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Abstract 

The in-plane acoustic behavior of non-centrosymmetric lattices having nodes endowed 
with mass and gyroscopic inertia and connected by massless ligaments with asymmetric elastic 
properties has been analysed through a discrete model and a continuum micropolar model. In the 
first case the propagation of harmonic waves and the dispersion functions have been obtained by 
the discrete Floquet-Bloch approach. It is shown that the optical branch departs from a critical 
point with vanishing group velocity and for the considered cases this branch is decreasing for 
increasing the norm of the wave vector from the long wave limit. A micropolar continuum 
model, useful to approximate the discrete model, has been derived through a continualization 
method based on a down-scaling law from a second-order Taylor expansion of the generalized 
macro-displacement field. It is worth noting that the second order elasticity tensor coupling 
curvatures and micro-couples turns out to be negative defined also in the general case of non-
centrosymmetric lattice. The eigenvalue problem governing the harmonic propagation in the 
micropolar non-centrosymmetric continuum results in general characterized by a hermitian full 
matrix that is exact up to the second order in the wave vector.  

Examples concerning square and equilateral triangular lattices and their acoustic 
properties have been analysed from both the exact Lagrangian model (within the assumed 
hypotheses) and the micropolar approximate model. The analysis of the influence of the model 
parameters on the acoustic behavior has shown that the non-centrosymmetry topology of the 
lattice may contribute to obtain low frequency band gaps. As occurs in the Lagrangian model, the 
optical dispersion branch from the micropolar model of the considered cases turns out to be 
decreasing for increasing the norm of the wave vector from the long wavelength limit. On the 
contrary, it may be easily verified that if the elastic second order positive defined tensor is 
assumed, derived by a first order expansion of the rotation field, the optical branch turns out to be 
approximated by the equivalent micropolar continuum with a lower accuracy. Finally, in 
consideration of the negative definiteness of the second order elastic tensor of the micropolar 
model, the loss of strong hyperbolicity of the equation of motion has been investigated. 
 

Keywords: Beam-lattices; Cell topology; Dispersive waves; Metamaterials; Band gaps; 
Micropolar model. 
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1. Introduction 

 Lattice materials have proved interesting due to their acoustic properties, as already noted 

by the seminal book of Brillouin (1953). The periodic microstructure of these heterogeneous 

materials may strongly affect the elastic wave propagation (Hutchinson and Fleck, 2006) with 

pass and stop bands in the acoustic spectrum, namely frequency intervals over which the wave 

propagation can or cannot take place respectively. These effects were obtained, among the others, 

by Martisson and Movchan, 2003, and Phani et al., 2006, who analysed the influence of the beam 

lattice topology on the band gap formation. Several studies involving the lattice topology on the 

acoustic band gap formation have been focused on both auxetic lattices, because of their 

dispersive properties (see Krödel et al., 2014), and on periodic lattices with prescribed defects in 

the microstructure (Kutsenko, 2015). Further studies extended the field of investigation to chiral 

and anti-chiral lattices. From the fundamental paper by Prall and Lakes, 1997, a further 

contribution concerns the computational investigation on hexachiral and tetrachiral lattices by 

Spadoni et al., 2009, and Tee et al., 2010, respectively, who obtained stop bands in the Bloch 

spectrum. Chiral dynamic microstructures have been also successfully developed by Carta et al., 

2014, through gyroscopes embedded into the junctions of a doubly periodic lattice. Further 

improvements in the design of low frequency band gaps have been obtained through the insertion 

in the lattice structure of local resonators based on the idea by Liu et al., 2000, which provide 

tunable band gaps (see for reference Huang et al., 2009, Liu et al., 2011, Lai et al., 2011, and 

Bacigalupo and Gambarotta, 2016). By virtue of their tunable structure, optimal design has been 

carried out to these locally resonant systems to control the acoustic properties (see for instance 

Krushynska et al., 2014, and Bacigalupo et al., 2016a,b). It is also worth to note that locally 

resonant band gaps have been obtained by Wang et al., 2015, by tuning the average connectivity 

network of the lattice without embedding additional resonating units. 

 Despite the wide variety of lattice topologies considered in the literature, it should be 

noted that all these are characterized by periodic centrosymmetric cells. Conversely, the acoustic 

behavior of non-centrosymmetric lattices seems not yet analysed (with the exception of 

Martinsson and Movchan, 2003), although this asymmetric topology could in principle contribute 

to useful and interesting improvements of the acoustic performances of lattice microstructures. 

Such circumstance motivates the present study, which is firstly focused on lattices represented as 

a discrete Lagrangian system of nodes endowed with mass and gyroscopic inertia, which are 
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connected by massless ligaments with asymmetric elastic properties apt to obtain periodic non-

centrosymmetric cells. For these systems, the propagation of harmonic waves and the dispersion 

functions are determined through the discrete Floquet-Bloch approach. 

 Although the discrete model presents the considerable advantage to take into account the 

microstructural effects in a more accurate way, in particular when the wavelength is comparable 

to the microstructure size, on the other hand, dynamic equivalent continuum models, which are 

reliable in the long-wave approximation of the lattice model, present the advantage to be based 

on macroscopic parameters that may allow a simpler dynamic description.  In case of beam-

lattices connected by massless ligaments, Suiker et al., 2001, derived the equation of motion of 

the equivalent Cosserat continuum through a continualization method (Metrikine and Askes, 

2002), namely by replacing the degrees of freedom of the neighboring cells in the discrete 

equation of motion with the second-order Taylor approximation of the macro-field continuous 

variables. With a similar continualization technique and truncating to exclude all the terms 

( )3∈  from the equation of motion, ∈ being the smallness ratio between the ligament and the 

structure size, Gonella and Ruzzene, 2008, obtained the set of PDEs of a homogenized equivalent 

classical continuum. Here, the truncation process excludes the rotational inertia of the nodes and 

the micro-couples from the equation of motion by virtue of the static condensation of the nodal 

rotation. Lombardo and Askes, 2012, applied a continualization technique with a fourth-order 

Taylor expansion of the macro-displacements and, after eliminating the nodal rotational dofs, 

obtained a continuum model with higher gradient inertia and stiffness terms. To reduce the 

possible numerical instability in the dispersion relations due to higher order gradients, the order 

of spatial derivatives in the PDE has been reduced through the Padé approximation of the 

differential operators.  A refinement of the continualization technique applied to square lattices 

endowed of rotational inertia of the nodes has been proposed by Vasiliev et al., 2008, 2010, 2014, 

to obtain multi-field continuum models, which approximates the dynamic behavior of the 

Lagrangian one also in the short-wavelength propagation. Liu et al., 2012, have analysed 

hexachiral lattices and obtained the elastic moduli of the equivalent isotropic micropolar 

continuum and the dispersive curves showing explicitly the chiral effects. Nevertheless, they 

pointed out the problem already stressed by Bazant and Christensen, 1972, and Kumar and 

McDowell, 2004, regarding some ambiguities on the choice of the elastic moduli associated to 

the curvatures in the static micropolar homogenization of lattices. 
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 This point, that seems rather central in the dynamics micropolar homogenization, has 

been analyzed in the second part of the paper. In this regard, it should be emphasized that several 

equivalent micropolar continuum models proposed in literature for the static analysis are based 

on down-scaling laws which approximate the microscopic displacement field through a first order 

expansion of the macroscopic displacement field. The overall-elastic moduli are obtained by the 

generalized principle of Hill-Mandel (see for example Chen et al., 1998, Pradel and Sab, 1998 

Onk, 2002). As pointed out by Kumar and McDowell, 2004, the constants relating the micro-

couples and the curvatures so obtained differ from those derived considering a second order 

expansion of the generalized micro-displacement field. While in the first case these elastic moduli 

are positive defined, on the other side the positive definiteness is not assured in the second 

approach. A circumstance that does not occur in some other static homogenization techniques 

(Dos Reis and Ganghoffer, 2012). To better understand this issue, also in the more general case 

of microstructures with non-centrosymmetric cells, the equations of motion of the equivalent 

micropolar continuum have been derived through the continualization technique, by retaining the 

second-order terms in the expansion of the macro-displacement field. Hence, the elastic constants 

corresponding have been identified. Therefore, considering the same approximation of the micro-

displacement field, the same elastic constants of the equivalent micropolar continuum have been 

identified also through the generalized Hill-Mandel criterion according to Kumar and McDowell, 

2004, and the equations of motion have been obtained by means of the Hamilton extended 

principle. The equations of propagation of harmonic waves and the dispersion functions derived 

by the discrete Lagrangian model have been compared with those from the homogenized model 

having a negative defined constitutive tensor relating micro-couples to micro-curvatures and 

finally with the corresponding ones derived assuming the positive definite tensor, namely those 

obtained by the first order approach and commonly considered in standard micropolar 

homogenization. Finally, two lattice typologies have been analysed to show both the influence of 

the non-centrosymmetric topology of the periodic cell on the elastic wave propagation and Bloch 

spectra and the accuracy and the validity limits of the considered micropolar homogenization 

technique. 
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Figure 1: Examples of periodic lattices with lumped masses: (a) rectangular (n=4);                     

(b) rectangular (n=6), (c) triangular (n=6), (d) rectangular deformed (n=4). 
 
 
 
2. Lagrangian modeling of two-dimensional periodic beam-lattices 
 

Let us consider 2-D periodic cellular solids made up of elastic slender ligaments rigidly 

connected at the nodes of the lattice, as shown in the examples of Figure 1. The considered 

topology has the property that a periodic cell may be identified with a node located at its centre 

and connected to the surrounding ones through an even number n of ligaments. The i-th ligament 

has length il , variable section width it , unit thickness and Young modulus sE . Moreover, the i-

th ligament has a corresponding opposite ligament j N i= +  ( 2N n= ) with respect to the node, 

having the same length and Young modulus as shown in Figure 2. The section width is assumed 

to be variable along two opposite ligaments, with ( ) ( )'t A t A≠ , A and A’ being two points on the 

ligament symmetric with respect to the central node (see Figure 2), and ( ) ( )'t B t B=  to 

guarantee the continuity of the section width at the cell boundary. Because of this assumption, the 

cell is no longer centrosymmetric. Finally, each node is assumed having mass M and moment of 
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inertia 2J Mr= , r being the radius of gyration, while the ligament mass is ignored because the 

present investigation is focused mainly to the propagation of low-frequency dispersive waves.  

 

 
Figure 2: Symmetric points at the ligaments in the periodic cell. 

 

 Based on the previous assumption, a Lagrangian model of the beam lattice is derived with 

the motion of each node described by a generalized in-plane displacement, namely a translation 

and a rotation. The Lagrangian function T= − Π  of the lattice, T being the kinetic energy and 

Π  the total potential elastic energy, is obtained by summing up the contributions of all its 

periodic cells. To derive the Euler-Lagrange equation of motion of each node, let us consider a 

reference periodic cell located at the origin O with nodal displacement  ( )tu  and rotation ( )tφ  

(see Figure 3). The kinetic energy of the reference cell is  

      ( ) 2 21 1,
2 2

T M Jφ φ= +u u 

   .            (1) 

To evaluate the elastic potential energy stored in the n ligaments surrounding the reference cell, 

let us consider the i-th ligament connecting the central node to the i-th adjacent one with 

generalized displacement iu  and ,  iφ (see Figure 3(a)). Here, the vector  i il=x n  connects the 

centre of the reference cell to the centre of the i-th adjacent one, being  in  the unit vector 

associated to the i-th ligament and 3i i= ×t e n  unit normal vector. The ligament extension is 

( )di i i∆ = − ⋅u u n , while the transverse relative displacement between the ends of the ligament is 

( )ti i i=∆ − ⋅u u t  as shown in Figure 3(b). The mean rotation of the i-th ligament is i ti lψ = ∆   
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and the end rotation of the ligament at the central and i-th nodes are ti
i

il
ϕ φ ψ φ ∆

= − = −  and 

ti
i i i i

il
ϕ φ ψ φ ∆

= − = − , respectively.  

 
Figure 3: (a) The i-th ligament and the connected nodes; (b) ligament 

deformation; (c) ligament nodal couples. 

 

The potential elastic energy due to axial strain di
i

il
ε ∆

=   of the i-th ligaments takes the form 

  ( ) ( ) [ ]( )21 1, , ,
2 2

i i
ai i i n di n i i i iK Kφ φΠ = ∆ = − ⊗ −u u u u n n u u ,           (2) 

where i
nK  is the axial stiffness of the i-th ligament. The potential elastic energy due to bending of 

the ligament is written as  

 

( ) ( )

( ) ( ) ( )

( )

2 2
 11 12 22

2

11 12

2

22

1, , , 2
2

1 1 12
1=  ,
2 1

i i i
bi i i i i

i i
i i i i i i i

i i i

i
i i i

i

K K K

K K
l l l

K
l

φ φΠ = ϕ + ϕϕ + ϕ =

      
 φ − − + φ − − φ − − +     
      
 

  
+ φ − −  

  

u u

t u u t u u t u u

t u u

  



         (3) 

11
iK  , 11

iK , 11
iK  being the nodal stiffnesses as shown in Figure 3(c). 
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The Lagrangian function is obtained as the sum of the contributions of all the elementary cells  

  ( ) ( ) ( ) 
1

1, , , , , , ,
2

n

s ai i i bi i i
i

T φ φ φ φ φ
=

 = − Π + Π   
 

∑ ∑u u u u u

  ,          (4) 

where the index denoting the cells has been omitted. The Euler-Lagrange equations of motion of 

the reference cell located at O are derived by the Lagrangian function (4) and depend on the 

generalized displacement and velocity of the node of the same cell and on the generalized 

displacement of the n surrounding nodes in the following form 

 
( ) ( ) ( )11 12 22

2

1 11 12 12 22

2

M
               

i i i
i
n i i i i in

i

i i i i
i

i i i
i i

K K KK
l

K K K K
l l

=

  + +
⊗ + ⊗ − +  

   − = 
+ + − φ − φ  

∑
n n t t u u

u 0
t t

 ,          (5) 

  ( )11 12
11 12

1
0

i in
i i

i i i
i i

K K K K J
l=

 +
− − φ − φ − φ = 

 
∑ t u u 

   .              (6) 

In case of ligaments with uniform section width t, the equation of motion are simplified as 

follows: 

 ( ) ( ) ( ) ( )
2 2

1
M

2

n
i

s i i i i i i i
i i i i

lt t tE
l l l

φ φ
=

         ⊗ + ⊗ − − + − =      
         

∑ n n t t u u t u 0 ,          (7) 

 ( ) ( )
3 2

1
2 J 0

2 6

n
i i

s i i i
i i

l ltE
l

φ φ φ
=

   
⋅ − − + − =  

  
∑ t u u   .               (8) 

The propagation of a harmonic plane wave along axis i  is investigated by substituting the 

following displacement field ( )ˆ exp i tω= ⋅ −  U U k x  in the system of three ODE’s per node, 

q=k i  being the wave vector and q, ω  and { } { }1 2
ˆ ˆˆ ˆ ˆ ˆ

T T
T u uφ φ= =U u denoting the wave 

number, the circular frequency and the polarization vector, respectively.  A system of three linear 

homogeneous equations is obtained 
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( ) ( ) ( )

( ) ( )

211 12 22
22

1

11 12 12 22
1

2 ˆ1 exp M

1 ˆ                   exp  ,

i i in
i
n i i i i i

i i

n
i i i i

i i
i i

K K KK i
l

K K K K i
l

=

=

  + + ⊗ + ⊗ − ⋅ − ω +     
   

  + + + + ⋅ φ =   

∑

∑

n n t t k x I u

k x t 0

     (9)

   
( ) ( )

( )

11 12 11 12
1

2
11 12

1

1 ˆexp

ˆ    + exp  0 .

n
i i i i

i i
i i

n
i i

i
i

K K K K i
l

K K i J

=

=

  + − + ⋅ +   
  + ⋅ − ω φ =   

∑

∑

k x t u

k x



                    (10) 

If the analysis is focused on the case where to the i-th ligament with nodal stiffnesses i
nK , 

11
iK , 12

iK , 22
iK  corresponds the opposite j-th ligament ( j N i= + ), with j i= −x x  and j i= −t t  and 

reversed nodal stiffnesses j i
n nK K= , 11 22

j iK K= , 22 11
j iK K= , 12 12

j iK K= ,  the system (9) and (10) 

takes the form of an eigenproblem ruled by a Hermitian matrix 

   ( )
2

2
2

ˆMˆ, ˆJLag T T

i
i C

ω
ω

  − +  ω = =  − − φ    

uA I a b
C k U 0

a b
,          (11) 

being the following terms defined as: 

     

( ) ( ) ( )

( )

( )

( )

11 12 22
2

1

11 12

1

11 12 22
2

1

11 22 12
1

22 1 cos  ,

1 cos  ,

2 sin  ,

2 cos  .

i i iN
i
n i i i i i

i i

i iN

i i
i i

i i iN

i i
i i

N
i i i

i
i

K K KK
l

K K
l

K K K
l

C K K K

=

=

=

=

 + +
= ⊗ + ⊗ − ⋅    

 
 −

= − ⋅   
 

 + +
= ⋅ 

 

 = + + ⋅ 

∑

∑

∑

∑

A n n t t k x

a k x t

b k x t

k x

         (12) 

When considering centrosymmetric cells, where to the i-th ligament with nodal stiffnesses 
i
nK , 11

iK , 12
iK , 22

iK  corresponds the opposite j-th ligament with nodal stiffnesses j i
n nK K= , 

11 22 22 11
j i j iK K K K= = =  and 12 12

j iK K= , the terms in (12) take the simple form:  



 

10 
 

             

( ) ( ) ( )

( )

( )

11 12
2

1

11 12

1

11 12
1

2 2 1 cos  ,

 ,

2 sin  ,

2 cos  .

i iN
i
n i i i i i

i i

i iN

i i
i i

N
i i

i
i

K KK
l

K K
l

C K K

=

=

=

 +
= ⊗ + ⊗ − ⋅    

 
=

 +
= ⋅ 

 

 = + ⋅ 

∑

∑

∑

A n n t t k x

a 0

b k x t

k x

         (13) 

Finally, in case of ligaments with uniform section width t, one obtains: 

              

( ) ( ) ( )

( )

( )

2

1

3

1

3
2

1

1 cos  ,

 ,

1 sin  ,
2

1 2 cos  .
6

n

s i i i i i
i i i

n

s i i i
i i

n

s i i
i i

t tE
l l

tE l
l

tC E l
l

=

=

=

    
 = ⊗ + ⊗ − ⋅           

=

 
= ⋅ 

 

 
= + ⋅    

 

∑

∑

∑

A n n t t k x

a 0

b k x t

k x

                   (14) 

The angular frequency ( )ω k , in the following called dispersive function, and the 

polarization vector ( )Û k  of a travelling wave with wave vector k are obtained by solving the 

eigenvalue problem (11), from which three dispersive branches are obtained. In the long 

wavelength limit 0→k , for which =A 0 , = =a b 0  and 

( )0 11 22 12
1

0 2
N

i i i

i
C C K K K

=

 = → = + + ∑k , a double vanishing solution is obtained, from which 

two acoustic branches depart. A further non-vanishing solution  0
opt

C
J

ω =  is obtained that  

defines a critical point in the band structure, having vanishing group velocity 

( ( )
0

0g

d
v

d
→

ω
= =

k

k
k

), from which an optical branch departs.  
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3. Micropolar dynamic model for periodic lattices  

 The wave propagation in the discrete model analysed in the previous section may be 

approximate through the homogeneous continuum model here presented. As it will be shown in 

the examples of Section 4, the derived continuum is proved to be reliable also in case of 

intermediate wave-length in comparison to the characteristic length of the lattice. 

3.1 Continualization method 

The discrete equation of motion (5) and (6) are transformed into the equation of motion of 

a continuum model by replacing the dof’s of the Lagrangian model with a continuous generalized 

displacement field ( ), tv x  and ( ), tθ x . This field represents the generalized displacement of the 

reference cell located at x at time t so that the displacement of the i-th adjacent cell is assumed 

according to the following second-order expansions 

  
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 3

2 3

1,t ,t + ,t : +  ,
2
1,t ,t + ,t : +   ,
2

i i i i i i

i i i i i i

t l l l

t l l lφ θ

= + ∇ ⊗

= + ⋅ ∇ ⊗

u v x H x n H x n n

x x n x n n



χ χ
         (15) 

= ∇H v  and ∇H  being the displacement gradient and the second gradient, θ= ∇χ  and ∇χ  the 

curvature and its gradient tensor, respectively (see for instance Suiker et al., 2001, Vasiliev et al., 

2010). An approximate formulation of the discrete equation of motion (5) and (6) is now obtained 

by considering the second order expansion of (15), namely  

( ) ( ) ( )

( )

( )

211 12 22
2

1 211 12 12 22

211 12

2 1+ :
2

M     ,
1               + :
2

1+ :
2

i i i
i
n i i i i i i i i in

i

i i i i
i

i i i i i i i
i i

i i

i i i i i i
i

K K KK l l
l

K K K K l l
l l

K K l l
l

θ θ
=

  + +  ⊗ + ⊗ ∇ ⊗ +    
    − = 

+ +   − − + ⋅ ∇ ⊗    

+
∇ ⊗

∑
n n t t Hn H n n

v 0
t t n n n

t Hn H n n





χ χ

( )1 2
11 12

  

0  .
1                                   + :
2

n

i i i
i i i i i

J
K K l l

θ
θ θ=

   +  
   − =

  − − + ⋅ ∇ ⊗  
  

∑
n n n



χ χ

   (16)

Since it has been assumed that the ligaments i and j N i= +  have opposite direction, it follows 

j i= −n n  and j i= −t t , some terms in (16) turn out to be vanishing, namely 
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( ){ }
1

n
i
n i i i

i
K

=

⊗ =∑ n n Hn 0 , ( )11 12 22

1

2i i in

i i i
i i

K K K
l=

 + +
⊗ = 

 
∑ t t Hn 0 , 11 12 22

1

2i i in

i
i i

K K K
l

θ
=

 + +
= 

 
∑ t 0  

and 12
1

0
n

i
i i

i
K l

=

 ⋅ = ∑ nχ  , and the equation of motion may be rewritten as follows 

( ) ( )( )

( )( ) ( )

2
11 12 22

11 22
11 12 22

2

               2  : M  ,
2

N
i i i i
n i i i i i i i i i

i

i iN N
i i i

i i i i i i
i i

K l K K K

K KK K K l

 ⊗ ⊗ ⊗ + + + ⊗ ⊗ ⊗ ∇ + 

 −
− + + ⊗ + ⊗ ⊗ ∇ − = 

 

∑

∑ ∑

n n n n t t n n H

t n t n n v 0



χ χ
  (17) 

 
( )( ) ( )

( ) ( )

11 22
11 12 22

1 1

2
11 12 22 12

1 1

2 :
2

                   2  : 0 .

i iN N
i i i

i i i i i i
i i

N N
i i i i

i i i
i i

K KK K K l

K K K K l Jθ θ

= =

= =

 − + + ⊗ + ⊗ ⊗ ∇ +    

 − + + − ⊗ ∇ − = 

∑ ∑

∑ ∑

t n H t n n H

n n



χ

        (18) 

In case of centrosymmetric lattice ( 11 22
i iK K= ), the above equations turn out to be similar to those 

obtained by Vasiliev et al., 2010. Moreover, if the term ( )2l  in equation (18) are excluded, the 

rotation θ  may be derived from (18) and after substituting in (17) one obtains a set of two 

equation of motion similar to those obtained by Gonella e Ruzzene, 2008.  

 By introducing the macro-rotation tensor W  with components 3jh jhw θ= −∈ , jkl∈  being 

the Levi-Civita symbol, the following properties are obtained: i iθ = ⋅t Wn , 0i i⋅ =n Wn , 

( ) ( )i i i i i i⊗ ⊗ ⊗ ∇ = ⊗t t n n W t n χ  and  ( )i i i i⊗ ⊗ ⊗ ∇ =n n n n W 0 .  Therefore, once 

considered the Cosserat asymmetric strain tensor ( )θ−Γ H W= ,  equation (17) may be rewritten 

in the form 

                    
( ) ( )( )

( )

2
11 12 22

11 22

2

               : M  .
2

N
i i i i
n i i i i i i i i i

i

i iN

i i i i
i

K l K K K

K K l

 ⊗ ⊗ ⊗ + + + ⊗ ⊗ ⊗ ∇ + 

 −
+ ⊗ ⊗ ∇ − = 

 

∑

∑

n n n n t t n n

t n n v 0





Γ

χ
         (19) 

Since the following relations apply ( ) ( ) :i i i i i i i i⊗ ⊗ ⊗ ∇ = ∇ ⊗ ⊗ ⊗  t t n n t n t n Γ Γ  and 

( ) ( ):i i i i i i⊗ ⊗ ∇ = ∇ ⊗ ⊗  t n n t n nχ χ , the equation of motion (19) may be rearranged in the 
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compact form 

     ( )s s∇ + = ρΓ v χ   ,                      (20) 

where the fourth and third order elasticity tensors of the equivalent homogeneous continuum are 

introduced, respectively, according to the following definition 

 ( ) ( )( )2
11 12 22

1 2
N

i i i i
s n i i i i i i i i i

icell

K l K K K
A

 = ⊗ ⊗ ⊗ + + + ⊗ ⊗ ⊗ ∑ n n n n t n t n  ,       (21) 

   ( )11 221
2

i iN

s i i i i
icell

K K l
A

 −
= ⊗ ⊗ 

 
∑ t n n  ,          (22) 

cellA  being the area of the periodic cell and cellM Aρ =  the mass density of the equivalent 

homogeneous continuum. It is worth to note that the form (21) guarantees that the fourth order 

tensor is endowed of the major symmetry. Moreover, from equation (20), the asymmetric macro-

stress tensor 

      ,s s= +T Γ  χ             (23) 

may be identified, having components  

  
( ) ( )( )

( )

2
11 12 22

11 22

1 2  

1                     .
2

N
i i i i i i i i i i i i

hk n i h k p q h k p q pq
icell

i iN
i i i

i h k q q
icell

K l n n n n K K K t n t n
A

K K l t n n
A

σ

χ

 = + + + γ + 

 −
+  

 

∑

∑
        (24) 

Let consider now the in-plane couple due to the shearing stresses 

( ) ( )

( )

( ) ( )

21 12 3

11 22
11 12 22

11 22
11 12 22

:

1 1              = 2   
2

1 1            = 2 :    
2

jh j h s s

i iN N
i i i i i i

p q pq i q q
i icell cell

i iN N
i i i

i i i i
i icell cell

K KK K K t n l n
A A

K KK K K l
A A

σ σ

χ

θ

− = −∈ ⊗ + =

 − + + γ + =    
 −

+ + ⊗ − +    
 

∑ ∑

∑ ∑

e e Γ

t n H n 

χ

χ

 

 .

        (25) 

By comparing this equation with the equation of motion (18) one obtains 
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( ) ( )

( ) ( )

211 22
12

1 1

3

1 1 :
2

                                : 0 ,

i iN N
i

i i i i i i i i
i icell cell

jh j h s s

K K l K l
A A

Iθ
= =

 −  ⊗ ⊗ ∇ − − ⊗ ∇ +     
 

−∈ ⊗ + − =

∑ ∑t n n H n n n

e e Γ

 

 

χ χ

χ

      (26) 

where the density of rotational inertia 
cell

JI A=  has been defined. From the following identity 

( ) ( ) ( ) :⊗ ⊗ ∇ − = ⊗ ⊗ ∇ = ∇ ⊗ ⊗  t n n H n t n n n t n   χ Γ Γ  and noting from definition (22) 

that  

               ( )11 221
2

i iN
T
s i i i i

icell

K K l
A

 −
= ⊗ ⊗ 

 
∑ n t n  ,                               (27) 

the first term in (26) may be identified as ( ) T
s∇  Γ . Moreover, once defined the second order 

elasticity tensor 

    ( )2
12

1

1 N
i

s i i i
icell

K l
A =

 = − ⊗ ∑E n n  ,          (28) 

symmetric and negative defined, the second term in (26) may be identified as ( ) s∇ E χ .  

Therefore, the second equation of motion (26) takes the form  

  ( ) ( ) ( )3  :    ,    , 1, 2T
s s jh j h s s I j hθ∇ + −∈ ⊗ + =E e e Γ 

  Γ χ χ =    ,       (29) 

from which the second constitutive equation may be identified  

       T
s s= +m E Γ χ  ,                      (30) 

that provides the couple-stress vector of the equivalent continuum. The equation of motion (20),  

(29) and the constitutive equations (23) and (30) correspond to those ones of an equivalent 

micropolar model defined in terms of the generalized displacement field ( ), tv x  and ( ), tθ x , the 

asymmetric strain tensor ( ), txΓ  and the curvature vector ( ), txχ , the asymmetric stress tensor 

( ), tT x  and the couple-stress vector ( ), tm x .  In general, a model without centro-symmetry is 

obtained in which the coupling between asymmetrical strains and curvatures is ruled by the 

elasticity tensor s . This tensor vanishes in case of centrosymmetric cells, a circumstance which 

is realized in the adopted cell topology when, for each pair of opposites ligaments, the stiffness 
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terms are assumed to be equal 11 22 11 22
i i j jK K K K= = = . 

 Finally, it must be emphasized that the second order elasticity tensor sE  coupling the 

couple-stresses to the curvatures in the micropolar continuum is negative defined as shown from 

equation (28). Bazant and Christensen (1972) highlighted this point in deriving a homogenized 

micropolar continuum for rectangular trusses and proposed an interpretation based on the 

generalized macro-homogeneity criterion, later applied by Kumar and McDowell (2004). In the 

next sub-section this approach is extended to non-centrosymmetric lattices. 

 

3.2 Extended Hamiltonian derivation of the micropolar model 

Let us consider a cluster C of periodic cells having characteristic size L l  with respect 

to the characteristic cell size l. The associated Lagrangian function is C C CT= − Π , where the 

kinetic energy is written in the form 

     21 1   ,
2 2C

C

T I daρ θ = +  ∫ v v 

             (31) 

being ρ  the average mass density and I  the density of rotational inertia already defined. The 

strain energy CΠ  stored in the cluster is obtained as the superposition of the elastic potential 

energy stored in the ligaments, which is due to the ligament extension and bending, respectively. 

The elastic potential energy stored in the ligament connecting the reference cell centered in x to 

the i-th adjacent one is approximated through the second order expansion of the generalized 

displacement field (15). The axial extension of the i-th ligament is approximated as 

 ( ) ( ) ( ) ( )
2 2

: :
2 2
i i

d i i i i i i i i i i i i i
l ll l∆ ⊗ + ∇ ⊗ ⊗ = ⊗ + ⊗ ⊗ ∇H n n H n n n n n n n n  Γ Γ ,      (32) 

being 0i i⋅ =n Wn  and the symbol   denoting the triple scalar product (i.e. 

( ) ,i jh i j ha b c d⊗ ⊗ =A b c d ) .  Moreover, the transverse displacement is approximated as   

    ( ) ( )
2

:
2
i

ti i i i i i i
ll ⊗ + ∇ ⊗ ⊗∆ H t n H t n n  .         (33) 

The approximations of the end rotations are derived by noting that i iφ = ⋅t Wn  and  
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( )i i i∇ ⊗ ⊗ =W t n n n χ , and depend on the tensor of asymmetric strain, on the curvature and on 

their gradients in the forms 

 
( ) ( )

( ) ( ) ( )
2

:   ,
2

:  + : .
2 2

ti i
i i i i i

i

ti i i
i i i i i i i i i i i

i

l
l

l ll
l

φ

φ

∆
ϕ = − = − ⊗ − ∇ ⊗ ⊗

∆
ϕ = − = − ⊗ − ∇ ⊗ ⊗ ⋅ ∇ ⊗

t n Γ H t n n

t n Γ H t n n n n n



 + χ χ

        (34) 

The elastic potential energy stored in the cluster due to the ligaments extension in the cells is 

derived by equation (2) and takes the form 

  ( ) ( )
2

2

1

1 1 :
2 2 2

n
i i

Ca n i i i i i i
i cellC

lK l da
A=

 
Π ⊗ + ⊗ ⊗ ∇ 

 
∑∫ n n n n n Γ Γ  .        (35) 

By disregarding the term depending on the gradient of the tensor of asymmetric strain, this 

contribution to the elastic potential energy takes the following quadratic form in Γ   

  ( )2

1

1 1:  
2 2

n
i

Ca n i i i i i
i cellC

K l da
A=

 
Π ⊗ ⊗ ⊗ 

 
∑∫ n n n n Γ Γ  .         (36) 

Likewise, by  substituting (34) in (3), one obtains the elastic potential energy stored in the cluster 

depending on the bending of the ligaments connecting the reference cell to the i-th surrounding 

one 

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2

11

12

2

22

22

:   
2

2 :   
21 1

2 2
:  + :

2 2

:  + :
2 2

i i
i i i i i

i i
i i i i i

Cb
cell i i

i i i i i i i i i

i i i
i i i i i i i i i

lK

lK

A l ll

l lK l

  
 − ⊗ − ∇ ⊗ ⊗ + 
  


 + − ⊗ − ∇ ⊗ ⊗ ⋅ 
 Π ≅ 

 
− ⊗ − ∇ ⊗ ⊗ ⋅ ∇ ⊗ + 

 

 
− ⊗ − ∇ ⊗ ⊗ ⋅ ∇ ⊗ 

 

t n Γ H t n n

t n Γ H t n n

t n Γ H t n n n n n

t n Γ H t n n n n n









+ χ χ

+ χ χ

1
 

n

iC

da
=







  


 
 
 
 
 
  

∑∫
.           (37) 

Because the assumption on the stiffnesses of opposite ligaments i-th  and j-th ( j N i= + ) with 

j i= −x x  and j i= −t t , namely j i
n nK K= , 11 22

j iK K= , 22 11
j iK K= , 12 12

j iK K= , the summations over n 

of dyadic products of an odd number of vectors in , it   in (37) are equal to zero. Since the 
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continuum model is here limited to the classical micropolar form (see for reference Altenbach et 

al., 2011), i.e. to a first gradient model, the terms in (35) and (37) depending on the second 

gradients of the generalized displacement ∇H and ∇χ  are disregarded, apart from the term in 

(37) involving the product of W ( −Γ H W= ) and ∇χ  , namely  

( ) ( )
2

:  :
2
i

i i i i
l 

⊗ ∇ ⊗    
 

t n W n nχ . Then, the total potential energy in the cluster due to the 

ligament bending may be written as follows 

 

( ) ( )
( ) ( )

( ) [ ]
( ) ( ) ( )
( ) ( )

2
11 12 22

2
12

22
11 22

1
2

11 22

11 22

2 2 :

2 : :
1 1  
2 2

: :

2 :

i i i
i i

i
i i i i i

N
i i

Cb i i
i cellC

i i
i i i i i

i i
i i i i

K K K

K l

K K l da
A

K K l

K K l

=

 + + ⊗ +   
 + ⊗ ⋅ ∇ ⊗ +       
 Π + + ⋅ + 
 

+ + ⊗ ∇ ⊗ +       
 

+ − ⊗ ⊗  

∑∫

t n Γ

t n W n n

n

t n W n n

Γ t n n



χ

χ

χ

χ

 .         (38) 

Noting that the second and fourth terms in (38) may be written as  

( ) ( ) ( ) ,:  :  :  i i
i i i i i i pq p qn nθ θ θ⊗ ∇ ⊗ = ∇ ⊗ =      t n W n n n nχ χ , by the application of the 

Divergence theorem (see Bažant and Christensen (1972) and Kumar and McDowell (2004)) one 

obtains 

 
( ) ( )

( )

,
1

2
, , ,

1 1 1

:  :     

        boundary terms   ,

N N
i i

i i i i p q pq
i iC C

N N N
i i i i
p q p q p q p q i

i i iC C C

da n n da

n n da n n ds da

θ θ

θ θ θ θ ν

=

= = =∂

⊗ ∇ ⊗ = =      

= − + = − ⋅ +

∑ ∑∫ ∫

∑ ∑ ∑∫ ∫ ∫

t n W n n

n

χ

χ
  

being the boundary terms defined on the boundary of C. The bending elastic potential energy in 

the cluster is written in the quadratic form involving the asymmetric strain and the curvature  

 
( ) ( ) [ ]

( ) ( )

2 22
11 12 22 12

1 11 22

2 :1 1  
2 :

i i i iN i i i i
Cb i ii cellC i i i i

K K K K l
da

A K K l=

 + + ⊗ − ⋅ +   Π =  
+ − ⊗ ⊗  

∑∫
t n Γ n

Γ t n n

χ

χ
 .       (39) 

By summing the elastic potential energy due to the axial extension (36) to that associated to the 

bending (39) of the ligaments, the elastic potential energy of the cluster C is obtained, which 

results in the classical form of the non-centrosymmetric micropolar continuum 
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   ( )1 : 2 :
2C s s s

C

daΠ = + ⋅ +∫ EΓ Γ χ χ  Γ χ    ,          (40) 

with the elasticity tensors given by (21), (22) and (28). 

It must be remarked that assuming a first order expansion of the generalized 

displacements in (15) implies the same fourth (21) and third order tensors (22), while the second 

order tensor, associated to the curvature vector, differs from (28) and results to be positive 

definite in the form 

   ( ) ( )2
11 22

1

1
2

N
i i

s i i i
icell

K K l
A

+

=

 = + ⊗ ∑E n n  .          (41) 

 The Lagrangian takes the following form 

  21 2 :   boundary  terms
2 s s s

C

I daρ θ = + − − ⋅ + ∫ v v E



 
  Γ Γ χ χ −  Γ χ  ,       (42) 

where C  is the considered cluster of cells. By applying the extended Hamilton principle, the 

equation of motion of the micropolar continuum is obtained independently on the boundary terms 

in equation (42) and are those of the micropolar continuum already obtained in equations (20) 

and (29).  

 From the definition (40), the density sπ  of the elastic potential energy is obtained, and 

hence the constitutive equations 

        ,        Ts s
s s s s

∂π ∂π
= = = =

∂ ∂
T m EΓ + χ χ + Γ

Γ χ
     .        (43) 

The components of the asymmetric stress tensor T  are denoted with 11σ , 12σ , 21σ , 22σ , while 

those of the vector of couple stress m  are denoted with 1m  e 2m , which are energetically 

conjugated to the components 1,111 uγ = , 22 2,2uγ = , 12 1,2uγ φ= + , 21 2,1uγ φ= −  of the 

asymmetric strain tensor Γ  and to the components 1 ,1χ φ=  and  2 ,2χ φ=  of the curvature χ .   
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4. Harmonic wave propagation in the equivalent micropolar model 

The propagation of elastic waves in the two-dimensional micropolar continuum is 

obtained considering the harmonic motion ( )ˆ exp i tω= ⋅ −  v v k x  and ( )ˆ exp i tθ θ ω= ⋅ −  k x , 

where the polarization vector is defined by the collection of v̂  and θ̂ . From this assumption it 

follows ( )ˆ exp i tω= ⊗ ⋅ −  H v k k x , ( )ˆ exp i tω∇ = − ⊗ ⊗ ⋅ −  H v k k k x  and 

( )ˆ expi i tθ ω= ⋅ −  k k xχ , ( )ˆ expi i tθ ω∇ = ⊗ ⋅ −  k k k xχ . The equation of motion  (17) and 

(18) take the homogeneous linear form 

( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

2
11 12 22

211 22
11 12 22

1 ˆ: 2

1 1ˆ ˆ ˆ+ :  2    ,
2

N
i i i i

i i n i i i i i
icell

i iN N
i i i

i i i i i i
i icell cell

K l K K K
A

K K l i K K K
A A

θ θ ω

 ⊗ ⊗ ⊗ + + + ⊗ +    

 −
⊗ ⊗ + + + − ρ =   

 

∑

∑ ∑

n n k k n n t t v

n n k k t k n t v 0

   (44) 

( ) ( ) ( )( ){ }

( ) ( ) ( ){ }

11 22
11 12 22

1 1

2 2
11 12 22 12

1

1 1ˆ ˆ: 2  
2

1 ˆ ˆ                   + 2 :  0  .

i iN N
i i i

i i i i i i
i icell cell

N
i i i i

i i i
icell

K K l i K K K
A A

K K K K l I
A

θ ω θ

= =

=

  −   ⊗ ⊗ − + + +         

+ + − ⊗ ⊗ − =

∑ ∑

∑

n n k k t v k n t v

n n k k

  

   (45) 

The eigenvalue problem ( ) ˆ,Hom ω =C k V 0  is obtained, being { }ˆˆ ˆ T= θV v , with the same 

structure of problem (11) and ruled by a hermitian matrix  ( ),Hom ωC k  with submatrices  

( ) ( ) ( ) ( )( )

( ) ( )

( )( )

( ) ( )

2
hom 11 12 22

11 22
hom

hom 11 12 22

2
hom 11 12 22 12

1 : 2    ,

1 :     ,
2

1 2    , 

1 2 :

N
i i i i

i i n i i i i i
icell

i iN

i i i i
icell

N
i i i

i i
icell

i i i i
i i i

cell

K l K K K
A

K K l
A

K K K
A

C K K K K l
A

 = ⊗ ⊗ ⊗ + + + ⊗    

 −
= ⊗ ⊗   

 

= + +

= + + − ⊗

∑

∑

∑

A n n k k n n t t

a n n k k t

b k n t

n n k



( )
1

   . 
N

i=

 ⊗ ∑ k

        (46) 

The secular equation provides three dispersion functions ( )hω k , h=1,3. In the long-wave 

asymptotic, namely for 0→k , two acoustic branches are obtained together with an optical 
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branch departing from a critical point at frequency  ( ) 0,hom 00opt
C C

I Jω → = =k  that 

equals the corresponding one from the discrete model described in Section 2. By comparing the 

submatrices (46) with those (12) and noting that ( ) ( ) ( )1cos 1 :
2i i i⋅ − ⊗ ⊗k x x x k k  and 

( )sin i i⋅ ⋅k x k x , it follows that ( ) ( ) ( )3
hom,  ,Lag cellAω = ω +C k C k k , therefore  the hermitian 

matrix of the Lagrangian system ( ),Lag ωC k  may be approximated by the corresponding one 

from the micropolar homogenized model considering the second order expansion of the matrix  

in the wave vector k. It may be easily verified that if the elastic positive defined second order 

tensor s
+E  given by (41) is assumed, that is derived by a first order expansion of the rotation field, 

the optical branch turns out to be approximated by the equivalent micropolar continuum with a 

lower accuracy. This circumstance is shown in the examples of Section 5 where the possibility of 

loss of strong hyperbolicity in cases of wave propagation for the examples considered is 

investigated. The problem associated to the negative definiteness of the second order tensor 

remains open for the equilibrium problems of micropolar continua equivalent to the lattice, as 

remarked by Kumar and McDowell (2004) and taken up by Liu et al. (2012) for chiral lattices. 

 

5. Examples 

The sensitivity of the acoustic band structure and the formation of stop bands on the non-

centrosymmetric topology of the lattice is analysed and discussed with reference to some 

examples regarding both square and triangular lattice. Based on the non-centrosymmetric lattice 

structure assumed in Section 2, here the ligaments are assumed having a one step change in the 

thickness at midspan as shown in Figures 4 and 12. Therefore, the thicknesses are denoted by t 

and tα , respectively. The axial stiffness of the ligaments is 
( )
2
1n

E tK
l

α
α

=
+

, while the bending 

stiffness of the i-th ligament are given in the following forms:  

a) ( )
3

i
hk hk

EtK F
l

α=  , with ( ) ( )
( )

3

11 3 6

2 7

3 1 14
F

α
α

α α

+
=

+ +
 , ( ) ( )

( )
3 3

12 3 6

4 1

3 1 14
F

α α
α

α α

+
=

+ +
, 

( ) ( )
( )

3 3

22 3 6

2 1 7

3 1 14
F

α α
α

α α

+
=

+ +
 for ligaments 1, 2i =  of the square lattice (Figure 4.b) and for 
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ligaments 2, 4,6i =  of the equilateral triangular lattice (Figure 12.b), respectively; 

b) 
31i

hk hk
EtK F
lα

 =  
 

 for the ligaments 3, 4i =  of the square lattice and for ligaments 1,3,5i =  

of the equilateral triangular lattice. In the examples the centrosymmetric case ( )1α =   and 

two non-centrosymetric ones ( )2,4α =  are considered. 

 The acoustic band structures given by the discrete model formulated in Section 2 is 

represented in the Brillouin zone (see Brillouin, 1953), along the closed polygonal curve ϒ  with 

vertices identified by the values 0 1 2,  ,  ,Ξ Ξ Ξ  of the arc-length Ξ  in the dimensionless plane 

( )1 2,k l k l  (see Figures 5.c and 13.c). A compact spectral description is given in terms of the 

dimensionless frequency sE d Mω , the ratios t
l

 and ( )2

2
J r

lMl =   . 

Centrosymmetric topologies are firstly analyzed ( 1α = ) to obtain reference results. Then 

non-centrosymmetric topologies have been analyzed for the thickness ratios t l  and α . 

According to the discrete model described in Section 2, two acoustic branches are obtained 

together with an optical one characterized by a critical point for long-wave limit 0→k  whose 

frequency is ( ) 11 22 12
1

0 2
N

i i i
opt

i
K K K J

=

 ω → = + + ∑k . This angular frequency is increasing 

with the ligament thickness ratio t l  and with the stiffness step ratio α . Finally, some examples 

are considered to investigate the accuracy of the results provided by the micropolar model. As 

this model is inherently formulated for the case of moderately long waves, the comparison 

between the results by the discrete model and those by the equivalent micropolar one are shown 

in a homothetic sub-region of the reduced Brillouin zone (see Figure 5(d) and 13(d)). 
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5.1. Square lattice 

The square lattice and the periodic cell are shown in Figure 4. The geometrical data are 
2

cellA l= , 1 2 1= − =n t e  , 2 1 2= =n t e , 2 4 1= − = −t t e . Moreover, the bending stiffnesses for 

ligaments 1,i N=  are equal, namely i
hk hkK K= . 

 
 

(a) (b) 

Figure 4: Periodic non-centrosymmetric square lattice. 
 

The harmonic wave propagation of the lagrangian model is obtained by solving the eigenvalue 

problem: 

( )[ ]

( )[ ]
( )[ ] ( )

( )[ ]

( )[ ]
( )[ ] ( )

( )[ ] ( ) ( )[ ] ( ) ( ) ( ){ }

1

2 22

2

2

1 12

1

2

2 2 1 1

2

2

12 1 2

2 1 cos

0 1 cos sin
2 1 cos

2 1 cos

0 1 cos sin
2 1 cos

1 cos sin 1 cos sin

ˆ
ˆ

ˆ
ˆ

ˆ ˆ ˆ2 cos cos 2

n

n

K k l

k l k l
k l M

K k l

k l k l
k l M

k l k l k l k l J

K KiK l l
l

K KiK l l
l

K K K Ki i K K k l k l
l l l l

ω

ω

ω

− +

− −
+ − −

− +

−
+ − −

− − − −

 
 −
 




+




+ − + + −   

 





 

1

2

ˆ

ˆ  ,
ˆ

u

u

φ

=


      
   





0

   (47) 

where the parameters 11 12 22
ˆ 2i i iK K K K= + +  and ( )11 22 2i iK K K= −  are introduced, so obtaining 

the dispersion function ( )ω k . In the long wave approximation, the constitutive equation of the 

micropolar continuum is obtained from (21), (22)  and (28) and is written in the following matrix 

form  (here the Voigt notation is assumed): 
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11 11

22 22

12 12

21 21

1 1

2 2

2 0 0 0 0 0
0 2 0 0 0 0
0 0 0 0

    
0 0 0 0
0 0 0 0
0 0 0 0

Y
Y

m Y S
m Y S

σ γµ
σ γµ
σ γκ
σ γκ

χ
χ

    
    
    
    −   =    
    
    
    

−       

,         (48) 

involving four elastic moduli 122

ˆ
  ,  =   ,  Y=   ,  

2
nK K K S K

l l
µ κ= = −



. If only the first order 

expansion of the generalized displacement field were considered in evaluating the total potential 

energy stored in the lattice, equation (41) applies and the elastic modulus involving the curvature 

takes the form ( )11 22

2
K K

S + +
= . In case of symmetric macro-strain fields 12 21γ = γ  with 

vanishing curvature = 0χ , the fourth order elastic tensor for the square lattice has the elastic 

moduli 1111 2C µ= , 1122 0C =  and 1212C κ= . The approximate equivalent continuum formulation 

provides the eigenvalue problem written as follows: 

 

( )

2

2 1

2

1 2

2

2 1

2
2

2
2

2 2
1 2

2 2 2
2 1 1

2 2 2
1 1 1

ˆ2 0

ˆ0 2
ˆ2

k Yk k u

k Yk k u

Yk k Yk k I

k i
k i

i i S k k

µ κ ω ρ κ

µ κ ω ρ κ

φκ κ ωκ

− −

− =

− −

 + −     + +   
      + − + +   

0   .                    (49) 

In the long-wave limit λ → ∞  ( 0→k )  the angular frequencies are 1,2 0acoω =  and 2
opt I

κ
ω = , 

the third one being depending on the non-centrosymmetry of the periodic cell being 

11 12 22
2

2=
i i iK K K

l
κ + + . Finally, in case of centrosymmetric cell, i.e. 1α =  , the following elastic 

moduli are obtained  
2
Et

l
µ =  , 

3tE
l

κ  =  
 

, 0Y = , 
32

6
El tS

l
 = −  
 

 and the eigenproblem takes the 

form 
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( )

2

2

1

2

1 2

2

2 1

2 2
1 1
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where the ratio ( )2t lς =  has been introduced. 

        
 

 
Figure 5: Influence of the ratio t l  on the band structure of the centrosymmetric square lattice 

( 1α = ) along the closed polygonal curve ϒ  ( 3 50t l =  red; 1 10t l =  blue; 1 5t l =  green) for 
varying the rotational inertia of the nodes 2J Ml : (a)  2 1 50J Ml = , (b) 2 1 200J Ml = ;         

(c) Periodic cell and Brillouin zone (highlighted in orange the reduced Brillouin zone bounded by 
the curve ϒ ); (d) Subdomain of the reduced Brillouin zone.  
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The dispersion function of the centrosymmetric lattice ( 1α = ) obtained for the 

dimensionless moment of inertia 2 1 50J Ml =  and several values of the ratio t l  are shown in 

Figure 5.a, where no stop band is observed. In these diagrams the two acoustic branches are 

clearly shown, together with the optical one starting from the critical point 

( ) ( )
3
20opt sE d M t lω → ∝k  at 0Ξ  ( =k 0 ) with vanishing group velocity 0gv = . This 

critical frequency is increasing with the ratios t l  and α . Several crossing points between the 

optical and acoustic branches may be observed. For 1 5t l = , in the range ( )2 , 2 2 Ξ ∈ π + π  , a 

veering between the optical and the acoustic branches takes place, i.e. a repulsive phenomenon 

between the two branches. Moreover, for long wavelengths limit the optical branch is associated 

to rotational and transverse waves, while the propagation of pressure waves is obtained in the 

second acoustic branch. 

When reducing the moment of inertia of the nodes 2 1 200J Ml =  the angular frequencies 

of the optical branches increase as shown by the diagrams in Figure 5.b and band gaps appear 

when decreasing the ligament thickness (see the case 1 5t l = ).  Several crossing are detected 

between the acoustic and optical branches, while for 1 10t l =  (blu line) a veering between the 

acoustic and optical branches is observed in the third range of the domain ϒ .  

The reliability of the micropolar model obtained in Section 3 is analysed by comparing 

the dispersive functions with those from the discrete model. Being the micropolar model 

formulated for the long wavelength limit, the comparison is carried out in the subdomain of the 

reduced Brillouin zone shown in Figure 5.d. The dispersive functions in case of centrosymmetric 

lattice ( 1α = ) and for 2 1 50J Ml =  are shown in Figure 6.a. for three values of the ratio t l  for 

both the discrete model (continuous line) and the micropolar model (dashed line).  This 

comparison shows the diagrams in Figure 6.a differ less than 5%  for 2 3  l ≤ πk , i.e. 4.2lλ ≥ , 

while for 2 2  l ≤ πk , i.e. 2.8lλ ≥ , an error less than 10%  is obtained. This accuracy is 

achieved because the hermitian matrix of the eigenproblem by the micropolar model is a second 

order approximation of the corresponding one by the discrete model. In fact, the comparison with 

the dispersion curves by the constitutive model derived assuming a first order expansion of the 
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rotational field and providing the positive defined constitutive parameter  ( )11 22

2
K K

S + +
=  is 

given in the diagrams of Figure 6.b. From this comparison, a reduced accuracy of the model to 

represent the optical branch is observed when increasing the wave number. 
 

       

Figure 6: Dispersive functions for centrosymmetric square  lattice ( 1α = , 2 1 50J Ml = ). 
Comparison between the discrete model (continuous line) and the micropolar continuum model 
(dashed line) in a subdomain of the reduced Brillouin zone ( 15 250t l =  red; 1 10t l =  blue; 

1 5t l =  green). (a) Constitutive constant S ; (b) Constitutive constant S + .  
 

A more complete perception of the accuracy of the micropolar model may be given by the 

comparison between the discrete and the continuum model shown in Figure 7. Here waves 

propagating along axis 1x  ( 2 0k = ) in a centrosymmetric lattice for a range of the dimensionless 

wave number [ ]0,Ξ ∈ π  ( 1α = , 2 1 50J Ml = , 1 5t l = ). In Figure 7.a the dashed black lines 

represent the band structure of the proposed continuum model ( 12S K= − ), which is in a good 

agreement with the theoretical one. In Figure 7.b the results are obtained from the positive 

definite model derived from a first order expansion of the rotational field.  In this case, a poor 

accuracy appears in the optical branch. 
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Figure 7: Dispersive functions for wave propagation along 1x  axis ( 1α = , 2 1 50J Ml = , 
1 5t l = ). Comparison between the discrete model (continuous line) and the micropolar 

continuum model (dashed line).   (a) Constitutive constant S ;  (b) Constitutive constant S + . 
 

The influence of the non-centrosymmetry on the band structure of the square lattice is 

shown in the diagrams of Figure 8 for different values of the stiffness step ratio α . Increasing α , 

a corresponding increase of the critical frequency of the optical branch in the long wavelength 

asymptotics is obtained  due to an increase of the overall stiffness. The diagrams in Figure 8.a are 

obtained for the ratios 15 250t l =  and 2 1 50J Ml = . Here the dispersion functions exhibit 

several crossing points between the optical and the two acoustic branches. Two veering points are 

obtained between the optical and the second acoustic branch in the domain  ( ), 2 2 Ξ ∈ π + π  . 

Finally, it is worth to note that the band structure of the three considered beam-lattices does not 

exhibit stop bands. In Figure 8.b the diagrams corresponding to a small radius of gyration, 

namely 2 1 450J Ml =  are given. Here, higher values of the frequencies of the optical branches 

are obtained in comparison to Figure 8.a, according to the relation 

( ) ( )
1

2 20opt sE d M J Ml
−

ω → ∝k . As a consequence, a low frequency stop-band (for wave 

vector scanning the curve ϒ ) is observed for non-centrosymmetric lattice, whose amplitude 

increases with α  .  
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Figure 8: Band structure of the non-centrosymmetric square lattice along the closed polygonal 

curve ϒ  ( 1α =  red; 2α =  blue; 4α =  green) for dimensionless ligament thickness 15 250t l =  
and different dimensionless moment of inertia 2J Ml : (a) 2 1 50J Ml = , (b) 2 1 450J Ml = . 

  

The accuracy of the micropolar model is represented in a synthetic way by the diagrams 

of Figure 9. Also in this case a good agreement between the discrete and the continuum model is 

shown in Figure 9.a  for 2 2  l ≤ πk , namely for wavelengths  2.8lλ ≥ . Figure 9.b refers to 

the case of micropolar continuum based on a first order expansion of the rotational field, i.e. for 

( )11 22

2
K K

S + +
= . From these diagrams the poor accuracy of the optical branch may be observed, 

while the acoustic branches are equally well approximated in the subdomain of the reduced 

Brillouin zones. 

In consideration of the negative definiteness of the elastic constant 12S K= −  of the 

micropolar model, the hyperbolicity of the equation of motion has to be ensured. This 

circumstance is verified referring to the Legendre–Hadamard ellipticity conditions (semi-

ellipticity) requiring real values of the wave velocity, namely the positivity of the square of the 

dispersion function (see for reference Jeong and Neff, 2010 and Eremeyev et al., 2013).  Since 

unconditional hyperbolicity cannot be ensured, some meaningful cases have been considered by 
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controlling the positivity of the square of the dispersion functions in the Brillouin zone (see 

Figure 5.c). In Figure 10 the square of the dispersive surfaces for the following non 

dimensionless parameters 1 5t l = , 2 1 50J Ml =  and 1α =  are plotted. It may be noted that 

both the second acoustic surface and the optical surface are positive in the whole Brillouin zone, 

while the lower acoustic surface turns out to be positive in the red domain shown in Figure 10.b. 

However, it must be noted that negative values are attained at points for which 2 2  l ≥ πk , i.e. 
where the continuum micropolar model loses accuracy. The case of non-centrosymmetric lattice 

4α =  is shown in Figure 11, where a qualitative behavior analogous to the centrosymmetric case 

is observed, together with a reduction of the regions where the square of the dispersive function is 

negative. 

 

      
Figure 9: Dispersive functions for square lattice ( 15 250t l = , 2 1 50J Ml = ). Comparison 

between the discrete model (continuous line) and the micropolar continuum model (dashed line) 
in a subdomain of the reduced Brillouin zone ( 1α =  red; 2α =  blue; 4α =  green).                  

(a) Constitutive constant S ; (b) Constitutive constant S + .  
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Figure 10: Square of the dispersive surfaces in the Brillouin zone by the micropolar continuum 
model for centrosymmetric lattice with 1 5t l = , 2 1 50J Ml = , 1α = . (a) Positive Floquet-

Bloch spectrum; (b) Domain of positivity of the first acoustic surface and square subdomain of 
good accuracy of the model. 

 
 

       
Figure 11: Square of the dispersive surfaces in the Brillouin zone by the micropolar continuum 

model for non-centrosymmetric lattice with 1 5t l = , 2 1 50J Ml = , 4α = . (a) Positive Floquet-
Bloch spectrum; (b) Domain of positivity of the first acoustic surface and square subdomain of 

good accuracy of the model. 
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5.2. Equilateral triangular lattice 

The equilateral triangular lattice and the hexagonal periodic cell are shown in Figure 12. 

The system is hexagonal with the relevant geometrical data are 23cellA l= , 1 1=n e , 1 2=t e ,  

2 1 2
1 3
2 2

= +n e e , 2 1 2
3 1

2 2
= − +t e e , 3 1 2

1 3
2 2

= − +n e e , 3 1 2
3 1

2 2
= − −t e e . Because the 

assumed geometry, the ligament stiffnesses have the following properties 1 2 3
n n nK K K= = , 

1 2 3
11 22 11K K K= =  , 1 2 3

22 11 22K K K= = , 1 2 3
12 12 12K K K= = , so that the stiffness terms are 

1 2 3
11 12 22

ˆ ˆ ˆ ˆ 2i i iK K K K K K K= = = = + +  e ( )1 2 3
11 22 2i iK K K K K K= = − = = −    . 

 

  
(a) (b) 

Figure 12: Periodic non-centrosymmetric equilateral triangular lattice. 
 

The eigenvalue problem (11) ruling the harmonic plane wave propagation in the Lagrangian 

model takes the form: 

( ) ( ) ( )
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having defined ( ) ( )f f , 1 cosi i i il= = − ⋅k n k n  and ( ) ( )g , sini i i ig l= = ⋅k n k n , i=1,3. When 

considering the long wave approximation, the constitutive equation of the micropolar continuum 

is derived from (21), (22)  and (28) and takes the form 

 

11 11

22 22

12 12

21 21

1 1

2 2

2 0 0 0
2 0 0 0

0 0 0
0 0 0
0 0 0

0 0 0

Y
Y

Y
Y

m Y Y S
m Y Y S

σ γµ λ λ
σ γλ µ λ
σ γµ κ µ κ
σ γµ κ µ κ

χ
χ

+    
    + −    
    + −   =    − +    
    
    

−       

  ,                   (52) 

with five elastic moduli 

  

2 2

2 2 2

122

ˆ ˆ ˆ
3 ,       3 ,       3   ,

4 4 2

                3 ,       3  .
2

n nK l K K l K K
l l l

KY S K
l

µ λ κ+ −
= = =

= = −


                    (53) 

When only the first order description of the rotational field is considered, the elastic modulus 

involving the curvatures takes the positive defined form ( )11 22
3

2
S K K+ = + . In case of 

symmetric macro-strain fields 12 21γ = γ  with vanishing curvature = 0χ , the elastic moduli of a 

classical continuum are obtained 1111 2C µ λ= + , 1122C λ=  and 1212C µ=  characterizing a 

transversely isotropic material.  The equation providing the dispersion function in the equivalent 

micropolar continuum is written as  

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

2 2 2
1 2 1 2 1 2 2 1

2 2 2 2 2
1 2 2 1 1 2 1 2

2 2 2 2 2
1 2 2 1 2 1 1 2

2 2 2 ˆ

ˆ2 2  .
ˆ2 2 2 4

k k k k Yk k ik v

k k k k Y k k ik v

Yk k ik Y k k ik S k k I

µ λ µ κ ρω µ κ λ κ

µ κ λ µ λ µ κ ρω κ

θκ κ κ ω

 + + + − − + −  
     − + + + + − − + = 
   
 + − − + + −    

0        (54) 

As for the previous example, in the long-wave limit λ → ∞ ,  the angular frequencies are 

1,2 0acoω =  and 2
opt I

κ
ω = , the third one being depending on the non-centrosymmetry of the 

periodic cell being 11 12 22
2

23=
2

i i iK K K
l

κ + + . Finally, in case of centrosymmetric cell, i.e. 1α =  , 
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the following elastic moduli are obtained 
23 1
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  = +  
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33
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23
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tS El
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 = −  
 

  and the eigenproblem takes the form 
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being ( )2t lς = .  

The dispersion function of the centrosymmetric lattice ( 1α = ) obtained for the 

dimensionless moment of inertia 2 1 50J Ml =  and several values of the ratio t l  are shown in 

Figure 13.a, where no stop band is observed. Here two acoustic branches are clearly shown, 

together with the optical one characterized by a critical point for long wavelength limit, in 

qualitative agreement with the results obtained for square lattice. Several crossing points between 

the optical and acoustic branches may be observed. For 1 10t l =  and 1 5t l = , a veering 

between the optical and the acoustic branches is observed in the domains [ ]0,4 3Ξ ∈ π  and 

( )2 ,2 1 3 3 Ξ ∈ π π +   along the curve ϒ . In this case, no band gap is obtained. For lower 

values of the dimensionless moment of inertia of the nodes, i.e. 2 1 200J Ml = , the dispersion 

functions are plotted in Figure 13.b, where a band gap is shown for the ratio 1 5t l = . Several 

points of crossing may be observed between the acoustic branches and the optical one. In 

particular, for 1 10t l =  a veering point is observed between the second acoustic branch and the 

optical one. 

The diagrams in Figure 14.a, where the dispersive functions obtained from the discrete 

and the micropolar models of a centrosymmetric lattice with dimensionless moment of inertia 
2 1 50J Ml =  may be compared, allow assessing the accuracy of the equivalent micropolar 

model. This comparison shows the diagrams in Figure 14.a differ less than 5% for 4 9  l ≤ πk , 

i.e. 4.5lλ ≥ , while for 2 3  l ≤ πk , i.e. 3lλ ≥ , an error less than 10%  is obtained. The same 
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comparison is shown by the diagrams in Figure 14.b with reference to the micropolar model 

obtained as in Section 3.2 by assuming a first order description of the rotational field, i.e. by 

assuming the definite positive elastic modulus ( )11 22
3

2
S K K+ = + .  As already noticed in the 

previous example, this model turns out with a limited accuracy in approximating the optical 

branch. 
 

          

 
Figure 13: Influence of the dimensionless ligament thickness t l  on the band structure of the 

equilateral triangular lattice ( 1α = ) along the closed polygonal curve ϒ  ( 3 50t l =  red; 
1 10t l =  blue; 1 5t l =  green) for different dimensionless mass moment of inertia 2J Ml :     

(a)  2 1 50J Ml = , (b) 2 1 200J Ml = ; (c) Periodic cell and Brillouin zone (highlighted in orange 
the reduced Brillouin zone bounded by the curve ϒ ); (d) Subdomain of the reduced Brillouin 

zone.  

Ξ

0Ξ 1Ξ 2Ξ 0Ξ

sE d
M

ω ( )b

sE d
M

ω ( )a

Ξ

0Ξ 1Ξ 2Ξ 0Ξ

1k l

2k l

Ξ0Ξ 1Ξ

2Ξ

( )d( )c

1k l

2k l

Ξ0Ξ 1Ξ

2Ξ
1x

2x



 

35 
 

       
Figure 14: Dispersive functions for equilateral triangular lattice ( 1α = , 2 1 50J Ml = ). 

Comparison between the discrete model (continuous line) and the micropolar continuum model 
(dashed line) in a subdomain of the reduced Brillouin zone ( 15 250t l =  red; 1 10t l =  blue; 

1 5t l =  green). (a) Constitutive constant S ; (b) Constitutive constant S + .  
 

 
A comparison of the accuracy of the two micropolar models is given in the diagrams of 

Figure 15 for the case of wave propagation along the 1x  axis, i.e. 2 0lk =  and [ ]1 0,k l π= Ξ ∈ , for 

a lattice with 1α = , 2 1 50J Ml = , 3 50t l = . While in the diagrams of Figure 15.a an excellent 

accuracy is obtained with the micropolar model here presented, with a good simulation of the 

discrete model in presence of veering points, a poor accuracy (see Figure 15.b) characterizes the 

micropolar model having a positive defined elastic modulus ( )11 22
3

2
S K K+ = + .  

The dispersion functions obtained from lattices with non-centrosymmetric topology are 

shown in the diagrams of Figure 16 for different values of the stiffness step ratio α  and 

assuming dimensionless ligament thickness 3 50t l = .  As highlighted in the previous example, 

the critical point in the optical branch is characterized by a frequency that is increasing with the 

ratio  α , namely with the departure from the centrosymmetry of the periodic cell. Decreasing the 
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dimensionless moment of inertia from 2 1 50J Ml =  (Figure 16.a) to 2 1 450J Ml =  (Figure 

16.b) higher values of the frequency of the critical point on the acoustic branch are obtained 

together with a band gap (for wave vector scanning the curve ϒ ) between the acoustic and the 

optical branches when increasing the ratio α .  

 

           
Figure 15:  Dispersive functions for wave propagation along 1x  axis ( 1α = , 2 1 50J Ml = , 

3 50t l = ). Comparison between the discrete model (continuous line) and the micropolar 
continuum model (dashed line).   (a) Constitutive constant S ;  (b) Constitutive constant S + . 

 
 

The accuracy of the micropolar model is represented in a synthetic way by the diagrams 

of Figure 17. Also in this case a good agreement between the discrete and the continuum model is 

shown in Figure 17.a  for 2 3  l ≤ πk , namely for wavelengths  3lλ ≥ . Figure 17.b refers to the 

case of micropolar continuum based on a first order expansion of the rotational field, i.e. for 

( )11 22
3

2
S K K+ = + . From these diagrams, the poor accuracy of the optical branch may be 

observed, while the acoustic branches are equally well approximated in the subdomain of the 

reduced Brillouin zones. 

sE d
M

ω

( )b

Ξ

sE d
M

ω

( )a

Ξ



 

37 
 

        
Figure 16:  Band structure of the non-centrosymmetric equilateral triangular lattice along the 

closed polygonal curve ϒ  ( 1α =  red; 2α =  blue; 4α =  green) for dimensionless ligament 

thickness 3 50t l =  and different dimensionless mass moment of inertia 2J Ml :                       

(a) 2 1 50J Ml = , (b) 2 1 450J Ml = . 

 

 

The Legendre–Hadamard ellipticity conditions is here checked as explained in the 

previous example. In Figure 18 the surfaces representing the square of the dispersion function for 

a centrosymmetric lattice are plotted. From these diagrams, only the first acoustic surface attains 

negative values. In Figure 18.b the sub-region where this function is positive is the red one in the 

Brillouin zone. Also in this case it must be noted that negative values are attained at points 

2 2 3  l ≥ πk , i.e. where the micropolar model loses accuracy. 

Finally, the case of non-centrosymmetric lattice 4α =  is shown in Figure 19, where a 

qualitative behavior analogous to the centrosymmetric case is observed, together with a reduction 

of the regions where the square of the dispersive function is negative. 
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Figure 17: Dispersive functions for equilateral triangular lattice ( 3 50t l = , 2 1 50J Ml = ). 

Comparison between the discrete model (continuous line) and the micropolar continuum model 
(dashed line) in a subdomain of the reduced Brillouin zone ( 1α =  red; 2α =  blue; 4α =  green).                         

(a) Constitutive constant S ; (b) Constitutive constant S + .  
 

        
Figure 18: Square of the dispersive surfaces in the Brillouin zone by the micropolar continuum 
model for centrosymmetric lattice with 1 5t l = , 2 1 50J Ml = , 1α = . (a) Positive Floquet-

Bloch spectrum; (b) Domain of positivity of the first acoustic surface and square subdomain of 
good accuracy of the model. 
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Figure 19: Square of the dispersive surfaces in the Brillouin zone by the micropolar continuum 

model for non-centrosymmetric lattice with 1 5t l = , 2 1 8J Ml = , 2α = . (a) Positive Floquet-
Bloch spectrum; (b) Domain of positivity of the first acoustic surface and square subdomain of 

good accuracy of the model. 
 

 

 

6. Conclusions 

The in-plane acoustic behavior of non-centrosymmetric lattices having nodes endowed 

with mass and gyroscopic inertia and connected by massless ligaments with asymmetric elastic 

properties has been analysed through a discrete model and a continuum micropolar model. In the 

first case the propagation of harmonic waves and the dispersion functions have been obtained by 

the discrete Floquet-Bloch approach. In case of non-centrosymmetric lattice, the resulting 

eigenvector problem is ruled by a full matrix and two acoustic branches and an optical branch are 

obtained in the frequency spectrum. Moreover, it is shown that in general the optical branch 

departs from a critical point with vanishing group velocity and is decreasing for increasing wave 

vector from the long wave limit. The micropolar continuum model, useful to approximate the 

discrete model, has been derived through a continualization of the discrete equations of motion 

that is based on an approximation of the generalized displacements of the cells through an 

upscaling relation based on a second-order Taylor expansion of the generalized macro-

displacement field. The equations of motion of the non-centrosymmetric lattice have been 
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obtained together with the homogenized constitutive equations involving also the coupling third-

order elasticity tensors of the micropolar continuum. It is worth noting that the second order 

elasticity tensor coupling curvatures and micro-couples turns out to be negative defined also in 

the general case of non-centrosymmetric lattice. This outcome has been obtained also through an 

extended Hamiltonian derivation and the Hill-Mandel macro homogeneity condition, based on a 

proper treatment of the potential elastic energy in terms of a second order expansion of the 

generalized displacement field following a suggestion by Bazant and Christensen, 1972, in 

modelling rectangular frames. A completely different outcome is obtained if a first order 

expansion of the rotational field is considered by applying the Hill-Mandel condition when the 

second order tensor turns out to be positive defined. In this regard, it is worth noting that the 

eigenvalue problem governing the harmonic propagation in the micropolar non-centrosymmetric 

continuum results in general characterized by a hermitian full matrix that is exact up to the 

second order in the wave vector.  

Some examples have been analysed concerning square and equilateral triangular lattices 

and their acoustic properties have been obtained from both the exact Lagrangian model (within 

the assumed hypotheses) and the micropolar approximate model. For each lattice, the equations 

of motions have been given together with the constitutive parameters. The analysis of the 

influence of the model parameters on the acoustic behavior has shown that the non-

centrosymmetry topology of the lattice may contribute to obtain low frequency band gaps.  

Moreover, as occurs in the Lagrangian model, the optical dispersion branch is observed to 

be decreasing for increasing the norm of the wave vector from the long wavelength limit. On the 

contrary, it may be easily verified that if the elastic second order positive defined tensor is 

assumed, which is derived by a first order expansion of the rotation field, the optical branch turns 

out to be approximated by the equivalent micropolar continuum with a lower accuracy. This 

result, which is valid for the case of the propagation of harmonic waves, contributes to clarifying 

the problem highlighted by Kumar and McDowell, 2004, and thereafter by Liu et al. 2012, 

regarding the choice of the second order elastic tensor provided from the micropolar 

homogenization. In consideration of the negative definiteness of the second order elastic tensor of 

the micropolar model, the hyperbolicity of the equation of motion has been investigated by 

considering the Legendre–Hadamard ellipticity conditions requiring real values for the wave 

velocity. Since unconditional hyperbolicity cannot be ensured, some meaningful cases have been 
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successfully considered by controlling the positivity of the square of the dispersion functions in 

the Brillouin zone. Finally, it is believed that the ellipticity of the field equations of the 

equilibrium problem could be recovered in a homogeneous continuum obtained through a higher 

order generalized micropolar homogenization involving higher order gradients of the macro-

displacement field. 
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