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Abstract

This paper is concerned with the analysis of effective thermomechanical properties of multi-
layered materials of interest for solid oxide fuel cells (SOFC) and lithium ions batteries fab-
rication. The recently developed asymptotic homogenization procedure is applied in order to
express the overall thermoelastic constants of the first order equivalent continuum in terms
of microfluctuations functions, and these functions are obtained by the solution of the cor-
responding recursive cell problems. The effects of thermal stresses on periodic multi-layered
thermoelastic composite reproducing the characteristics of solid oxide fuel cells (SOFC-like)
are studied assuming periodic body forces and heat sources, and the solution derived by means
of the asymptotic homogenization approach is compared with the results obtained by finite
elements analysis of the associate heterogeneous material.

Keywords: Periodic microstructure, Asymptotic homogenization, Overall thermomechani-
cal properties, Multi-layered battery devices.

1 Introduction

Solid oxide fuel cells (SOFC) and lithium ions batteries are two of the most performing and promis-
ing battery devices which can play an important role in realizing efficient small-scale power genera-
tion systems providing renewable energy for industrial applications. Due to the high temperatures
which can be reached in operative scenarios (Pitakthapanaphong and Busso, 2005), the components
of such batteries are subject to severe thermomechanical stresses which can cause damage and crack
formation, compromising the performance of the devices in terms of power generation and energy
conversion efficiency (Atkinson and Sun, 2007; Delette et al., 2013). Modelling the thermomechan-
ical properties of SOFCs devices and lithium ions batteries represent a crucial issue in order to
predict these phenomena and then to ensure the successful manufacture and the reliability of the
systems.
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Both SOFCs and lithium ions batteries are characterized by a multi-layered configuration pos-
sessing many phases of composite materials, where the elementary cell is represented by the anode-
electrolyte-cathode system. Moreover, in many operative situations solid oxide fuel cells are or-
ganized in stacks where several anode-electrolyte-cathode systems are separated by metallic inter-
connections. Since the macroscopic behaviour of these multi-layered structures is influenced by
phenomena occurring at scale-lengths characteristic of the microscopic constituents, which is small
compared to the macroscopic dimension (i.e. structural size), multiscale modelling of SOFCs and
lithium ions batteries implies challenging numerical computations which require very fine mesh
of finite elements and then strong computational resources (Richardson et al., 2012; Hajimolana
et al., 2011). Homogenization techniques represent an useful and advantageous method for pro-
viding a rigorous and synthetic description of the effects of the microscopic phases on the overall
properties of the materials. The application of these approaches makes possible to avoid the chal-
lenging numerical computations required by computational modelling of heterogeneous media, and
are particularly suitable for periodic composite media, such as multi-layered battery devices. Sev-
eral homogenization techniques have been proposed for studying overall properties of composite
materials, such as the asymptotic (see for example Sanchez-Palencia (1974a,b, 1986), Bensoussan
et al. (1978); Bakhvalov and Panasenko (1984); Gambin and Kroner (1989); Allaire (1992); Boutin
and Auriault (1993); Meguid and Kalamkarov (1994); Boutin (1996); Andrianov et al. (2008); Tran
et al. (2012)), the variational-asymptotic methods (see for example Smyshlyaev and Cherednichenko
(2000); Peerlings and Fleck (2004); Smyshlyaev (2009); Bacigalupo (2014); Bacigalupo and Gam-
barotta (2014b)) and the computational approaches (see for example Forest and Sab (1998); Forest
(2002); Kouznetsova et al. (2002, 2004); Kaczmarczyk et al. (2008); Forest and Trinh (2011); Baci-
galupo and Gambarotta (2010, 2011); De Bellis and Addessi (2011); Addessi et al. (2013); Bacca
et al. (2013a,b,c)).

The principal aim of this article is to provide exact closed-form expressions to estimate the
overall thermoelastic and heat conduction tensors of multi-layered battery devices avoiding the
challenging computations required by standard numerical modelling of the heterogeneous struc-
tures (Bove and Ubertini, 2008). With this purpose, an ideal periodic multi-layered thermoelastic
composite material reproducing the planar geometry of an idealized battery device is introduced
(see Fig 1). The thermoelastic and heat conduction tensors of the first order continuum equiva-
lent to the introduced multi-layered battery-like thermoelastic composite are derived applying the
asymptotic homogenization approach recently developed by Bacigalupo et al. (2016) for studying
heterogeneous media in presence of thermodiffusive phenomena. Following the rigorous procedure
developed in Bakhvalov and Panasenko (1984); Smyshlyaev and Cherednichenko (2000); Bacigalupo
and Gambarotta (2013, 2014a,b, 2012) and Bacigalupo (2014) for composite elastic media with pe-
riodic microstructures and generalized by Bacigalupo et al. (2016) to the case of thermodiffusive
materials, the fields equation for the homogenized first order thermoelastic continuum equivalent
to the multi-layered battery devices are derived, and exact expressions for the overall thermoelastic
constants of this equivalent medium are obtained. These expressions are used to determine analyti-
cally the components of the overall elastic, thermoelastic and heat conduction tensors corresponding
to a tri-phase layered thermoelastic composite of interests for SOFCs devices fabrication. The ther-
moelastic constants of the three phases are assumed to possess values typical of the constituents
of real SOFCs devices, evaluated by means of accurate experimental techniques and homogeniza-
tion methods and accounting for the microstructure, such as the porosity, of the electrolyte and the
electrodes. of The fields equation of the first order equivalent thermoelastic media are solved consid-
ering periodic heat sources, which localized and unlocalized profiles are representative for modelling



some thermal effects detected in real situations. The solution of the homogenized field equations is
compared with the numerical results obtained by the heterogeneous model assuming periodic body
force and heat and mass sources acting on the considered three-phase layered composite.

The article is organized as follows: in Section 2 the geometry of the idealized periodic thermoe-
lastic battery-like material is illustrated, and the corresponding constitutive relations and balance
equations are introduced. The developed multi-scale asymptotic homogenization technique is de-
scribed in Section 3, based on down-scaling relations correlating the microscopic fields to the macro-
scopic displacements and temperature. The unknown perturbation functions describing the effects
of the material heterogeneities are defined as solutions of the corresponding non-homogeneous cell
problems. In the same Section, the fields equations and explicit expressions for the components of
the elastic, thermoelastic and heat conduction tensors of the equivalent first order homogeneous
continuum are derived. In Section 4, these results are used for studying overall properties of three-
phase layered thermoelastic composites of interests for SOFCs devices fabrication, represented by an
an idealized cathode-electrolyte-anode-interconnection system. Finally, a critical discussion about
the obtained results is reported together with conclusions and future perspectives in Section 5.

2 Multiscale modelling of periodic thermoelastic composites

Many energy battery devices such as lithium ions batteries and solid oxide fuel cells (SOFC) are
characterized by multi-layered structures (Nakajo et al., 2012; Dev et al., 2014; Ellis et al., 2012).
In order to develop a general approach for estimating effective thermomechanical properties of both
lithium ions batteries and solid oxide fuel cells, we introduce a periodic multi-layered thermoelastic
composite media reproducing the planar geometry of an idealized battery device as shown in Fig. 1.

Figure 1: (a) Heterogeneous material — Periodic domain L ; (b) Periodic cell A and periodicity
vectors.

The constituent elements of the medium are modelled as a linear thermoelastic Cauchy contin-
uum subject to small strains. The material point is identified by position vector & = x1e; + x2es
referred to a system of coordinates with origin at point O and orthogonal base {e;, es}. Figure 1b



shows the periodic cell A = [0,¢] x [0, de] with characteristic size €. The entire periodic medium can
be obtained spanning the cell A by the two orthogonal vectors v; = die; = ce1, vy = does = dces.
A represents the elementary cell period of the elasticity tensor C(") (), the heat conduction tensor
K™% () and the thermal dilatation tensor (™) (z), which are defined as follows

Como) (g +v;) = CMe)(z), i=1,2, VxeA (1)

K™ (z4+v) = K™ (@), a™)(x+v;)=a™(x), i=1,2 VaedA (2)

The tensors (1) and (2) are commonly referred to as A—periodic functions.

The system is subject to body forces b(x) and heat sources r(x) which are assumed to be
L—periodic with period £ = [0, L] x [0,L] and to have vanishing mean values on £. Since L is a
large multiple of ¢, then £ can be assumed to be a representative portion of the overall body. This
means that b(z) and r(x) possess a period much greater than the microstructural size €.

A non-dimensional unit cell @ = [0, 1] x [0, ] that reproduces the periodic microstructure by
rescaling with the small parameter ¢ is introduced (Bacigalupo, 2014). Two distinct scales are
represented by the macroscopic (slow) variables & € A and the microscopic (fast) variable & =
x/e € Q (see for example Bakhvalov and Panasenko (1984) and Smyshlyaev and Cherednichenko
(2000)). The constitutive tensors (1), and (2) are functions of the microscopic variable, whereas the
body forces and heat sources depend on the slow macroscopic variable. Consequently, the mapping
of both the elasticity and thermodiffusive tensors may be defined on Q as follows: C(™*)(z) =
Cm(E =a/e), K™ (x) = K™ (& = x/e), al™®)(x) = a™(& = x/¢), respectively.

The relevant microscopic fields are the micro-displacement u(x), and the microscopic tempera-
ture 8(x) = T'(x) — Ty evaluated with respect to the natural state (T' = Tp). The micro-stress o (x)
and the microscopic heat flux g(x) are defined by the following constitutive relations:

o(x) =C™ (%) e(z) — a™ (f) o(z), (3)
q(@) = -K" (%) Vo(@), @)

where e(x) = symVu(x) is the micro-strain tensor which is assumed to be zero at the fundamental
state of the system. The micro-stresses (3) and the microscopic heat flux (4) satisfy the local
balance equations on the domain A

V-o(z)+b(x) =0, ()
V-q(z) —r(z) =0, (6)

Substituting expressions (3) and (4) in equations (5) and (6), and remembering the symmetry of
the elasticity tensor, the resulting set of partial differential equations is written in the form

V- ((Cm (g) Vu(:c)) V. (am (f) 0(:8)) +b(z)=0 (7)

3

v. (Km (g) va(m)) +r(z) =0, 8)

The micro-displacement and microscopic temperature may be seen in the form w(x,& = x/e),
O(x,& = x/e) as functions of both the slow and the fast variable. The solution of microscopic
fields equations (7) and (8) is computationally very expensive and provides too detailed results to



be of practical use, so that it is convenient to replace the heterogeneous model with an equivalent
homogeneous one to obtain equations whose coefficients are not rapidly oscillating while their
solutions are close to those of the original equations.

Further in the paper, the overall elastic moduli, thermal expansion and heat conductivity tensors
of a first order (Cauchy) homogeneous thermoelastic continuum equivalent to multi-layered material
reported in Fig.1 are derived applying the asymptotic homogenization approach recently developed
for periodic thermodiffusive composites by Bacigalupo et al. (2016). Assuming that the size of the
microstructure ¢ is sufficiently small with respect to the structural size L, the overall thermoelastic
constants of the homogeneous continuum are expressed in terms of geometrical, mechanical, and
thermal diffusive properties of the microstructure by means of an asymptotic expansion for the
microscopic fields. The asymptotic expansion is performed in terms of the parameter ¢ that keeps
the dependence on the slow variable @ separate from the fast one &€ = a/e such that two distinct
scales are represented.

Let us define the macroscopic physical quantities characterizing the first order homogenized
continuum equivalent to the periodic material reported in Fig. 1. The macro-displacement U (x)
of component U;, and the macroscopic temperature ©(x) are defined at a point « in the reference
(e;, i =1,2). The displacement gradient is given by VU (x) = ggj e, ®e; = Hjje;®e; = H(x),and
then the macroscopic strain is E(x) = symVU (). The macro-stresses X (x) associate to E(x)
are defined as X(z) = X;je; ® e; with X;; = X;, and the macroscopic heat flux is given by

Q(z) = Qie;.

3 Asymptotic homogenization approach to thermoelastic com-
posites

In this Section, explicit expressions for the elasticity, thermal expansion and heat conductivity ten-
sors of the homogeneous first order continuum equivalent to a thermoelastic composite material with
periodic microstructure are derived by means of asymptotic homogenization approach developed in
Bacigalupo et al. (2016).

3.1 Multiscale analysis of micro-displacement fields

According to Bakhvalov and Panasenko (1984); Smyshlyaev and Cherednichenko (2000); Bacigalupo
and Gambarotta (2014b); Bacigalupo (2014) and Bacigalupo et al. (2016) the microscopic displace-
ment and temperature fields are represented through an asymptotic expansion with respect to the
parameter ¢, and the following down-scaling relations are derived

(26 = 2) = tite) +2 (N1, 52 + Né”(&)@(m)){_w/g +
(2) ’Up(@) | () 0 00()
#2 (MO g e + O RT) vo@. O
00 0?0
0 (:c,£ - g) —O(x)+e¢ <M§}>(g) 8x(z))g:$/5 +e2 (Méf)h (g)a%gjzkzw/a +0(£%). (10)

Note that due to their dependence on the slow space variable x, the macroscopic fields Uy and

© are L—periodic functions. NY and N?

. . . (1)
kpqi kparqe aT€ the mechanical fluctuations functions, Mg,



and Méf 32 are the thermal fluctuations functions, N ,El) and N ,giz denote the additional fluctuations
functions corresponding to the contribution of the temperature to local displacement. All these
perturbation functions depend on the fast space variable € = x/e, and are Q—periodic with zero

(1 \ _ (2) _ v\ _ v\ _ M\ _
mean value over Q, namely <Nkpq > =0, <Nkpq1q2> =0, <Nk > =0, <qu1> =0, <Mq1 > =0
and <M,§12212> = 0 where (-) denotes the averaging operator over @ (normalization conditions).

The down-scaling relations (9) and (10) can be substituted into the microscopic fields equations
(7) and (8), and using the property %f(:c,ﬁ =2)= (%fj + %8%')5:@/5 = (% + %)§=w/67 two
fields equations of infinite order in which the unknowns are the macroscopic quantities Uy (x) and
O(x) are obtained (see Bacigalupo and Gambarotta (2014b) and Bacigalupo (2014) for details).
According to Bacigalupo et al. (2016), the fields equations of the equivalent first order thermoelastic
continuum can be obtained considering only the e ! and €° terms of the sequence of PDEs derived
by the asymptotic procedure. In order to obtain a set of PDEs with constant coefficients, the

fluctuations functions must satisfy non-homogeneous equations commonly known as cell problems.
At the order 71, the following equation are derived from Navier’s equation (7):

(1) (1)
( zjklNkpql l) + Cls]PQI J = Mipgys
~(1
(CzjklNk z)) = ”5 g (11)

whereas the heat conduction equation (8) yields

(1) _ (1
(KE MY J) + K5, =mY, (12)
where as a consequence of the Q—periodicity of C5;,, . o;; and K7 it can be easily verified that
1 _(1
Mgy = (Clipan) =0 A = —(afy;) =0, m) = (Kf,, ;) = 0. (13)

At the order €] the following cell problems are derived from equation (7):

2) 1 (1) N
(OZJklNkpqlqz l) -+ 5 {( mquNkpm) + Czsquql + (% iqakl kpq1 l

(1) (1) (2)
+ ( qulNkpqg) + Cteqlpcm fq1klNkpq2,l} Nipgigs>
2 1 1 _(2
(ngklquz l) o+ ( fjkqlng )) + quklng,l) — QG — (O‘ijéll)) i nng, (14)

at the same order, the heat conduction equation (8) yields

£ (2) ]‘ e 1 £ £ (1)
(K MQle ]) i {(KuhM( )) + quth + thJth \J
1 (1) 2
+@%M”)+ﬁm+ﬁﬁ%4 M (15)

where:
n® e roe NY yeoe o pcoe N
ipqiq2 iq2pq1 iq2kl” Ykpqi,l 1q1Pq2 iqukl” Y kpga,l



~ 1
ﬁl(gz = < iEq1klNl§,ll) - Cqul>’ mt(ﬁzh = 2<K§2¢I1 + Kgleézl?j + K;lqz + K§2JM(§117)J> (16)
The perturbation functions characterizing the down-scaling relations (9) and (10) are obtained
by the solution of the previously defined cells problems, derived by imposing the normalization
conditions.

According to Bakhvalov and Panasenko (1984) and Smyshlyaev and Cherednichenko (2000), the
constants (13) and (16) are determined by imposing that the non-homogeneous terms in equations
(11), (12), (14) and (15) (associated to the auxiliary body forces (Bacigalupo, 2014) and heat
sources) possess vanishing mean values over the unit cell Q. This implies the Q—periodicity of the

perturbations functions NV, ,gzh, N,Ei;l a2 Méll ), Méf}h, N,gl) and N ,gz and then the continuity and
regularity of the microscopic fields (micro-displacements and micro-temperature) at the interface
between adjacent cells are guaranteed. Using the cell problems (11), (12), (14) and (15) together
with the constants definitions (13) and (16) into the asymptotic expansion of the microscopic fields
equations (9) and (10) and truncating the asymptotic expansion at the order €V, the following

averaged equations are derived

2
@ U | - 00 _ 1
Nipqiqs 014,014, iq1 D, +0(E)+b;=0 (17)
%0
(2) . = 1
9% Gy D +0()+r=0. (18)

It is important to note that the solution of equations (17) and (18) requires that the following
normalization condition is satisfied:

1 1

where the £L—periodic domain is the same defined in previous Section as £ = [0, L] x [0,0L].

In the next Section, using the symmetry properties of the tensors (16) together with the ellipticity
of the fields equations (17) and (18), the coefficients ”5‘;23311 0 ﬁgf, mgzm are related to the overall
elastic and thermodiffusive constants of the media Cjq,pq,, Qig, and Ky, 4,, and the homogenized
field equations of the first order continuum equivalent to a thermoelastic composite material with

periodic microstructure are derived from the (17) and (18) (see Bacigalupo et al. (2016)).

3.2 Overall properties of equivalent homogeneous continuum

The field equations of an homogeneous first order continuum in presence of thermodiffusion are
given by

82Up 15/C)
Cigipgs g, 02, Qigy 1y, +b; =0, (20)
2
K s +r=0, (21)

q192 83),11 81‘(12

where Cjq,pq, are the components of the overall elastic tensor, a4, are the components of the overall
thermal dilatation tensor and K, 4, denotes the components of the overall heat conduction tensor.
Remembering the approximation, the macroscopic field equations (20) and (21) can be compared



to the zero order terms of the averaged field equation for determining the overall properties of the
thermodiffusive Cauchy continuum. In order to relate the coefficients nggl 2 ﬁ§§37 m((ﬁzh to the

overall elastic and thermodiffusive constants of the media Cjq,pg,, @ig, and Kg, 4, the symmetries

(2 =(2) (2)

of the tensors of components n Tig,» Ma1gs, and the ellipticity of the fields equations (17) and

(18) are required. A demonstrfigiqcl)?f é)f these properties is reported in Bacigalupo et al. (2016). As a

consequence of these properties, it can be observed that: ngl)h% = 2(Cigipgs + Cigapar) ﬁgz = Qiq,

and mﬁfﬁn = K, 4,- In particular, comparing the field equation (20) to (17), and remembering the

relationship between ng()h 5 and Cligipgs it is easy to note that due to the repetition of the indexes
. U, _ (2 Uy 1 U,

q1 and ga: Ciqlpqzm = Nipg1qs Fa, Orgg — 7 (Cigipq: + C’iquql)m.

The overall elastic and thermodiffusive tensors, obtained in terms of fluctuations functions, and
the components of microscopic elastic and thermodiffusive tensors, take the form (see Bacigalupo
et al. (2016) for details):

1 1 1 (1 1
C’iqqu = 4 < f-jkl (Nﬁiz;l,j + 5""i6j<11 + Nangi,j + 5”11 51']') (Nkpzz,z + 5/@115112,5 + ngqip,l + 6k<1255p)> )

_ € (1) €
Qiq, = < iqlklNk,l - aiq1>7

thth - <Ki€j(M(1)' + 5j41)(M(1)‘ + 5i42)> ! (22)

q1,7 g2,

The components Ciq,pq, and Ky, 4, of the overall constitutive tensors of the material coincide
with those derived by asymptotic homogenization techniques applied to uncoupled static elastic
(Bakhvalov and Panasenko, 1984; Smyshlyaev and Cherednichenko, 2000; Bacigalupo, 2014) and
heat conduction problems (Zhang et al., 2007) in media with periodic microstructures. The com-
ponents oyq, of the coupling thermoelastic tensor have been obtained by means of a consistent
generalization of the down-scaling relations (9) and (10). These expressions relate the microscopic
displacement field to the macroscopic displacements and temperature. The asymptotic homoge-
nization procedure described in this Section is an extension of the general methods proposed by
Bakhvalov and Panasenko (1984); Smyshlyaev and Cherednichenko (2000); Bacigalupo and Gam-
barotta (2014b) and Bacigalupo (2014) to the case of periodic thermoelastic materials, and it can
be applied to study the effects of any generic periodic microstructure, including both two- and
three-dimensional geometries without additional restrictions. This means that expressions (22) are
valid for all thermoelastic composite media with periodic microstructure, and the characteristics
of the microstructures are described by means of the fluctuations functions NS[L N, ]51) and Méjl).
For layered media composed by an arbitrary number of phases of arbitrary thickness, such as for
example the tri-phase thermoelastic laminate considered in next Section, the fluctuations functions
can be determined analitically, whereas for more complex topologies of the microstructure, they
must be estimated by means of numerical techniques.

4 Homogenization of multi-phase layered thermoelastic com-
posites of interest for SOFC devices fabrication

The developed general homogenization procedure is now applied to the case of a three-phase ther-
moelastic composite which can be used to model the thermomechanical behaviour of energy devices



Figure 2: (a): Variation of the localized heat source 7 with the normalized space variable Z; with
j = 1,2 reported for n = 1 (red line) and n = 2 (black line); (b): Variation of the not localized
heat source 7 with the normalized space variable Z; with j = 1,2 reported for n =1 (red line) and
n = 2 (black line).

possessing a layered structure, such as solid oxide fuel cells or lithium ions batteries. Exact ana-
lytical expressions for the perturbation functions and then the overall thermomechanical constants
are derived. Two different examples of space-varying heat sources are considered. The analytical
results derived by the solution the homogenized model are compared with those provided by the
finite element analysis of the corresponding heterogeneous problem.

4.1 Perturbation functions and overall thermoelastic constants

The interconnector-electrode(anode or cathode)-electrolyte system in energy battery devices can
be modelled introducing a layered material defined as an unbounded two-dimensional periodic
arrangement of three different layers having thickness s1, so and sz, where do = ¢ = s1 + 255 +
s3, 8 = sp/e, p = 1,2,3 and { = §3/25, are defined. For simplicity, the phases are assumed
homogeneous and orthotropic, with an orthotropic axis coincident with the layering direction e, the
geometry of the system is shown in Fig. 2a. It is important to note that, if the periodicity condition
is preserved, the general asymptotic homogenization method introduced in the previous section
can be applied to laminate media whose layers possess orthotropy axes of different orientation.
The different orientation of the orthotropy axes brings additional complexity of the associated cell
problems, whose solution may require numerical techniques.
We assume that elastic, thermoelastic and heat conduction tensors possess orthotropic symme-
rige? ngl), and Méll ) are explicitly determined solving the cell
problems reported in Section 3.1. Due to the particular properties of symmetry of the microstruc-

try. The perturbation functions IV, )



ture, these functions depend only on the fast variable £& = x2/e, which is perpendicular to the
layering direction, and then they are independent by 7 and & = z1/¢. The non-vanishing func-

tions N N,gl), obtained by the solution of the cell problem of order ¢! (11) are given in the

Tiq1
form:
(1), (1), (1), (1), (1), (1),
N211® = Azn@fg@ + B211®7 N222® = A222®£g@ + B222®,
(1), (1), (1), (1),
N112® = N121® = A112®§§) + 3112®a (23)
and @ _ i) 5 (1)
N, ® = Ay @fg@ + By @7 (24)

where p = 1,2, 3 denotes respectively the phases 1,2,3 and 59 € [—%, %1], 5? € [— 4%1__;?2), 4%1__&2)]

and 55@ € [— <2((11:r§<1))7 CQ((llfg)) are non-dimensional vertical coordinates centred in each layer. The
e e Le 5(1).®

ijk Bijk ) Aijk and Bijk

reported in Appendix A. At the same order £~!, the non-vanishing fluctuation functions associated

to the heat conduction equation, derived by the solution of the cell problems of order =1 (12) are

given by:

explicit expressions for the coefficients A , where 4,5,k = 1,2 are

M2(1),@ _ Pl(l)@f;@ " Q(ll)@v p=1,23, (25)

where the coefficients Pi(l)@ and le)@ are also reported in Appendix A.
Substituting the fluctuation functions (23), (24) and (25) into the expressions (22), the compo-
nents of the constitutive tensors corresponding to the first order equivalent continuum are derived.

The non-vanishing components of the overall elastic tensor Cj4,q, are given by:

1 23 2 23 3 22 4 a2 5 a2 6 22 7T aa
Ad11185 + AT11183 + AT1118583 + Aj1118582 + A711185 + AJ11185 + Af1118283
b

Cun =
Aqi11
1 a3 2 .3 3 a2a 4 a2z 5 a2 6 a2 7 aa
Clynay — A329985 + A390985 + A39998583 + A39095552 + A399985 + A990955 + Adg0 8253
- 9
FAVY
1 23 2 3 3 a2 4 a22 5 2 6 22 7 aa
Clots = Al91285 + Afo1085 + Ai2128583 + Al9128582 + AT91955 + AT21285 + Al9195233
- 9
Aq212
1 23 2 3 3 a2a 4 a22 5 a2 6 a2 7 aa
Cling — Al19285 + AT12983 + AT1928583 + AJ1298582 + AT19085 + AT12985 + A{1908283 (26)
- 9

Aq122

where the coefficients Agjhk and Ajjpk, 4,7,hk = 1,2, ¢ =1,...,7 are reported in Appendix B.
The non-vanishing components of the overall thermal dilatation assume the form:

B85 + B85 + B} 8283 + BY 82 4 B 8,

B An ’

a11

1 22 2 2 3 2 & 4 2 5 2
_ B3y85 + B5585 + By8283 + Bo 82 + By 52
Ag ’

Q22

10



where the coefficients ij and Ay, 4,5 = 1,2, ¢ = 1,...,5 are reported in Appendix B. The
components of the overall heat conduction tensor then become:

K =2(K8 — K§)so + (KD — KJ)85 + KT,

123 3 A22 4 222 5 22 22
D383 + D383 + D3,5383 + D5,38332 + D3585 4+ D5y383 + D225253

Koo = =
Zao

(28)

where the coefficients Df‘j ,j=1,2,g=1,...,7 and =5, are reported in Appendix B. Note that,
due to the invariance of the perturbation functions (23), (24), (25) with respect to the coordinate
x1, the overall constants (26), (27) and (28) do not depend on the characteristics length Lq, and
are only functions of the phases thickness. In the case Where isotropic phases are assumed,_ the
E,
A7)
whereas for plane-stress: Ep = Ep,

components of the elasticity tensor become C%u = 091)222 = 1/2’ 01122 = & u2’ C’1212

(with p = 1,2, 3), where for plane-strain: Ep =125, Up = ly—y,
U, = vp, being E, the Young’s modulus and v, the Poisson’s ratio, respectively. The components
of the thermal dilatation tensor take the forms: a% = ag@z = oyp. The components of the heat
conduction tensor finally become K % = K% =K,.

For simplicity, in the illustrative examples the three phases are assumed to be isotropic. The
overall thermoelastic and heat diffusion constants can be represented in the following normalized

form:

~ . C; - Q;
Oilhpth (517<ap%)7p(g)7ylay2ay3) = w: Aigq (Slac pc,pC7V1,V2,l/3,pa,p®) = qu;
Cigipa Qg
~ ~ K,
Kiql (813C7P%7P%) = #7 (29)

Kilh

Where pC —EQ/El, C —Eg/El, a —042/061, a —O[g/al, K —KQ/Kl, K —Kg/Kl, and
CUJIPQZ - (Cz(Dlqu +C7,@31pq2 +C7,<:21pq2)/3 Oéqu - (aqu +azq1 'Lq1>/3 K“h - (Kgl +Kz(?1 +Kz(?1)/3
The following values for the geometrical parameters and the Poisson’s ratios have been assumed for
the computations: §; = 5/88, 1 = 0.3, vo = 0.25, v3 = 0.3 according to Bacigalupo et al. (2014).
The overall thermoelastic and heat diffusion constants have been computed for the case of plane
strain. Similar results can be easily obtained for the plane stress.

The variation of the normalized components of the overall elasticity tensor 6’1111 and 6’1212 with
the ratio ( is reported in Figs. 3 and 4. The behaviour of other elastic constants is not reported since
it is qualitatively analogous to those detected for C~’1111 and C~’1212. The results reported in Figs. 3a
and 4a have been obtained considering the value p(é) = 5/13, and different values for the ratio p(g:
p(g = 31/26,1,3/2,2, whereas the plots shown in Figs. 3b and 4b correspond to p(g = 5/13 and
p%) = 31/26,;% = 5/13,,0(2 = 1/10,p<é) = 1/5,p% = 3/10. It can be observed that as ( — 0, and
then as the thickness of the phase 3 associated to the interconnection of the battery vanishes (i. e.
$3 = 0), the values of the overall elastic constants C'qupqz tend to the overall constants of a bi-phase
layered media composed only by the electrolyte-electrode system In this case, the limit values of
the constants Cigipas 1ncrease as pg decreases at constant pC (see Figs. 3a and 4a) and increase
as pc increases at constant pc (see Figs. 3b and 4b). For ¢ — +oo0, the thickness of the phase 2,
associated to the electrodes, tends to zero (i. e. §2 = 0), and then the components of the overall
elastic tensor assume limit values which corresponds to the overall constants of a bi-phase systems
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composed by the electrolyte and the 1nterconnection In this limit case, the value of the constants
Clq1pq2 increase as pg increases at constant pc, (see Figs. 3a and 4a) and increases as Pc decreases
at constant pg (see Figs. 3b and 4b). The values of the ratios p(é) and ,OC considered for the analysis,
associated to realistic materials commonly used in battery devices fabrication (Bacigalupo et al.,
2014), imply that E3 > Es and consequently for the values of the Poisson’s ratios here assumed

C’%mz > Cg pgo- This means that the phase 3 is stiffer with respect the phase 2, and then the

values of the constants Cig, pq, evaluated for ¢ = 0 are smaller than the values assumed for ¢ — oco.
As a consequence, the components of the overall elastic tensors increase monotonically with the
geometric ratio ¢ (see Appendix D for the analytical expressions of the overall elastic constants in
the limit cases ¢ =0, ( — +00).

The contour plots reported in Fig. 5, show the variation of 6'1111 (Fig. 5a) and 6’1212 (Fig. 5b)
with p(g and pg obtained for fixed values of the geometric parameters ¢, 5; and of the Poisson’s

ratios. We can observe that for a constant value of the ratio p%), as p%? increases the overall elastic

constants increases monotonically. Conversely, if the values of p(g is fixed, Ci111 and Cia1o initially

increase pcg with and then after reaching a maximum decrease.

The variation of the normalized component of the overall thermal dilatation tensor &i; with
the ratio ¢ is reported in Fig. 6. The curves reported in Fig. 6a have been obtained assuming the
values v, = 0.3, vy = 0.25, v3 = 0.25, o2 = 5/13, p = 31/26, 8, = 5/88, p2 = 25/26 and different
values for pca@: pg@ = 109/130, p%@ = 2/5, pg@ = 6/5, p%@ = 8/5, whereas the plots shown in Fig. 6b
correspond to p@ = 109/130 and p@ = 25/26, p@ = 1/2, p@ = 3/2, p2 = 2. The behaviour of
other component @go is not reported because it is qualitatively similar to those detected for a;.
It can be observed that for ¢ — 0, the limit values assumed by &1; become higher as pg@ decreases
maintaining constant pg@ (see Fig. 6a), and increases as ps increases maintaining constant pg@ (see
Fig. 6b). Conversely, for ( — +oo, the limit value of &y increases as pa increases maintaining
constant p2, (see Fig. 6a) and increases as o2 decreases maintaining constant p& (see Fig. 6b).
It can be observed that in the cases where ap > as, then &4, (( = 0) > &;q, (( = +00). As a
consequence, the overall thermal dilatation constants increase monotonically with ¢. Conversely,
for iy < o3 the components &;,, decreases monotonically as ¢ increases (see Appendix D for the
analytical expressions of the components of the overall thermal dilatation tensors in the limit cases
¢=0,(— +0).

The contour plots reported in Fig. 7, show the variation of a&;; (Fig. 7a) and aos (Fig. 7b)
with pg) and pg@ obtained for constant values of the geometric parameters (, §1, p(g, p(é) and of the
Poisson’s ratios. We can observe that for a constant value of the ratio pg), the components of the
overall thermal dilatation tensor increase monotonically as pg increases. Conversely, for a constant
value of pg), a11 and @igo decrease monotonically with pg).

The variation of the normalized components of the overall heat conductivity tensor K11 and
Ky with the ratio ¢ is reported in Figs. 8 and 9. The results reported in Figs. 8a and 9a have
been obtained considering the value p% = 7/50, and different values for the ratio p%: ,0% =

53/480 1/20,7/50,1/5, whereas the plots shown in Figs. 8b and 9b correspond to pK = 53/480
and pK = 7/50 5/50,53/480, 1/5 It can be observed that for ¢ — 0, the limit values assumed by
K and K55 become higher as pK decreases maintaining constant pK (see Fig. 8a), and increase
as p J increases maintaining constant pK (see Fig. 8b). Conversely, for { — 400, the limit values
of K17 and Ki; increase as p% increases maintaining constant p%, (see Fig. 9a) and increase as pg@(

12



decreases maintaining constant p% (see Fig. 9b). It can be noted that in the cases where Ky > Ks,
then K4, (¢ = 0) > Ky, (¢ — +00). Consequently, the components of the overall heat conduction

tensor increase monotonically with ¢. Conversely, for Ky < Kj; the components K4, decreases
monotonically with ¢ (see Appendix D for the analytical expressions of the components of the
overall heat conduction tensor in the limit cases ¢ =0, ¢ — +00).. R

The contour plots reported in Fig. 10, show the variation of Ki; (Fig. 10a) and K (Fig. 7b)
with pg"){ and p% obtained for constant values of the geometric parameters ¢ and §;. We can observe
that for a constant value of the ratio p?{, both the components of the overall heat conduction tensor
increase monotonically as pg@( increases. For a constant value of p?‘?’(, K11 decrease monotonically with
p%, whereas the behaviour of Ko is characterized by the presence of a maximum in p% = pg‘?mm.
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Figure 3: Dimensionless constant 6’1111 vs. the geometric ratio ¢ obtained assuming v; = 0.3,
vy = 0.25, v3 = 0.25, §; = 5/88, p(g =5/13 and : (a) p(g = 5/13 and different values of the ratio
p(g: p(é? = 31/26 red line, p(g? =1 blue line, p(g = 3/2 green line, p(g? = 2 black line. (b) p(g =5/13
and different values of the ratio p(g = 31/26: p(g = 5/13 red line, p(g = 1/10 blue line, p(g =1/5
green line, p(é) = 3/10 black line.
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Figure 4: Dimensionless constant Cj212 vs. the geometric ratio ¢ obtained assuming 11 = 0.3, v, =
0.25,v3 = 0.25, & = 5/88,p2 = 5/13 and : (a) p2 = 5/13 and different values of the ratio p2:
p(g = 31/26 red line, p(g = 1 blue line, p(g = 3/2 green line, p(g = 2 black line. (b) p(g =5/13 and
different values of the ratio p(é? = 31/26: p(g = 5/13 red line, p(g = 1/10 blue line, p(g = 1/5 green
line, p(g = 3/10 black line.
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Figure 5: (a): variation of the dimensionless constant Ci111 with the ratios p%) and p%) obtained
assuming v; = 0.3, = 0.25,v3 = 0.25, §; = 5/88,( = 14/5. (b): variation of the dimensionless
constant 61212 with the ratios p%) and pg) obtained assuming v; = 0.3,v2 = 0.25,v3 = 0.25,
4 = 5/88,¢ = 14/5.
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Figure 6: Dimensionless component &;; vs. the geometric ratio ¢ obtained assuming v; = 0.3, v =
0.25,v3 = 0.25,/)%) = 5/13,/)%) = 31/26,%, = 5/88 and: (a) p2 = 25/26 and different values of the
ratio p@: p2 = 109/130 red line, 2 = 2/5 blue line, 2 = 6/5 green line, pQ = 8/5 black line.
(b) p© = 109/130 and different values of the ratio p2: p@ = 25/26 red line, p2 = 1/2 blue line,
pg) = 3/2 green line, pg) = 2 black line.
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Figure 7: (a): variation of the dimensionless constant &;; with the ratios pg) and pg) obtained
assuming v, = 0.3,vy = 0.25,13 = 0.25, §; = 5/88,¢( = 14/5,p2 = 5/13,p2 = 31/26. (b):
variation of the dimensionless constant &s2 with the ratios pg) and pg) obtained assuming v, =
0.3, = 0.25,13 = 0.25, §; = 5/88,¢ = 14/5, p2 = 5/13, p2 = 31/26.
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Figure 8: Dimensionless component Ky vs. the geometric ratio ¢ obtained assuming §; = 5/88
and: (a) p% = 7/50 and different values of the ratio pjy: pgs){ = 53/480 red line, pg@( = 1/20 blue
line, p?( = 7/50 green line, p?i"( = 1/5 black line. (b) pg = 53/480 and different values of the ratio
p2: p2 = 7/50 red line, p2 = 3/50 blue line, )2 = 53/480 green line, p2 = 1/5 black line.
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Figure 9: Dimensionless component Koy vs. the geometric ratio ¢ obtained assuming §; = 5/88
and: (a) p2 = 7/50 and different values of the ratio p2: p@ = 53/480 red line, p© = 1/20 blue
line, pg‘? = 7/50 green line, p?a( = 1/5 black line. (b) p% = 53/480 and different values of the ratio
p%: p% = 7/50 red line, p% = 3/50 blue line, p% = 53/480 green line, p% = 1/5 black line.
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Figure 10: (a): variation of the dimensionless constant K1, with the ratios p% and p% obtained
assuming §; = 5/88,¢ = 14/5. (b): variation of the dimensionless constant Ky with the ratios p?(
and pg obtained assuming $; = 5/88,( = 14/5.

4.2 Comparative analysis: homogenized model vs heterogeneous mate-
rial

The two-dimensional three-phase layered material shown in Fig. 3 is assumed to be subjected
to L-periodic heat sources r(x;) (see Fig. 11). Two different distributions for these sources are

introduced: )
2 . i 1y12 . 1
r(z;) = (~1)"Rcos <ﬂ>e [z} =) +A+B<x—j——> , (30)
L, L, 2
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rO(z;) = (=1)"Rcos (277119@)7 (31)

L;
with n, 3 € Z* — {0}, constants A and B are reported in the Appendix C. The body forces are
assumed to vanish: b;(x;) = 0.

The homogenized field equations of the first order continuum are solved analytically considering
the overall thermoelastic constants (26), (27) and (28). The obtained results are then compared
with those derived by means of a fully heterogeneous modelling procedure. Due to the periodicity
of the heterogeneous material heat sources, only an horizontal (or vertical) characteristic portion
of length L of the heterogeneous model is analyzed (Fig. 3/(b)). In order to assess the reliability
of the homogenized model, the macroscopic displacement, temperature fields are compared to the
corresponding fields in the heterogeneous model by means of the up-scaling relations (see Bacigalupo
et al. (2016)). The solution of the heterogeneous problem with £—periodic heat sources is computed
via FE analysis with periodic boundary conditions on the displacement and temperature fields.
For the considered two-dimensional body subject to heat sources along the orthotropy axes, the
homogenized field equations (20) and (21) take the form:

0%U; 00
1337 8%? 77 8£Cj
0%e
ijiale +r= O7 (33)
J

where: j = 1,2, j # p are not summed indexes. The following conditions are imposed on the
periodic domain £ reported in Fig. 1:

Uj(z; =0) =Uj(z; = L;j), ©O(z; =0)=06(z; = L;), (34)
oU; U ;

Cijji 875 o @ijO(x; = 0) = Cjjj; 37; . —a;;O(z; = Lj), (35)
00 00

e, | T N s, . (36)

Considering heat sources 7(x;) of the form (30), the macroscopic displacements and temperature
fields are given by

Uj((Ej) = Qo(il,'j) + Ql(l'j).’ﬂj + QQ(LCJ)‘%? + Qg.’t? + 941’;1 + 951'?, (37)

O(x;) = No(x;) + A (w5)x; + Aol + Azaf + Ma, (38)

where explicit expressions for functions 2; and A; are reported in Appendix C. The non-vanishing
components of the macroscopic stress fields and heat flux are given by

Yjj = CjjjiEjj — 0,  Xpp = CppjjEjj — appO, (39)
where E;; = 0U;/0z; and
00
Qj :—ija7j, (40)
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Figure 11: (a): Variation of the localized heat source 7 with the normalized space variable ; with
j =1,2reported for n = 1,8 =5 (red line) and n = 2,8 = 5 (black line); (b): Variation of the not
localized heat source 7 with the normalized space variable 2; with j = 1,2 reported forn =1,8 =5
(red line) and n = 2, 8 = 5 (black line).

where j = 1,2, p=1,2 and j # p are not summed indexes. For j = 1 and p = 2 the source r varies
along x;—direction, whereas for j = 2 and p = 1 r depends on zs.
In the case where the heat source ro(xz;) assumes the form (31), the solution becomes:

RL? 2N ;
U () = (~1)" ——2 J 41
J (x]) ( ) 4KJJ7T27L2 cos L] ’ ( )
a;;RL? 2TNT;
00 = (1)L J 42
- 8K mnChyyy o\ Ly ) (42)

and X9, a;ld @) are determined by means of the relations (39) and (40). Introducing Z; = x;/L;
and 7 =r/R,

. — UikiiChjsi OKj;

j ’ é = ) (43)
J L;’?Rajj L?R
- oUu. - - C. .. OU. ~
S=22 -0, 5,=2ppiZd Zwg (44)
9z; Cijjjs 05 ajj
where ¥, = > 5 and %, = >or s and j = 1,2 and p = 1,2 are not summed indexes. For
73 ROijL? pp Rozij?, ’ ’ '
j =1 and p = 2 the source r varies along x; —direction, whereas for j = 2 and p = 1, r depends on
Z2.
5 Qj
= 45
Q] LjRﬂ ( )
where Qj =5z and j = 1,2 is a not summed index.
Ly

The analytical solutions (37), (38), (41) and (42) derived by the sotution of the homogenized
fields equations (32) and (33), is now compared with the results obtained by the finite element
analysis of the heterogeneous problem corresponding to the tri-phase layered material reported in
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Fig. 3 subject to localized and not localized heat sources which profiles are shown in Fig.11. More
precisely, finite element analysis of the heterogeneous problem, performed by means of the program
COMSOL Multiphysics, provides the local fields v, 6 which are used together with the up-scaling
relations (Bacigalupo et al., 2016) for obtaining the macro-scopic fields U; and ©. These macro-
scopic quantities are compared with the analytical expressions (37), (38), (41) and (42). Plane
strain condition has been assumed for both the solution of the homogenized equations and the
heterogeneous problem, and the same values for the Poisson’s coefficients and geometrical ratio §;
introduced in Section 4.1 are assumed.

In Figs. 12 and 13, the normalized macroscopic temperature field O and displacement component
U, evaluated using analytical expressions (38), (42) (37) and (41) and considering localized and
not localized heat sources varying along x;—direction are reported as functions of the normalized
spatial coordinate #; = x1/Ly (continuous lines in the figure) and compared with the numerical
results obtained by the heterogeneous model (diamonds in the figure). The following values for
the geometrical parameters, the ratios between the elastic and of thermodiffusive constants have
been assumed: L/e = 10, ¢ = 7/5 p@ = 5/13, p2 = 31/26, p@ = 7/52, p2 = 5777/62400,
p% = 7/50, ,0%@( = 53/480. The macroscopic displacement and temperature fields are plotted for
the characteristic portion of length Ly = L, corresponding to z1/L =1 (i. e. for 0 < zy/L < 1),
and the values for the wave number n = 1,2 and 8 = 5 have been considered for defining the heat
sources. Observing the curves, for both the quantities ©(z/L) and U, (z1/L), a good agreement
is detected between the results derived by means of the first order homogenization approach and
those obtained by the heterogeneous model.

The variation of the normalized macroscopic temperature field © and displacement component
Us, evaluated using analytical expressions (38), (42) (37) and (41) and considering localized and not
localized heat sources varying along x,—direction is reported in Figs. 14 and 15 in terms of the
normalized spatial coordinate Zo = xo/Ls (continuous lines in the figure) and compared with the
numerical results obtained by the heterogeneous model (diamonds in the figure). Similarly to the
previous case, the macroscopic displacement and temperature fields are plotted for the characteristic
portion of length Lo = L, corresponding to zo/L =1 (i. e. for 0 < z5/L < 1), and the values for
the wave number n = 1,2 and 8 = 5 have been considered for defining the heat sources. Observing
the curves, for both the quantities ©(x2/L) and Uy(z2/L), a good agreement is detected between
the results derived by the solution of the homogenized field equations and those obtained by the
heterogeneous model.

In Figs. 16 and 17 the normalized components of the microscopic heat fluxes ¢; and ¢o induced
respectively by localized (for n = 1 and 8 = 5) and not localized (for n = 1) heat sources varying
along x;—direction are plotted as functions of x; and x5. The following intervals for the variables
have been considered for these plots: 2¢ < z1 < 3¢, 0 < 29 < €. The components of the microscopic
stress fields 611, 612, 022, generated by localized and non localized thermal sources varying along
x1—direction are reported as functions of z; and zo in Figs. 18, 19 and 20. The same ranges
of values considered for the heat fluxes have been assumed for x; and z5. In Figs. 21 and 22
the component ¢, of the microscopic heat flux and the component G295 of the microscopic stress
fields due to localized and non localized heat sources varying along x,—direction are reported as
functions of 1 and x5. The following intervals for the variables have been considered for these
plots: —e < 21 <0, 26 < x5 < 3¢.

The microscopic heat flux and stress fields illustrated in Figs. 16-22 have been evaluated by
means of the down-scaling relations reported in Appendix E in terms of perturbation functions,
microscopic thermoelastic constants and macroscopic fields.

20



0.010 0.02
0.005 0.01
. 0
-0.01
~0.005
A -0.02
~0.010= :
0 02 04 06 08 . | 0 0.2 0.4 06 08 ; 1

Figure 12: (a): Normalized macroscopic temperature field © due to the localized thermal source
r(x1) vs. 1 plotted for different values of wave number n = 1,8 =5 (red line), n = 2, 8 = 5 (black
line). (b): Normalized macroscopic temperature field © due to the not localized thermal source
r(z1) vs. I plotted for different values of wave number n = 1 (red line), n = 2 (black line). The
heterogeneous model (diamonds) is compared with the homogenized first order model.
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Figure 13: (a): Normalized macroscopic displacement field Uy due to the localized thermal source
r(z1) vs. Z1 plotted for different values of wave number n = 1,3 =5 (red line), n = 2, 3 = 5 (black
line). (b): Normalized macroscopic displacement field U; due to the not localized thermal source
r(z1) vs. &1 plotted for different values of wave number n = 1 (red line), n = 2 (black line). The
heterogeneous model (diamonds) is compared with the homogenized first order model.
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Figure 14: (a): Normalized macroscopic temperature field © due to the localized thermal source
r(xa) vs. &g plotted for different values of wave number n = 1,8 =5 (red line), n = 2, 8 = 5 (black
line). (b): Normalized macroscopic temperature field © due to the not localized thermal source
r(x2) vs. Ta plotted for different values of wave number n = 1 (red line), n = 2 (black line). The
heterogeneous model (diamonds) is compared with the homogenized first order model.
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Figure 15: (a): Normalized macroscopic displacement field Uy due to the localized thermal source
r(z2) vs. Zo plotted for different values of wave number n =1, 5 =5 (red line), n = 2, 8 = 5 (black
line). (b): Normalized macroscopic displacement field U; due to the not localized thermal source
r(xg) vs. o plotted for different values of wave number n = 1 (red line), n = 2 (black line). The
heterogeneous model (diamonds) is compared with the homogenized first order model.

22



(a) Max: -0.0110 (b) Max: 5.603e-3

-4 -3
N x10 x10
45 0.02 45
4 4
0.04 4
35 35
3 -0.06 3 2
25 25
~E N8
=2 =1
2 2
-0.08 0
15 1.5
- 1
1 0.1 2
0.5 0.5
0 0.12 0
0.850.9095 1 1.051.11.151212513135 0.850.90.95 1 1.051.1 1.151.21.251.3 1.35
X 0.14 Xy
(m) %10 Min: -0.142 (m) %107 Min: -5.603¢-3

Figure 16: (a): Variation of the normalized component of the microscopic heat flux ¢; due to
the localized thermal source r(x;) with 1 and 22 (2¢ < 27 < 3¢ and 0 < x2 < ¢) plotted for
n =1, = 5. (b): Variation of the normalized component of the microscopic heat flux go due
to the localized thermal source r(x1) with ; and 25 (26 < 1 < 3¢ and 0 < z2 < €) plotted for
n=10=5.
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Figure 17: (a): Variation of the normalized component of the microscopic heat flux ¢; due to the
not localized thermal source r(z1) with 21 and z2 (26 < 21 < 3¢ and 0 < 22 < €) plotted for n = 1.
(b): Variation of the normalized component of the microscopic heat flux ¢» due to the not localized
thermal source r(x1) with 1 and 25 (26 < 21 < 3e and 0 < x4 < ¢) plotted for n = 1.
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Figure 18: (a): Variation of the normalized component of the microscopic stresses 11 due to
the localized thermal source r(x;) with 1 and x2 (2¢ < 21 < 3¢ and 0 < x2 < ¢) plotted for
n = 1,8 =5. (b): Variation of the normalized component of the microscopic stresses dao due to
the localized thermal source r(x1) with x; and 23 (2¢ < ;1 < 3¢ and 0 < x9 < ¢) plotted for
n=10=5.
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Figure 19: (a): Variation of the normalized component of the microscopic stresses 12 due to
the localized thermal source r(x;) with 7 and x2 (26 < 21 < 3¢ and 0 < x2 < ¢) plotted for
n = 1,8 =5. (b): Variation of the normalized component of the microscopic stresses 511 due to
the not localized thermal source r(x1) with 21 and x5 (26 < 1 < 3¢ and 0 < z2 < €) plotted for
n=1.
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Figure 20: (a): Variation of the normalized component of the microscopic stresses a2 due to the
not localized thermal source (1) with 21 and 25 (26 < 21 < 3¢ and 0 < z2 < ¢) plotted for n = 1..
(b): Variation of the normalized component of the microscopic stresses 12 due to the not localized
thermal source r(x1) with 1 and 2 (26 < 21 < 3e and 0 < x4 < ¢) plotted for n = 1.
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Variation of the normalized component of the microscopic heat flux ¢» due to

the localized thermal source r(x2) with 1 and xo (—¢ < 1 < 0 and 2¢ < z9 < 3¢) plotted for
n=1,8=75. (b): Variation of the normalized component of the microscopic stresses ¢, due to the
not localized thermal source r(zy) with 1 and 23 (—e < 21 < 0 and 2¢ < z9 < 3¢) plotted for

=1
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Figure 22: (a): Variation of the normalized component of the microscopic stresses 22 due to the
localized thermal source r(zs) with x; and z2 (—¢ < z1 < 0 and 2¢ < z9 < 3e) plotted for
n = 1,8 =5. (b): Variation of the normalized component of the microscopic stresses dao due to
the not localized thermal source r(x3) with 21 and zs (—¢ < 1 < 0 and 2¢ < x5 < 3¢) plotted for
n=1.

5 Conclusions

Exact expressions for the components of the elastic, thermoelastic and heat conduction tensors
of first order thermoelastic continuum equivalent to multi-layered battery devices have been de-
rived by means of a general asymptotic homogenization procedure. An ideal periodic multi-layered
thermoelastic composite material reproducing the planar geometry of an idealized battery device
is introduced. Down-scaling relations associating the microscopic displacements and temperature
fields to the corresponding macroscopic fields are introduced. Fluctuations functions representing
the effects of the microstructures on the microscopic displacements and temperature are defined.
These fluctuations functions are obtained through the solution of non-homogeneous problems on
the cell defining periodic boundary conditions and normalization conditions (up-scaling relations).
Fields equation for the homogenized thermoelastic Cauchy material are derived, and exact expres-
sions for the overall elastic and thermodiffusive constants of the first order continuum equivalent
to the periodic battery-like composite medium are obtained.

The developed general procedure is used to determine analytically the components of the overall
elastic, thermoelastic and heat conduction tensors corresponding to a three-phase layered thermoe-
lastic composite of interests for SOFCs devices fabrication. The fields equation of the first order
equivalent thermoelastic media are solved considering periodic heat sources, which localized and
unlocalized profiles are representative for modelling some thermal effects detected in real situations.
The solution of the homogenized field equations is compared with the numerical results obtained
by finite elements analysis of heterogeneous model, performed assuming periodic body force and
heat sources acting on the considered three-phase layered composite. The good agreement detected
between the analytical solution of the homogenized first order equations and the numerical results
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obtained by the heterogeneous model represents an important validation of the accuracy of the
proposed asymptotic homogenization approach. The small discrepancy detected between the an-
alytical solution of the homogenized equations and the results provided by finite element analysis
of the heterogenoeus material can be further reduced considering higher order approximations of
the field equations of infinite order (Bacigalupo et al., 2016), or alternatively introducing non-local
elastic constitutive relations (Bacigalupo and Gambarotta, 2010, 2011, 2012).

The general method illustrated in the paper provides a synthetic description of the size effects
on thermomechanical properties of both lithium ions batteries and solid oxide fuel cells devices
(SOFCs), avoiding the numerical analysis of heterogeneous materials and the connected challenging
computational problems. The estimation of these effective thermoelastic properties can be used in
order to optimize the structural performances of the fuel cells in operative scenarios where, due to
the high operational temperatures (800-1000 degrees), the components of these devices are subject
to severe thermomechanical stresses which can cause damage and crack formation compromising
their performances. Consequently, evaluating the overall thermoelastic properties of these battery
devices through the asymptotic homogenization approach illustrated in the paper can represent an
important issue in order to predict damaging phenomena and to improve the efficient design and
manufacturing of these systems. The asymptotic homogenization model proposed in this work can
be generalized in order to study particular interface properties which commonly characterize SOFC
devices. For modelling this cases, additional thin layers with specific thermo-mechanical properties
reflecting the interface characteristics can be introduced. This can be done by conveniently relaxing
the interface conditions of the cell problems, which define the fluctuation functions at different
orders.
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A Explicit coefficients involved in perturbation functions

In this Appendix, the explicit expressions for coefficients AE;,)C’@, Bi(;,l’@, flz(-l)’@, Bi(l)’@, Pi(l)’@ and
le)’@ involved in the perturbation functions (23), (24) and (25) are reported.
The coefficients AS,)C@ and BS;@, associated to the perturbation functions (23), assume the
form:
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The coefficients Agl)@, Bi(l)’@

, associated to the perturbation functions (24), take the form:

30



@)
ADO _ C2222 53 %2 C2222 53 0‘22 + 02222 52 azz C2222 52 Qigy |
2
©) ©)]
C3290 (Co220 83 + 02222 52

5

i@ (05— ) s
477 =5 ® o
02222 83+ 02222 82

S (ag‘% — a%)
C2®222 53+ 050222 52 7
BS)@ _ (252 + 85) (((Cz(%zz 0‘% - 02@%22 a%) s2+ (02222 agDz 0%22 O‘%) §1) $3+ (Cg@m 04?2 - C;%gz CV%) 51 <§2)
202%22 (C%m 53+ 02222 §2) (51 +25 + §3)

A ® ® @
S1 (((02222 Qoo — 02222 a22) S2 + 02222 a22 02222 0‘22) 31) 53 + (02222 Qg — 02222 azz) S1 52)

Ao _

3

OO _ _
2 o b
2222 ( 9222 3 + 02222 52) (51 + 2382 + 83)
B1LO® 51 (((02%22 a% B 02222 %2) ( 2222 %2 %22 04%@2) ) S3 + (02222 0492 093222 a%) 51 §2)
2 = -

2C50 (02222 55+ O 32) (81 +282 4 83)
(49)

Finally, the coefficients Pi(l)’® and le)@ associated to the perturbation functions (25), are
given by:

31



N ~ ® ® A ® ® -
pLO _ 7K§D2 Kz% 83 + K% K% 59 — K55 K55 89 — K55 Koy 83
2 - ’
KD (KS 55+ K 5)

(KD - KD) 5
K53+ K93y
5 (K - K9)

JRGICI

PO = - ®
K3 83 + Kg; 52
o @8+5) (KR KR - KR KR) s + (KH KD~ K KD) 51) sa+ (KR KS — KR KS) 152)
G 2K (KR 85+ KR 52) (51 + 282+ 55) ’
e 5 (((ESES - KQKS) 5o+ (KR KD — KR K) 1) 35 + (KD K — KR KS) 515)
P 2K (K 85 + KD 2) (31 + 285 + 49) ’
wo 5 ((ESES - K KS) 5o+ (KR KD — K KQ) 1) 35+ (KD K - K KS) 51 52)
Lo _ _

2K (KB + KGa) (1 + 23 + )
(50)

B Explicit coefficients involved in overall thermoelastic con-
stants

In this Appendix, the explicit expressions for coefficients A? ihk Aijnks ij, Ayj, ij and =5 involved
in the overall thermoelastic constants of the first order equivalent continuum (26), (27) and (28)
are reported.

The coefficients A?.,  and A;;nx, associated to the components of the overall elastic tensor (26),
ijhk J
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assume the form:
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The coefficients ij, A;j, associated to the components of the overall thermal dilatation tensor
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(27), are given by:
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The coefficients ij and =59, associated to the components of the overall heat conduction tensor
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(28), are given by:
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C Explicit coefficients involved in the analytical solution of
the homogenized field equations

The constants A and B involved in the heat source expressions (30) are determined by imposing
the following conditions:

or
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It is important to note that the continuity condition r(z; = 0) = r(z; = L;) is automatically
satisfied by the structure of the function r. A and B are given by:
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B = R(—1)”52e-% (59)

Expressions (58) and (59) have been used for solving the homogenized fields equations (32) and
(33) and then deriving the macroscopic fields (37) and (38). The functions Q;(z;) and A;(x;)
involved respectively in the macroscopic displacement and temperature fields are here reported.
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The functions Q,(x;) takes the form:
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72005, K57 23 55
W) + 180i773n62erf<i(w22—;27m))

- 75”554eff(i(i522_ﬁ2m> - 757564erf<i(i522—;27m))

- 907T§526ff(i(w22_52m)> - 907T§62erf<i(i522—;27m))

n2n2 52 _x2n
4
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a
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The functions A;(xz;) are given by:

1 _x%n?
AO(.’L‘J‘) =D — m {—Q’L'L?WSRTLG 52 erf(

iLjBQ —2iB%x; + 2L;mn
2L;8

2,2 : 2 - 02
9 1 g —min? ZLjﬁ —QZﬁ T; +2Lj7rn
+ Lim2>Rf% 7 erf( 2L,

+ QiLZW_%Rne%m erf iLjBQ — Qiﬁ%j — 2L
J 2L;pB

wn(2i82 —7n) iL-B2 — 232, — 2L
+ L?’]T%RB2€ 52 erf(l iP ;BLJ‘ZJ §TN

i(z'L?/;z,41'52L]»mj+4¢/a2m§+4mL§+8ijzj) }
)

i(iL; 8% —2ip% ;4L jmn) (—2x;+ L)

2 412
) —2L;Rpe i

2 412
—2L;Rpe L3 (69)

! _=22 (L 8% — 2if%x; + 2L,
Al(l’j):Dz‘F%{—LJ‘Tr;Re B2 erf(l ]ﬁ ;ijlg‘i‘ ]7'("(7/)_

1 mnQi2-mn) iL;3% — 2if3%x; — 2L;mn
—L;mze 2 erf( 1 QLJ-B] ] , (70)

R i(82+4mn) 1 _xZn? i(iB? — 2mn)
A = — 3 3 ﬁ2 f o= =T
2 128K, {Be 1 + 3rze er( 53

2252 (732
+ 371'56_526rf<l(252;27m)) } , (71)

B2R  in?+amn)
= e 4 s
6L;Kj;
B?R  i82+4mn)
7f€ P ,
1212K,

As

Ay =

where the constants D and Dy assume the form:

L2R x2n2 (2rn—B2)(27n+52) (2rn—pB2)(27n+52)
Di=——+1 _e B2 ] B R L Y- + 180(—1 Hngde™ apz

2 27 532 27 2 2
- 180w3n4erf<5+2ﬁ“m) - 1807rgn4erf<5;5”m> - 180i7r3n,62erf<5";5”m>

__ A2 2 2 % _p2 2
- 180i7rgn626rf<ﬂ ;—5 mm) - 7577564erf<ﬂ _;ﬁ”m> + 75772%,6’4erf<ﬂ ;:3 mn)

—9O7r§ﬂ2erf(522ﬂ2i7m) + 9077%626rf<52;rﬁ2i7m) } , (74)
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LR : _ w22 ) 2_2 2 252 - 02 2
Dy = J {Qiﬂgne B2 erf(M) — Qinine B2 erf(M>

8K, 33 28 2p
wn(2i2 —mn) 32 — 9 wn(2ip2 —mn) 32 19
— inine 52 erf u — 2ir%ne 52 erf M
23 23
_ w2n2 i32 _ 2 _ x2n2 - 02 2
— 73 % Terf(zﬁ 53 ﬂ-n) — 3n7 8% Terf(zﬁ ;_5 ﬂ-n)
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D Three-phase vs bi-phase layered materials: limit values for

the components of the overall thermoelastic tensors

In this Appendix, the explicit expressions for the components of the overall elastic, thermoelastic
and heat conduction tensors in the limit cases ( = 0 and ( — +oo are reported. For ( = 0 and

¢ — +00, the components of the effective elastic tensors become

091102%2231 + 20%1102%2252 - (0922)%2 + (0%22)2§2

Cii((=0) = ;
Cao
_ 091102%22§1 + 05?110%22@% - (ngz)zgl + (0?122)%1,
C1111(¢ = +00) = 5 :
C5299
_ _ 02%22(20%2232 + 0%2231),
C202(¢ =0) = o) ;
C3202
CD,,(CD,,85 + C2,,5
Cara(C = +00) = 5920 ( 2222@3 2222 1);
C5290
_ _ 0%22(20%2232 + 052)22231),
Ch122(¢ =0) = o ;
C3292
C2,,(C9,,85 +C9,,5
Craa(C = +00) = 1122( 2222@3 2222 1);
C5290
_ _ 0312(20%1252 + 6%1231),
Ci212(¢ =0) = o ;
Chorz
C9,,(CY,,85 +C9,,5
Crana(¢ = +00) = 1212( 1212@3 1212 1).
Chaie

In the same limit, the components of the overall thermoelastic tensor assume the form:

O] (ON @ @ 2 ©) (OFN @ @ 2
CTi90005581 — Cli9905581 + Cgo0iy 81 + 202222041152,

a11((=0)= ;
Coo
O] @ 4 ©) ® 4 O] @ 4 ©) ® 4
CT12209581 — Cli9005981 + Ci999071 81 + C9000071 83

all(C - +OO) = 0) )
U309
(¢ =0) = 204%31 — oz%él + 204%2)232;

O[QQ(C — +OO) = 20[9231 — OL%§1 + Oé%gg.

(78)

(80)

(81)

Finally, for ( = 0 and { — +o00, the components of the ffective heat conductivity tensor are

given by
(¢ =0)= K93 +2K%3,;
Ki1(¢ — +00) = K94 + K933,
(C=0) = KQs1 + 2K3 8;
(¢ = 400) = K93, + K9 3s;
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E Down-scaling relations for stress fields and heat flux

In this Appendix the down-scaling relations for the stress fields and heat flux determined sub-
stituting the displacements and temperature down-scaling laws (9) and (10) into the constitutive
equations (5) and (6) are reported. The down-scaling relations for o;; (a:, &= %) and g; (:187 = %)
assume the following form:

xr c 1 oU,(x ~(1 c
Oij (w,E = ;) = {Cijkr {(5kp5rq1 + ngpzlﬂa;(ql) + ngr)Q(fB)} - az‘jQ(w)}ga;/ +
2
e (1) (2) 9°Up(x) c1) | o2 00(x) o) 00(x)
+e { ijkr [(6T‘I2Nkpql + Nkpqmz,r)m + (6rq1Nk + NklIl,T) 3%1 17 q1 ﬁqu bz
3
2 [ e @) (3) O Up(x) @ o | 0°0)
te { 1jkr [(6’"‘13Nkpq1q2 + Nkpqlqzqsm)aqu 8@125‘1‘,13 + (6”13qu1 + quuza r)aqu 31’(12
2
—af M, ro } +0(”) (84)
04, g, E=x/<
(26 =) = - |55, + MDH20) ke 4@ 9%0@)
q; (CC,S = 8) = |:Kij(5(11] + Mqlﬁj) 04, Eea)e € Kij(5Q2JMQ1 + Mqﬂz;j)amqlaxqz fex)e
2%0(x)
—¢? |:Kie'§'3M(2) +M(3) } + O(e3). 85
J( Ja3 g1z QIQ2QS;J)awaaxq2axq3 P (€) (85)
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