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Sommario

Le reti di telecomunicazioni vengono progettate per essere efficienti, traspar-
enti, e accessibili all’insieme di utenti più vasto possibile. Tuttavia, esse riman-
gono sistemi complessi, nei quali cooperano un grande numero di componenti,
mettendo alla prova la desiderata efficienza, trasparenza e facilità di accesso.

Alcuni paradigmi emergenti, tra cui Software Defined Networking (SDN),
Network Function Virtualization (NFV), e Cloud Computing spianano la strada
ad un nuovo ventaglio di possibili applicazioni per l’infrastruttura, o a nuove
soluzioni per implementare servizi tradizionali, al prezzo, tuttavia, di aggiun-
gere nuovi ambienti necessitanti di coordinazione.

Una delle sfide principali nel fornire concatenazioni end-to-end di servizi
distribuiti su multipli domini SDN, NFV e Cloud sta nell’ottenere funzioni
di gestione ed orchestrazione unificate. Un aspetto di importanza particolar-
mente critica è la definizione di una northbound interface (NBI) ad accesso
aperto, non brandizzata, ed interoperabile, che astragga il più possibile dalle
tecnologie di piano dati e di piano di controllo specifiche al dominio, facilitando
l’accesso all’infrastruttura sottostante, senza però rinunciare ad un certo grado
di flessibilità e libertà nella programmazione della rete.

In questo documento, viene descritta un’architettura di riferimento, ed es-
pansa una NBI basata su intent per l’orchestrazione di servizi end-to-end at-
traverso domini tecnologici multipli. Nello specifico, viene considerato come
caso d’uso un deployment di dispositivi per l’Internet of Things (IoT) e i cor-
rispondenti servizi di raccolta, elaborazione e pubblicazione dei dati basati su
Cloud, in grado di distinguere multiple classi di Qualità di Servizio (QoS).
Infine, viene descritta e riportata una validazione sperimentale su un test-bed
SDN eterogeneo e multi-dominio dell’architettura proposta.
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Abstract

Telecommunication networks are meant to be efficient, transparent, and ac-
cessible to the broadest possible set of users. However, they are very complex
systems, in which a large number of components cooperates, posing a challenge
to the desired efficiency, transparency and ease of access.

Emerging technological paradigms such as Software Defined Networking
(SDN), Network Function Virtualization (NFV) and Cloud Computing open
up to a whole new set of possible applications for the infrastructure, or better
ways to implement traditional services, but also introduce new environments
to be controlled.

One of the main challenges in delivering end-to-end service chains across
multiple SDN, NFV and Cloud domains is to achieve unified management and
orchestration functions. A very critical aspect is the definition of an open,
vendor-agnostic, and interoperable northbound interface (NBI) that should be
as abstracted as possible from domain-specific data and control plane tech-
nologies, making the underlying infrastructure easier to be accessed, while still
allowing a fair amount of flexibility and freedom in programmability of the
network.

In this document we describe a reference architecture and expand an intent-
based NBI for end-to-end service orchestration across multiple technological
domains. More specifically, we consider the use case of an Internet of Things
(IoT) infrastructure deployment and the corresponding Cloud-based data col-
lection, processing, and publishing services, differentiating multiple Quality of
Service (QoS) classes.

Finally we report the experimental validation of the proposed architecture
over a heterogeneous, multi-domain SDN test bed.

ix
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Chapter 1

Introduction

In the last few years, telecommunications have become as pervasive as they had
never been before. Connectivity is required everywhere, as an ever-increasing
number of devices needs to access the Internet to share or retrieve data. How-
ever, physical connectivity is just the tip of the iceberg, in the much broader
scenario of end-to-end communication of data. In fact, a larger number of
connected devices implies a much higher demand for communication resources.
Moreover, each application and service running on those devices generates its
own flow of data, which need to be handled and delivered by the underly-
ing network infrastructure. This heterogeneity has caused current networks
to become very complex to be built and managed, let alone provided with
new features. The deployment of such new features is also obstructed by the
phenomenon known as vendor lock-in, caused by the large-scale deployment
of proprietary solutions, which in the long term has led to the ossification of
the network [1]. It is clear that, in order to face the ever-increasing needs
of the users in an efficient way, the network must evolve to a more flexible,
customizable, and cost-efficient system.

Software Defined Networking (SDN) plays a major role in the afore-
mentioned network evolution. SDN decouples the data plane from the con-
trol plane, resulting in a more flexible programmability of communication re-
sources. This is achieved by moving the control logic out of the network de-
vices, and into an external entity, referred to as SDN Controller, which hosts
a running instance of a Network Operating System. This way, infrastructures
which traditionally suffered from vendor lock-in are turned into communica-
tion platforms that are fully programmable via a standardized, open interface

1



2 CHAPTER 1. INTRODUCTION

[2].

Network Function Virtualization (NFV) is often complementary to
SDN in tackling the same issues. NFV allows network functionalities to be
dispatched as software-based building blocks, which can then be used to build
complex Service Function Chains (SFC) in a completely flexible way. This
also greatly simplifies the process of maintaining and upgrading the network’s
functionality, as it is sufficient to act on the original code of the virtualized
network function to have it modified on all of its running instances in the
network.

A third and important new paradigm in the current network’s evolution is
Cloud Computing. The paradigm allows service providers to offer network
services, computing resources and storage space to users, fitting in the same
utility model adopted by electric power or gas suppliers. To this aim, it takes
advantage of both hardware and software resources, which are distributed and
virtualized in the network. [3]

The joint adoption of SDN and NFV provides enhanced flexibility to ser-
vice deployment: the SFC, i.e., the sequence of network functions to be applied
to data flows exchanged by a given customer (or set of customers), can be dy-
namically controlled and modified over a relatively small time scale, and with
significantly reduced management burden compared to traditional network in-
frastructures [5]. Moreover, the integration with Cloud solutions, as shown in
Figure 1.1, contributes to complete virtualization and scalability with resource
sharing and pooling.

The integration of those three paradigms provides unprecedented control
and management power over network resources, thus leading to the need of
an efficient solution for the orchestration of the whole multi-paradigm sys-
tem. Moreover, due to the pervasiveness of telecommunication services that we
mentioned at the beginning of this Chapter, heterogeneous and multi-domain
deployments must be taken into account as typical use cases. It is clear that
orchestrating such implementations demands for the development of innova-
tive solutions, based on abstractions allowing, on the one hand, the decoupling
from technological details, and, on the other hand, the preservation of expres-
siveness and efficacy in the way the system is programmed, as well as in the
control of the network infrastructures. This approach is known as the intent-
based approach [6], and it is one of the current top-trending research topics in
the field of networking.

The activities of this thesis focus on the description of the development of
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an interface for intent-based unified management and orchestration of end-to-
end services across heterogeneous, multi-domain deployments.

In Chapter 2 we are going to go deeper in the description of SDN, NFV
and Cloud, as well as introducing the main software tools we used for our
activities.

Chapter 3 is where we present our reference architecture, and we define the
NBI we are going to focus on in the rest of the work.

In Chapter 4 we are going to describe the specific deployments we worked
on, while in Chapter 5 we cover the implementation details of a part of such
deployments.

Chapter 6 contains the description and results of the measurements con-
ducted for performance evaluation in our test bed.

Finally, in Chapter 7 we state our conclusions on the achieved results and
suggest some possible future developments.
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Figure 1.1: The interdependency of SDN, NFV and Cloud [4]



Chapter 2

Emerging Software-oriented
Network Paradigms

As summarized in Chapter 1, Software Defined Networking, Network Function
Virtualization and Cloud Computing are pushing the world of telecommuni-
cation networks to a scenario with an unprecedented central role of software
aspects. It is worth examining those models a little further before describing
the use we made of them in our activities.

2.1 Software Defined Networking

The SDN paradigm is aimed at supporting the dynamic and scalable comput-
ing and storage needs of modern telecommunication environments, by decou-
pling the control plane (i.e., the part of the system that makes decisions on
how to forward packets) from the data plane (i.e., the part of the system that
physically receives, stores and forwards the packets) [7].

In most SDN implementations, the communication between the two planes
is carried out by means of the OpenFlow protocol, which allows remote ad-
ministration of packet forwarding tables in network devices, by adding, modi-
fying and removing packet matching rules and associated actions. More details
on OpenFlow will follow in Section 2.1.2.

In the SDN architecture:

• network control is directly programmable, as it is decoupled from for-
warding functionalities, and this abstraction allows administrators to

5



6 CHAPTER 2. EMERGING SOFTWARE-OR. NETWORK PARAD.

dynamically adjust network-wide traffic so as to meet the evolving need
of the different flows in the network;

• network intelligence is (logically) centralized in software-based SDN con-
trollers that maintain a global view of the network, which appears to
applications and policy engines as a single, logical entity;

• network managers can configure, manage, secure and optimize network
resources very quickly via dynamic, automated SDN programs, which
can be written by the managers themselves, thanks to the open-source
nature of the software used;

• network design and operation are simplified because forwarding instruc-
tions are provided by SDN controllers instead of multiple, vendor-specific
devices and protocols.

SDN was first standardized in 2011 by the Open Networking Foundation
(ONF), which is self-defined as “a user-driven organization dedicated to the
promotion and adoption of SDN, and implementing SDN through open stan-
dards, necessary to move the networking industry forward.” [8]

ONF is the entity behind the standardization of the OpenFlow protocol,
which also inherently standardizes the interface between now-decoupled control
and data planes, enabling SDN deployment.

2.1.1 The SDN controller

As previously stated, the SDN controller is a logically centralized, software-
based entity that is in charge of controlling network devices operating in the
data plane; it takes advantage of the global view it has over the network for
running applications aimed at management, security and optimization of the
resources it controls.

As it is shown in Figure 2.1, the SDN controller can be logically placed in a
Control Plane located between the Data Plane, where network devices operate
the actual packet forwarding, and the Application Plane, where SDN applica-
tions request specific services to the underlying infrastructure, based on the
network state or on specific events. However, in order to communicate with
the controller, proper interfaces must be defined. The interface between Ap-
plication and Control planes is usually referred to as the Northbound Interface
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Figure 2.1: The role of the SDN controller in the SDN architecture [9]

(NBI), while the one between Control and Data planes, called SDN Control-
Data-Plane Interface in Figure 2.1, can also be referred to as the Southbound
Interface (SBI). Both interfaces can be specified and designed to use any com-
patible communication protocol. In practice, the most widely-used protocol for
Controller-Device communication through the SBI is the OpenFlow protocol,
on which more details will follow in Section 2.1.2.

The activities of our work are focused on the definition of a proper NBI
through which high-level orchestration and management entities are allowed
to control the underlying NFV and SDN platforms and implement dynamic
SFC features [10].
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2.1.2 OpenFlow

In the creators’ own words, OpenFlow is a communications protocol that pro-
vides an abstraction of the forwarding plane of a switch or router in the network
[11].

Focusing on its main features, OpenFlow:

• brings network control functions out of switches and routers, while al-
lowing to directly access and manipulate the forwarding plane of those
devices;

• specifies basic primitives that can be used by an external software appli-
cation to actually program the forwarding plane of network devices, just
like the instruction set of a CPU would program a computer system;

• works on a per-flow basis to identify network traffic;

• forwards flows according to pre-defined match rules statically or dynam-
ically programmed by the SDN control software.

OpenFlow can be used both in a reactive and in a proactive way. In the
former case, whenever an OpenFlow-enabled device receives a data packet it
does not know how to handle, it wraps the data packet into an OpenFlow Pack-
etIn message, to be sent to the relevant network controller. Upon reception of
this message, the controller can analyze the packet and reply to the device it
came from with an OpenFlow FlowMod message, containing, along with the
original data packet that generated the PacketIn event, a set of matching rules
and actions to be performed upon reception of data packets with similar char-
acteristics. A scheme of the control message received by the device is shown
in Figure 2.2. The device then installs the new flow rule into its flow table,
so that, if it receives a data packet that matches one of the entries of its flow
table, it applies the corresponding sequence of actions, without the need of
querying the controller again. If the device has to handle a sequence of similar
packets, as in a ping sequence, the first packet will take a longer time to be
forwarded than the following packets in the sequence will. An example of this
typical behavior is shown in Listing 2.1, where we have the output of a ping

session through an OpenFlow/SDN domain.
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Figure 2.2: The OpenFlow table [12]

PING 10.0.0.8 (10.0.0.8) 56(84) bytes of data.

64 bytes from 10.0.0.8: icmp_seq =1 ttl =64 time =29.1 ms

64 bytes from 10.0.0.8: icmp_seq =2 ttl =64 time =0.647 ms

64 bytes from 10.0.0.8: icmp_seq =3 ttl =64 time =0.055 ms

64 bytes from 10.0.0.8: icmp_seq =4 ttl =64 time =0.052 ms

Listing 2.1: Start of a ping session in a SDN domain with reactive forwarding

We can observe that the first packet of the ping sequence has a Round
Trip Time (RTT) that is close to 30 ms, while the following packets’ RTT
is smaller than 1 ms. This is due to the fact that, when the first packet of
the sequence traverses each switch, those devices must contact the controller
to be instructed on what to do with it, then receive and install new flow
rules in their flow table, and finally proceed to forward the packet. When the
following packets in the sequence traverse the switches, the devices will not
need to contact the controller, as they will act based on the new flow rules,
resulting in a much faster forwarding decision phase.

On the other hand, while using OpenFlow in a proactive way, flow rules are
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installed before actual traffic reaches the network devices. This approach will
obviously enhance data plane latency, as no communication to the controller is
needed for the traffic which complies with the filters of the installed flow rules,
but this is paid in terms of reduced flexibility. In fact, it is often impossible to
install very selective (i.e., precise) and correct flow rules by acting proactively,
as in most scenarios many details on the incoming traffic (e.g., client-side
TCP port number) are not known a priori. For this reason, when acting in
a proactive way, flows are defined with a larger granularity (i.e., a smaller
precision) than they would have with a reactive approach.

More details on the OpenFlow protocol and its versions are available on
the documents and standards produced by ONF [13].

2.2 Cloud Computing

Cloud Computing, often referred to simply as Cloud, is a paradigm that aims
at enabling ubiquitous, on-demand access to a shared pool of configurable
computing and infrastructure resources [14].

As already mentioned in the Chapter 1, the paradigm allows network ser-
vice providers to offer their services in the same way as utility services, such
as electric power and gas are distributed: the end users pay for what they
get. In order to do so, Cloud Computing takes advantage of both hardware
and software resources, which are distributed and virtualized in the network
[3], and is supported in doing so by the high data rates made available by
wide-band connection.

End users expect the resources offered by the Cloud to be instantiated
and used in a transparent, seamless way. Those resources, however, may be
geographically distributed all over the world, imposing high demands on the
interconnecting network, in terms of configuration delay, let alone latency and
reliability in the data plane. This is where SDN comes into play, allowing
the resources to quickly configure or re-configure in order to match the user’s
requests. Moreover, thanks to the centralized management approach that the
SDN paradigm offers, data flows can be dynamically steered to the best path
from the user to the server hosting the resources.
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2.3 Network Function Virtualization

NFV is a network architecture paradigm that uses virtualization technologies
in order to obtain a new way of designing, deploying and managing network
services. [15]

A given service can be decomposed in a set of Virtual Network Functions
(VNFs) that can be implemented in software and run on general purpose phys-
ical servers, without the need of specialized hardware. For example, a single
VNF can be implemented as a set of software entities (i.e., different modules
of the function), running on one or more Virtual Machines (VMs), hosted by
one or more physical servers. The VNFs can be relocated (i.e., migrated) to
new network locations, without the need to purchase new hardware.

It is also possible for VNFs to be run on physical machines without vir-
tualization of resources. However, two of the strongest advantages of NFV
are flexibility and resource efficiency, which are inherently achievable through
resource virtualization.

In general, NFV brings the benefits of the Cloud Computing approach to
environment of telecommunication networks. In fact, the advantages intro-
duced by NFV in comparison to the traditional scenario are:

• independence of software from hardware, which allows for separate de-
velopment and maintenance of the two components;

• flexibility of the services offered by the network, as VNFs can be rear-
ranged and upgraded very rapidly, while maintaining the same hardware
platform;

• dynamic and more accurate scaling of the capabilities of the whole ser-
vice, according to the actual load carried by the network in a given
moment.

The NFV architecture has been described by ETSI in [16], and a scheme
of the NFV reference architectural framework is shown in Figure 2.4. The
identified functional blocks are the following ones:

– Virtualized Network Functions (VNF), which are virtualized versions of
network functions in a legacy non-virtualized network, and may include
elements of the core network (e.g., the Mobile Management Entity in the
3GPP Evolved Packet Core) as well as elements in a home network (e.g.,
firewalls);
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Figure 2.3: Comparison between the traditional approach and the NFV ap-
proach, simplified

– Element Management System (EMS), which performs the management
functionality for one or multiple VNFs;

– NFV infrastructure, which is the set of all hardware and software com-
ponents on top of which VNFs are deployed, managed and executed,
including:

– hardware resources, assumed to be Commercial Off-The-Shelf phys-
ical equipment, providing processing, storage and connectivity to
VNFs through the Virtualization Layer;

– Virtualization Layer, such as an hypervisor, which abstracts the
physical resources, so as to enable the software that implement the
VNFs to use the underlying infrastructure, and provide the virtu-
alized resources to the VNF;

– Virtualized Infrastructure Manager(s) (VIM), which comprises the func-
tionalities that are used to control and manage the interaction of a VNF
with computing, storage and network resources under its authority, as
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well as their virtualization;
– Orchestrator, which is in charge of the orchestration and management of

NFV infrastructure and software resources;
– VNF Manager(s), which are responsible for VNF lifecycle management

(e.g. instantiation, update, query, scaling, termination;
– Service, VNF and Infrastructure Description, which is a data set that

provides information regarding the VNF deployment template, VNF For-
warding Graph, service-related information, and NFV infrastructure in-
formation models;

– Operation and Business Support Systems (OSS/BSS), which are used by
an Operator to support a range of telecommunication services.

Figure 2.4: NFV reference architectural framework [16]

In Figure 2.4, the main reference points (i.e., the logical interconnections)
that are in the scope of NFV are shown by solid lines. In our work, we are
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going to focus mostly on the reference points labeled as Or-Vi and Nf-Vi in
the figure. The former interconnection is used for carrying resource reservation
and/or allocation requests by the Orchestrator, virtualized hardware resource
configuration, and state information exchange (e.g., events). The latter one
is used for specific assignment of virtualized resources in response to resource
allocation requests, forwarding of virtualized resources state information, and
hardware resource configuration and state information exchange (e.g., events).

2.3.1 The NVF-MANO framework

Due to the decoupling of the Network Functions software from the NFV In-
frastructure (NFVI), coordination between resources requested by the VNFs
is needed. The Network Functions Virtualization Management and Orchestra-
tion (NFV-MANO) architectural framework, described by ETSI in [17], has
the role of managing the NFVI while orchestrating the allocation of resources
needed by the VNFs. A functional-level representation of the MANO frame-
work is shown in Figure 2.5.

The main functional blocks it encompasses have already been described
in the previous section. The importance of this framework is in the even
more general view it yields over the considered SDN/NFV deployment. A
hierarchical scheme of the architecture is shown in Figure 2.6, which highlights
the role of SDN Controllers in a multi-domain scenario. In that scheme, we
can see all the functional blocks and reference point we are going to focus on
in the activities presented in the following Chapters. For instance, the generic
deployment we present as our reference architecture in Figure 3.1 is actually
a slightly differently characterized version of the one presented in Figure 2.6.

2.4 Software tools

In this section we are going to have an overview on the main software tools
that have been used in our activities. We will have a brief look at ONOS,
the network controller, Mininet, the network emulator, and OpenStack, the
Cloud operating system.
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Figure 2.5: The NFV-MANO architectural framework with ref. points [17]

2.4.1 ONOS

ONOS, short for Open Network Operating System, is, as the name suggests,
an open-source Network OS (NetOS), developed and maintained as part of the
ONOS project, whose mission is “to produce the Open Source Network Oper-
ating System that will enable service providers to build real Software Defined
Networks” [18].

ONOS is able to provide the control plane for a software-defined network,
managing network components, such as switches and links, and running soft-
ware programs or modules to provide communication services to end hosts and
neighboring networks [19].

As a NetOS, ONOS aims at:

• providing APIs and abstractions, resource allocation, and permissions,
as well as user-facing software such as a CLI, a GUI, and system appli-
cations;
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Figure 2.6: Hierarchical view in SDN multi-domain scenario [17]

• managing the entire network rather than a single device, which can dra-
matically simplify management, configuration, and deployment of new
software, hardware, and services;

• acting as an extensible, modular, distributed SDN controller.

ONOS can run as a distributed system across multiple servers, allowing
it to use their combined CPU and memory resources while providing fault
tolerance in the case of server failure, and potentially supporting live upgrades
of hardware and software without interrupting network traffic.

A scheme of the ONOS internal architecture, along with some examples of
external agents both towards the Application plane and the Data plane are
shown in Figure 2.7.

The ONOS kernel and core services, as well as ONOS applications, are
written in Java as bundles that are loaded into the Karaf OSGi container.
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Figure 2.7: Our contribution in the ONOS subsystem

OSGi is a component system for Java that allows modules to be installed and
run dynamically in a single Java VM (JVM). Since ONOS runs in the JVM,
it can run on several underlying OS platforms.

Our contribution to the ONOS project, the ONOS application implement-
ing the intent-based REST NBI, is circled in Figure 2.7.

2.4.2 Mininet

Mininet is a network emulator which is able to emulate a linked set of virtual
hosts, switches, controllers. Mininet hosts run standard Linux network soft-
ware, and its switches support OpenFlow for highly flexible custom routing
and SDN [20].

Mininet supports research, development, learning, prototyping, testing, de-
bugging, and any other tasks that could benefit from having a complete ex-
perimental network on a laptop or other PC.

In order to achieve that, Mininet:

• provides a simple and inexpensive network testbed for developing Open-
Flow applications;

• enables multiple concurrent developers to work independently on the
same topology;

• supports system-level regression tests, which are repeatable and easily
packaged;
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• enables complex topology testing, without the need to wire up a physical
network;

• includes a CLI that is topology-aware and OpenFlow-aware, for debug-
ging or running network-wide tests;

• supports arbitrary custom topologies, and includes a basic set of param-
etrized topologies which is usable out-of-the-box without programming;

• provides a straightforward and extensible Python API for network cre-
ation and experimentation.

In a nutshell, Mininet provides an easy way to get correct system behavior
and performance (to the extent supported by the underlying hardware), and
to experiment with topologies. Some examples of Mininet’s built-in topologies
are shown in Figure 2.8.

Mininet networks run “real code”, including standard Unix/Linux network
applications, as well as the real Linux kernel and network stack. Thanks to
this, the code developed and tested on Mininet (for an OpenFlow controller,
modified switch, or host) can move to a real system with minimal changes,
for real-world testing, performance evaluation, and deployment. Most im-
portantly, this means that a design that works in Mininet can usually move
directly to hardware switches for line-rate packet forwarding.

2.4.3 OpenStack

OpenStack [21] is a Cloud operating system that allows for the management
of a Cloud platform. Such a platform is a cluster of physical machines which
host instances of compute and storage nodes, offered to the user as a service.

OpenStack provides a convenient GUI in the form of a dashboard, that can
be used to simplify the process creation and management of the instances, as
well as a CLI, which allows for greater precision in the specifications on the
resources to be allocated.

A single user, who represents a tenant, can create a new network in the
cluster, and define one or more subnets over it. Then, the user can create a
new instance of a VM, placing it on the desired network or subnetwork. From
that moment on, the VM will be accessible as a regular machine, through the
network it is connected to.
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OpenStack also supports multi-tenancy, that is the co-existence of multiple
users in the same cluster, which are mutually isolated through the use of
separate VLANs and namespaces [3].
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(a) Single ( --topo single,3 )

(b) Linear ( --topo linear,3 )

(c) 2-level tree ( --topo tree,2 )

(d) 3-level tree ( --topo tree,3 )

Figure 2.8: Examples of network topologies emulated in Mininet



Chapter 3

Reference Architecture and
Interface Definition

In this chapter we will describe the reference architecture of our scenario, then
the proposed NBI, and finally the domains relevant to the activities of this
thesis.

Figure 3.1: Reference multi-domain SDN/NFV architecture, in general

Our reference architecture is shown in Figure 3.1, and it is inspired by the

21
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ETSI NFV specifications, with particular reference to the Management and
Orchestration (MANO) framework [17], which has been presented in Section
2.3.1.

This way, the proposed architecture is compliant with the most relevant
NFV standard initiative to date, and it can be easily extended to include any
further SDN/NFV domain and technology as part of the underlying virtualized
infrastructure.

Each of the SDN/NFV domains shown in Figure 4.1 consists of a technology-
specific infrastructure, including:

• data plane components, such as IoT nodes and gateways, SDN switches,
virtual machines running in Cloud computing nodes, physical and virtual
interconnecting links; these components provide the network, compute,
and storage resources to be orchestrated;

• control plane components, such as SDN and Cloud controllers with re-
lated data stores and interfaces; these components are responsible for
proper VNF deployment and traffic steering across VNFs and domains;

• management plane components, such as Virtualized Infrastructure Man-
agers (VIMs) specialized for managing resources in the IoT-based SDN
infrastructure, the wired SDN infrastructure, and the Cloud infrastruc-
ture; based on the available implementations, some of these components
could be in charge of multiple domains, as in the case of the SDN/Cloud
VIM in Figure 4.1.

The overarching VNF Manager (VNFM) and NFV Orchestrator (NFVO)
components are responsible for programming the underlying VIMs and infras-
tructure controllers in order to implement and maintain the required service
chains in a consistent and effective way, for both intra- and inter-domain sce-
narios. While technology- and domain-specific northbound (NBI) and south-
bound interfaces (SBI) are used inside each domain to efficiently control and
manage the relevant components, the design of the overarching VNFM and
NFVO should be as technology-agnostic as possible, so that a service chain
to be deployed can be specified by a customer using a high-level, intent-based
description of the service itself. This would also allow the proposed archi-
tecture to be more general and capable of being extended to different SDN
technologies and domains.
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As it is argued in [2], in order to achieve such generality in the high-
level management and orchestration components, the act of decoupling service
abstractions from the underlying technology-specific resources should be per-
formed mainly by the VIMs. Therefore, the concept of interactions based on
intents is extended to the NBI offered by the VIMs, which should be defined as
an open and abstracted interface, independent of the specific technology used
in the underlying domains.

It is important to outline that this reference architecture considers also the
possibility that SDN domains are interconnected through non-SDN domains.
This assumption stems from the fact that it appears reasonable that a network
operator will deploy SDN technologies mainly within data center infrastruc-
tures where the VNF resources will be located e.g., in the operators points of
presence or central offices rather than in backbone networks. In this case, traf-
fic flows that must traverse a number of SDN domains can be properly routed
by adopting some form of tunneling or overlay network technology across the
non-SDN domains, such as the emerging Network Service Header (NSH) [22].

NSH describes a dataplane header used to carry information along a service
path, thus creating a transport-independent service plane. More specifically, it
decouples the service topology from the actual network topology, making each
service function an identifiable resource available for consumption from any
location in the network. Some more details on NSH is reported in Section 4.2

3.1 VIM Northbound Interface

An intent-based NBI must allow the user to specify policies (i.e., “what to
do”) rather than mechanism (i.e., “how to do it”).

When a given service specification is received, the platform management
and orchestration functions must convert that request into a suitable service
graph and pass it to the relevant VIMs in charge of the underlying infrastruc-
tures and domains involved in the service composition. Then each VIM must
coordinate the respective Cloud and network controllers in order to:

• verify availability and location in the Cloud infrastructure of the VNFs
required to compose the specified service, instantiating new ones if needed;

• program traffic steering rules in the network infrastructure to deploy a
suitable network forwarding path.
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Figure 3.2: Example of a Service Function Chain

In order to provide an abstracted yet flexible definition of the specified
service graph, without knowledge of the technology-specific details (such as
devices, ports, addresses, etc.), the NBI exposed by the test bed should allow
to specify not only the sequence but also the nature of the different VNFs to be
traversed, which is strictly related to the service component they implement,
as well as other peculiar characteristics of the service itself, such as quality of
service (QoS) metrics and thresholds.

As a first attempt to define the NBI, the following abstractions can be
considered:

• a QoS feature can be defined in terms of a QoS metric that is relevant to
the service specified; in the example discussed above the relevant metric
is guaranteed bit rate;

• a QoS threshold can be specified for the QoS metric of interest; in the
example, a minimum bit rate value to be guaranteed can be specified;

• a VNF can be terminating or forwarding a given traffic flow; in the
example of Figure 3.2, the Deep Packet Inspector/Intrusion Detection
System (DPI/IDS) is terminating the flow, whereas the traffic shaper
and the WAN accelerator are forwarding it;

• a forwarding VNF can be port symmetric or port asymmetric, depending
on whether or not it can be traversed by a given traffic flow regardless
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of which port is used as input or output; in the example, the WAN
accelerator is port asymmetric, because it compresses or decompresses
data based on the input port used, whereas the traffic shaper can be
considered port symmetric, if we assume that the shaping function is
applied to any output of the VNF;

• a VNF can be path symmetric or path asymmetric, depending on whether
or not it must be traversed by a given flow in both upstream and down-
stream directions; in the example, according to the service requirements,
the WAN accelerator and the DPI/IDS are path symmetric, whereas the
traffic shaper is path asymmetric.

In order to implement the aforementioned abstractions, we define a sort of
ETSI MANO deployment template adopting the well-known JSON format. A
service chain is therefore defined in the following way:

{

"src": "node_value",

"dst": "node_value",

"qos": "qos_type",

"qos-thr": "qos_value",

"vnfList": [vnf],

"dupList": [dup]

}

where:

• src and dst represent the endpoint nodes of the service chain, either
global or limited to a given VIM domain;

• node_value is a text string that contains a high-level unique identifier
of a node known to both orchestrator and VIM;

• qos represents the QoS feature to be provided with the service chain,
and its value, qos_type, is a text string that contains a high-level unique
identifier of a QoS metric known to both orchestrator and VIM

• qos-thr represents the QoS threshold to be applied to the specified met-
ric, and its value, qos_value, is the actual value assigned to the thresh-
old;
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• vnfList is the ordered list of VNFs to be traversed according to the
specified service;

• dupList is the list of VNFs towards which the traffic flow must be du-
plicated.

Each VNF is described in terms of its topological abstractions with the
following template:

vnf ::= {

"name": "node_value",

"terminal ": "bool_value",

"port_sym ": "bool_value",

"path_sym ": "bool_value"

} | ε

where bool_value is a text string representing either a Boolean or a null
value, and the symbol ε indicates the possibility that vnf is an empty element.
Considering that some network functions (e.g., DPI) require traffic flows to
be mirrored, the (possibly empty) list of VNFs towards which the traffic flow
must be duplicated is specified with the following template:

dup ::= {"name": "node_value "} | ε

The NBI offered by VIMs can be implemented through the mechanisms of
a REST API, and should provide the following methods:

• a method to define a new service chain;

• a method to update an existing service chain;

• a method to delete an existing service chain.

These actions are basically in line with the operations foreseen by the ETSI
MANO specifications, with reference to the interface between NFVO and VIM.
It is worth highlighting that the NBI description given above is indeed based
on the concept of intent. QoS metric, VNFs and service chains are specified in
a high-level, policy-oriented format without any knowledge of the technology-
specific details. A non-intent-based description of a service chain, e.g. using
the OpenFlow expressiveness to steer traffic flows and compose the network for-
warding path, would require the customer to specify multiple flow rules in each
forwarding device for each traffic direction, involving technology-dependent de-
tails such as IP and MAC addresses, device identifiers and port numbers.



Chapter 4

Specific Deployments

The NBI defined in Chapter 3 is used in this Chapter to specify an IoT data
gathering service crossing two different SDN domains and an NFV chain, as
per the architecture in Figure 4.1.

For the use case considered here, the high-level QoS features offered by the
SDN/NFV platform include minimum latency and high reliability classes,
with the possibility to specify a threshold for the relevant metric.

Although the above intent-based NBI definition is common to all VIMs
considered in our use case, the orchestrator must specify different content
for each VIM depending on the specific resources to be programmed and the
specific segment of the service chain to be deployed in each domain.

4.1 Service Function Chaining

in the IoT/Cloud deployment

Our aim is to obtain an intent-based, technology-independent, north-bound
interface (NBI) for end-to-end service management and orchestration across
multiple technological domains, possibly including both SDN and non-SDN
domains.

In comparison to Figure 3.1, in Figure 4.1 we present a specialized version
of the reference architecture, specific to the use case of IoT data collection and
related Cloud-based consumption.

By going further into detail, we obtain the scheme of the actual test bed
we developed to demonstrate multi-domain SDN/NFV management and or-
chestration, shown in Figure 4.2

27



28 CHAPTER 4. SPECIFIC DEPLOYMENTS

IoT SDN 
Controller

SDN 
Controller

VNF

VNF

VNF Manager (VNFM) and NFV Orchestrator (NFVO)

IoT VIM
SDN/Cloud VIM

Cloud
ControllerDB

GW1

IoT Coord1

GWN

IoT CoordN

IoT 
Network 1

IoT 
Network N

…

IoT SDN Domain

SDN Domain Cloud Domain

VIM Intent-based NBI
(Vnfm-Vi, Or-Vi)

Network/Cloud Controller NBI
(Nf-Vi)

Technology-specific SBI

Figure 4.1: Reference multi-domain SDN/NFV architecture, specialized for
the presented use case

4.1.1 IoT SDN Domain

The IoT SDN domain included in the architecture of Figure 4.2 is composed
of:

• a VIM able to manage components and resources in the IoT domain;

• an IoT SDN controller (IoTC), implementing the software-defined control
plane of the IoT domain;

• a set of IoT networks, where different devices send the measured data via
multi-hop paths to a coordinator node that forwards them to the final
consumer.

Since the different IoT networks will possibly use different technologies
(e.g., Zigbee, LoraWAN, 6LowPAN, etc.), each IoT coordinator will be con-
nected to a specific gateway (GW) in charge of forwarding data outside the
IoT domain.

When a service request is received from the high-level management and
orchestration functions, the IoT VIM gets access to the IoTC. As it is shown in
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Figure 4.2: the NFV/SDN test bed setup developed

Figure 4.2, one of the components of the controller is a database, which stores
information about devices of the different networks, such as how to reach
them (i.e., the IP address of the corresponding GW), the service provided,
and the related QoS feature that could be guaranteed. The VIM tries to map
the incoming request with the resource knowledge available in the database, in
order to select the proper IoT device(s) to forward the request to. According to
the decision taken, the IoTC will program the selected IoT network(s) to make
sure that the requested QoS would be guaranteed, and forward the request to
the identified GW(s).

The IoT VIM and database

The VIM is capable of handling requests containing either the particular IoT
device to be queried, or a high-level description of the service requested by
the customer, together with some other possible specification related to the
QoS (in terms of reliability or maximum latency). Let us consider the case of
a customer that wishes to periodically collect temperature values in a given
room and monitor them by means of a processing/publishing service called
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ServP running as a VNF in the Cloud domain. Assume that the customer is
interested in having a complete record of the measured temperature request,
thus requiring a high-reliable service. Then the intent-based request sent to
the IoT VIM, expressed according to the JSON format specified in Section 3.1,
could be as shown in Listing 4.1.

{

"src": "ServP",

"dst": "Temperature Room X",

"qos": "SR",

"qos -thr": "90%",

"vnfList ": "null",

"dupList ": "null"

}

Listing 4.1: Example of request sent to the IoT VIM

In the IoT domain, following the typical IoT device query approach,
src represents the source of the query, that is the final consumer of the data to
be collected. In our example, this is the processing/publishing service in the
Cloud. On the other hand, dst represents the final endpoint of the query, that
could be one or multiple IoT devices. This text string may contain a unique
identifier of a specific IoT device, or a high-level intent-based description of
the requested service. The second option is used in our example above. The
field qos represents the requested QoS feature either in terms of latency, ex-
pressed as data plane RTT, or reliability, that is the probability of successfully
receiving the data from that device. In our IoT VIM implementation, qos

may assume the values of real time (RT), non real time (NRT), strictly reliable
(SR), or loosely reliable (LR). If needed, the user may also provide qos-thr,
representing either the maximum tolerable latency or the minimum requested
throughput/reliability. In the example above, SR with a 90% threshold is
requested. Finally, vnfList and dupList are not specified in the example
because we assume that the orchestrator opted for VNFs located in the Cloud
domain.

At this point the VIM checks in the database if the destination the user is
looking for is present, and if the requested QoS (if any) could be satisfied.

When the IoTC receives a new measurement from a device, the data is
stored in the database, along with the instant in which it was received. Once
a new request for the same device arrives the VIM checks the timestamp and
decides whether the data needs to be updated or not (if not, the value is
immediately returned).
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With reference to the QoS, it is important to underline that in case the
same device could reach the IoT coordinator via different paths (e.g., having
different number of hops), the corresponding QoS values are stored in the
database.

The IoT controller and network

The IoT controller is responsible for gathering information from sensor devices,
maintaining a representation of the network, and establishing routing paths.

In order to achieve the decoupling of the control plane from the data plane,
it is fundamental for each device to be able to discover a path towards the
coordinator. This is done during the network initialization phase. Requests
coming from the VIM are forwarded by the IoTC to the proper IoT coordinator,
along with the information about the selected path connecting the coordinator
and the intended device to be setup to guarantee the requested QoS. The
details on how this works are covered in [23].

4.1.2 OpenFlow and Cloud Domains

In this section we consider both the wired SDN domain and the Cloud Com-
puting domain depicted in Figure 4.1, assuming that they are managed by a
single SDN/Cloud VIM. The data plane topology assumed for the considered
use case is shown in Figure 4.3. An OpenFlow-based SDN infrastructure is
assumed to be in charge of the connectivity within the Cloud domain as well,
thus providing programmable traffic steering functionality to VNF chains. All
the switches included in the topology (s1, s2, . . . , s7) are OpenFlow-enabled
devices and are governed by an SDN controller (e.g., ONOS), whereas the com-
puting infrastructure is managed through a Cloud platform (e.g., OpenStack).

Switch s6 is an edge device connecting the IoT gateways in the IoT SDN
domain to the Cloud network. Router vrl is the (virtual) edge router of the
(virtual) tenant network responsible for the connectivity within the Cloud do-
main of the requested IoT data collection service. Switches s1 to s5 are either
physical or virtual switches used by the tenant network for VNF connectivity.
Two VNFs are deployed in the Cloud: chk performs integrity checks on the
collected data for improved reliability, whereas bck is used to store backup
copies of the collected data. Router vrr is the (virtual) edge router of the
(possibly different) tenant responsible for the IoT data collection, processing,
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Cloud Infrastructure

Figure 4.3: data plane topology of the OpenFlow and Cloud domains consid-
ered for the use case

and publishing services. Switch s7 is a (virtual) switch in the latter tenant’s
network, providing layer-2 connectivity to the server ServP where collected
data are processed and published.

According to the QoS features of the use case considered here, the connec-
tivity service offers two different paths in the OpenFlow domain. One path is
characterized by minimum latency, where switches are configured with small
buffers being continuously monitored by the SDN controller for possible con-
gestion, and such that no VNF processing is performed, which could introduce
additional delays. The other path is dedicated to highly reliable traffic flows,
where switches have large buffers to reduce losses, and data are processed by
chk and duplicated at switch s2 in order to be stored in bck.

Therefore, depending on the QoS feature requested by the customer, the
high level management and orchestration functions can specify two different
service chains. Assuming that, based on the interaction between the orches-
trator and the IoT VIM, incoming data will be collected from IoT network k
and then forwarded to ServP, according to the JSON format specified in Sec-
tion 3.1 the intent-based request to the SDN/Cloud VIM NBI could be the one
shown in Listing 4.2 for the minimum latency QoS feature, or the one shown
in Listing 4.3 for the high reliability QoS feature. The SDN controller must
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implement a data plane monitoring service to make sure that, in the former
case, the minimum latency path guarantees the requested maximum delay of
10 ms, whereas in the latter case the VNFs inserted in the service chain and
the high reliability path ensure the required 99% accuracy.

For the sake of completeness, we remark that the data paths depicted in
Figure 4.2 are those for the case in which the QoS class is set to high reliability.

{

"src": "IoT -GW[k]",

"dst": "ServP",

"qos": "Max delay",

"qos -thr": "10 ms",

"vnfList ": "null",

"dupList ": "null"

}

Listing 4.2: Request for minimum latency path

{

"src": "IoT -GW[k]",

"dst": "ServP",

"qos": "Reliability",

"qos -thr": "99%",

"vnfList ": [chk , bck]

"dupList ": [bck]

}

chk ::= {

"name": "chk",

"terminal ": "false",

"port_sym ": "true",

"path_sym ": "false"

}

bck ::= {

"name": "bck",

"terminal ": "true",

"port_sym ": "null",

"path_sym ": "false"

}

Listing 4.3: Request for high reliability path

We developed the VIM for the SDN/Cloud domains as an application run-
ning on top of the ONOS platform. It is worth noting that ONOS already
provides a built-in, intent-based NBI that can be used to program the SDN
domain and deploy the required network forwarding paths. However, in or-
der to specify the ONOS intents, some knowledge is required of the specific
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data-plane technical details, while in our approach we prefer to expose only
high-level abstractions to the orchestrator. Therefore, one of the main func-
tions of our VIM is to implement new, more general and abstracted intents
that can be expressed according to the NBI specification given above. Then
the VIM takes advantage of the network topology features offered by ONOS
to discover VNF location in the Cloud and relevant connectivity details, and
eventually it is able to compose native ONOS intents and build more complex
network forwarding paths.

The VIM can be instantiated as an ONOS service called ChainService,
which provides the capability of dynamically handling the VNF chains through
the abstracted NBI defined in Section 3.1. To achieve extensibility and mod-
ularity, the implementation of ChainService is delegated to a module called
ChainManager, which is in charge of executing all the required steps to trans-
late the high-level service specifications into ONOS-native intents. The input
to ChainManager can be given through either the ONOS command line inter-
face (CLI) or a REST API. The latter is preferable because it allows remote
applications to use standard protocols (e.g., HTTP) to access resources and
configure services. In our implementation, the REST API provides the follow-
ing service endpoints:

POST /chaining/{action}/{direction}

DELETE /chaining/flush

In the former endpoint, the action variable indicates the operation that
the orchestrator means to perform on a specified service chain (add, update, or
delete), whereas in case of an update the direction variable (forth, back,
or both) defines whether the modified chain specification refers to the existing
forwarding path from src to dst, the opposite way, or both directions. The
basic operations of this endpoint are described in the following list.

• If the add action is given, a new service chain is defined, based on the
JSON specification included in the message body. This means that a
forwarding path will be created for traffic flowing from src to dst and
another one in the opposite direction. Note that the two paths are not
necessarily symmetric, based on the topological abstractions defined by
the NBI.

• If the update action is given, then the direction is taken into account
and the forward path, backward path, or both paths of the specified
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existing service chain are changed. In fact, a user may be interested in
changing only a segment of the forwarding path and only in one direction,
to reduce the control plane latency and limiting the impact that a path
change can have on the existing traffic flows;

• If the delete action is given, then both forwarding paths of the specified
existing service chain are removed.

ChainService provides also the flush operation through another endpoint,
thus offering the possibility of deleting in a single step the forwarding paths of
all the service chains previously created.

4.2 Dynamic multi-domain

Service Function Chaining

As previously stated, our goal is to be able to handle seamless communication
of data between multiple heterogeneous domains. In order to do that, we can
consider using other emerging technologies which implement the concept of
SFC. Starting from the reference architecture represented in Figure 3.1, we
also developed a second test bed, in which two OpenFlow/SDN domains are
interconnected through a non-SDN domain, controlled by a barebone version
of a WAN Infrastructure Manager. We wanted the interconnection domain to
be SFC-oriented, so we decided to adopt Network Service Header (NSH) [22]
as Service Function Chaining resource in that domain.

In a few words, a Network Service Header is metadata added to a packet
or frame that is used to create a service plane. The packets and the NSH
are then encapsulated in an outer header for transport. The service header
is added by a service classification function (i.e., a device or application) that
determines which packets require servicing, and correspondingly which service
path to follow to apply the appropriate service.

Although many experimental sessions have been run on this test bed, we
have not come to a point where we can illustrate the experimental validation
of this part of the work in a complete and satisfying way. Therefore we leave
the description of its implementation, along with the description of the tests
we managed to run on it so far, out of this document, for the benefit of a
following work, where this test bed and all related aspects will be thoroughly
discussed.
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Chapter 5

OpenFlow/Cloud domain
implementation

Before proceeding, it is worthy to remark the sequence of actions that our
system is designed to handle.

1. The customer requests the service to the high-level management and
orchestration functions, specifying the desired QoS feature.

2. The orchestrator forwards the request to the VIM REST NBIs of the rele-
vant domains using the JSON format described in Chapter [ch:spec-delp].

3. Each VIM performs the operations required in the respective domain and
programs the underlying controllers according to the requested service
and QoS feature.

4. Data generated by the IoT devices are sent by the relevant gateway
via HTTP POST to the collecting/processing/publishing server in the
Cloud, where the customer can retrieve it.

In this chapter, we will cover the implementation details of the
OpenFlow/Cloud domain described in Section 4.1.2. First, we will describe
the software tools we used, then we will go into details of the setup of a
preliminary local environment (i.e., running on a PC, not on the dedicated
server we are going to setup later on), and then we will go through the setup
of the environment we actually used in the tests carried out for [2].
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More specifically, the activities of this thesis are focused on installing and
operating the ONOS controller and the OpenFlow/Cloud domains of the test
bed shown in Figure 4.3. To this aim, our environment must include four
Virtual Machines (VMs), in particular:

• a VM on which to develop ONOS applications;

• a VM on which to deploy the ONOS instance;

• a VM on which to run the Mininet network;

• a VM on which to host the Web server.

These VMs are going to be hosted by a single physical server, located in our
lab. A complete scheme of the interconnection of the VMs within the physical
server is shown in Figure 5.1.

Figure 5.1: Scheme of the physical host server

Before setting up the actual test bed on a server, we simulated part of it
locally, so as to then be able to use the virtual hard drives of the trial VMs as
starting points for the VMs of the actual development.

Personal note: please take into account that the description of the per-
formed steps is aimed at future students, who might never have used a Linux
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system before, as it was for me when I started these activities. For this reason,
some of the descriptions included in the rest of the chapter may appear to
be over-simplified or over-detailed, to the eye of an experienced user. For the
same reason, most of the descriptions of the perfrmed actions is reported in the
form of a sort of guide. It was my personal choice to include in the first steps
explained every single command to be used to repeat those steps, including
the commands needed to change the working directory, so that, if anybody
should repeat my activities, they are not required to have any knowledge of
a Linux/UNIX system, but hopefully they can start learning something even
from here.

5.1 Setup of the preliminary local environment

Before deploying the VMs we are actually going to use for the experimental
validation on the server, we created and deployed two of them (those for ONOS
development and deployment) on a PC, so as to be able to get familiar with
the process of creating and deploying a functional ONOS instance. Therefore,
in this section we will go through the steps that are necessary for setting up a
basic ONOS cluster on two VMs hosted by a PC.

We will be working on a Santech PC equipped with an Intel i7-4710MQ,
2.50 GHz processor (4 cores, virtualized to 8 logical processors), and 16 GB of
RAM, running Windows 10 Pro 64 bits.

5.1.1 Creation of the Virtual Machines

We are mainly going to follow instructions found on ONOS Wiki [19], however
highlighting the steps which required some troubleshooting.

To begin with, we download and install Oracle VM VirtualBox [24].

We are going to create a new VM, which will be running Ubuntu Server
14.04 LTS 64-bit. The reason for this choice is that, at the time of writing
of this document, the aforementioned OS is the one on which the ONOS team
has been developing and testing the version of ONOS we are going to use.

Proceed to download the *.iso file of Ubuntu Server 14.04 LTS 64-bit [25].

Next, we must create the new VM. In the following sequence of steps,
the choice of names for the VMs, username, passwords and IP addresses is
completely arbitrary. Moreover, if the host machine is less powerful than the
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one used for the setup described here, only allocate a quantity of resources
that is sustainable for the used host machine.

In VirtualBox (VB), create a new VM called ONOS dev. In the setup
wizard, allocate to this VM 4 GB of RAM and 16 GB of hard disk, with
fixed-size.

Confirm and wait for allocation to finish, then right click on the newly-
created VM, and click on Settings, then:

– in the System section, under the Processor tab, allocate 2 processors to
this VM;

– in the Storage section, load the *.iso image of the Ubuntu Server instal-
lation disc in the virtual disc reader of the VM;

– in the Network section, under the tab Adapter 1, check the checkbox to
enable this adapter, and attach it to NAT, then, under the tab Adapter
2, check the checkbox to enable the second adapter, and attach it to
Host-only Adapter.

Confirm the settings, then start the VM. It should boot from the virtual
disc of Ubuntu Server.

Proceed in the installation by using:

– Spacebar to toggle checkboxes,

– Tab −−→−−→ to highlight Continue or a different bottom option,

– Enter ←↩ to confirm.

Then:

– select the desired language, then select Install Ubuntu Server ;
– select the appropriate language, time zone and keyboard layout;
– select eth0 as primary network interface;
– insert the hostname for this VM. Here we used onos-dev;
– insert the username of the first user of the VM. Here we used developer;
– insert a password for the new user. Here we used sonoonos;
– do not encrypt your home directory;
– confirm or select the correct time-zone;
– install the system to the entire (virtual) disk without setting up LVM,

and confirm;
– do not select any proxy;
– select to install security updates automatically;
– choose to install the OpenSSH server by checking the corresponding

checkbox;
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– choose to install grub to the Master Boot Record;
– confirm the reboot after the end of the installation with Continue.

The VM should then reboot to the login screen of Ubuntu Server. If it
launches the installation again, stop the VM and manually unmount the *.iso
file from its virtual disk reader, then start it again.

Log in to the VM from the terminal in its window, and install all the
available upgrades, and also install the package git, with:
$ sudo apt -get update && sudo apt -get -y upgrade

$ sudo apt -get -y install git

We need to make sure that the network interface on the host-only network
will come up at every boot of the VM, and additionally, for ease of use, we
need to assign a static IP address to it. In order to choose the IP address,
we need to check the network used by the VirtualBox Host-Only Network
adapter, by inspecting the network configurations of the host machine. By
default, the VirtualBox Host-Only Network adapter should have the IP address
192.168.56.1, which belongs to the network 192.168.56.0/24. If this is the case,
we can use for the VM any other IP address of the same network. Here we
chose 192.168.56.2. In order to statically configure the VM’s eth1 interface,
we need to edit the file /etc/network/interfaces. We can do this with the
text editor vim:
$ sudo vim /etc/network/interfaces

The text editor vim starts in Command Mode. In order to insert text, it is
necessary to press the key I while in Command Mode. Then, after editing,
go back to command mode by pressing key Esc . From Command Mode,
type :w to save and remain in the editor, :x to save and exit, or :q! to exit
without saving.

Add at the bottom of the mentioned file the following lines:
auto eth1

iface eth1 inet static

address 192.168.56.2

netmask 255.255.255.0

Then reboot the VM with:
$ sudo reboot

If the configuration was correct, from now on we will be able to access the
VM from a SSH client running on the host machine (native in UNIX systems,
or easily obtainable in Windows), as we know its IP address on the internal
virtual network. Try to access to the VM from a SSH client by using the IP
address we just chose. If we succeed in logging in, we can shut the VM down.
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At this point, clone the VM, in order to obtain another VM with a clean
and upgraded installation of Ubuntu Server 14.04 LTS 64-bit, which we will
use as deployment machine in the following. To obtain the clone, just right
click on the VM and select Clone. We can call the cloned VM ONOS depl.

Wait until cloning is done, then run the VM ONOS dev again, but this
time in headless mode, with right click on it, then select Start, then Headless
start.

Log in to the VM ONOS dev through a SSH client. Detail on how to use
SSH from a Windows system, are reported in Section A.1.

In the user’s home folder, which in this case is /home/developer/, create
two folders, named Downloads and Applications, with:
$ mkdir Downloads Applications

Then move into the Downloads folder with:
$ cd Downloads

Download the binaries of Karaf and Maven with:
$ wget http :// archive.apache.org/dist/karaf /3.0.5/ apache -karaf -3.0.5. tar.gz

$ wget http :// archive.apache.org/dist/maven/maven -3/3.3.9/ binaries/apache -

maven -3.3.9 - bin.tar.gz

Uncompress them in the Applications folder with:
$ tar -zxvf apache -karaf -3.0.5. tar.gz -C ~/Applications/
$ tar -zxvf apache -maven -3.3.9 - bin.tar.gz -C ~/Applications/

Next, we need to install Java. First off, we need to install its repository,
with:
$ sudo apt -get -y install software -properties -common -y

$ sudo add -apt -repository ppa:webupd8team/java -y

If this step prompts for the installation of python-software-properties, agree
to install it.

Then, install the actual Java packages, with:
$ sudo apt -get update; sudo apt -get install oracle -java8 -installer oracle -

java8 -set -default -y

Acknowledge the license when prompted.

5.1.2 ONOS Setup

Clone the ONOS repository from git in the home directory, with:
$ cd; git clone https :// gerrit.onosproject.org/onos

The preamble of the command (cd;) simply makes sure that we are working
in the home directory.
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We need to add the setting of some environmental variables to the shell
profile. To do so, edit the file ~/.bashrc with:
$ sudo vim ~/. bashrc

and add at the bottom of the file the following lines:
export ONOS_ROOT ="/ home/developer/onos"

source $ONOS_ROOT/tools/dev/bash_profile

Then save and exit. This way the paths required by Java, Karaf, Maven and
ONOS will be automatically set at each boot.

Execute the script ~/.bashrc with:
$ source ~/. bashrc

Now we can type:
$ mvn --version

and we should get some information on Maven and Java. In particular, the
information on Java should be the same as those given by:
$ java -version

We will now build ONOS using Maven. Move into the ONOS folder with:
$ cd ~/onos

and launch the build with:
$ mvn clean install

or simply:
$ mci

This operation may take some time. On the VM used in this setup, it took
approximately 20 minutes.

During this process, Maven is going to download all the dependencies
needed in order to build and install ONOS. For this reason, it is important
that the Internet connection of the VM is never interrupted, or Maven will fail
the build process.

Once the build has completed, we can use the onos-package shell tool to
produce an installable compressed *.tar.gz file, which contains ONOS artifacts
as well as ONOS-branded distribution of Apache Karaf. Obtain this file with
the command:
$ onos -package

or simply:
$ op

The *.tar.gz file will be created in the folder /tmp/. This folder is cleared
every time the machine is turned off. We can create a copy of the .*tar.gz
file in order to be able to reuse it, if needed, on successive sessions, without
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needing to create it again (refer to Section 5.1.4 for details on re-deployments
of ONOS). To this purpose, when the creation of the file is finished, copy the
file from the folder /tmp/ to another folder under the user’s home directory.
In our setup, we used the folder ~/onos, and made the copy with:
$ cp /tmp/onos -1.8.0. developer.tar.gz ~/onos

Then we need to configure on the depolyment VM, ONOS depl.
First of all, as we obtained this VM as a clone of the other one, we need

to change the IP address, to avoid a duplicate address. Edit the relevant file
with:
$ sudo vim /etc/network/interfaces

and modify the address 192.168.56.2 to a different one, in this case 192.168.56.3.
Now create the same two folders in the home directory as in the other VM,

then move into the Downloads folder, with:
$ cd; mkdir Downloads Applications; cd Downloads

and download the binaries for Maven with:
$ wget http :// archive.apache.org/dist/maven/maven -3/3.3.9/ binaries/apache -

maven -3.3.9 - bin.tar.gz

then uncompress them in the Applications folder with
$ tar -zxvf apache -maven -3.3.9 - bin.tar.gz -C ~/Applications/

Next, we install Java, following the same sequence of steps as we did for
the other VM:
$ sudo apt -get install software -properties -common -y

$ sudo add -apt -repository ppa:webupd8team/java -y

$ sudo apt -get update

$ sudo apt -get install oracle -java8 -installer oracle -java8 -set -default -y

We will not install ONOS on this VM, so we cannot rely on its script to
initialize the needed environmental variables, therefore we must do it manually.
Edit the script ~/.bashrc with:
$ cd; sudo vim .bashrc

and add the following lines at its bottom:
export JAVA_HOME ="/usr/lib/jvm/java -8-oracle"

export MAVEN=${MAVEN:-~/Applications/apache -maven -3.3.9}

On this VM we also need to install Mininet. To do so, just clone its
repository with:
$ git clone git:// github.com/mininet/mininet

Next, choose the version to be installed with:
$ cd mininet

$ git tag # list available versions

$ git checkout -b 2.2.1 2.2.1
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Then, compile and install the chosen version with:
$ util/install.sh -a

With the -a option we are installing every component included in the
Mininet repository.

After the installation is finished, we can check its correctness by running a
simple test with:
$ sudo mn --test pingall

This sets up a virtual network composed by two hosts connected to the same
switch, and sends a ping from each host to the other.

Next, we need to create a new user named sdn with:
$ sudo adduser sdn

Leave all fields to their default values, except for the password, which needs
to be rocks. Then validate with y.

We need the new user to be able to act as superuser without having to
insert a password. To enable this, edit the sudoers file with:
$ sudo visudo

and add at the bottom of the file:
sdn ALL=(ALL) NOPASSWD:ALL

Next, we want the user developer on the VM ONOS dev to be able to
log in as the user developer on the VM ONOS depl, through SSH, without
requiring the password at every login. To this purpose, we set up key autho-
rization. From the command line of the VM ONOS depl, generate a RSA key
pair with:
$ ssh -keygen -t rsa

Leave all fields to their default values. Then, use an utility of ONOS to
finalize the authorization mechanism in the other VM, with:
$ onos -push -keys 192.168.56.3

Confirm by typing yes and the password for user sdn, that is rocks.
We are going to use various ONOS utilities for the act of deployment, and

they expect the IP addresses and other parameters to be present in certain
environmental variables. We can initialize those variables through the cell

environment offered by ONOS. We are basically going to create a text file con-
taining a list of environmental variables to be exported, then, with the com-
mand cell, we can load them all at the same time. In order for the cell tool
to find the file, we need to create it in the folder ~/onos/tools/test/cells.
So, create the file mycell in the mentioned folder and edit it with:
$ vim onos/tools/test/cells/mycell
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Insert the following text in the file:
# Controller VM instance OC1 and target Mininet instance OCN

export OC1 ="192.168.56.3" # Target

export OCN ="192.168.56.3" # Mininet VM

# for node clustering

export ONOS_NIC= 1 9 2 .168.56.*

# ONOS features to load

export ONOS_FEATURES =" webconsole ,onos -api ,onos -core -trivial ,onos -cli"

Save and exit. Then load the values with:
$ cell mycell

and it should display:
ONOS_CELL=mycell

OCI =192.168.56.3

OC1 =192.168.56.3

OCN =192.168.56.3

ONOS_FEATURES=webconsole ,onos -api ,onos -core -trivial ,onos -cli

ONOS_GROUP=sdn

ONOS_NIC= 1 9 2 .168.56.*

ONOS_SCENARIOS =/home/developer/onos/tools/test/scenarios

ONOS_TOPO=default

ONOS_USER=sdn

ONOS_WEB_USER=onos

ONOS_WEB_PASS=rocks

Now, from the VM ONOS dev, deploy ONOS on the other VM with:
$ stc setup

The operation may take some time (a couple of minutes, in the case of
the PC we used). Moreover, it is acceptable if the last two steps fail. This
is because the penultimate step is just a remote check of some installation
parameter, and the last step is successful only if all the previous ones are
successful. If the process concludes with 8 succesful steps and 2 failed ones,
the deployment should work anyway.

From now on we can access the ONOS Graphical User Interface (GUI) at
http://192.168.56.3:8181/onos/ui.
The username is onos and the password is rocks.

We are now going to use Mininet on the deployment VM. We want to
set up the default topology (2 hosts inter-connected through a switch) and
assign the control of the switch to a remote controller, which in this case
will be the ONOS instance running on the same VM. The default topology is
brought up by the use of the command mn, which must be run with superuser
privileges. The assignment of a remote controller is made with the option
--controller remote. It is also possible to specify the IP address and listen-
ing port of the controller, but, if not specified, the two parameter will default
to 127.0.0.1 (localhost) on port 6633, which is actually where our instance
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on ONOS is running. So type:
$ sudo mn --controller remote

Start a ping sequence between the two hosts with:
mininet > h1 ping h2

For the moment it should yield Destination Unreachable. This is be-
cause the controller does not know how to handle any packets, much less ARP
and ICMP packets. We need to activate the proper ONOS application to carry
out this task.

Open the ONOS Command Line Interface (CLI) with:
$ /opt/onos/bin/onos

and run:
onos > app activate org.onosproject.fwd

Now, in the Mininet window, the ping should start to be successful. If so,
we can stop the ping sequence.

We now have everything we need to start creating and developing ONOS
apps. ONOS comes with a set of bundled apps, such as the one for simple
packet forwarding (org.onosproject.fwd) used to test the setup. Those are
a good starting point for the development of new applications.

5.1.3 Setup of the IDE

The ONOS project does not enforce the use of a specific Integrated Devel-
opment Environment (IDE), but rather, a set of guidelines that can be con-
figured in any IDE. However, the examples and documentation focus on In-
telliJ IDEA [26]. Therefore, we are going to install the mentioned IDE on
ONOS dev.

Move into the Downloads folder with:
$ cd ~/Downloads/

Then download the compressed installable file of the IDE with:
$ wget https :// download.jetbrains.com/idea/ideaIC -2016.2.4. tar.gz

Next, uncompress the file to the Application folder with:
$ tar -zxvf ideaIC -2016.2.4. tar.gz -C ~/Applications/

Now, to run the IDE, just run the script idea.sh located in the folder
~/Applications/idea-IC-162.2032.8/bin with:
$ ~/Applications/idea -IC -162.2032.8/ bin/idea.sh

The script will try to open the GUI of the IDE, and forward it to the
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SSH client. In order for this to work, the VM needs to have the required X11
libraries, and the SSH client must be running a X11 server. The easiest way
of making sure that the VM has all the required X11 libraries is to install the
package xorg, which will proceed to install a X-server on the development
VM, plus all the libraries needed for it. We can install it with:
$ sudo apt -get -y install xorg

It is worthy to notice that the development VM will act as the client in the
X11 session, while the machine at the other end, in this case the PC hosting
the VM, will act as the X11 server. However, installing the X11 server on
the VM automatically installs all the needed libraries for it to act as client
as well. Regarding the X11 server, if the machine acting as the SSH client is
running Windows, as it is in our case, we need to install and run a X11 server
application on it, as this feature is not natively present in Windows. A good
choice can be Xming [27].

5.1.4 How to deploy ONOS again

It might occur that ONOS needs to be deployed again even on the same de-
ployment machine, due to wrong configurations of the previous deployment, or
seemingly unexplicable errors that would require more time for troubleshooting
than for a complete re-deployment.

To do that, load the correct cell file used for the first deployment, in this
case mycell, with:
$ cell mycell

Then, copy the file *.tar.gz generated with onos-package from the folder
where we created a backup copy of it, in this case ~/onos, back to the folder
/tmp/, where the utility stc is going to look for it. Superuser privileges are
required to modify the content of the /tmp/ folder, so use:
$ sudo cp ~/onos/onos -1.8.0. developer.tar.gz /tmp/

Lastly, run:
$ stc setup

If the setup succedes, the ONOS instance on the deployment machine
should be identical to the one deployed the first time.
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5.2 Setup of the host server

In this section, we will cover the configuration details of the physical machine
that will host all the VMs needed for our test bed.

The machine is provided with a total of 24 virtualized cores, 32 GB of
RAM, and 1 TB of storage space.

We performed a clean installation of CentOS 7 on the machine, and we as-
sign to this machine the hostname deisnet213 and IP address 192.168.10.213.
Moreover we also create users, giving to at least one of them superuser privi-
leges.

We will use virt-manager [28], that is a desktop user interface for man-
aging the virtual machines through libvirt.

Install the program from a terminal window with:
$ sudo yum install virt -manager

Then run it with:
$ sudo virt -manager

We then need to create a new virtual network for the VMs to connect to.
This virtual network is going to be used for management purposes, i.e., to
access the VMs on an interface reserved for management. Each VM will also
be provided with data interfaces.

In virt-manager, double click on the name of the hypervisor (QEMU/KVM),
and then, from the Virtual Networks tab, create a new virtual network called
iot-net, having as base network address 192.168.200.0/24. Disable DHCP
and do not activate IPv6 addressing on this network. Connect this network to
the physical interface em2 through NAT, and confirm. Then, again from the
Virtual Networks tab, stop the newly created network. Then open a terminal
on the host machine, and run:
$ sudo virsh net -edit iot -net

On the first instance of this command, the system will ask which text
editor to use for editing the configuration files. Choose vim. Edit the field
bridge-name so that it contains the name virbr-iot. Save the file and exit
the editor (using vim commands), then, in virt-manager, start the virtual
network again, and it will be associated to the renamed virtual bridge.

Also, create networks iot-net-left (base address: 172.16.1.0/24) and
iot-net-right (base address: 172.16.2.0/24), which will be used for the com-
munication between the the host server and the Mininet network hosted in
VM iot-mininet, and the communication between the Mininet network and
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the Web server hosted in VM iot-server, respectively. By following the
procedure for renaming the virtual bridges described in the previous para-
graph, associate the former network with interface virbr-iot-left (and as-
signing to it the IP address 172.16.1.253) and the latter one with interface
virbr-iot-right (and assigning to it the IP address 172.16.2.253).

Using virt-manager’s wizards, create the four VMs that we need, namely:

• onos-dev (2 cores, 2048 MB of RAM): this will be the VM on which
ONOS and ONOS apps are developed and built;

– 1 network interface on iot-net;

– username: developer, password: sonoonos.

• iot-depl (2 cores, 2048 MB of RAM): this will be the VM on which
ONOS will be deployed, therefore it will host the running instance of the
controller;

– 1 network interface on iot-net;

– username: developer, password: sonoonos.

• iot-mininet (1 core, 1024 MB of RAM): this VM will host the (virtual)
network, obtained with Mininet, whose switches are controlled by ONOS;

– 3 network interfaces: one connected to iot-net, one bridged to virbr-
iot-left, one bridged to virbr-iot-right;

– username: mininet, password: mininet.

• iot-server (1 core, 1024 MB of RAM): this virtual machine will host a
web server, that will serve as end-point of the communication between
the IoT network and our system;

– 2 network interfaces: one connected to iot-net, one bridged to virbr-
iot-right;

– username: sdn, password: rocks.

The VMs onos-dev, iot-depl and iot-mininet are initialized from pre-
existing virtual hard disks. In particular, onos-dev uses the virtual hard
disk of the VM ONOS dev created locally in the previous section, and so for
iot-depl, which uses the virtual hard disk of ONOS depl, while iot-mininet

uses the virtual hard disk of a VM previously used in [10].

The VM iot-server needs to be created from scratch. The configuration
of this VM is covered in Section 5.2.3.
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5.2.1 Configuration of the ONOS VMs

As stated in the previous Section, VMs onos-dev and iot-depl are initialized
from the virtual hard disk we created for the preliminary local deployment.
Therefore, they need some adjustment in order to let them work in the new
deployment they are placed in.

First of all, we need to change the static IP address assigned to the net-
work interfaces of both the VMs. By following the same procedure described
in Section 5.1.1, we assigned to interface eth0 of onos-dev the IP address
192.168.200.101, and to interface eth0 of iot-depl the IP address
192.168.200.102.

Moreover, in order to allow correct ONOS deployment from the develop-
ment machine, we need to set the correct environmental variables on onos-dev,
through the cell utility. We created the file
/onos/tools/test/cells/mycellserver, and inserted the following lines in
it:
# Controller VM instance OC1 and target Mininet instance OCN

export OC1 ="192.168.200.102" # Target

export OCN ="192.168.200.103" # Mininet VM

# for node clustering

export ONOS_NIC= 1 9 2 .168.200.*

# ONOS features to load

export ONOS_FEATURES =" webconsole ,onos -api ,onos -core -trivial ,onos -cli"

Save and exit. Then, after loading the values with cell mycellserver,
we have:
ONOS_CELL=iot -depl

OCI =192.168.200.102

OC1 =192.168.200.102

OCN =192.168.200.103

ONOS_FEATURES=webconsole ,onos -api ,onos -core -trivial ,onos -cli

ONOS_GROUP=sdn

ONOS_NIC=

ONOS_SCENARIOS =/home/developer/onos/tools/test/scenarios

ONOS_TOPO=default

ONOS_USER=sdn

ONOS_USE_SSH=true

ONOS_WEB_PASS=rocks

ONOS_WEB_USER=onos
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5.2.2 Setup of the Mininet network

As introduced in Section 2.4.2, with Mininet we can emulate all the components
of a SDN network, but, in order to do that, we need to properly configure and
activate each component.

The data plane topology in Figure 4.3 was built with a customized Mininet
script specifying the required OpenFlow switches, as well as routers and VNFs
as separated network namespaces. The script has been written in the Python
language, by taking advantage of the language’s integration with the underly-
ing OS, and Mininet’s Python APIs [29].

What the script does is, in short, to:

– create all the needed switches, while also disabling the Spanning Tree
Protocol (STP) on switches s1, s2, s3 and s4, so as to prevent broadcast
storms due to the ARP requests being flooded in the portion of the
network containing a loop;

– create the hosts which will act as virtual routers and virtualized network
functions;

– create links between switches and hosts, this way inherently declaring
the interfaces of each of them;

– assign MAC addresses to the interfaces of the hosts;

– add (i.e., “connect”) each port of the emulated switches to the corre-
spondent Open vSwitch;

– activate the network components;

– delete the default IP addresses and IP forwarding rules from each of the
hosts;

– bridge the two interfaces of host chk and uses the tool tc to configure
the introduction of a random delay in the traffic traversing the host;

– assign to each of the virtual routers and host bck the proper IP addresses
while also setting the required IP forwarding rules;

– set ARP storm avoidance rules on switch s2, which is the one having
two ports connected to the same host, by installing a proper flow rule in
its table;

– bridge switches s6 and s7 to the network interface eth1 and eth2 of the
VM hosting the Mininet network;
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– set the parameters for the connection to the remote controller, ONOS,
in each switch, and waits for the controller to connect to each of the
switches;

– start the CLI of the emulated network;

– stop the emulated network when the user terminates the CLI, and clean
the system from any residual Mininet configuration.

The whole Python script, with comments, is shown in Section A.2.

5.2.3 Configuration of the Web server VM

In the design phase, it has been agreed that the data traffic for the two different
QoS classes should be sent on a TCP connection on different TCP ports,
namely port 8091 for the Minimum Latency class, and port 8094 for the
High Reliability class. Moreover, the gathered data should be accessible to the
user through a convenient Web interface.

Therefore, we want to obtain a Web server that is able to listen on multiple
TCP ports, specifically:

– port 80, where the server exposes its homepage, displaying tables con-
taining relevant data extracted from the packets received with POST
requests,

– port 8091, where the server will receive POST requests of the Minimum
Latency class;

– port 8094, where the server will receive POST requests of the High Re-
liability class.

We will use Ubuntu 16.04 Server as the OS of this VM. After down-
loading its image from [30], we load it in the virtual optical drive and boot the
VM, then follow the wizard for the setup of the OS. In virt-manager, connect
the primary network interface of this VM to the virtual network iot-net, and
the second one to the virtual bridge virbr-iot-right.

Once the installation of the OS is done, boot the VM for the first time,
and install the packages needed to setup an Apache Web server, with:
$ sudo apt -get update

$ sudo apt -get install apache2 php libapache2 -mod -php

Now, we need to modify some configuration files which belong to the user
www-data, which is the user who owns the Apache service, therefore we need
superuser privileges to modify the files and folders of that user. Instead of
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specifying sudo in all of the following commands, we can just start acting as
the user root, with:
$ sudo su

We can now move into the parent folder of the default home folder of the
Web server, which is /var/www/, and create the subfolders which will serve as
the home directories of the three Web locations we are configuring:
# cd /var/www/

# mkdir domain -80 domain -8091 domain -8094

# mv html/index.html domain -80/

Then, we need to make the server listen on the correct ports. In order to do
this, we need to modify the file /etc/apache2/ports.conf so that it contains
the following lines:
Listen 80

Listen 8091

Listen 8094

Moreover, we need to define virtual hosts in the file
/etc/apache2/sites-enabled/000-default.conf, in the following way:
<VirtualHost *:80>

ServerAdmin webmaster@localhost

DocumentRoot /var/www/domain -80

ErrorLog ${APACHE_LOG_DIR }/ error80.log
CustomLog ${APACHE_LOG_DIR }/ access80.log combined

</VirtualHost >

<VirtualHost *:8091 >

ServerAdmin webmaster@localhost

DocumentRoot /var/www/domain -8091

ErrorLog ${APACHE_LOG_DIR }/ error8091.log
CustomLog ${APACHE_LOG_DIR }/ access8091.log combined

</VirtualHost >

<VirtualHost *:8094 >

ServerAdmin webmaster@localhost

DocumentRoot /var/www/domain -8094

ErrorLog ${APACHE_LOG_DIR }/ error8094.log
CustomLog ${APACHE_LOG_DIR }/ access8094.log combined

</VirtualHost >

Remark: the symbol “ * ” before each of the listening port means that
the server will listen on that TCP port on any of its IP addresses. This way,
we can access to the Web services both from the “management” interface (i.e.,
the one connected to the virtual network iot-net) and the “data” interface
(i.e., the one bridged with virbr-iot-right).

For the purpose of our activities, we also need to avoid that the TCP
connection gets closed by the server after 5 seconds of inactivity, as it would
happen by default. The reason for this need is that we don’t know the inter-
arrival time of two consequent POST requests from the IoT network, and we
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want to generate as little overhead as possible, thus we are interested in keeping
the connections open for a longer time, and also not to limit the number of
times the connection is kept open upon a keep-alive request from the client.
Therefore, in file /etc/apache2/apache2.conf we modified the values to:
KeepAliveTimeout 60

MaxKeepAliveRequests 0

At this point, this VM is listening on TCP ports 80, 8091 and 8094. We
need to develop and setup an appropriate user interface which will be exposed
as the server’s homepage, and two suitable POST message handlers.

5.2.4 POST message handler and server homepage

A simple way of obtaining a HTTP POST message handler is by using a PHP
script. The script will receive the message and extract the JSON carried by the
POST request, then store its content in a database. For the sake of simplicity,
we decided to simply store the JSON object as a string in a text file, called
database.json.

We created a PHP script called postserver.php for each of the two ports
on which the server will listen for POST requests. The two scripts are actually
identical, and, according to the configuration described in Section 5.2.3, they
must be placed in directories /var/www/domain-8091 and
/var/www/domain-8094. The content of the scripts, with comments, is shown
in Section A.3.

Without the necessary permissions, the PHP script would not be allowed
to write to a file in its folder. That is because the folder does not belong to
the user which runs the PHP script, that is the same user that runs the Web
server process. By default in this installation, that is the user www-data. A
simple way to solve the writing permission problem is to change the ownership
of the folder /var/www/html, and give it to www-data, with:
$ sudo chown www -data:www -data /var/www/html/

This way, any PHP script run by the Web server will be allowed to write in
that folder.

We also developed a suitable web interface, reachable on TCP port 80, that
is the default port for HTTP connections. This page shows the data received
with the POST requests, organized in two tables, one for each class of traffic.
The content of the page, as it looks when opened from a Web browser, is shown
in Figure 5.2.
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5.2.5 Additional configurations on deisnet213

For testing purposes (i.e., in order to be able to send forged data packets
from the host machine to the Web server through the Mininet/SDN net-
work), it is important to set an IP forwarding rule in the routing table of
deisnet213. Specifically, all the traffic toward the Web server’s data inter-
face (i.e., the one with address 172.16.2.100) must be forwarded to virtual
router vrl in the Mininet/SDN network. As it is mentioned in Section 5.2.2,
the virtual router’s external interface is in the same broadcast domain as the
host’s interface virbr-iot-left, therefore we need to steer all the traffic com-
ing from deisnet213 and directed to the Web server through the mentioned
interface. If we don’t set this rule, then packets coming from deisnet213

and directed to the Web server would be delivered directly through interface
virbr-iot-right.

So, first we need to remove the default rule for reaching network 172.16.2.0/24,
then we can add the new rule, with:
$ route del -net 172.16.2.0/24

$ route add -net 172.16.2.0 netmask 255.255.255.0 gw 172.16.1.254 dev virbr -

iot -left

The host machine deisnet213 will also serve as intermediate IP node be-
tween the IoT Gateway and the Mininet/SDN network. For this reason, IP
forwarding must be enabled on it. To do that, edit the file /etc/sysctl.conf

with superuser privileges, and add at its bottom the following line:
net.ipv4.ip_forward = 1

Then apply the new settings with:
$ sudo sysctl -p

Lastly, we added an alias em2:iot to interface em2 of deisnet213, with:
$ sudo ifconfig em2:iot 192.168.10.6

$ sudo ifconfig em2:iot up

This way, we can assign the address of the alias as next hop towards the
Web server to the IoT Gateway, thus avoiding to use as next hop the same
address used to access the server deisnet213 for management purposes (i.e.,
that of interface em2).
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5.3 Modifications on the ONOS application

The ONOS application that provided Service Function Chaining across multi-
ple Mininet clusters had been developed for [10]. That application, hereafter
mentioned as CeNA, made for a perfect starting point for the activities of this
thesis. The version of the application we started from already implemented
the chaining based on POST requests received on the REST NBI. Then we
needed to provide the application with the support for multiple QoS classes,
and allow it to operate on our specific set of Mininet clusters.

For the latter aspect, we needed to adapt the JSON files that described
the environment which the application was previously designed to work on, as
well as the JSON files which contained the description of an example chain
to be deployed (details on the JSON files are covered in Section 5.3.1), then
we modified the code of the ONOS application, CeNA, in such a way that it
could cope with the new working requirements (as covered in Sections 5.3.2
and 5.3.3).

5.3.1 JSON cluster descriptors and requests

CeNA expects to be given the description of the cluster(s) it has to control as
JSON files, one for each level-2 broadcast domain. As our Mininet network
includes two level-3 devices (i.e., virtual routers vrl and vrr), it is composed
of 3 level-2 broadcast domains. In particular:

– Listing 5.1 shows the description of the part of the network which is used
to interface the emulated Cloud domain to the IoT GW; it must contain
the reference to that GW, in the form of a host, so that CeNA will then
be able to handle traffic coming from it, along with the reference to the
network equipment used to interact with it;

– Listing 5.2 contains the description of the main part of the emulated
Cloud domain, the one where the actual SFC happens; in fact, it includes
the reference to the hosts used to perform the required Virtual Network
Functions;

– Listing 5.3 shows the description of the part of the network which is used
to interface the emulated Cloud domain to the Web server; it includes
the reference to the VM hosting the Web server.

On the other hand, Listings 5.4 and 5.5 show the actual implementation
of chain requests that are included in the POST messages sent to the REST
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NBI of the ONOS application, one for each QoS class, i.e., minimum latency
and high reliability, respectively.

5.3.2 Waypoint Constraint

We modified the function buildChain so as to choose deterministically the
switch to be traversed in the minimum latency path. Previously, the Service
Function Chain (SFC) was installed without specifying any contraints related
to the path to be followed between two endpoints of an intent. This way,
however, the application tends to always choose to go from vrl to vrr travers-
ing switches s1, s2 and s4. This way, switch s3 is never traversed, when it
could share the traffic going through switch s2 instead. Moreover, we have a
potential overload of switch s2.

For these reasons, we added a Waypoint Constraint to the intents going
from vrl to vrr and viceversa, forcing the flow rules to be installed in such
a way that the traffic which do not need to reach chk (i.e., the traffic of the
minimum latency QoS class) will not traverse switch s2 in going from switch
s1 to switch s3, but it will traverse switch s4, thus distributing the traffic load
to both the intermediate switches.

In the portion of code shown in Listing 5.6, we build the lists of
ConnectPoints and Constraint which the intent will be required to use in
order to install a path, by means of flow rules, from vrl to vrr in the case of
minimum latency traffic. As the path is symmetric, but the direction of the
ConnectPoints is not, we need to differentiate the case of the two possible
directions of traffic, i.e., from vrl to vrr or the other way round.

5.3.3 QoS requirements management

We modified the function addChainIntent to obtain the two functions
addChainIntentForth and addChainIntentBack, which can be used to in-
stall the SFC in both directions, while also including QoS requirements. For
the moment, the only specification that is taken into account is the one on
the QoS class, that can either be minlat or highrel, while the specific QoS
requirement (e.g., a specific maximum tolerated delay) is ignored. Based on
the QoS specification, the intent is given the relevant traffic filter, in the form
of a TrafficSelector, that filters traffic based on the TCP port, according
to the adopted convention of port 8091 for minlat traffic and port 8094 for
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highrel traffic. The portion of code implementing this is shown in Listing 5.7.
For the sake of completeness, it is also worthy to mention that, in order

to carry out the performance evaluation of the VIM NBI, as it is presented
in Chapter 6, we had to apply a slightly different approach to the creation
of the TrafficSelector. In fact, as a part of the performance evaluation is
focused on measuring the NBI’s response time in the event of a sequence of
SFC requests for the same class of traffic, and since the requests would all come
from the same source (i.e., the host server) and would be directed to the same
destination (i.e., the Web server), the VIM would try to install a sequence of
intents (one for each request) having the same source IP, destination IP, and
TCP port number. However, this would result in an error in the OpenFlow
domain, due to the fact that, on each switch, only a single flow rule can be
installed for a given set of filters, and further attempts to install a flow rule
that is already in the flow table are refused. For those reasons, we decided
to allocate a pool of TCP ports to both traffic classes, and assign a different,
progressive TCP port number to each subsequent SFC request. This way we
allow the VIM to go through the whole process without errors that would
invalidate the performance evaluation.
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Figure 5.2: Homepage of the IoT Server
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{

"bcastDomain ": [

{

"id": 1,

"vnfs": [

],

"hosts": [

{

"deviceId ": "of :0000000000000005" ,

"hostId ": "52:54:00: dc:f5:fc/-1",

"name": "iotgw",

"location ": [

"of :0000000000000005/2"

]

}

],

"devices ": [

{

"name": "s6",

"deviceId ": "of :0000000000000005"

}

],

"gateways ": [

{

"deviceId ": "of :0000000000000005" ,

"hostId ": "00:00:00:00:00:0A/-1",

"type": "E",

"name": "vrl",

"location ": [

"of :0000000000000005/1"

]

}

]

}

]

}

Listing 5.1: JSON descriptor of the emulated Cloud domain - east
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{

"bcastDomain ": [

{

"id": 2,

"vnfs": [

{

"name": "vnf",

"location ": [

"of :0000000000000002/2" ,

"of :0000000000000002/3"

]

},

{

"name": "bck",

"location ": [

"of :0000000000000007/2"

]

}

],

"hosts": [

],

"devices ": [

{

"name": "s1",

"deviceId ": "of :0000000000000001"

},

{

"name": "s2",

"deviceId ": "of :0000000000000002"

},

{

"name": "s3",

"deviceId ": "of :0000000000000003"

},

{

"name": "s4",

"deviceId ": "of :0000000000000004"

},

{

"name": "s5",

"deviceId ": "of :0000000000000007"

}

],

"gateways ": [

{

"deviceId ": "of :0000000000000001" ,

"hostId ": "00:00:00:00:00:0B/-1",

"type": "I",

"name": "vrl",

"location ": [

"of :0000000000000001/1"

]

},

{

"deviceId ": "of :0000000000000004" ,

"hostId ": "00:00:00:00:00:0F/-1",

"type": "E",

"name": "vrl",

"location ": [

"of :0000000000000004/3"

]

}

]

}

]

}

Listing 5.2: JSON descriptor of the emulated Cloud domain - center



5.3. MODIFICATIONS ON THE ONOS APPLICATION 63

{

"bcastDomain ": [

{

"id": 3,

"vnfs": [

],

"hosts": [

{

"deviceId ": "of :0000000000000006" ,

"hostId ": "52:54:00: fb:6c:c1/-1",

"name": "iotsv",

"location ": [

"of :0000000000000006/2"

]

}

],

"devices ": [

{

"name": "s7",

"deviceId ": "of :0000000000000006"

}

],

"gateways ": [

{

"deviceId ": "of :0000000000000006" ,

"hostId ": "00:00:00:00:00:0E/-1",

"type": "I",

"name": "vrr",

"location ": [

"of :0000000000000006/1"

]

}

]

}

]

}

Listing 5.3: JSON descriptor of the emulated Cloud domain - west

{

"src": "iotgw",

"dst": "iotsv",

"qos": "minlat",

"qos -thr": "10 ms",

"vnfList ": "null",

"dupList ": "null"

}

Listing 5.4: JSON for request of min lat chain
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{

"src": "iotgw",

"dst": "iotsv",

"qos": "highrel",

"qos -thr": "99\%" ,

"vnf":

[{

"name": "vnf",

"port_sym ": "true",

"terminal ": "false",

"path_sym ": "true"

}, {

"name": "bck",

"port_sym ": "true",

"terminal ": "false",

"path_sym ": "false"

}],

"dup": [{

"name": "bck"

}]

}

Listing 5.5: JSON for request of high rel chain
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1 List<Constra int> c on s t r a i n tL i s t = new ArrayList<>() ;
2 i f ( f o r t h ) {
3 // Rese t t ing e lements to bu i ld t h i s ext ra part
4 cur In tent = new MyIntent ( ) ;
5 tempCpList = new ArrayList<>() ;
6 tempCpList . add (new ConnectPoint ( DeviceId . dev i c e Id ( ” o f

:0000000000000001 ” ) ,PortNumber . portNumber (1 ) ) ) ;
7 tempCpList . add (new ConnectPoint ( DeviceId . dev i c e Id ( ” o f

:0000000000000004 ” ) ,PortNumber . portNumber (3 ) ) ) ;
8 c o n s t r a i n tL i s t . add (new WaypointConstraint ( DeviceId . dev i c e Id ( ”

o f :0000000000000003 ” ) ) ) ;
9 cur In tent . s e tTo i (1 ) ; // This i s a P2P in t en t

10 cur In tent . setConnectPoints ( tempCpList ) ;
11 cur In tent . s e tCon s t r a i n tL i s t ( c o n s t r a i n tL i s t ) ;
12 i n t e n t s L i s t . add ( cur In tent ) ;
13 l og . i n f o ( ” [DEBUG−NSE−4] ( gd3 ) Added i n t en t s to make the f low

f o r c i b l y go through s3 , f o r t h way” ) ;
14 } e l s e {
15 // Rese t t ing e lements to bu i ld t h i s ext ra part
16 cur In tent = new MyIntent ( ) ;
17 tempCpList = new ArrayList<>() ;
18 tempCpList . add (new ConnectPoint ( DeviceId . dev i c e Id ( ” o f

:0000000000000004 ” ) ,PortNumber . portNumber (3 ) ) ) ;
19 tempCpList . add (new ConnectPoint ( DeviceId . dev i c e Id ( ” o f

:0000000000000001 ” ) ,PortNumber . portNumber (1 ) ) ) ;
20 c o n s t r a i n tL i s t . add (new WaypointConstraint ( DeviceId . dev i c e Id ( ”

o f :0000000000000003 ” ) ) ) ;
21 cur In tent . s e tTo i (1 ) ; // This i s a P2P in t en t
22 cur In tent . setConnectPoints ( tempCpList ) ;
23 cur In tent . s e tCon s t r a i n tL i s t ( c o n s t r a i n tL i s t ) ;
24 i n t e n t s L i s t . add ( cur In tent ) ;
25 l og . i n f o ( ” [DEBUG−NSE−4] ( gd3 ) Added i n t en t s to make the f low

f o r c i b l y go through s3 , back way” ) ;
26 }

Listing 5.6: Implementation of a Waypoint path constraint
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1 Tr a f f i c S e l e c t o r s e l e c t o r = nu l l ;
2 switch ( strQos . get (0 ) ) {
3 case ”minlat ” :
4 s e l e c t o r = De f a u l tT r a f f i c S e l e c t o r . bu i l d e r ( )
5 . matchEthType ( Ethernet .TYPE IPV4)
6 . matchIPProtocol ( ( byte ) 6 ) // TCP
7 . matchIPSrc ( ipSrc )
8 . matchIPDst ( ipDst )
9 . matchTcpSrc (TpPort . tpPort (8091) )

10 . bu i ld ( ) ;
11 break ;
12 case ” h i gh r e l ” :
13 s e l e c t o r = De f a u l tT r a f f i c S e l e c t o r . bu i l d e r ( )
14 . matchEthType ( Ethernet .TYPE IPV4)
15 . matchIPProtocol ( ( byte ) 6 ) // TCP
16 . matchIPSrc ( ipSrc )
17 . matchIPDst ( ipDst )
18 . matchTcpSrc (TpPort . tpPort (8094) )
19 . bu i ld ( ) ;
20 break ;
21 de f au l t :
22 s e l e c t o r = De f a u l tT r a f f i c S e l e c t o r . bu i l d e r ( ) . bu i ld ( ) ;
23 l og . e r r o r ( ” [ERROR] QoS c l a s s ” + strQos . get (0 ) + ” not

r ecogn i z ed . ” ) ;
24 }

Listing 5.7: TrafficSelector for different QoS specifications
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Performance evaluation

6.1 Measurements of data plane latency

We measured the performance within the emulated cloud network when the
customer requested the service specifying two traffic classes, according to the
QoS features offered by the OpenFlow SDN domain: minimum latency and
high reliability. In this case, one-way latency in the emulated cloud network
was measured by comparing timestamps of each packet captured at switches s6
and s7. The capture was performed in the server hosting the Mininet virtual
machine (i.e., the server deisnet213), so that the same reference clock was
used for both timestamps.

More specifically, for this performance evaluation:

• the packet sniffer tcpdump is set running on the interfaces of deisnet213
at the two ends of the Mininet network;

• a large number (in this case, 10 000) of POST requests are sent from the
IoT Gateway towards the Web server through the Mininet network;

• the captured packets are then post-processed to compute the average
data plane latency.

In particular, this captures yield two *.pcap files, which we post-processed
in the following way:

• we generated a *.csv file for each *.pcap file by using the tool tshark,
with a line for each HTTP request packet captured, each line containing

67
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3 fields: the timestamp of the packet as time since Epoch in milliseconds,
the TCP Port number as a 16-bit integer number, and the absolute TCP
sequence number as a 32-bit integer number;

• we sorted the *.csv files by TCP Sequence number, then compared the
obtained files line-to-line: as no packet loss was expected to happen in
the Mininet network, we have direct correspondence between the packet
captured at the host server’s interface and the one captured at the Web
server interface;

• by computing the difference between the timestamps of each pair of pack-
ets, we obtained the data plane latency undergone by each of them, and
we wrote the value to another *.csv file, having on each line the indication
of TCP Port, TCP Sequence number, and the value of latency;

• we separated the results of two classes of traffic by discriminating on
TCP Port number, and we created another *.csv file for each class of
traffic;

• for each class of traffic, we use the set of measurements to compute the
statistical mean, standard deviation.

Results are reported in Table 6.1, in terms of average of the data plane one-
way latency. They show the correct behavior of the OpenFlow domain with
respect to the requested QoS feature: very limited delays (i.e., less than 1 ms)
were measured in the minimum latency case, and in the high reliability case the
expected delay was measured (i.e., averaging at 30 ms), and bck successfully
stored a copy of the entire data set transmitted by the IoT Gateway.

QoS feature Average lat. St. Dev.

Min Latency 0.3 ms 0.28 ms

High Reliability 31.7 ms 2.41 ms

Table 6.1: Data plane latency results

We also wanted to test how the emulated network would behave when a
sequence of POST requests is sent through it, with a certain average time
between consecutive requests. So we sent sequences of 1 000 POST requests
from deisnet213 to the Web server, by making up the data contained in the
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Figure 6.1: Data plane latency

JSON, and sending requests with a certain average inter-arrival time, whose
value is sampled every time from a negative exponential distribution, so as to
emulate Poisson arrivals. We performed a run for a range of average inter-
arrival times, from 1000 ms to 1 ms, then we computed the mean value for
each run. The results are shown in Figure 6.1.

As it was expected, the performances remain the same, regardless of the
time between two consecutive POST requests. The emulated Cloud network
does not show any sign of stress even for average arrival rates of 1 000 requests
per second.
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6.2 Measurements of control plane delay

We also measured the NBI response time at the VIM implemented in ONOS,
i.e., the interval between the instant when a JSON service chain specification
is received by the VIM and the successful setup by ONOS of the forwarding
rules in the OpenFlow domain. To assess the scalability of the NBI:

• the ONOS instance is cleared of all the installed intents;

• a sequence of POST messages containing JSON service chain specifica-
tion is sent to the REST interface of the VIM through its NBI;

• the time needed for the installation of the intents is measured as dif-
ference between the instant in time on which the request is sent and
the instant on which the issuer of the request receives the HTTP OK
response;

• the same steps are repeated for an increasing number of requests (from
5 to 200), and each measured response time was obtained as an average
over 20 runs with the same number of requests.

Figure 6.2 shows the average NBI response time with 95% confidence in-
tervals. The numbers show that the VIM is very responsive, in the order of
tens of milliseconds. The setup of high-reliable service chains takes slightly
longer than the minimum latency ones because of the relatively more complex
forwarding paths that must be programmed in the switches (traversing chk,
mirroring to bck, as in Figure 4.3).

The measurements reported in Figure 6.2, however, can be broken down
into three components:

– the time between the instantiation of the curl command generating the
POST request and the instant when the POST message is received by
the VIM;

– the actual processing time, needed by the VIM to instantiate all the new
intents;

– the time between the instantiation of the HTTP OK response by the
VIM and the instant when the response is received by the entity who
had previously launched the curl.

We are mainly interested in the central component of the previously mea-
sured time, as the other two depend on the data plane latency in the net-
work. In order to more properly assess scalability of the actual time needed
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Figure 6.2: Average NBI response time and 95% confidence interval at the
SDN/Cloud VIM, with increasing number of SFC requests

to the VIM for instantiating the requested sequence of intents, we proceeded
by launching another set of sequences of SFC requests, but this time we saved
the content of the ONOS Log after each sequence, in order to then be able
to use the timestamp reported in every debug line to measure only the actual
processing time. The results of this performance evaluation are reported in
Figure 6.3.

It may also be interesting to analyze those results from a different point of
view, given by the relative frequency of occurrence of each measured processing
time value. The probability mass function of the two distribution, one for each
QoS class, is shown in Figure 6.4

As expected, the ideal “bell” which we would obtain by representing an
infinite number of measurements is shifted on the horizontal axis toward lower
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Figure 6.3: Average processing time for each sequence of SFC requests at the
SDN/Cloud VIM, with increasing number of SFC requests

values of processing time for the Min. Lat. traffic, while it is shifted toward
larger values for the High Rel. traffic, coherently with the results reported in
Figures 6.2 and 6.3.

Although they are difficult to be spotted in Figure 6.4, due to their very
low number of occurrences, it is interesting to highlight the presence of some
measured processing time values which are much different from the average
values. In fact, in sporadic cases we measured a very large processing time,
most likely due to a sub-optimal implementation of some part of the code of
our application.

By analyzing the ONOS Log, we can further investigate this phenomenon.
Its cause appears to be residing in the function getIpSrcOfCp of component
ChainManager, which is in charge of fetching the IP address of the host con-
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Figure 6.4: Distribution of processing time for each sequence of SFC requests
at the SDN/Cloud VIM, with increasing number of SFC requests

nected to a specific Connect Point. On average, this function takes less than
1 ms to return, but on some runs it takes a much larger time, in the order of
tens of milliseconds. This is probably due to the way the function has been im-
plemented. Finding a solution that limits this unwanted behavior is a starting
point for future developments of our ONOS application.
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Chapter 7

Conclusions

In the activities of this Master Thesis, after describing the reference scenario
and architectures, we worked on a new solution for the declaration of intents
for Service Function Chain over a SDN network, and expanded the implemen-
tation of this solution to also include differentiation among multiple Quality
of Service classes, presenting an experimental validation of that extension of
the application over a test bed.

The main focus of this work has been on the OpenFlow/Cloud domain,
which we had to design and build by taking concerted decisions on the re-
sources to use, and configuring the hardware and software necessary to obtain
a working instance of it. We also focused on a non-SDN domain interconnecting
multiple SDN domains while achieving Service Function Chaining, obtaining
promising results that will be the main point of future activities.

The experimental results show that our implementation works as it is de-
signed to, presenting the expected latency in the data plane, and a reasonable
behavior in terms of control plane delay, in the instance that more complex
SFCs require a longer time to be deployed than simpler ones do.

All things considered, we worked on a heterogeneous and multi-domain
Software Defined Network with Network Function Virtualization, in which we
implemented an innovative way of obtaining Service Function Chaining by
using intents, whose declaration no longer needs knowledge of technological
details, but only of the technology-independent symbolic name of the points
we wish to reach and connect to.
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Appendix A

Additional notes, and code

A.1 SSH on Windows

Download Portable PuTTY and put the executable file in a folder, for ex-
ample C:\PortableApps. Also, create a new folder where we will store scripts,
for example C:\Scripts.

Add this folder to the environmental variable PATH. In Windows 10, this
can be done by opening System, by right clicking on the Windows logo in
the application bar or by pressing the combination of keys [Win] + [Pause],
then open Advanced Settings, then Environmental Variables, then edit the
variable Path and add to the already existing sequence the path of the folders
PortableApps and Scripts.

Create a new Batch script (that is, a simple text file with extension ”bat”)
called ssh.bat, put it in the folder Scripts, and edit it so that it contains the
following code:

1 @echo o f f
2 REM ssh command
3 REM use l i k e t h i s : s sh [ username@] host
4 i f %1.==. goto no1
5 REM i f 1 or more arguments are s p e c i f i e d
6 s e t params=%1
7 : l o op
8 s h i f t
9 i f [%1]==[] goto a f t e r l o o p

10 s e t params=%params% %1
11 goto loop

77
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12 : a f t e r l o o p
13 s t a r t putty −ssh %params%
14 goto end
15 :no1
16 REM No arguments s p e c i f i e d
17 echo No host s p e c i f i e d , use t h i s command a s :
18 echo ssh [ username@] host
19 echo To simply open PuTTY, type :
20 echo putty
21 : end

This way, in order to open a new SSH session from the Windows command
line, we can type:
> ssh 192.168.56.2

and reach the login screen of the VM ONOS dev (provided that the VM is
running).

We can also use PuTTY’s options syntax to provide additional login infor-
mation, with:
> ssh developer@192 .168.56.2 -pw sonoonos

and immediately log in to the VM as the user developer using the password
sonoonos.

In case we need to to open a X11 session from the SSH session we are
initiating, we also need to specify the -X option. The complete command for
this purpose would then be:
> ssh -l developer -pw sonoonos -X 192.168.56.2

A.2 Python script that builds the Mininet clus-

ter

1 ’ ’ ’
2 TOPOLOGY USED IN CLUSTER−IOT
3 ’ ’ ’
4

5 from mininet . net import Mininet
6 from mininet . node import Node
7 from mininet . node import Host
8 from mininet . l i n k import TCLink
9 from mininet . l i n k import I n t f
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10 from mininet . l og import setLogLevel , i n f o
11 from mininet . c l i import CLI
12 from mininet . node import Con t r o l l e r
13 from mininet . node import RemoteControl ler
14 from mininet . u t i l import quietRun
15

16 from time import s l e e p
17

18 import os
19 import sys
20

21 ’ ’ ’
22 This func t i on sends a s i n g l e ARP reques t to a non−e x i s t i n g IP

address
23 without even wai t ing f o r a response ( which would not come anyway ) .
24 This i s u s e f u l f o r the c o n t r o l l e r to no t i c e a l l the Mininet hos t s
25 connected to one o f the sw i t che s i t c on t r o l s .
26 ’ ’ ’
27 de f arpingone ( net ) :
28 f o r host in net . hos t s :
29 f o r i f a c e in host . i n t f s . va lue s ( ) :
30 host . cmdPrint ( ’ arp ing −c 1 −w 1 −I ’ + ’%s ’ % i f a c e + ’

1 . 2 . 3 . 4 ’ )
31

32 ’ ’ ’
33 This func t i on d e f i n e s then s t a r t s a Mininet network , y i e l d i n g the

Miniet CLI at the end .
34 When the CLI i s terminated with [ Ctr l ]+[D] , the func t i on performs

a cleanup o f the v i r t u a l equipment .
35 ’ ’ ’
36 de f startNetwork ( ) :
37 # these two va r i a b l e s must conta in the c o n t r o l l e r ’ s IP address

and TCP port , as s t r i n g s
38 c o n t r o l l e r i p a d d r e s s = ’ 192 . 168 . 200 . 102 ’
39 c o n t r o l l e r t c p p o r t = ’ 6633 ’
40

41 # proce s s the user arguments g iven to the s c r i p t ( i f any )
42 i f l en ( sys . argv ) < 2 : # no user arguments g iven ( the f i r s t

argument i s always pre sent and i t conta in s the name o f the
s c r i p t )

43 # we w i l l assume that user r eque s t s no debug , no add i t i o na l
hos t s and de f au l t b r idg ing

44 debug = False
45 addhosts = False
46 b r i dg ephy s i c a l = True



80 APPENDIX A. ADDITIONAL NOTES, AND CODE

47 e l i f l en ( sys . argv ) == 2 : # only one user argument g iven
48 # use the argument
49 i f sys . argv [ 1 ] == ’ 0 ’ :
50 debug = False
51 e l i f sys . argv [ 1 ] == ’ 1 ’ :
52 debug = True
53 e l s e :
54 sys . e x i t ( ’ Usage : c l u s t e r−i o t . py debug=0|1 ’ )
55 # we w i l l assume that user r eque s t s no add i t i ona l hos t s and

de f au l t b r idg ing
56 addhosts = False
57 b r i dg ephy s i c a l = True
58 e l i f l en ( sys . argv ) == 3 : # two user arguments g iven
59 # use f i r s t argument
60 i f sys . argv [ 1 ] == ’ 0 ’ :
61 debug = False
62 e l i f sys . argv [ 1 ] == ’ 1 ’ :
63 debug = True
64 e l s e :
65 sys . e x i t ( ’ Usage : c l u s t e r−i o t . py debug=0|1 ’ )
66 # use second argument
67 i f sys . argv [ 2 ] == ’ 0 ’ :
68 addhosts = False
69 e l i f sys . argv [ 2 ] == ’ 1 ’ :
70 addhosts = True
71 e l s e :
72 sys . e x i t ( ’ Usage : c l u s t e r−i o t . py debug=0|1 ’ )
73 # we w i l l assume that user r eque s t s and de f au l t b r idg ing
74 b r i dg ephy s i c a l = True
75 e l s e : # there are at l e a s t 4 arguments (1 s t i s name o f s c r i p t ,

o the r s are user input )
76 # use f i r s t argument
77 i f sys . argv [ 1 ] == ’ 0 ’ :
78 debug = False
79 e l i f sys . argv [ 1 ] == ’ 1 ’ :
80 debug = True
81 e l s e :
82 sys . e x i t ( ’ Usage : c l u s t e r−i o t . py debug=0|1 ’ )
83 # use second argument
84 i f sys . argv [ 2 ] == ’ 0 ’ :
85 addhosts = False
86 e l i f sys . argv [ 2 ] == ’ 1 ’ :
87 addhosts = True
88 e l s e :
89 sys . e x i t ( ’ Usage : c l u s t e r−i o t . py debug=0|1 ’ )
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90 #sys . e x i t ( ’ Usage : c l u s t e r−i o t . py [ debug=0|1 [ hos t s =0|1 [
b r i dg ephy s i c a l = 0 | 1 ] ] ] ’ )

91 # use th i rd argument
92 i f sys . argv [ 3 ] == ’ 0 ’ :
93 b r i dg ephy s i c a l = Fal se
94 e l s e :
95 b r i dg ephy s i c a l = True
96

97 # de f i n e the Mininet network without bu i l d i ng i t
98 net = Mininet ( c o n t r o l l e r=RemoteControl ler , l i n k=TCLink , bu i ld=

False )
99

100 i n f o ( ’ ∗∗∗ Create an empty network and add swi t che s and nodes to
i t ∗∗∗ \n ’ )

101

102 # BUILDING CLUSTER−IOT
103 # adding sw i t che s
104 i n f o ( ’ \n∗∗∗ Creat ing switch s l ∗∗∗ \n ’ )
105 s l = net . addSwitch ( ’ s1 ’ )
106 s l . cmd( ’ ovs−v s c t l del−br ’ + s l . name )
107 s l . cmd( ’ ovs−v s c t l add−br ’ + s l . name )
108 s l . cmd( ’ ovs−v s c t l s e t Bridge ’ + s l . name + ’ s tp enab l e=f a l s e ’

) # Disab l ing STP
109 i n f o ( ’ \n∗∗∗ Creat ing switch su ∗∗∗ \n ’ )
110 su = net . addSwitch ( ’ s2 ’ )
111 su . cmd( ’ ovs−v s c t l del−br ’ + su . name )
112 su . cmd( ’ ovs−v s c t l add−br ’ + su . name )
113 su . cmd( ’ ovs−v s c t l s e t Bridge ’ + su . name + ’ s tp enab l e=f a l s e ’

) # Disab l ing STP
114 i n f o ( ’ \n∗∗∗ Creat ing switch sd ∗∗∗ \n ’ )
115 sd = net . addSwitch ( ’ s3 ’ )
116 sd . cmd( ’ ovs−v s c t l del−br ’ + sd . name )
117 sd . cmd( ’ ovs−v s c t l add−br ’ + sd . name )
118 sd . cmd( ’ ovs−v s c t l s e t Bridge ’ + sd . name + ’ s tp enab l e=f a l s e ’

) # Disab l ing STP
119 i n f o ( ’ \n∗∗∗ Creat ing switch s r ∗∗∗ \n ’ )
120 s r = net . addSwitch ( ’ s4 ’ )
121 s r . cmd( ’ ovs−v s c t l del−br ’ + s r . name )
122 s r . cmd( ’ ovs−v s c t l add−br ’ + s r . name )
123 s r . cmd( ’ ovs−v s c t l s e t Bridge ’ + s r . name + ’ s tp enab l e=f a l s e ’

) # Disab l ing STP
124 i n f o ( ’ \n∗∗∗ Creat ing switch sb ∗∗∗ \n ’ )
125 sb = net . addSwitch ( ’ s5 ’ )
126 i n f o ( ’ \n∗∗∗ Creat ing switch s e l ∗∗∗ \n ’ )
127 s e l = net . addSwitch ( ’ s6 ’ )
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128 i n f o ( ’ \n∗∗∗ Creat ing switch s e r ∗∗∗ \n ’ )
129 s e r = net . addSwitch ( ’ s7 ’ )
130 i n f o ( ’ \n∗∗∗ Creat ing chk ∗∗∗ \n ’ )
131 chk = net . addHost ( ’ chk ’ )
132 i n f o ( ’ \n∗∗∗ Creat ing v r l ∗∗∗ \n ’ )
133 v r l = net . addHost ( ’ v r l ’ )
134 i n f o ( ’ \n∗∗∗ Creat ing vrr ∗∗∗ \n ’ )
135 vrr = net . addHost ( ’ vr r ’ )
136 i n f o ( ’ \n∗∗∗ Creat ing bck ∗∗∗ \n ’ )
137 bck = net . addHost ( ’ bck ’ )
138

139 i f addhosts == True :
140 iotgw = net . addHost ( ’ iotgw ’ )
141 i o t s v = net . addHost ( ’ i o t s v ’ )
142

143

144 i n f o ( ’ \n∗∗∗ Creat ing l i n k s on Cluster−IOT ∗∗∗ \n ’ )
145 # IMPORTANT: the order in which l i n k s are c rea ted IS RELEVANT!
146 # For switches , t h i s i s because the f i r s t l i n k w i l l be a s s i gned

to port 1
147 # the second to port 2 and so on .
148 # For hosts , i t i s because the f i r s t l i n k w i l l be a s s i gned to

hostname−eth0
149 # the second to hostname−eth1 and so on .
150 net . addLink ( s e l , vr l , bw=100)
151 net . addLink ( vr l , s l , bw=100)
152 net . addLink ( s l , su , bw=100)
153 net . addLink ( s l , sd , bw=100)
154 net . addLink ( su , chk , bw=100)
155 net . addLink ( su , chk , bw=100)
156 net . addLink ( su , sr , bw=100)
157 net . addLink ( sd , sr , bw=100)
158 net . addLink ( vrr , ser , bw=100)
159 net . addLink ( sr , vrr , bw=100)
160 net . addLink ( su , sb , bw=100)
161 net . addLink ( sb , bck , bw=100)
162

163 i f addhosts == True :
164 net . addLink ( s e l , iotgw , bw=100)
165 net . addLink ( ser , i o t sv , bw=100)
166

167 # Trying to a s s i gn MAC address to each node o f the c l u s t e r
168 v r l . setMAC( ’ 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0A ’ , v r l . name + ’−eth0 ’ )
169 v r l . setMAC( ’ 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0B ’ , v r l . name + ’−eth1 ’ )
170 chk . setMAC( ’ 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0C ’ , chk . name + ’−eth0 ’ )
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171 chk . setMAC( ’ 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0D ’ , chk . name + ’−eth1 ’ )
172 vrr . setMAC( ’ 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0E ’ , vr r . name + ’−eth0 ’ )
173 vrr . setMAC( ’ 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0F ’ , vr r . name + ’−eth1 ’ )
174 bck . setMAC( ’ 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 1A ’ , bck . name + ’−eth0 ’ )
175

176 i f addhosts == True :
177 iotgw . setMAC( ’ 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 1 ’ , iotgw . name + ’−eth0 ’ )
178 i o t s v . setMAC( ’ 0 0 : 0 0 : 0 0 : 0 0 : 0 0 :FF ’ , i o t s v . name + ’−eth0 ’ )
179

180 # Disab l ing IPv6 on a l l hos t s
181 f o r host in net . hos t s :
182 pr in t ’ Going to d i s ab l e IPv6 on ’ + host . name
183 host . cmd( ’ s y s c t l −w net . ipv6 . conf . a l l . d i s a b l e i p v 6=1 ’ )
184 host . cmd( ’ s y s c t l −w net . ipv6 . conf . d e f au l t . d i s a b l e i p v 6=1 ’ )
185 host . cmd( ’ s y s c t l −w net . ipv6 . conf . l o . d i s a b l e i p v 6=1 ’ )
186

187 # add each port o f the sw i t che s to the cor respond ing v i r t u a l
switch

188 f o r switch in net . sw i t che s :
189 f o r i f a c e in switch . i n t f s . va lue s ( ) :
190 switch . cmd( ’ ovs−v s c t l add−port ’ + switch . name + s t r ( i f a c e )

)
191 pr in t ’Added port ’ + s t r ( i f a c e ) + ’ to v i r t u a l switch ’ +

switch . name + ’ \n ’
192

193 nhosts = len ( net . hos t s )
194 nswitches = len ( net . sw i t che s )
195 pr in t ’ Total number o f hos t s : ’ + s t r ( nhosts ) + ’ − Total number

o f sw i t che s : ’ + s t r ( nswitches ) + ’ \n ’
196

197 net . s t a r t ( )
198 i n f o ( ’ \n∗∗∗ Taking down de f au l t c on f i gu r a t i on . . . \ n ’ )
199 i n f o ( ’ \n∗∗∗ . . . and c r e a t i n g Linux br idge on chk , as we l l as

c on f i gu r i n g i n t e r f a c e s \n ’ )
200

201 f o r host in net . hos t s :
202 pr in t ’ De l e t ing ip address on ’ + host . name + ’−eth0 i n t e r f a c e

’
203 host . cmd( ’ ip addr de l ’ + host . IP ( host . name + ’−eth0 ’ ) + ’ /8

dev ’ + host . name + ’−eth0 ’ )
204 pr in t ’ De l e t ing entry in IP rout ing tab l e on ’ + host . name
205 host . cmd( ’ ip route de l 1 0 . 0 . 0 . 0 / 8 ’ )
206 pr in t ’ Conf igur ing new IP ’
207 i f host . name == ’ chk ’ : # VNF case
208 pr in t ’ Host with 2 L2 i n t e r f a c e s : ’ + host . name
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209 host . cmd( ’ b r c t l addbr br− ’ + host . name)
210 host . cmd( ’ b r c t l add i f br− ’ + host . name + ’ ’ + host . name + ’

−eth0 ’ )
211 host . cmd( ’ b r c t l add i f br− ’ + host . name + ’ ’ + host . name + ’

−eth1 ’ )
212 host . cmd( ’ ip addr add 192 .168 . 107 . 3/24 dev br− ’ + host . name)
213 host . cmd( ’ ip l i n k s e t br− ’ + host . name + ’ up ’ )
214 pr in t ’LB con f i gu r ed ! ’
215 host . cmd( ’ s y s c t l −w net . ipv4 . ip fo rward=1 ’ )
216 pr in t ’ IP Forwarding enabled ! ’
217 host . cmd( ’ ip l i n k s e t dev ’ + host . name + ’−eth0 mtu 1400 ’ )
218 host . cmd( ’ ip l i n k s e t dev ’ + host . name + ’−eth1 mtu 1400 ’ )
219 pr in t ’MTU con f i gu r ed on each i n t e r f a c e o f ’ + host . name
220 host . cmd( ’ tc qd i s c de l dev chk−eth1 root ’ )
221 # introduce a random delay , un i formely d i s t r i b u t e d between

25ms and 35ms
222 # and each random sample i s 30% co r r e l a t e d with the prev ious

one
223 host . cmd( ’ tc qd i s c add dev chk−eth1 root netem delay 30ms 5

ms 30% ’ )
224 pr in t ’ tc s t a r t ed on ’ + host . name
225 e l i f host . name == ’ v r l ’ or host . name == ’ vrr ’ :
226 i f host . name == ’ v r l ’ :
227 host . se t IP ( ’ 1 72 . 1 6 . 1 . 2 54 ’ , 24 , ’ vr l−eth0 ’ )
228 host . se t IP ( ’ 192 . 168 . 107 . 1 ’ , 24 , ’ vr l−eth1 ’ )
229 pr in t ’ I n t e r f a c e s o f ’ + host . name + ’ have been

con f i gu r ed ! ’
230 host . cmd( ’ ip l i n k s e t dev vr l−eth0 mtu 1400 ’ )
231 host . cmd( ’ ip l i n k s e t dev vr l−eth1 mtu 1400 ’ )
232 pr in t ’MTU con f i gu r ed on each i n t e r f a c e o f ’ + host . name
233 e l i f host . name == ’ vrr ’ :
234 host . se t IP ( ’ 1 72 . 1 6 . 2 . 2 54 ’ , 24 , ’ vrr−eth0 ’ )
235 host . se t IP ( ’ 192 . 168 . 107 . 2 ’ , 24 , ’ vrr−eth1 ’ )
236 pr in t ’ I n t e r f a c e s o f ’ + host . name + ’ have been

con f i gu r ed ! ’
237 host . cmd( ’ ip l i n k s e t dev vrr−eth0 mtu 1400 ’ )
238 host . cmd( ’ ip l i n k s e t dev vrr−eth1 mtu 1400 ’ )
239 pr in t ’MTU con f i gu r ed on each i n t e r f a c e o f ’ + host . name
240 host . cmd( ’ s y s c t l −w net . ipv4 . ip fo rward=1 ’ )
241 pr in t ’ IP Forwarding enabled on ’ + host . name
242 e l i f host . name == ’ bck ’ : # BACKUP HOST case
243 host . se t IP ( ’ 192 . 168 . 107 . 4 ’ , 24 , ’ bck−eth0 ’ )
244 host . cmd( ’ ip l i n k s e t dev bck−eth0 mtu 1400 ’ )
245 pr in t ’ IP and MTU con f i gu r ed on ’ + host . name
246
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247 pr in t ’ \n ’
248

249 # Conf igure rout ing t ab l e s on the v i r t u a l r ou t e r s
250 f o r host in net . hos t s :
251 i f host . name == ’ v r l ’ :
252 host . cmd( ’ route add −net 1 7 2 . 1 6 . 2 . 0 netmask 255 . 255 . 255 . 0 gw

192 . 168 . 107 . 2 ’ )
253 host . cmd( ’ route add −net 192 . 1 68 . 1 0 . 0 netmask 255 . 255 . 255 . 0

gw 172 . 1 6 . 1 . 2 53 ’ )
254 e l i f host . name == ’ vrr ’ :
255 host . cmd( ’ route add −net 1 7 2 . 1 6 . 1 . 0 netmask 255 . 255 . 255 . 0 gw

192 . 168 . 107 . 1 ’ )
256 host . cmd( ’ route add −net 192 . 1 68 . 1 0 . 0 netmask 255 . 255 . 255 . 0

gw 192 . 168 . 107 . 1 ’ )
257

258 # Conf igur ing debug hos t s
259 i f addhosts == True :
260 f o r host in net . hos t s :
261 i f host . name == ’ iotgw ’ :
262 host . se t IP ( ’ 1 7 2 . 1 6 . 1 . 1 0 ’ , 24 , ’ iotgw−eth0 ’ )
263 host . cmd( ’ ip l i n k s e t dev iotgw−eth0 mtu 1400 ’ )
264 host . cmd( ’ route add −net 192 . 168 . 107 . 0 netmask

255 . 255 . 255 . 0 gw 172 . 1 6 . 1 . 2 54 ’ )
265 host . cmd( ’ route add −net 1 7 2 . 1 6 . 2 . 0 netmask 255 . 255 . 255 . 0

gw 172 . 1 6 . 1 . 2 54 ’ )
266 e l i f host . name == ’ i o t s v ’ :
267 host . se t IP ( ’ 1 7 2 . 1 6 . 2 . 1 0 ’ , 24 , ’ i o t sv−eth0 ’ )
268 host . cmd( ’ ip l i n k s e t dev io t sv−eth0 mtu 1400 ’ )
269 host . cmd( ’ route add −net 192 . 168 . 107 . 0 netmask

255 . 255 . 255 . 0 gw 172 . 1 6 . 2 . 2 54 ’ )
270 host . cmd( ’ route add −net 1 7 2 . 1 6 . 1 . 0 netmask 255 . 255 . 255 . 0

gw 172 . 1 6 . 2 . 2 54 ’ )
271

272 f o r switch in net . sw i t che s :
273 i f switch . name == ’ s2 ’ :
274 # ARP storm avoidance r u l e s on the switch with 2 por t s

connected to the same host
275 # ATTENTION: the f i e l d d l type cannot be s p e c i f i e d as a

s t r i ng , but i t must be s p e c i f i e d as in the f o l l ow i ng
command :

276 switch . cmd( ’ ovs−o f c t l add−f l ow ’ + switch . name + ’ i n po r t
=2, d l type=0x0806 , d l d s t=FF:FF:FF:FF:FF:FF, a c t i on s=drop ’ )
# ARP −> EthType 0x0806

277 switch . cmd( ’ ovs−o f c t l add−f l ow ’ + switch . name + ’ i n po r t
=3, d l type=0x0806 , d l d s t=FF:FF:FF:FF:FF:FF, a c t i on s=drop ’ )
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278 e l s e :
279 #switch . cmd( ’ ovs−o f c t l add−f l ow ’ + switch . name + ’ p r i o r i t y

=1, d l type=0x0806 , a c t i on s=normal ’ )
280 # br idge the two ” ex t e rna l ” sw i t che s s6 and s7 to the

network i n t e r f a c e s o f the VM iot−mininet
281 i f b r i d g ephy s i c a l == True :
282 i f switch . name == ’ s6 ’ :
283 pr in t ’ Br idg ing ’ + switch . name + ’ with i n t e r f a c e eth1

o f VM iot−mininet ’
284 switch . cmd( ’ ovs−v s c t l add−port ’ + switch . name + ’ eth1 ’

)
285 e l i f switch . name == ’ s7 ’ :
286 pr in t ’ Br idg ing ’ + switch . name + ’ with i n t e r f a c e eth2

o f VM iot−mininet ’
287 switch . cmd( ’ ovs−v s c t l add−port ’ + switch . name + ’ eth2 ’

)
288

289 # Set the c o n t r o l l e r f o r the sw i t che s
290 f o r switch in net . sw i t che s :
291 switch . cmd( ’ ovs−v s c t l set−c o n t r o l l e r ’ + switch . name + ’ tcp :

’ + c o n t r o l l e r i p a d d r e s s + ’ : ’ + c o n t r o l l e r t c p p o r t ) #For
ONOS connect ion

292 i n f o ( ’ \n∗∗∗ Waiting f o r switch to connect to c o n t r o l l e r ’ )
293 whi le ’ i s c onne c t ed ’ not in quietRun ( ’ ovs−v s c t l show ’ ) :
294 s l e e p (1 )
295 i n f o ( ’ . ’ )
296 i n f o ( ’ \n ’ )
297

298 i f debug == True :
299 pr in t ’ ∗∗∗∗ DEBUG ACTIVE ∗∗∗∗ ’
300 i n f o ( ’ \n∗∗∗ INFO ABOUT HOSTS \n ’ )
301 f o r host in net . hos t s :
302 host . cmdPrint ( ’ i f c o n f i g ’ )
303 host . cmdPrint ( ’ route −n ’ )
304 host . cmdPrint ( ’ cat /proc / sys /net / ipv4 / ip fo rward ’ )
305 i f host . name == ’ chk ’ :
306 host . cmdPrint ( ’ t c −s qd i s c ’ )
307

308 i n f o ( ’ \n∗∗∗ INFO ABOUT SWITCHES \n ’ )
309 count = 1
310 f o r switch in net . sw i t che s :
311 switch . cmdPrint ( ’ ovs−o f c t l dump−f l ows ’ + switch . name)
312 switch . cmdPrint ( ’ ovs−o f c t l show ’ + switch . name)
313 i f count == nswitches :
314 pr in t ( ’ L i s t o f sw i t che s : \n ’ )
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315 switch . cmdPrint ( ’ ovs−v s c t l show ’ )
316 count = count + 1
317

318 arpingone ( net )
319

320 i n f o ( ’ . . . running CLI ∗∗∗\n ’ )
321 CLI( net )
322 i n f o ( ’ \n ’ )
323 i n f o ( ’ . . . s topping Network and c l e an ing up ∗∗∗\n ’ )
324 net . stop ( )
325 os . system ( ’ sudo mn −c ’ )
326

327 #Main
328 i f name == ’ ma in ’ :
329 setLogLeve l ( ’ i n f o ’ )
330 startNetwork ( )

Listing A.1: Python script that builds the Mininet cluster

A.3 PHP script implementing the POST han-

dler

1 <?php
2 f unc t i on i s J son ( $ s t r i n g ) {
3 j s on decode ( $ s t r i n g ) ;
4 re turn ( j s o n l a s t e r r o r ( ) == JSON ERROR NONE) ;
5 }
6 // Make sure that i t i s a POST reques t .
7 i f ( strcasecmp ($ SERVER[ ’REQUESTMETHOD’ ] , ’POST ’ ) != 0) {
8 echo ”Request method must be POST!\n” ;
9 throw new Exception ( ’ Request method must be POST! ’ ) ;

10 }
11 // Make sure that the content type o f the POST reques t has been

s e t to app l i c a t i o n / j son
12 $contentType = i s s e t ($ SERVER[ ”CONTENTTYPE” ] ) ? trim ($ SERVER[ ”

CONTENTTYPE” ] ) : ’ ’ ;
13 i f ( strcasecmp ( $contentType , ’ a pp l i c a t i o n / j son ’ ) != 0) {
14 echo ”Content type must be : app l i c a t i o n / j son \n” ;
15 throw new Exception ( ’ Content type must be : app l i c a t i o n / j son ’ ) ;
16 }
17 // Receive the RAW post data .
18 $content = trim ( f i l e g e t c o n t e n t s ( ”php :// input ” ) ) ;
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19 // Check i f content i s v a l i d JSON
20 i f ( ! i s J s on ( $content ) ) {
21 echo ”Received content conta ined i n v a l i d JSON!\n” ;
22 echo ’ | ’ . $content . ’ | ’ ;
23 throw new Exception ( ’ Received content conta ined i n v a l i d JSON! ’

) ;
24 } e l s e {
25 echo ”Received va l i d JSON. Adding i t s content to database .\n” ;
26 }
27 // Remove newl ines and c a r r i a g e r e tu rn s
28 p r e g r ep l a c e ( ”/\ r | \n/” , ”” , $content ) ;
29 // Def ine the name o f the database f i l e
30 $ d b f i l e = ’ database . j son ’ ;
31 // Read the cur rent database
32 $ fh = fopen ( $db f i l e , ’ r+’ ) or d i e ( ”Can ’ t open f i l e ” . $ d b f i l e ) ;
33 $ s t a t = f s t a t ( $ fh ) ;
34 f t r unca t e ( $fh , $ s t a t [ ’ s i z e ’ ]−2) ;
35 f c l o s e ( $ fh ) ;
36 // i f i t i s only i n i t i a l i z e d but s t i l l empty , j u s t append the new

data
37 i f ( $ s t a t [ ’ s i z e ’ ] == s t r l e n ( ’ {”data ” : [ ] } ’ ) ) {
38 $data = $content . ’ ]} ’ ;
39 }
40 // i f i t a l r eady conta in s some data , append a comma then the new

data
41 e l s e {
42 $data = ’ , ’ . $content . ’ ]} ’ ;
43 }
44 // wr i t e the new database to the same f i l e
45 f i l e p u t c o n t e n t s ( $db f i l e , $data , FILE APPEND | LOCK EX) ;
46 ?>

Listing A.2: PHP script implementing the POST handler
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