is divided in two big sections: one for each proposed algorithm. After
presenting the framework of the simulations we begin by studying the topological
gradient algorithm. First series of tests are devoted to explore the e�ectiveness of
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the algorithm, we study if the algorithm is capable to detect several obstacles with
simple geometry, circles, and evolving to some more sophisticated geometries, which
is the case of squares and a `donut' object. From this primary simulations we observe
that the algorithm is capable to detect several objects when they are not too close
between them and the geometry of the objects is not a problem in order to detect
their relative size. Then, we try to explore the limitations of the algorithm with
a series of test in which we try to push the algorithm to their limits. We test the
in�uence of the distance between the objects and the boundary where measurements
are made, we also test the in�uence of the size of the objects to be detected and we
�nally test the in�uence of the contamination of the data by noise. We have obtained
each of the studied factors are relevant in order to obtain a better reconstruction,
if the obstacles are far from the boundary where the measurements are made the
reconstruction may fail, as the relative error of approximately location increases
as the distance does and even the number of objects could be wrongly estimated.
When the size of the obstacles to be detected becomes of higher, the estimate of
the number of objects tends to be incorrect. This last behavior is expected and
natural, as the asymptotic expansion is performed by assuming the small size of the
obstacles. From the inclusion of noise we have observed that our algorithm behaves
in a stable way, the reconstructions are good for a relatively high amount of noise,
and becomes incorrect only when the noise level is high.
The second section explores the mixed optimization algorithm, where we introduce
the computation of the shape gradient of the Kohn-Vogelius functional. We begin
the section by presenting the basic de�nitions and the theoretical expression of the
�rst order shape derivative of the functional. Then, we present the framework of the
simulations where we introduce the parametrization of the boundary by means of
truncated Fourier series and then we propose the full algorithm. We �nally present
an example where we can observe the quantitative and qualitative improvements
after the complementary step: the shape of the detected objects is more accurate
and the value of the Kohn-Vogelius functional is reduced in a signi�cant order of
magnitude.

We refer to Chapter 4 for the notations. In particular, we recall that Ω is a
bounded Lipschitz open set of R2 with an unaccessible obstacle ω∗ε inside Ω. Let

f ∈ H1/2(∂Ω) such that f 6= 0 and
∫
∂Ω

f · n = 0, and let g ∈ H−1/2(O) be a given

measurement on a partO of ∂Ω withO 6= ∂Ω. Then, in order to solve the geometrical
inverse problem (4.3), we consider the following Kohn-Vogelius functional

JKV (Ω\ωε) :=
1

2

∫
Ω\ωε

ν|D(uεD)−D(uεM)|2,

where (uεD, p
ε
D) ∈ H1(Ω\ωε)× L2

0(Ω\ωε) and (uεM , p
ε
M) ∈ H1(Ω\ωε)× L2(Ω\ωε) are

the respective solutions of the following problems:
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5.1. A Topological Gradient Algorithm


Find (uεD, p

ε
D) ∈ H1(Ω\ωε)× L2

0(Ω\ωε) such that
−ν∆uεD +∇pεD = 0 in Ω\ωε

divuεD = 0 in Ω\ωε
uεD = f on ∂Ω
uεD = 0 on ∂ωε,

and 

Find (uεM , p
ε
M) ∈ H1(Ω\ωε)× L2(Ω\ωε) such that

−ν∆uεM +∇pεM = 0 in Ω\ωε
divuεM = 0 in Ω\ωε

σ(uεM , p
ε
M)n = g on O
uεM = f on ∂Ω\O
uεM = 0 on ∂ωε.

We also recall that the topological gradient for JKV is given in Theorem 4.1.

5.1 A Topological Gradient Algorithm

5.1.1 Framework of the numerical simulations

The use of the topological derivative aims to give us the number of inclusions and
their qualitative location. To make the numerical simulations presented here, we
use a P1bubble-P1 �nite element discretization to solve the Stokes equations (4.4)
and (4.5). The framework is the following: the exterior boundary is assumed to be
the rectangle [−0.5, 0.5]× [−0.25, 0.25]. Except when mentioned, the measurement
is assumed to be made on all the faces except on the one given by y = 0.25. We
consider the exterior Dirichlet boundary condition

f :=

(
1
1

)
.

In order to have a suitable pair (measure g, domain ω∗), we use a synthetic data:
we �x a shape ω∗ (more precisely a �nite number of obstacles ω∗1, . . . , ω

∗
m), solve the

Stokes problem (4.4) in Ω\ω∗ using another �nite element method (here a P2-P1
�nite element discretization) and extract the measurement g by computing σ(u, p)n
on O.

In the practical simulations that we present, we add circular objects. In order to
determine the radius of these disks, we use a thresholding method. For an iteration
k, it consists in determining the minimum argument P ∗ of the topological gradient

δJKV in Ω\
(⋃k

j=1 ωj

)
and in de�ning the set P of the points P ∈ Ω\

(⋃k
j=1 ωj

)
such that

δJKV (P ) ≤ δJKV (P ∗) + 0.025 ∗ |δJKV (P ∗)| .
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Then we �x a minimum radius rmin := 0.01 and we de�ne the radius of the kth disk
by

rk := max

(
rmin, min

P∈P\{P ∗}
(|xP − xP ∗| , |yP − yP ∗|)

)
. (5.1)

Notice that this method obviously depends on the mesh.

We use the classical topological gradient algorithm (see for example [38, 54, 58, 9])
that we recall here for reader's convenience:
Algorithm

1. �x an initial shape ω0 = ∅, a maximum number of iterations M and set i = 1
and k = 0,

2. solve Problems (4.4) and (4.5) in Ω\
(⋃k

j=0 ωj

)
,

3. compute the topological gradient δJKV using Formula (4.37), i.e.

δJKV (P ) = 4πν
(∣∣u0

D(z)
∣∣2 − ∣∣u0

M(z)
∣∣2) ∀P ∈ Ω\

(
k⋃
j=0

ωj

)
,

4. seek P ∗k+1 := argmin
(
δJKV (P ), P ∈ Ω\

(⋃k
j=0 ωj

))
,

5. if
∥∥P ∗k+1 − Cj0

∥∥ < rk+1 + rj0 + 0.01 for j0 ∈ {1, . . . , k}, where Cj0 and rj0 are
the center and the radius of ωj0 and rk+1 is de�ned by (5.1), then rj0 = 1.1∗rj0 ,
get back to the step 2. and i← i + 1 while i ≤M ,

6. set ωk+1 = B(P ∗k+1, rk+1), where rk+1 is de�ned by (5.1),

7. while i ≤M , get back to the step 2, i← i + 1 and k ← k + 1.

We add to this algorithm a stop test (in addition of the maximum number of
iterations). In every iteration, we compute the functional JKV . This non-negative
functional has to decrease at each iteration. Thus, we stop our algorithm when it is

not the case, i.e. when JKV
(

Ω\
(⋃k+1

j=0 ωj

))
> JKV

(
Ω\
(⋃k

j=0 ωj

))
.

Notice that with this algorithm, we add only one object at each iteration. This
method can be slower than the one proposed by Carpio et al. in [34]: they can add
several obstacles simultaneously adding points where the topological derivative is
large and negative, selecting well calibrated thresholds. The same authors in [31]
detailed this approach: they introduce a non-monotone scheme that allows to add
and remove points, to create and destroy contours at each stage and even to make
holes inside an object. However, in our case, adding only one object at each iteration
seems to be more appropriate because otherwise objects can be added wrongly.
Moreover, notice that step 5 comes to the assumption that the objects are well
separated. Finally, since we assumed that the obstacles are far from the exterior
boundary, we have to take away the added objects on it. Then, if the minimum of
the topological gradient is on the exterior boundary, we push the added inclusion
inside with a depth 0.005 in the rectangular cases. In origin-centered circular domain
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5.1. A Topological Gradient Algorithm

we push the added inclusion inside in a quantity proportional to the point, i.e. if
the detected point is (x∗, y∗) we force it to be (η · x∗, η · y∗) where η is usually 0.95
or 0.9.

5.1.2 First simulations

First we want to detect three circles ω∗1, ω
∗
2 and ω

∗
3 centered respectively in (0.475,−0.235),

(−0.475,−0.225) and (0.470, 0.150) (i.e. near from the exterior boundary) with
shared radius r∗ = 0.013. The detection is quite e�cient (see Figure 5.1). Indeed

Figure 5.1: Detection of ω∗1, ω
∗
2 and ω∗3

we detect three objects with shared radius r = 0.01 for ω∗2 and ω∗3 and r = 0.015 for
ω∗1, we summarized the results in Table 5.1. Here, we stop the algorithm because of
the functional increases as we can see in Figure 5.2.

Notice that some iterations are being made just to adjust the size of a detected
object. We can also remark that the values of the cost functional are still relatively
high and this refers to the fact that, up to our knowledge, there does not exist a
theoretical result of convergence of this algorithm yet.
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Table 5.1: Detection of ω∗1, ω
∗
2 and ω∗3

actual objects (0.475, -0.235) (-0.475, -0.225) (0.470, 0.150)
approximate objects (0.484, -0.234) (-0.485, -0.235) (0.485, 0.166)

relative error
‖creal − capp‖/diam(Ω)

0.0080 0.0126 0.0196

Figure 5.2: Evolution of the functional JKV during the detection of ω∗1, ω
∗
2 and ω∗3.

In this �rst simulation, the objects are very far away from each other. But what
happens when the obstacles are close to each other? Figure 5.3 shows that the
detection of close objects is e�cient if the distance between the obstacles is big
enough. Indeed, we want to detect three circles ω∗4, ω

∗
5 and ω∗6 centered respectively

in (−0.475,−0.225), (0.470, 0.100) and (0.470, 0.130) with shared radius r∗ = 0.01.
We obtain just two circles with shared radius r = 0.01 as summarized in Table 5.2.

Table 5.2: Detection of ω∗4, ω
∗
5 and ω∗6

actual objects (-0.475, -0.225) (0.470, 0.100) (0.470, 0.130)
approximate objects (-0.482, -0.235) (0.480, 0.140) (0.480, 0.140)

relative error
‖creal − capp‖/diam(Ω)

0.0109 0.0368 0.0126

However if we increase the distance of the near circles enough, considering now, for
example, the circle ω∗6bis centered at (0.470, 0.205) we get an e�cient detection of the
three circles, as we summarize in Figure 5.4 and Table 5.3. The distance needed
for an e�cient `di�erentiation' between the objects is relatively high: the required
distance in this case is about 2rmin.

Now the question we asked is: can we detect other shapes than disks? Thus, we
want to detect objects with di�erent shapes: we explore two interesting examples,
the �rst one is the detection of several squares: there are simply de�ned by their
side a = 0.013, and their center (the squares have their sides parallel to the axis).
So we de�ne the square ω∗7 centered in (0.475,−0.225) the square ω∗8 centered in
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5.1. A Topological Gradient Algorithm

Figure 5.3: Detection of ω∗4, ω
∗
5 and ω∗6

(−0.475,−0.225) and the square ω∗9 centered in (0.470, 0.150). We obtain Figure 5.5:
a circle centered in (0.485,−0.235) one centered in (−0.482,−0.235) and one centered
in (0.485, 0.155) with shared radius r = 0.01.

The next example deals with a more complex geometry, we have to detect a circle
ω∗10 and a non convex object ω∗11 composed by several circle arcs as a boundary. The
algorithm is capable to detect both objects and increase the radio of the approxi-
mating ball for the non convex object in order to cover it properly. The results are
adjoint in Figure 5.6.

In conclusion of these �rst simulations, this method permits to give us the number
of objects we have to determine and their qualitative location if they are separated
enough. Moreover, it is e�cient to detect di�erent types of shapes, including ob-
jects with corners, or even non convex obstacles, in the sense that this topological
algorithm is able not only to �nd the number and relative location of this objects,
it is also able to determine their `relative size' (with respect to its topological set
diameter, for example).
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Figure 5.4: Detection of ω∗4, ω
∗
5 and ω∗6bis

5.1.3 In�uence of the distance to the location of measure-

ments

As been pointed out in [36] in the 3 dimensional case, the distance to the location of
measurements is fundamental in order to get a good detection of the objects. In the
following table 5.4, we notice that, when we move the object away from the boundary
of measurements, we get a worse estimate of their location, and in a extreme case
a completely wrong detection: more objects than the expected ones. This simple
example shows that in our case we have the same problem as in 3-dimensional
case: when we try to detect an object which is `far away' from the boundary, the
detection tends to locate it near the boundary (one of the coordinates is correctly
estimated) but, as the distance increase, we get some problematic behavior, as we see
in our example when the algorithm declares more objects than the real ones. This
phenomenon of bad detection can be explained by the regularizing behavior of the
Stokes equations (which is related to the behavior of the fundamental solution (4.7)).
We emphasize this di�culty of detection pointing out that the functional JKV and
its topological gradient are less sensitive to the addition of obstacles when they are
far away from the exterior boundary.
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Table 5.3: Detection of ω∗4, ω
∗
5 and ω∗6bis

actual objects (-0.475, -0.225) (0.470, 0.100) (0.470, 0.205)
approximate objects (-0.480, -0.235) (0.482, 0.105) (0.485, 0.210)

relative error
‖creal − capp‖/diam(Ω)

0.0100 0.0116 0.0141

Figure 5.5: Detection of ω∗7, ω
∗
8 and ω∗9

5.1.4 In�uence of the size of the objects

We now want to study how the size of an object (or several objects) modi�es the
quality of the detection given by our algorithm. In order to do that, we start by
testing how is the detection of a single circle while we increase the radius. Notice
that we consider the circle near to the boundary in order to get the best possible
approximation as we have seen in the previous section. The following table 5.5
resumes this �rst test.

From this we can notice that, when the object is relatively small, the detection
is quite e�cient, but the quality is decreasing when the object becomes `too big'.
Notice that the main error is linked with the size of the approximation object, and
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Figure 5.6: Detection of ω∗10 and ω∗11

not with their relative position.

A more extreme example is putting a `very big sized' object. In that case, which
can be seen in Figure 5.7, we notice that the detection is completely wrong: we get
an incorrect estimate of the number of objects.

Interesting results we get when we introduce several objects with higher size, as
we can see in Figure 5.8: the coordinate location is relatively good, but the size
approximation tends to stuck in one of the objects. The algorithm choses one of the
objects in order to adjust its size on each iteration.

We can conclude that the detection of the objects depends strongly on their
number and size. If we are trying to detect a single object we get a reasonable
tolerance on the size of the object in order to get a good estimates of their position
and size, and only `big objects' are badly detected. In the case of several objects,
the algorithm tends to predict their relative location but only the size of one object
is improved between iterations.
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Table 5.4: Detection when we move away from boundary

real object approximation
relative error

‖creal − capp‖/diam(Ω)
(0.475, 0.220) (0.485, 0.223) 0.0093
(0.435, 0.180) (0.480, 0.184) 0.0404
(0.395, 0.140) (0.480, 0.144) 0.0761
(0.355, 0.100) (0.470, 0.100) 0.1028
(0.300, 0.050) 2 objects no value

Table 5.5: Detection when we increase the size of the object, with center rel. error
= ‖creal − capp‖/diam(Ω) and radio rel. error = |rreal − rapp|/rreal

real object approximation
center

rel. error
radio

rel. error
(0.475, 0.225), r=0.013 (0.485, 0.220), r=0.010 0.0100 0.2308
(0.470, 0.220), r=0.030 (0.469, 0.219), r=0.025 0.0012 0.1667
(0.450, 0.200), r=0.050 (0.449, 0.199), r=0.045 0.0012 0.1000
(0.420, 0.160), r=0.080 (0.439, 0.189), r=0.055 0.0310 0.3125

Figure 5.7: Bad Detection for a `very big sized' object
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Figure 5.8: Detection of several `big sized' objects

5.1.5 Simulations with noisy data

We now want to study how robust is our algorithm in presence of noisy data. For
this, we decompose the measurement g = g1e1+g2e2 (where (e1, e2) is the canonical
basis of R2) and we consider the following noisy versions of g1 and g2:

gσ1 := g1 + σ
‖g1‖L2(O)

‖u1‖L2(O)

u1 and gσ2 := g2 + σ
‖g2‖L2(O)

‖u2‖L2(O)

u2,

where u1, u2 are random variables given by an uniform distribution in [−0.5, 0.5)
and σ > 0 is a scaling parameter. Notice that this de�nition implies that the data
g1 and g2 are contaminated by some relative error of amplitude σ in L2(O). Then,
the noisy data will be:

gσ = gσ1 e1 + gσ2 e2.

For this test, we consider the same domain Ω and and the same measure region O
as in the previous ones and the objects are the circles or radius r = 0.015 centered
in (0,−0.230), (−0.350,−0.230) and (0.470, 0.150). The results are presented in
tables 5.6 and 5.7.
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optimization algorithms

Table 5.6: Detection when we introduce noisy data: results.
Noise Level real objects approximations

σ = 0%
(0.350, -0.230), r=0.013
(-0.350, -0.230), r=0.013
(0.470, 0.150), r=0.013

(0.350, -0.232), r=0.011
(-0.355, -0.231), r=0.013
(0.480, 0.152), r=0.011

σ = 5%
(0.350, -0.230), r=0.013
(-0.350, -0.230), r=0.013
(0.470, 0.150), r=0.013

(0.350, -0.235), r=0.012
(-0.358, -0.234), r=0.011
(0.482, 0.149), r=0.010

σ = 15%
(0.350, -0.230), r=0.013
(-0.350, -0.230), r=0.013
(0.470, 0.150), r=0.013

(0.350, -0.235), r=0.010
(-0.358, -0.234), r=0.011
(0.485, 0.157), r=0.010

σ = 25%
(0.350, -0.230), r=0.013
(-0.350, -0.230), r=0.013
(0.470, 0.150), r=0.013

(0.350, -0.235), r=0.010
(-0.358, -0.235), r=0.010
(-0.111, -0.235), r=0.010

σ = 30%
(0.350, -0.230), r=0.013
(-0.350, -0.230), r=0.013
(0.470, 0.150), r=0.013

4 objects found

From this tables we can observe that our algorithm is able to detect with precision
the number and relative position of several small obstacles near the boundary O
where the measurements are taken, when the boundary data g is contaminated
with a moderated amount of noise. When the boundary data contains a higher
level of noise, the relative position becomes for one object is wrong and �nally
the algorithm detects an incorrect number of obstacles and therefore the detection
becomes completely wrong.

5.2 A blending method which combines the topo-

logical and geometrical shape optimization al-

gorithms

The previous numerical simulations show that, using the topological gradient algo-
rithm, one can detect the number of objects and their qualitative location but we
do not have informations about the shapes of the objects. Hence it can provide
initial shapes for an optimization method based on the boundary variation method
for which we have to know the number of connected objects we have to reconstruct
(see [37]). We present here a combination of these two approaches in order to �nd
the number of objects, their locations and their shapes.

As mentioned in the introduction, combinations of several shape optimization
methods was recently tested by several authors. The most of them used the level set
method (see [4, 59, 30]). We also mention the algorithm proposed by Pantz et al.
in [73] which uses boundary variations, topological derivatives and homogenization
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Table 5.7: Detection when we introduce noisy data: relative errors.

Noise Level
centers

rel. errors
radius

rel. errors

σ = 0%
0.0017
0.0045
0.0091

0.1538
0.0000
0.1538

σ = 5%
0.0044
0.008
0.0107

0.0769
0.1538
0.2308

σ = 15%
0.0044
0.008
0.0148

0.2308
0.1538
0.2308

σ = 25%
0.0044
0.0084
0.6234

0.2308
0.2308
0.2308

σ = 30% no value no value

methods. We here present an algorithm only based on the classical shape gradient
and the topological gradient, without using the level set method or some homoge-
nization methods.

We �rst recall some theoretical results concerning the computation of the shape
derivative of the Kohn-Vogelius functional (see [37] for details). We precise that, in
this part, in order to simplify the notation, we will not use the index ε: hence we
will use ω = ωε, uD = uεD and uM = uεM .

5.2.1 Shape derivative of the Kohn-Vogelius functional

Let d0 > 0 �xed (small). We de�ne Od0 the set of all open subsets ω of Ω with a C1,1

boundary such that d(x, ∂Ω) > d0 for all x ∈ ω and such that Ω\ω is connected.
The set Od0 is referred as the set of admissible geometries. We also de�ne Ωd0 an
open set with a C∞ boundary such that

{x ∈ Ω ; d(x, ∂Ω) > d0/2} ⊂ Ωd0 ⊂ {x ∈ Ω ; d(x, ∂Ω) > d0/3} .

To de�ne the shape derivatives, we will use the velocity method introduced by
Murat and Simon in [69]. To this end, we need to introduce the space of admissible
deformations

U :=
{
θ ∈W2,∞(RN); Supp θ ⊂ Ωd0

}
.

For details concerning the di�erentiation with respect to the domain, we refer to the
papers of Simon [78, 79] and the books of Henrot and Pierre [61] and of Sokoªowski
and Zolésio [81].

We consider a domain ω ∈ Od0 . Then, we have the following proposition (see [37,
Proposition 2]):
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Proposition 5.1 (First order shape derivative of the functional) For V ∈ U , the
Kohn-Vogelius cost functional JKV is di�erentiable at ω in the direction V with

DJKV (Ω\ω) · V = −
∫
∂ω

(σ(w, q) n) · ∂nuD(V · n) +
1

2
ν

∫
∂ω

|D(w)|2 (V · n), (5.2)

where (w, q) is de�ned by

w := uD − uM and q := pD − pM .

Moreover, Proposition 4 in [37] explains the di�culties encountered to solve nu-
merically this problem. Indeed, the gradient has not a uniform sensitivity with
respect to the deformation direction. Hence, since the problem is severely ill-posed,
we need some regularization methods to solve it numerically, for example by adding
to the functional a penalization in terms of the perimeter (see [29] or [43]). Here
we choose to make a parametric regularization using a parametric model of shape
variations.

5.2.2 Numerical simulations

Framework for the numerical simulations

We follow the same strategy than in [37] that we recall for readers convenience.
We restrict ourselves to star-shaped domains and use polar coordinates for parame-
trization: the boundary ∂ω of the object can be then parametrized by

∂ω =

{(
x0

y0

)
+ r(θ)

(
cos θ
sin θ

)
, θ ∈ [0, 2π)

}
,

where x0, y0 ∈ R and where r is a C1,1 function, 2π-periodic and without double
point. Taking into account of the ill-posedness of the problem, we approximate the
polar radius r by its truncated Fourier series

rM(θ) := aN0 +
N∑
k=1

aNk cos(kθ) + bNk sin(kθ),

for the numerical simulations. Indeed this regularization by projection permits to
remove high frequencies generated by cos(kθ) and sin(kθ) for k >> 1, for which the
functional is degenerated.

Then, the unknown shape is entirely de�ned by the coe�cients (ai, bi). Hence,
for k = 1, . . . , N , the corresponding deformation directions are respectively,

V 1 := V x0 :=

(
1
0

)
, V 2 := V y0 :=

(
0
1

)
, V 3(θ) := V a0(θ) :=

(
cos θ
sin θ

)
,
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V 2k+2(θ) :=V ak(θ) :=cos(kθ)

(
cos θ
sin θ

)
,V 2k+3(θ) := V bk(θ) := sin(kθ)

(
cos θ
sin θ

)
,

θ ∈ [0, 2π). The gradient is then computed component by component using its
characterization (see Proposition 5.1, formula (5.2)):(

∇JKV (Ω\ω)
)
k

= DJKV (Ω\ω) · V k, k = 1, . . . , 2N + 3.

This equality is simply that

lim
t→0

JKV
(
(I + tV k)(Ω\ω)

)
− JKV (Ω\ω)

t
= DJKV (ω) · V k.

Algorithm

The �rst step is the use of the previous topological gradient algorithm described
in Section 5.1.1. It permits to obtain the number of objects and their qualitative
location which represents an initial shape ω0 for a reconstruction using a boundary
variation method. Then, the geometrical optimization method used for the numeri-
cal simulation is here the classical gradient algorithm with a line search (using the
Wolfe conditions: see for example [70, eq. (3.6) page 34]):
Algorithm

1. �x a number of iterations M and take the initial shape ω0 (which can have
several connected components) given by the previous topological algorithm,

2. solve problems (4.4) and (4.5) with ωε = ωi,
3. extract ∇uD, ∇uN , pD and pM on ∂ωi and compute ∇JKV (Ω \ ωi) using

formula (5.2),
4. use the Wolfe conditions to compute a satisfying step length αi,
5. move the coe�cients associated to the shape: ωi+1 = ωi − αi∇JKV (ωi),
6. get back to the step 2. while i < M .

We precise that we here use the adaptive method described in [37, Section 4.3]. It
consists in increasing gradually the number of parameters during the algorithm to
a �xed �nal number of parameters. For example, if we want to work with nineteen
parameters (which will be the case here), we begin by working with two parameters
during �ve iterations, then with three parameters (we add the radius) during �ve
more iterations, and then we add two search parameters every �fteen iterations. The
algorithm is then the same than the one described above only replacing step 5. by

ωi+1(1 : m) = ωi(1 : m)− αi∇JKV (ωi)(1 : m),

where ωi(1 : m) represents the m �rst coe�cients parametrizing the shape ωi (the
same notation holds for ∇JKV (Ω \ ωi)(1 : m)). The number m grows to the �xed
�nal number of parameters following the procedure described previously.

To �nish, we precise that we use the �nite element library Mélina (see [65]) to
make this geometrical shape optimization part.
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Numerical simulations

The framework is the following: we assume the kinematic viscosity ν is equal to 1,
the exterior boundary is assumed to be the unit circle centered at the origin and we
consider the exterior Dirichlet boundary condition

f :=

(
n2

−n1

)
=

{(
sin θ
− cos θ

)
, θ ∈ [0, 2π)

}
,

where n = (n1, n2) is the exterior unit normal. Notice that f is such that the
compatibility condition (4.1) is satis�ed. We assume that we make the measurement
on the whole disk ∂Ω except the lower right quadrant. Here, we want to detect
two squares ω∗12 and ω∗13 centered respectively at (−0.6 , 0.3) and (0.6 , 0.3) with a
distance between the center and the vertices equal to 0.2.

The �rst step, which is the topological approach, leads to two circles of radius 0.15
centered respectively at (−0.573 , 0.328) and (0.533 , 0.328) (see the `initial shape'
in Figure 5.9). Since the real objects are �big�, we impose here rmin = 0.15 in the
topological algorithm (see (5.1)). This means that, practically, we assume that we
know the characteristic size of the objects, i.e. if the objects are small or big.

Then, the shape optimization algorithm leads to a good approximation of the
shapes, at least for one of the obstacle (see Figure 5.9). We also underline the fact

Figure 5.9: Detection of ω∗12 and ω∗13 with the combined approach (the initial shape
is the one obtained after the �topological step�) and zoom on the improvement with
the geometrical step for ω∗13

that, after the topological step, the cost of the functional is here about 1.26 and
that, after the geometrical step, we obtain a cost about 2 · 10−2 which qualitatively
means that we improved the detection.

In conclusion, this blending method which combines the topological and the ge-
ometrical shape methods leads to good result in the identi�cation of obstacle im-
mersed in a �uid: we detect both the number of obstacles, their locations and their
shapes.
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Conclusions

In this thesis work we have addressed the resolution of the inverse problem of ob-
stacle detection via boundary measurements. This problem has been studied by
means of optimization methods, using in particular two powerful tools from shape
optimization: the geometrical shape optimization and the topological shape opti-
mization.

We have divided this work in two parts, in the �rst one we have studied a scalar
case, in which the boundary measurements are limited only to an accessible region of
the boundary. As the data is partial, in order to work with an optimization problem
we are forced to develop and perform a method in order to complete the data.
For this aim we develop a method to solve the data completion problem, this is, the
problem to reconstruct the unaccessible data for a given function which satis�es some
PDE (in this case, the Laplace equation). We propose a Kohn-Vogelius approach
for the data completion problem and perform the regularization of this functional,
in order to lead to a better numerical results. For the regularized functional we have
proved convergence properties to the real solution of the original problem and we
have proposed a Morozov discrepancy criteria in order to chose the regularization
parameter accordingly with the noise level.

With the help of the previous results and in order to solve the inverse problem
of obstacle detection, we have extended the Kohn-Vogelius functional in order to
consider the unknown obstacle as a variable of this functional. Using two di�erent
gradient algorithms: one based on descent directions for the unknown data, and one
based on the shape derivative of the functional. With this approach we were able to
recover the position and relative shape of several obstacle con�gurations, even when
the available Cauchy data is polluted by noise.

In the second part of this work, using a Kohn-Vogelius approach, we have de-
tected the number of potential objects immersed in a two dimensional �uid and
their qualitative location. To do this, we have computed the topological gradient
of the considered Kohn-Vogelius functional using an asymptotic expansion of the
solution of the Stokes equations in the whole domain when we add small obstacles
inside: we adapted the usual 3D techniques to the two dimensional setting case,
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in which the classical asymptotic expansion of the solution of the Stokes equations
are no longer valid. We obtain a formula valid for any geometry of small obstacles,
which is a particular characteristic of the two dimensional setting of the problem.
We have made some numerical attempts which have shown that `not too big' ob-
stacles close to the part of the boundary where we make the measurements can be
detected. Once these restrictions are satis�ed, the detection is quite e�cient, even
for objects with corners or non convex shapes. Finally, we have proposed and im-
plemented an algorithm which combines the topological sensitive analysis approach
with the classical shape derivative approach. This blending method led us to detect
the number of objects using a topological step and, if this �rst step actually gives the
total number of obstacles, a geometrical shape optimization step detects their ap-
proximate location and approximate shape from only the boundary measurements.
This method gives interesting results in the simulations.

Perspectives

The perspectives from the presented work are numerous, here we present the most
straightforward with respect to the results and models presented.

The data completion problem and the inverse obstacle problem with par-
tial boundary data for the (Navier-)Stokes equations

In �rst place, for the data completion problem, the natural perspective is to
consider the vectorial case, in particular for a �uid case. This is, by considering
the Stokes and Navier-Stokes data completion problems. The consideration of this
problem is natural, some engineering problems can be stated as a data completion
problem (for example detect small leaks to control water loss, see [62]).

The problem in this case could be stated as:
Let η ∈ {0, 1} (Stokes and Navier-Stokes respectively). Given Cauchy data (gN , gD)
in H−1/2(Γobs)×H1/2(Γobs), �nd (u, p) ∈ H1(Ω)× L2(Ω) such that

−ν∆u+ η(u · ∇)u+∇p = 0 in Ω
u = gD on Γobs

σ(u, p)n = gN on Γobs.
(5.3)

Is interesting to notice that this problem has not got many interest in the past,
the number of works is small (see for example the works of Ben Abda et al. [16],
Aboulaich et al. [2] and Bastay et al. [15]), and most of them are focused only
on numerical methods. From the theoretical point of view, for the Stokes case, a
uniqueness result is obtained by the author of this thesis, based on unique con-
tinuation theorem (see [49]), as well as an analog density lemma for `compatible'
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data (gN , gD) into the space of all possible data, which is fundamental in order to
develop a Kohn-Vogelius strategy. Up to our knowledge a Kohn-Vogelius strategy
for the Stokes case should be possible, however, for the non-linear case di�culties
may be found due to the non-linear term, in order to de�ne optimality conditions
and into the study of more �ne properties when a regularization term is introduced.
Naturally the inverse problem of obstacle detection with partial data may become
a natural step after the development of the theory of the data completion problem,
following the same strategy as the one adopted in this work.

The data completion problem in an abstract setting

The second perspective is based on a possible generalization of our approach for
the data completion problem into an abstract setting, this is, by posing the problem
of the minimization of the (regularized) Kohn-Vogelius functional into the resolution
of a linear abstract system, by de�ning an operator A acting between some Hilbert
spaces X ,Y such that:

• A is injective.

• A is not surjective.

• Im(A)
Y

= Y .

In this setting, y plays the role of the data and x is the solution of the data com-
pletion problem. This `abstract setting' of the data completion problem comes from
the abstract theory of inverse problems. For this speci�c problem Dardé [45] has
proposed an abstract setting when the data completion problem is treated by using
a quasi-reversibility (QR) approach. The biggest advantage of this formulation is
based in the `easy/natural' extension to other PDEs as been pointed in [45].

Computation of the regularization parameter in the data completion
problem

In third place, we address to the development of techniques which allows to com-
pute the regularization parameter ε given by some Morozov discrepancy principle,
which takes an important role in the case where only polluted data is available. In
the presented work we were able to propose a discrepancy measurement which de-
�nes a rule to compute the best regularization parameter ε(δ, yδ) such that it permits
to have convergence of the minimizers from the polluted data to the minimizers of
the unpolluted data, however we do not know how to implement it by means of a
fast and robust method. We can follow the work of Bourgeois et al. in [24] where the
authors propose a method in which the computation of the regularization parameter
is computed as the solution of an unconstrained optimization problem, by means of
using a duality method on the previously proposed abstract setting.

123



Conclusions and Perspectives

Computation of the topological gradient of the Kohn-Vogelius functional
for the 2D Navier-Stokes equations

In fourth place, and now discussing perspectives for the topological approach of
the obstacle problem, the natural extension would be to consider the stationary
Navier-Stokes equation instead of the Stokes one. This is, by considering now the
overdetermined problem

−ν∆u+ (u · ∇)u+∇p = 0 in Ω\ω∗ε
divu = 0 in Ω\ω∗ε
u = f on ∂Ω
u = 0 on ∂ω∗ε

σ(u, p)n = g on O ⊂ ∂Ω,

instead of (4.2), and therefore considering the auxiliary direct problems
Find (uεD, p

ε
D) ∈ H1(Ω\ωε)× L2

0(Ω\ωε) such that
−ν∆uεD + (uεD · ∇)uεD +∇pεD = 0 in Ω\ωε

divuεD = 0 in Ω\ωε
uεD = f on ∂Ω
uεD = 0 on ∂ωε

and 

Find (uεM , p
ε
M) ∈ H1(Ω\ωε)× L2(Ω\ωε) such that

−ν∆uεM + (uεM · ∇)uεM +∇pεM = 0 in Ω\ωε
divuεM = 0 in Ω\ωε

σ(uεM , p
ε
M)n = g on O
uεM = f on ∂Ω\O
uεM = 0 on ∂ωε,

with the Kohn-Vogelius functional as before:

JKV (Ω\ωε) :=
1

2

∫
Ω\ωε

ν|D(uεD)−D(uεM)|2.

Topological shape optimization for non-linear systems is not a big domain of re-
search, the works are very limited, we can mention the thesis work of Chetboun [39]
where topological derivatives are computed for cost functionals depending on the so-
lution of the compressible Navier-Stokes system in the context of `vortex generators'
for aerodynamic �ows. We can also mention the book of Novotny and Sokoªowski
[71] where very general cases for several systems are treated. Finally, the works
of Amstutz (see [9, 10]) where he computes topological derivatives for stationary
Navier-Stokes systems for very general costs functionals are particularly interesting.
However, in our case several di�culties may appear, for example:

• The 2-dimensional case, following the methods we have applied in this work,
may require some work in order to deal with the non-linearity.
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• The decomposition of the di�erence JKV (Ωz,ε)− JKV (Ω) in decoupled terms
given by (4.29) is no longer possible, due to the non linear terms on each
system.

The obstacle inverse problem for a moving obstacle

Finally, a natural question that arises could be: what happens if the obstacle is
moving inside the domain of reference?. This problem has been studied before in
di�erent settings, Conca et al. (see [41]) have studied this problem into the setting
where a two-dimensional potential �uid has a rigid solid moving obstacle. In that
case, and by means of complex variable techniques the authors were able to prove
that the problem in general is ill-posed, but for some shapes with `good symme-
try' properties the detection could be performed and provides conditions for a full
detection of the obstacle. In the three dimensional setting Conca, Schwindt and
Takahashi [42] have obtained conditions for the identi�cation of a rigid convex body
moving in a �uid governed by Stokes equations. Up to our knowledge the problem
of the detection of a rigid obstacle moving in a �uid governed by stationary (and
then, non-stationary) Navier-Stokes equations is open as well as the development of
numerical methods to the reconstruction of moving objects, via shape gradient meth-
ods or topological gradient methods. However, the introduction of non-linearities
seems to be a gigantic di�culty in all these problems, as the formulation in all of
the considered problems uses the linearity consistently and repeatedly.
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Appendix A

Useful results for the Data

Completion Problem

A.1 Some results about the space H1(Ω,∆)

As we de�ned before, we consider into this work the space H1(Ω,∆) given by

H1(Ω,∆) :=
{
u ∈ H1(Ω) : ∆u ∈ L2(Ω)

}
,

in this section we mention some important properties about this space. Proofs can
be found in [44, Chapter 1] and [82, Chapter 3].

Proposition A.1 H1(Ω,∆) with the scalar product (u, v)H1(Ω,∆) = (u, v)L2(Ω) +
(∆u,∆v)L2(Ω) is a Hilbert space.

In this space we can de�ne the notion of normal derivative in the an open part
of the boundary of Ω, as the following result states:

Proposition A.2 Given Ω connected and bounded set in Rd, Γ a Lipschitz open
part of the boundary ∂Ω, n the exterior normal vector of Ω which is de�ned a.e. on
Γ. Then, we have ∀u ∈ H1(Ω,∆):

∂nu :=
d∑
j=1

∂u

∂xj
ni ∈ H−1/2(Γ).

Moreover, the map u ∈ H1(Ω,∆) 7→ ∂nu ∈ H−1/2(Γ) is continuous and surjective.

With this property, we can de�ne properly, by density, a Green formula:

Proposition A.3 Given Ω connected and bounded set in Rd with Lipschitz bound-
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ary, n the exterior normal vector of Ω. We have, ∀(u, v) ∈ H1(Ω,∆)× H1(Ω):∫
Ω

(∆u · v +∇u · ∇v) dx = 〈∂nu, v〉H−1/2,H1/2
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Appendix B

Useful results for Stokes equations

B.1 Some results on the Stokes problem with mixed

boundary conditions

We recall classical results about the Stokes problem with mixed boundary conditions:
a theorem of existence and uniqueness of the solution and a local regularity result.

We note C a generic positive constant, only depending on the geometry of the
domain and on the dimension, which may change from line to line.

First, let us introduce some notations: for Ω an open set of RN an open subset
ω ⊂⊂ Ω and a part O of the exterior boundary ∂Ω, we de�ne

V O(Ω\ω) :=
{
u ∈ H1(Ω\ω); divu = 0 in Ω\ω, u = 0 on ∂ω ∪ (∂Ω\O)

}
.

Moreover, we denote respectively by 〈·, ·〉Ω\ω and 〈·, ·〉∂Ω (or 〈·, ·〉∂ω) the duality

product between
[
H1(Ω\ω)

]′
and H1(Ω\ω) and between H−1/2(∂Ω) and H1/2(∂Ω).

Theorem B.1 (Existence and uniqueness of the solution) Let Ω be a bounded Lips-
chitz open set of RN (N ∈ N∗) and let ω ⊂⊂ Ω be a Lipschitz open subset of Ω such
that Ω\ω is connected. Let O ⊂ ∂Ω be a part of the exterior boundary and ν > 0.
Let f ∈

[
H1(Ω\ω)

]′
, hext ∈ H1/2(∂Ω\O), hO ∈ H−1/2(O) and hint ∈ H1/2(∂ω).

Then, the problem 
−ν∆u+∇p = f in Ω\ω

divu = 0 in Ω\ω
σ(u, p)n = hO on O

u = hext on ∂Ω\O
u = hint on ∂ω

(B.1)

admits a unique solution (u, p) ∈ H1(Ω\ω) × L2(Ω\ω) and the following estimate
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holds:

‖u‖H1(Ω\ω) + ‖p‖L2(Ω\ω)

≤ C
(
‖f‖[H1(Ω\ω)]′ + ‖hext‖H1/2(∂Ω\O) + ‖hO‖H−1/2(O) + ‖hint‖H1/2(∂ω)

)
.

Proof. Step 1: existence and uniqueness. According to [8, Lemma 3.3], let us con-
sider H ∈ H1(Ω\ω) such that divH = 0 in Ω\ω, H = hint on ∂ω, H = hext on

∂Ω\O such that
∫
∂Ω∪∂ω

H · n = 0 and satisfying

‖H‖H1(Ω\ω) ≤ C
(
‖hint‖H1/2(∂ω) + ‖hext‖H1/2(∂Ω\O)

)
. (B.2)

Then the couple (U := u−H , p) ∈ H1(Ω\ω)× L2(Ω\ω) satis�es
−ν∆U +∇p = f + ν∆H in Ω\ω

divU = 0 in Ω\ω
σ(U , P )n = hO + ν(∇H + t∇H)n on O

U = 0 on ∂Ω\O
U = 0 on ∂ω.

According to Lax-Milgram's theorem, there exists a unique U ∈ V O(Ω\ω) such that
for all v ∈ V O(Ω\ω)

ν

∫
Ω\ω
∇U : ∇v = 〈f ,v〉Ω\ω − ν

∫
Ω\ω
∇H :∇v −

〈
hO + ν(∇H + t∇H)n,v

〉
O

(B.3)
and we have, using (B.2),

‖U‖H1(Ω\ω) ≤ C
(
‖f‖[H1(Ω\ω)]

′ + ‖hint‖H1/2(∂ω) + ‖hext‖H1/2(∂Ω\O) + ‖hO‖H−1/2(O)

)
.

(B.4)

In particular (B.3) is true for all v ∈ V O(Ω\ω) ∩ H1
0(Ω\ω). Then using De

Rham's theorem (see for example [7, Lemma 2.7]), there exists p ∈ L2(Ω\ω), up to
an additive constant, such that for all v ∈ H1

0(Ω\ω)

ν

∫
Ω\ω
∇U : ∇v−

∫
Ω\ω

p div v =
〈
f H1

0(Ω\ω),v
〉
H−1(Ω\ω),H1

0(Ω\ω)
−ν
∫

Ω\ω
∇H :∇v.

(B.5)

According to [8, Lemma 3.3] or [52, Theorem 3.2], we de�ne ϕN ∈ H1(Ω\ω) such

that divϕN = 1 in Ω\ω, ϕN = 0 on ∂Ω\O and ϕN = 0 on ∂ω with
∫
O

ϕN · n 6= 0.

Let v ∈ H1(Ω\ω) such that v = 0 on ∂Ω\O, v = 0 on ∂ω and de�ne

cb(v) =
1∫

∂(Ω\ω)
ϕN · n

∫
∂(Ω\ω)

v · n.
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Using again [8, Lemma 3.3] or [52, Theorem 3.2], we de�ne v2 ∈ V O(Ω\ω) in
such a way that v = v1 + v2 + cb(v)ϕN , where v1 ∈ H1

0(Ω\ω) satis�es div v1 =
div (v − cb(v)ϕN). Using (B.3) and (B.5), we then obtain∫

Ω\ω
ν∇U :∇v −

∫
Ω\ω

p div v = 〈f ,v〉Ω\ω − ν
∫

Ω\ω
∇H :∇v

−
〈
hO − ν(∇H + t∇H)n,v

〉
O

+

∫
Ω\ω

ν∇U :∇(cb(v)ϕN)−
∫

Ω\ω
p div (cb(v)ϕN)

−〈f , cb(v)ϕN〉Ω\ω+ν

∫
Ω\ω
∇H :∇(cb(v)ϕN)+

〈
hO − ν(∇H + t∇H)n, cb(v)ϕN

〉
O
.

Therefore, choosing the additive constant for p such that∫
Ω\ω

p = ν

∫
Ω\ω
∇U : ∇ϕN

−〈f , cb(v)ϕN〉Ω\ω+ν

∫
Ω\ω
∇H :∇(cb(v)ϕN)+

〈
hO − ν(∇H + t∇H)n, cb(v)ϕN

〉
O
,

we prove that there exists a unique pair (U , p) ∈ V O(Ω\ω)×L2(Ω\ω) such that for
all v ∈ H1(Ω\ω) with v = 0 on ∂Ω\O and v = 0 on ∂ω,∫

Ω\ω
ν∇U : ∇v−

∫
Ω\ω

p div v = 〈f ,v〉Ω\ω−ν
∫

Ω\ω
∇H :∇v−

〈
hO − ν(∇H + t∇H)n,v

〉
∂Ω
.

(B.6)

Step 2: estimate. Let v := ṽ + c(p)ϕN , where

c(p) :=
1

|Ω\ω|

∫
Ω\ω

p

and ṽ ∈ H1
0(Ω\ω) is such that div ṽ = p − c(p) and ‖ṽ‖H1

0(Ω\ω) ≤ C ‖p‖L2(Ω\ω) (see
[8, Lemma 3.3]). Using v in (B.6), and according to (B.4), we obtain

‖U‖H1(Ω\ω) + ‖p‖L2(Ω\ω)

≤ C
(
‖f‖[H1(Ω\ω)]

′ + ‖hint‖H1/2(∂ω) + ‖hext‖H1/2(∂Ω\O) + ‖hO‖H−1/2(O)

)
and hence

‖u‖H1(Ω\ω) + ‖p‖L2(Ω\ω)

≤ C
(
‖f‖[H1(Ω\ω)]

′ + ‖hint‖H1/2(∂ω) + ‖hext‖H1/2(∂Ω\O) + ‖hO‖H−1/2(O)

)
.

141



B.2. A result concerning the space of traces

B.2 A result concerning the space of traces

Here we recall a result used in the paper concerning the boundary values of functions,
in particular when domains depend on a parameter (see [68, Chapter 4]):

Theorem B.2 ([68] Section 4.1.3. page 214) Let Ω and ω be two bounded simply
connected domains of RN (N ≥ 2) of class C0,1. Let p ∈ (1,+∞), ε ∈ (0, 1/2)
and ωε := εω. Let us assume that ωε ⊂ Ω and that there exists a constant c > 0
depending only of N , p, ω and Ω such that d(ωε, ∂Ω) > cε. Then

〈·〉p,∂ωε ∼ a(ε) ‖·‖Lp(∂ωε)
+ [·]p,∂ωε

where

〈f〉p,∂ωε := inf
{
‖u‖W1,p(Ω\ωε) , u ∈W1,p(Ω\ωε), u ∂ωε = f

}
,

a(ε) :=


ε

1−N
p min(1, ε

N
p
−1), for p < N

ε
1−N
p min(1, |log ε|

1−p
p ), for p = N

ε
1−N
p , for p > N,

and

[f ]1,∂ωε := |∂ωε|−1

∫ ∫
∂ωε×∂ωε

|f(x)− f(y)| ds(x)ds(y)

[f ]p,∂ωε :=

(∫ ∫
∂ωε×∂ωε

|f(x)− f(y)|p

|x− y|N+p−2
ds(x)ds(y)

)1/p

for p ∈ (1,+∞).

B.3 Some results on the exterior Stokes problem

B.3.1 De�nition of the weighted Sobolev spaces

First, we recall the de�nition of the weighted Sobolev spaces. We introduce the
weight function ρ(x) := (2 + |x|2)1/2 and the following Sobolev spaces (for more
details, see [5]):

De�nition B.3 Let 1 < p <∞. For each real number α and each open set O ⊂ Rd,
we set

Lpα(O) := {u ∈ D′(O), ραu ∈ Lp(O)} ,

W1,p
α (O) :=

{ {
u ∈ D′(O), u ∈ Lpα−1(O), ∇u ∈ Lp

α(O)
}

if d
p

+ α 6= 1,{
u ∈ D′(O), (ln(ρ))−1u ∈ Lpα−1(O), ∇u ∈ Lp

α(O)
}

if d
p

+ α = 1.

Consider now the space
◦

W
1,p

α (O) := D(O)
‖·‖

W
1,p
α (O). It is standard to check that

◦
W

1,p

α (O) =
{
v ∈W1,p

α (O), v ∂O = 0
}
.
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The dual space of
◦

W
1,p

α (O) is denoted by W−1,p′

−α (O), where p′ is such that
1

p
+

1

p′
= 1

(it is a subspace of D′(O)).

Notice that these spaces are re�exive Banach spaces with respect to the norms:

‖u‖Lpα(O) := ‖ραu‖Lp(O) ,

‖u‖W1,p
α (O) :=


(
‖u‖p

Lpα−1(O)
+ ‖∇u‖p

Lpα(O)

)1/p

if d
p

+ α 6= 1,(∥∥∥ u
ln(ρ)

∥∥∥p
Lpα−1(O)

+ ‖∇u‖p
Lpα(O)

)1/p

if d
p

+ α = 1.

B.3.2 The exterior Stokes problem in two dimensions

The following results are presented in [77], we present them here for reader's con-
venience. We �rst recall the following lemma concerning the Stokes problem in the
whole space R2:

Lemma B.4 Let (u, p) be a solution of{
−ν∆u+∇p = 0 inR2

divu = 0 inR2.
(B.7)

Then every solution which is a tempered distribution should be a polynomial.

Proof. Applying Fourier transform to (B.7) we immediately notice that the support
of û and p̂ is contained in {0}. Therefore, those distributions should be a �nite sum
of Dirac deltas, which implies that u and p are polynomials.

Decomposition of the solution of the exterior Stokes problem

Let ω be a Lipschitz open set of R2 and let W(ωc) :=
{
v ∈W1,2

0 (ωc); div v = 0
}

where ωc := R2 \ ω. W(ωc) is a closed subspace of W1,2
0 (ωc) when we consider the

induced norm. Notice that the bilinear form a(u,v) =

∫
ωc
D(u) : D(v) is coercive in

W(ωc) (as well as in W1,2
0 (ω)). Therefore, for ϕ ∈ H1/2(∂ω) such that

∫
∂ω

ϕ ·n = 0,

the problem:


−ν∆u+∇p = 0 in ωc

divu = 0 in ωc

u = ϕ on ∂ω,
(B.8)

is well-posed and has a unique solution in W1,2
0 (ωc) (and also in W1,2

0 (ω)). We
present here an explicit representation of u and p.
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In such case, we have:

−ν∆u+∇p = [D(u)n]δ∂ω =: T in D′(R2).

Now, let us de�ne:
v := E ∗ T , q := P ∗ T ,

where (E,P ) is the fundamental solution of the Stokes system given by (4.7) and ∗
denotes the convolution product. Then,

−ν∆v +∇q = T in D′(R2).

Now notice that the pair (u− v, p− q) solves (B.7), then by the previous lemma
this solution should be a polynomial. Then:

u = E ∗ T +U 1 =

∫
∂ω

t(x)E(y − x)ds(x) +U 1,

p = P ∗ T + P1 =

∫
∂ω

t(x)P (y − x)ds(x) + P1,

where U 1 and P1 are polynomials and t = D(u)n.

Using a Taylor development for u we get a logarithmical term, due to:

E(y − x) = E(y)−∇E(θ(y, x))x,

where θ(y, x) = y − αx with α ∈ (0, 1), then:

u(y) = E(y)

∫
∂ω

t(x)ds(x)−
∫
∂ω

t(x)∇E(θ(y, x))xds(x) +U 1.

But log 6∈W1,2
0 (ωc), which implies:∫

∂ω

t(x)ds(x) = 〈t, 1〉 = 0.

Also, due toU 1 ∈W1,2
0 (ωc), we must haveU 1 = λ, where λ is a constant. Therefore,

we have:
u = O(1) at in�nity.

A similar reasoning gives p(y) = O(1/r), where r = ‖y‖, and P1 = 0. Therefore we
have:

u(y) = λ−
∫
∂ω

t(x)∇E(θ(y, x))x ds(x) = λ+W (y), (B.9)

p(y) = −
∫
∂ω

t(x)∇P (θ(y, x))x ds(x), (B.10)

and u, p are bounded at in�nity. Moreover, we have (see for example [77, Sec-
tion 2.5.1])W (y) = O(1/r) which implies, due to the well-posedness of the problem
the existence of c > 0 such that:

|λ| ≤ c‖ϕ‖1/2,∂ω. (B.11)

The study of the function W in (B.9) will be useful for important results: we
study a priori estimates for this function, in a similar way as Guillaume in [53].
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Some notations and preliminaries

For a given function u ∈ H1(Ω), we de�ne the function ũ on Ω̃ := Ω/ε by ũ(y) = u(x),
y = x/ε. Using that ∇xu(x) = (∇yũ(y))/ε, we obtain

|u|21,Ω =

∫
Ω

|∇xu(x)|2 dx =

∫
Ω̃

|∇yũ(y)|2 dy.

Hence,
|u|1,Ω = |ũ|1,Ω̃ . (B.12)

Similarly, we obtain
‖u‖0,Ω = ε ‖ũ‖0,Ω̃ . (B.13)

By changing the origin, the same equalities hold with the change of variables y =
(x− z)/ε, for z ∈ Ω.

Finally, let us introduce some other domains. Let R > 0 be such that the closed
ball B(z,R) is included in Ω and ωz,ε ⊂ B(z,R). We de�ne the domains

Ωz
R := Ω\B(z,R) and Dz

ε := B(z,R)\ωz,ε

(see Figure B.1). Thus, in particular, we denote Ω0
R := Ω\B(0, R) and D0

ε :=

∂Ωωz,ε

B(z,R)

Ωz
R Dz

ε

Figure B.1: The truncated domain

B(0, R)\εω.

Estimates for W

We have the following estimates for W :

Lemma B.5 Let ϕ ∈ H1/2(∂ω) such that
∫
∂ω

ϕ · n = 0 and z ∈ Ω. We consider

(u, p) ∈W1,2
0 (R2\ω)× L2(R2\ω) the solution of the Stokes exterior problem

−ν∆u+∇p = 0 in R2\ω
divu = 0 in R2\ω
u = ϕ on ∂ω.
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Recall that in this case u = λ+W (see (B.9)). Then there exists a constant c > 0
(independent of ε and ϕ) and ε1 > 0 such that for all 0 < ε < ε1

‖W ‖0,Dzε/ε
≤ c (− log ε)1/2 ‖ϕ‖1/2,∂ω , ‖W ‖0,ΩzR/ε

≤ c ‖ϕ‖1/2,∂ω ,

|W |1,Dzε/ε ≤ c ‖ϕ‖1/2,∂ω and |W |1,ΩzR/ε ≤ c ε2 ‖ϕ‖1/2,∂ω .

This implies: ∥∥∥∥W (
x− z
ε

)∥∥∥∥
1,Ωz,ε

≤ c ‖ϕ‖1/2,∂ω .

Proof. For sake of simplicity we will prove this result for z = 0, the general case
comes from linear change of coordinates.

By the formula given in (B.9) we notice that: |W (y)| ≤ c

‖y‖
‖ϕ‖1/2,∂ω. Therefore:

|W (x/ε)| ≤ c
ε

‖x‖
‖ϕ‖1/2,∂ω.

Analogously: |∇W (x/ε)| ≤ c
ε2

‖x‖2
‖ϕ‖1/2,∂ω.

Using these estimates we can bound the following quantities:

‖W ‖0,B(0,R/ε)\B(0,M) =

(∫
B(0,R)\B(0,εM)

|W (x/ε)|2 1

ε2
dx

)1/2

≤ c‖ϕ‖1/2,∂ω

(∫
B(0,R)\B(0,εM)

1

‖x‖2
dx

)1/2

= c‖ϕ‖1/2,∂ω(logR− log εM)1/2

≤ c‖ϕ‖1/2,∂ω(− log ε)1/2.

and

‖∇W ‖0,B(0,R/ε)\B(0,M) ≤
(∫

B(0,R)\B(0,εM)

c
ε4

‖x‖4
‖ϕ‖2

1/2,∂ωdx

)1/2

≤ cε‖ϕ‖1/2,∂ω.

Now, noticing that, in B(0,M) \ ω, we have classic a priori bounds for W :

‖W ‖1,B(0,M)\ω ≤ c‖ϕ‖1/2,∂ω,

we get:
‖W ‖0,B(0,M)\ω ≤ c‖ϕ‖1/2,∂ω and |W |1,B(0,M)\ω ≤ c‖ϕ‖1/2,∂ω,

and then:

‖W ‖0,D0
ε/ε
≤ ‖W ‖0,B(0,R/ε)\B(0,M) + ‖W ‖0,B(0,M)\ω ≤ c (− log ε)−1/2 ‖ϕ‖1/2,∂ω ,

|W |1,D0
ε/ε
≤ |W |0,B(0,R/ε)\B(0,M) + |W |0,B(0,M)\ω ≤ c ‖ϕ‖1/2,∂ω .
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The other estimates can be computed directly:

‖W ‖0,Ω0
R/ε

= ‖W ‖0,Ω/ε\B(0,R/ε) ≤
(∫

Ω\B(0,R)

c
ε2

‖x‖2
‖ϕ‖2

1/2,∂ω

1

ε2
dx

)1/2

≤ c‖ϕ‖1/2,∂ω

|W |0,Ω0
R/ε

= |W |0,Ω/ε\B(0,R/ε) ≤
(∫

Ω\B(0,R)

c
ε4

‖x‖4
‖ϕ‖2

1/2,∂ωdx

)1/2

≤ cε2‖ϕ‖1/2,∂ω.

From the previous inequalities we can estimate the size of the function W
(
x
ε

)
in

Ωε, indeed, by change of variables (recall the equalities given by (B.12), (B.13)), we
get that, for small ε:

1

ε

(∥∥∥W̃∥∥∥
0,D0

ε

+
∥∥∥W̃∥∥∥

0,Ω0
R

)
= ‖W ‖0,D0

ε/ε
+ ‖W ‖0,Ω0

R/ε
≤ c (− log ε)−1/2 ‖ϕ‖1/2,∂ω ,

then: ∥∥∥W̃∥∥∥
0,D0

ε

+
∥∥∥W̃∥∥∥

0,Ω0
R

≤ c ε (− log ε)−1/2 ‖ϕ‖1/2,∂ω .

But, by equivalence of norms, we know there exists a constant M which doesn't
depend of ε such that:

M
∥∥∥W̃∥∥∥

0,Ωε
≤
∥∥∥W̃∥∥∥

0,D0
ε

+
∥∥∥W̃∥∥∥

0,Ω0
R

where we conclude ∥∥∥W̃∥∥∥
0,Ωε
≤ c ε (− log ε)−1/2 ‖ϕ‖1/2,∂ω .

Analogously we get: ∣∣∣W̃ ∣∣∣
1,Ωε
≤ c ‖ϕ‖1/2,∂ω

and therefore: ∥∥∥W̃∥∥∥
1,Ωε

=
∥∥∥W (x

ε

)∥∥∥
1,Ωε
≤ c ‖ϕ‖1/2,∂ω .
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