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RIASSUNTO 

Gli algoritmi di feature detection allo stato dell’arte sono stati pensati per estrarre determinate 

strutture da immagini e per raggiungere un alto livello di ripetibilità dei punti salienti, ossia per 

rilevare gli stessi punti in immagini sottoposte a determinate trasformazioni. Tuttavia, questo 

criterio non garantisce che i punti trovati saranno ottimali durante la fase successiva: il matching. 

L’approccio sviluppato all’interno di questo lavoro è volto all’estrazione di punti salienti che 

massimizzino le prestazioni del matching in accordo con il tipo di descrittore scelto. Per fare ciò, 

un classificatore è stato addestrato utilizzando un insieme di descrittori “positivi” e “negativi” 

estratti da immagini sottoposte a trasformazioni definite in precedenza. Prima di tutto, le 

immagini utilizzate per l’addestramento sono state campionate e confrontate analizzando le 

distanze tra i descrittori ottenuti attraverso uno specifico procedimento. Successivamente, si è 

creato l’insieme dei campioni positivi prendendo i descrittori relativi a quei punti che hanno dato 

corrispondenze corrette durante la fase di matching. Contrariamente, punti campionati 

casualmente e sufficientemente distanti dagli esempi positivi sono stati classificati come negativi. 

Infine, i descrittori calcolati in corrispondenza delle posizioni positive e negative sono stati 

utilizzati per addestrare il classificatore, il quale, ricevendo in input nuove immagini, può definire 

autonomamente la salienza dei punti sulla base dei loro descrittori e ottenere, così, un insieme di 

posizioni chiave. Questo procedimento richiede, però, l’estrazione dei descrittori in ogni punto 

dell’immagine e ciò comporta un alto carico computazionale. Questo, insieme allo stretto legame 

che vincola il metodo di descrizione utilizzato in fase di training a quello utilizzato durante il 

testing, limita la performance del detector. Per evitare queste problematiche, l’ultima parte del 

lavoro di tesi si è concentrato sulla creazione e addestramento di una rete neurale convoluzionale, 

utilizzando come esempi positivi piccole porzioni di immagine centrate nei punti in grado di 

fornire corrispondenze corrette tra diverse immagini. Si sono infine analizzate le performance 

dell’algoritmo sviluppato confrontandolo con lo stato dell’arte su un benchmark pubblico di 

riferimento.   
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ABSTRACT 

State-of-the-art keypoint detection algorithms have been designed to extract specific structures 

from images and to achieve a high keypoint repeatability, which means that they should find the 

same points in images undergoing specific transformations. However, this criterion does not 

guarantee that the selected keypoints will be the optimal ones during the successive matching 

step. The approach that has been developed in this thesis work is aimed at extracting keypoints 

that maximize the matching performance according to a pre-selected image descriptor. In order 

to do that, a classifier has been trained on a set of “good” and “bad” descriptors extracted from 

training images that are affected by a set of pre-defined nuisances. First of all, the images used for 

the training have been sampled and matched by comparing the descriptor vectors obtained using 

a specific descriptor method. Then, the set of “good” keypoints is filled with those vectors that are 

related to the points that gave correct matches. On the contrary, randomly chosen points that are 

far away from the positives are labeled as “bad” keypoints. Finally, the descriptors computed at 

the “good” and “bad” locations form the set of features used to train the classifier that will judge 

each pixel of an unseen input image as a good or bad candidate for driving the extraction of a set 

of keypoints. This approach requires, though, the descriptors to be computed at every pixel of the 

image and this leads to a high computational effort. Moreover, if a certain descriptor extractor is 

used during the training step, it must be used also during the testing. In order to overcome these 

problems, the last part of this thesis has been focused on the creation and training of a 

convolutional neural network (CNN) that uses as positive samples the patches centered at those 

locations that give correct correspondences during the matching step. Eventually, the results and 

the performances of the developed algorithm have compared to the state-of-the-art using a public 

benchmark.
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CHAPTER 1                                       

INTRODUCTION 

The paradigm of local features has been widely studied from the early 2000s and it is still matter 

of discussion among researchers all over the world. The most “interesting” points of an image, 

also known as keypoints, are the pivots of such paradigm that is based on three main steps: 

detection, description and matching. Finding corresponding points between images is a 

fundamental task for many applications, like object detection, SLAM (Simultaneous Localization 

And Mapping), augmented reality and many others.  

The first step is the local features detection which searches across the images for points or shapes 

that are likely to be found in other images. In order to accomplish this requirement, it is necessary 

to define a priori what is the most distinctive characteristic that a group of pixels should deploy. 

For instance, the so called “Canny Edge Detector” [1] is one of the most popular algorithm when it 

comes to finding points between two image regions, 

whereas the method proposed by Chris Harris and Mike 

Stephens [2] relies on a function that gives negative 

values in case of edges, positive values for corners and 

zero for flat regions. Finally, algorithms exist that aim at 

the detection of regions of images that differ in 

properties. For instance, SIFT [3] (Scale Invariance 

Feature Detection) searches for the extrema of the 

Difference of Gaussian, i.e. the difference between 

several images obtained by applying a Gaussian filter 

with an increasing smoothing effect to the same initial image. The maximum is sought in space (8 

pixels) and in scale (18 pixels).  

Another example of feature detector 

is FAST [4] (Features from 

Accelerated Segment Test), where a 

point p is identified as keypoint if 

enough points on a circle centered at 

p all have a higher or a lower intensity 

with respect to the intensity of the 

central point.  

Figure 1-1. SIFT detector 

Figure 1-2. FAST detector 
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State-of-the-art keypoint detectors, such as the abovementioned ones, have been designed in 

order to achieve a high keypoint repeatability, which means that salient points have to be found 

in different views of the same scene despite possible transformations applied to the image, and 

in order to find specific shapes. For instance, Canny edge detector can find edges only, while Harris 

detector can identify both edges and corners. SIFT and FAST, instead, are specialized in both 

corners and blobs (regions).  

After having detected the salient points over the images, they must be described so that it is easy 

to find them afterwards. This second step is aimed at creating a vector of numbers, by looking at 

the neighborhood of the point, in such a way that the result will have a high distinctiveness, i.e. it 

will capture the salient information around the keypoint, and a high compactness, namely low 

memory occupancy. Finally, as shown in Figure 1-3, corresponding points must be found in order 

to localize the salient point of the first image into the second one. 

Each element of the paradigm of local feature must work well itself; for instance, a measure of 

goodness for detectors is the repeatability, i.e. how many times the same point is detected over a 

sequence of different images of the same scene. However, the most important aspect is the whole 

detector-descriptor-matching pipeline output and this is only partially related to the repeatability 

of the detector. As previously mentioned, state-of-the-art keypoint detectors try to maximize the 

keypoint repeatability, but this does not guarantee that the points that have been found will be 

the optimal ones during the subsequent steps (description and matching). The idea behind this 

thesis is to create a keypoint detector that searches over input images for those points that will 

yield highly distinctive description vectors. In order to do that, a classifier has been trained so 

that it will judge each pixel of an unseen input image as a good or bad candidate for driving the 

extraction of a set of keypoints. This thesis work is a follow-up to a recently proposed paper titled 

“Learning a Descriptor-specific 3D Keypoint Detector” [9] that uses the same idea applied to the 

Figure 1-3. Description matching 
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3D case. As an alternative, in order to decouple the detector method from the choice of a specific 

keypoint descriptor, a convolutional neural network has been trained so that it is no longer 

necessary to define a priori the feature type. 

The research approach of this work has been mainly developed using C++ and OpenCV along with 

already existing images datasets, namely some of the ones used as training set in “Temporally 

Invariant Learned Detector” (TILDE) [6], that is composed by images from the “Archive of Many 

Outdoor Scenes” (AMOS) [13] and panoramic images, in addition to the “Oxford” [14] and “EF” [15] 

datasets. For the last part, regarding the neural network modeling, Python and TensorFlow have 

been used. 

The work is organized as follows: Chapter II describes the literature, in particular the paper 

TILDE, in which a classifier is trained using highly repeatable keypoints, and the paper “Learning 

a Descriptor-specific 3D Keypoint Detector”, since these are the papers that are mostly related to 

this work; at the end of this chapter a brief explanation is also given about the two keypoint 

description methods used and some hints about how neural networks operate. Chapter III 

explains in detail the methods used in this work for the extraction of the positive and the negative 

samples, the training step and the testing procedure; Chapter IV shows the experimental setup 

and the qualitative and quantitative results obtained from the comparison between this method 

and the one proposed in TILDE; eventually, Chapter V gives some conclusions and an overview of 

the future work. 
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CHAPTER 2                                              

LITERATURE REVIEW 

The keypoint detectors that have been described in the introduction are all different and each one 

has its own specific algorithm; however, it is possible to split them in two main groups: the 

handcrafted keypoint detectors and the learned keypoint detectors. The former tries to overcome 

all the possible transformations an image can be subject to by looking for specific image 

structures, whereas the latter uses machine learning techniques to make the algorithm 

understand which are the most important features to be sought, starting from an initial input 

training set. For instance, SIFT [3] uses the Difference of Gaussian function as saliency function 

and it searches for the maxima of such function, while TILDE [6] and “Learning a Descriptor-

specific 3D Keypoint Detector” [9] rely on previously trained classifiers for the keypoint detection. 

We will focus on these two papers. 

2.1 Learning a Descriptor-specific 3D Keypoint Detector 

The standard approach in 2D and 3D keypoint detection involves local saliency functions that give 

relevant locations at their maxima. However, this is not related to the quality of the descriptor 

that will be computed at those coordinates. In this work, it is proposed to train a classifier with 

points from a point cloud image that gives correct matches over a sequence of partially 

overlapping 2.5D views of the same 3D object.  

2.1.1 Definition of the training set 

The classifier that the authors want to train needs two separate sets: the positive sample set and 

the negative one. The extraction process of the positive sample points from the 3D image is shown 

in Figure 2-1 and it is composed of five main steps. First of all, let {Vi} be the N partially overlapping 

views of the 3D object and let νi be the set of views partially overlapping with a view Vi. Then, in 

Figure 2-1. Overview of the definition of positive samples 
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the third step, for every view Vi the SHOT [10] descriptor is computed at each point and the 

nearest neighbor SHOT descriptor in the overlapping view Vj is sought. Now the list of matched 

points is analyzed and if the match is correct the point is added to the list of positive samples, 

otherwise it is removed from the list. In the fourth step the list of positives is refined by checking 

if the positive samples can be robustly matched also in the other overlapping views. On the other 

hand, the set of negative points is randomly sampled from the set of points not included in the 

positive set. 

2.1.2 Design of the classifier 

The chosen classifier is a Random Forest [5], essentially because it is one of the fastest classifiers 

and, since it must be applied to every point of the point cloud, the speed is one of the most 

important elements to be considered. When using a classifier, a feature must be defined; usually, 

simple binary features such as intensity differences are used, but they need a local reference 

frame to be defined, in order to preserve rotation invariance, and this increases the computational 

load. In this work, the authors store the cosine of the angle between the normal at the reference 

point p and the normal at every point within a radius rfeat in several histograms and use them as 

features. Since the histograms are computed for spherical shells, they are rotation invariant and 

then the local reference frame is no longer needed. Finally, when the classifier is applied to unseen 

input point clouds, the number of trees Tp that identify a point as a keypoint is counted and if the 

score Tp/T, where T is the total number of trees, is higher than a minimum score smin ≥ 0.5 and it 

is the highest value in a neighborhood of radius rnms, then the keypoint is validated. 

The procedure that has been used in this paper for the extraction of the positive samples is equal 

to the one used in this thesis work, except for the use of different invariant transformations. 

Indeed, in the 3D case, these transformations are 3D viewpoint changes, while in the 2D case, 

which is the one explored in this work, they are illumination changes. 

Figure 2-2. Feature extraction 
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2.2 Temporally Invariant Learned Detector 

A great variety of keypoint detectors has been proposed since the 1980s and, even if they exhibit 

excellent repeatability with scale and viewpoint changes, they are all very sensitive with respect 

to illumination changes. In this work, the authors train a regressor using points that have been 

consistently found over a sequence of images that present drastic illumination changes due to 

different weather conditions. 

2.2.1 Definition of the training set 

The dataset that has been used for the training step is composed of two main groups: 

• some images from the “Archive of Many Outdoor Scenes” (AMOS), that is a dataset that 

collects pictures from fixed webcams all over the world; the images are taken at different 

times of the day and different seasons; 

• some panoramic images from a fixed camera located at the top of a building. 

The authors trained the regressor on the images of one fixed webcam and then tested on the 

others along with further images from different datasets. After having collected a certain number  

of images from one webcam, they applied SIFT detector to every image and they kept the 100 best 

repeated locations. Then, the set of positive samples is filled with the patches around these points 

even in the images where they have not been detected. The negative locations, instead, are just 

points far enough from the keypoints used to create the set of positive samples.  

2.2.2 Design of the regressor 

The features that the authors of the paper used are the three components of the LUV color space, 

the vertical and horizontal gradients and the gradient magnitude computed at each pixel of the 

Figure 2-3. TILDE positives extraction 
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patches. Since the detector will be applied to each location of the images, the speed of the 

algorithm is a crucial element. Thus, here a fast regressor is used, that applies only simple 

convolutions and pixel-wise maximum operators:  

                        𝐹(𝑥; 𝜔) =  ∑ 𝛿𝑛 max
m=1

𝑤
𝑀

𝑛𝑚
𝑇 𝑥𝑁

𝑛=1  ,                          (2-1) 

where x is a vector of image features extracted from the patches, ω is the vector of parameters of 

the regressor and it can be decomposed in a combination of linear filters wnm and a set of 

parameters δn. The linear filters are the elements to be learned through an optimization function 

over the training images and they can be approximated as a linear combination of separable 

filters. At the end two different methods can be used: TILDE-P, that uses the original filters and 

TILDE-P24 that uses 24 separable filter in order to speed up the process. 

As already mentioned, TILDE is probably the most related to this thesis work in the sense that the 

authors used a machine learning technique to learn a 2D keypoint detector starting from a set of 

positive and negative samples. As a consequence, the datasets used in this work for the training 

and testing steps are the same. 

2.3 BRIEF and FREAK Descriptors 

“Binary Robust Independent Elementary Features” [7] is a description method that, when applied 

to a certain image patch around a point of interest, returns a binary descriptor, where binary 

means that is composed by 0s and 1s only. When we want to find 

correspondences among points of more images, the comparison 

between such type of descriptors can be very convenient with respect 

to non-binary vectors, because it allows the use of the Hamming 

distance and, then, a considerable speed-up of the matching step. SIFT 

descriptor would require a conversion from the standard vector to the 

binary equivalent if the Hamming distance is being used, whereas 

BRIEF extracts a binary value directly from the patch itself. Indeed, the 

idea behind BRIEF is to pick random points from a Gaussian distribution and test them. The 

Gaussian distribution has the following form: 

                           (𝑥, 𝑦) ~ 𝑖. 𝑖. 𝑑 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (0,
1

2∗𝑆
∗ 𝑆2) ,                 (2-2)      

where S is the patch size. The test gives as result 1 if the intensity of the pixel x is lower with 

respect to the intensity of y and 0 otherwise. If we proceed through many pairs we will end with 

a string of binary values that is the BRIEF Descriptor.  

Figure 2-4. BRIEF pairs 
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This type of descriptor, tough, is very sensitive to rotation; indeed, if the image is rotated by more 

than a few degrees, the matching performances of BRIEF falls off 

sharply. Randomly picking up points from a Gaussian 

distribution is not the only possible choice to select the locations 

that are processed by the test. The authors of the work “Fast 

REtinA Keypoint” [4] tried to understand which are the best 

pairs to be used for the test by analyzing the human visual 

system. Figure 2-5 shows the comparison between the points 

used for the test along with their Gaussian blur radius and a 

human retina region responsible for sharp central vision that is composed by three main 

elements: fovea, parafovea and perifovea. Similarly to what happens in our eyes, the outer points 

(perifoveal area) are the first to be analyzed because they are the most discriminative locations, 

while the central points (foveal area), that are the least blurred ones, are the last pairs to be tested.  

Regarding rotation invariance, the orientation is estimated by summing the local gradients of 

some pairs that are symmetric with respect to the center of the patch. 

2.4 Neural networks 

Neural networks are one of the most used machine learning techniques that have become very 

popular in the last few years thanks to the decrease of hardware prices and to more performant 

GPUs (Graphic Processing Units) for personal use. Neural networks with different architectures 

are used for countless applications, like speech recognition, understanding of biological data, 

character text generation and many others. Concerning the computer vision field, deep learning, 

i.e. the branch of machine learning that uses neural networks, is widely used for object 

classification, colorization of black and white images, medical images segmentation and so on. 

The human visual system can perform extremely complex image analysis. This ability is the 

consequence of millions of neurons linked by billions of 

connections inside the five visual cortices of our brain. Our 

efficiency in visual pattern recognition is the result of a 

long training process that last many years and that teaches 

us how to perfectly use our powerful eyes. As a 

consequence, it is not so easy to imitate the human visual 

system in all its complexity and to carry out a proper 

training procedure. Figure 2.6, which shows some 

handwritten digits from the MNIST (Mixed National 

Figure 2-5. FREAK test points 

Figure 2-6. Some digits from MNIST 
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Institute of Standards and Technology) dataset, is an example of how easy is for the human brain 

to recognize such images as meaningful information. If we want to create a computer program 

capable of understanding which number is in front of a camera, though, it would not be easy at 

all. For instance, we could try to identify the digit “1” by assuming that a fundamental 

characteristic is the bar at the bottom of the stroke. The problem would be that with such a precise 

rule it can be hard to identify other “ones” that deploy different features and if we start adding 

exceptions we could end up in many wrong classifications. Therefore, we need something more 

powerful and, at the same time, flexible with respect to small variations. 

2.4.1 Artificial neural networks 

Artificial neural networks (ANNs) are a machine learning technique that can infer specific 

characteristics of an input training sample and then seek them during the testing step. When we 

use this algorithm, we do not need to define a priori which shapes identify a sample as belonging 

to a certain class; indeed, it is the network itself that will learn how the elements of the training 

data associated with a label must be distributed. For instance, in the case of handwritten digit 

classification, the feature to be learned is the distribution of pixel intensities over the images.  

 

Figure 2-7. Simple neural network architecture 

ANNs are inspired by and loosely based on biological neural networks. Indeed, the idea behind 

the functioning of ANNs is to use many linked elementary units in order to achieve high 

performances when dealing with complex tasks. All these interconnected neurons exchange 

information and update every time a new training sample is injected along with its label. In 
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practice, the neural network should learn a set of weights and biases that, when combined with 

the input will give us back a probable prediction of a certain label as output. For instance, if our 

input is x we must initialize the set of weights and biases and then, using the formula 

  ŷ = 𝑊 ∗ 𝑥 + 𝑏                             (2-3) 

we compute the predicted output and we compare it to the real value of y, that we know since all 

the training data come with their own labels. The aim of this procedure is to minimize a cost 

function time by time, by updating weights and biases at every step of the training. This 

optimization problem can be solved in several ways, for example using gradient descent, 

stochastic gradient descent and some others. The 

output of every node is the result of a linear process 

and, even if its efficiency is high, especially using GPUs 

and simple matrix operations, a non-linear component 

is necessary, otherwise the network would lose the 

ability to model non-linear patterns. Therefore, the 

output of the linear equation (2-3) is processed by the 

so-called activation function. Figure 2.8 shows an 

example of activation function called ReLU (Rectified 

Linear Unit) that gives y=0 if x is negative and y=x if x is 

positive. The advantages of this function are that it is differentiable everywhere except in zero 

and its derivative is very simple: zero if x is negative and 1 if x is positive. 

A simple ANN (for example with only 2 layers) can approximate a large variety of models but it 

uses many nodes and it needs many training images in order to get acceptable values for every 

parameter. A good solution to these problems is to increase the depth of a network by adding 

many layers and to reduce the number of nodes per layer. 

2.4.2 Deep neural networks 

A deep neural network is a very powerful tool that uses many layers of abstraction to infer 

features of some input signals. The structure of such network is composed by several layers one 

on top of the other in a way that every layer tries to elaborate the outputs of the previous layer in 

order to get the best possible prediction for the output. When using deep network, the number of 

inputs used for the training procedure can be lower with respect to the simple ANNs, and this can 

easily lead to overfitting, namely the problem of having a too complex model that can hardly work 

in a general case. In order to solve this problem, it is used the so-called regularization and a 

possible technique that has been recently proposed is called dropout. The idea behind this 

Figure 2-8. ReLU 



 

11 

 

technique is to deactivate 50% of the nodes during each iteration of the training step such that 

the algorithm can never rely on the same inputs. 

Deep neural networks, like ANNs, can be developed using many possible architectures that 

change depending on the depth of the network and on the type of layers used. When dealing with 

images, a widely used types of layers are convolutional layers and pooling layers, that can be 

combined together in order to analyze the spatial 

information of an image. The main reason it is 

possible to use this approach with images is that 

pixels can share their weights to reduce the degrees 

of freedom of the model.  

A convolutional layer is a layer in which a simple 

square filter is applied as a sliding window over the 

images. The main parameters here are the dimension 

of the filter, the stride to use, i.e. how many pixels 

must be skipped between two filters and whether the 

size of the image after the convolution should remain 

constant or not. When applying convolutions on the 

borders of an image, some pixels could be missing since the filter is only partially overlaid to the 

image. In this case, we have two possibilities: 

• use some padding (for instance zero-padding) in order to get some information also on 

the edges of the images;  

• apply the convolution without any padding and skip all the locations where the filter 

could not be computed. In this case the dimension of the images will not remain constant. 

The output of this layer will be, then, an image with the same dimension (if padding is present) 

and a certain depth that indicates the number of channels. Figure 2.9 shows an example of 

convolution with a stride of 1 along all the directions. In this case the padding is not used, thus, 

the final image has a smaller dimension, more specifically, one pixel is “lost” on one boundary and 

one on the other boundary.  

Another type of layer is the pooling layer that is used to reduce the spatial dimension but it keeps 

the same number of channel of the input image. The downsampling is carried out by taking some 

information from a cluster of pixels using a specific criterion. For instance, Figure 2.10 shows the 

so-called max pooling layer, that takes the maximum intensity among the ones of the pixels within 

Figure 2-9. Convolution 
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a sliding window. The parameters to be set here are the size of such sliding window and the 

strides.  

As already mentioned before, many architectures can be implemented by changing the 

parameters of the layers and the number of layers itself. Figure 2.11 shows the so-called “LeNet” 

architecture, created in 1998 by Yann LeCun for handwritten letters recognition. 

 

 

 

 

 

 

 

 

 

Figure 2-10. Max pooling 

Figure 2-11. LeNet architecture 
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CHAPTER 3                                           

METHODS 

3.1 Samples extraction and training of the classifier 

The procedure that has been used in this thesis is the same as in the previously mentioned 

“Learning a Descriptor-specific 3D Keypoint Detector”; indeed, the set of positive samples has been 

extracted from those points that gave a good correspondence during the matching between 

images of the same scene affected by specific transformations. In the 3D case, these 

transformations were 3D viewpoint changes, while here the viewpoint is always the same, but 

the images have acquired under different lighting conditions. Since this work is aimed at learning 

features from 2D images, the most relevant comparison that can be performed is with TILDE and, 

in order to make an even comparison, the dataset used here is the same of the one used in TILDE, 

for both training and testing. As already mentioned, the training dataset is composed by some 

images from the “Archive of Many Outdoor Scenes” (AMOS) dataset and panoramic images 

collected by the authors of TILDE, while the testing dataset is composed again by some images 

from AMOS and panorama.  

 

               (a)                                              (b) 

Figure 3-1. Images from AMOS (a) and Panorama (b) datasets 

The whole procedure is developed through many small steps and each one of them needs specific 

parameters to be tuned. First of all, all the images of the training dataset are sampled and a 

descriptor is computed at every location; then, a matching step is performed and a table 

containing information about how many times a point has given a correct match is created; finally, 

the points are sorted from the ones with the highest goodness score down and the best ones are 

kept as positive sample locations. The set of negative samples is randomly sampled over the 

images in such a way that every point is far enough from both the already computed positives and 

the other negatives. In one of the two approaches used in this work, the features that will be used 

during the training of the classifier are vectors of description computed at the positive and 
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negative locations of every image of the training dataset, that are stored into vectors and will be 

used later. In the other case, with CNNs, it is not necessary to determine a priori the features that 

we need to feed because the neural network can learn these features autonomously, therefore the 

only thing we need from the locations detected by the matching procedure is the distribution of 

the intensities around them. Table 3-1 shows all the possible parameters that are combined and 

compared in order to determine which is the best arrangement to be used for the first step of this 

keypoint detector. The extraction of positive and negative samples is, of course, used in both 

random forest approach and CNN approach. The comparison will take place during the validation 

step and it will involve also other settings related to the classifier. In the next sections, the steps 

for the positive and negative samples extraction are explained in detail. 

Table 3-1 List of the parameters 

SAMPLING RATE 3 5 8 
DESCRIPTOR TYPE BRIEF FREAK  

MATCHING TYPE STRAIGHT CROSS CROSS-RANDOM 

 

3.1.1 Sampling and description 

The first important step is the training images sampling. Indeed, we need a set of points that will 

be compared to the others belonging to the remaining images of the dataset. Even if the sample 

extraction and the training of the classifier are both offline processes, meaning that they can be 

computed before the application of the keypoint detector to the test images, the speed of the 

whole process is important in practice. On the other hand, if we speed up the process by applying 

a very low sampling rate, many points would be discarded and the number of positive candidates 

would be too low. To sum up, a dense sampling would be better in terms of quality of the positive 

Figure 3-2. Image sampling and computation of the descriptors 
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samples, but very slow, while a high sampling rate would make the process fast but not very 

precise.  

The main parameters to be set here are two:  

• the sampling rate of the input images; 

• the descriptor to be used. 

For the latter, while both detector and descriptor are included in the SIFT procedure, descriptor 

methods like “Binary Robust Independent Elementary Features” (BRIEF) [7] and “Fast REtinA 

Keypoint” (FREAK) [8] do not have an already integrated detector. The choice of the description 

method in this step must be the same during the final testing step when using the random forest, 

because if we train a classifier to recognize a specific pattern that is related to a certain descriptor 

type it will not recognize vectors created in a different way. It is possible to note in Figure 3.2 that 

many points on the borders are missing; the reason is that when the descriptor vectors are 

created, as already mentioned in Chapter 2, the intensities of many points around the central one 

(in this case the sampled point) are compared by looking at their intensities and if one or both 

points happen to be outside the image a problem occurs. In this case the point of interest is 

skipped and it is removed by the set of keypoints, but this aspect strongly depends on the choice 

of the description method.  

In the case of CNNs, the problem of computing vectors of description before the testing procedure 

is not important since the features are inferred directly by the network. However, this first step 

has two purposes: the localization of the points that should be good for the training procedure 

and the extraction of the descriptors that will be used later when training the random forest. The 

former aim is common to both the random forest and the CNN and it needs anyway the 

computation of the descriptors in order to perform the matching procedure; thus, the problem of 

missing keypoints near to the boundaries cannot be avoided. The CNN, though, deals with patches 

Figure 3-3. Keypoints removal: (a) before the computation of the descriptors, (b) after 

(a) (b) 
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and, even if there are no intensity differences, it could be possible that a portion of some patches 

covers an area that exceeds the boundaries of the image. Since we are discarding some points that 

are far enough from the borders, it will be always possible to extract all the patches centered at 

those points.  

3.1.2 Matching 

The second step is the matching, in which all the descriptors of two images are compared in order 

to find the best correspondences. This is the main difference with respect to TILDE, because, while 

TILDE extracts the best locations by applying an already existing keypoint detector and it labels 

a point as positive if it can be consistently found over the sequence of images, here a point is good 

only if it gives many times a good correspondence. In this specific case, since all the training 

images are already aligned, a good correspondence means that a point on the first image of a 

compared pair must point to a location in the second image of the pair with exactly the same 

coordinates. If it was not the case and similarity transformations were applied, a perspective 

matrix would have been needed in order to find the correct position.  

The procedure to follow in order to find the positive locations can be various and the main 

parameter to decide here is which images will be compared. As already mentioned before, the 

used dataset is the same of TILDE, in which 100 images from the same webcam form the training 

set. Of course, the best solution would be to perform a cross matching between all the possible 

Figure 3-4. Matching types: straight matching (a) and cross matching (b) 

(a) (b) 
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pairs of a training dataset, but it would require a lot of time. A workaround to this problem is to 

perform the matching step only over a subset of images from the training set and then extract the 

descriptors from the whole set, but this forces us to choose the images to use. This decision is 

very important since a wrong choice of the images could lead to favor specific features. For 

instance, Figure 3.5 shows a comparison between 3 different images of the same scene under 

different illumination and weather conditions. It is easy to note that if images with the same 

illumination and weather of the third image are not present among the images that must be 

compared, some points of the mountains in the background could be detected as positive and the 

final result could be biased. On the other hand, checking all the images and trying to manually 

hardcode the dataset could be very time wasting. A possible solution, then, is to inject randomness 

and let it decide for us. In this work three possibilities have been developed:  

• a match between the descriptors of the first image of the dataset and all the others 

(straight approach); 

• a match between pairs of images from a subset of the dataset composed by the first 30 

images of the dataset (cross approach); 

• a match between every image of the dataset and a subset of the dataset (cross-random 

approach). 

In the first case the number of combinations is obviously smaller; indeed, if N is the number of 

images inside the dataset, N-1 matchings will be necessary, while in the cross matching case the 

procedure must be executed 
𝑁!

𝑘!(𝑁−𝑘)!
 times, where k is 2 since every comparison is between 2 

images only. In order to keep the sample extraction time almost constant, N must vary depending 

on the matching type we want to use. In the “straight” matching, 100 images have been used, 

exactly like TILDE, whereas, in the cross matching, 15 and 30 images have been used, resulting in 

105 and 435 comparisons respectively. In the last case, every image of the training set is 

compared to some randomly chosen images, thus the number of comparisons depends on the 

times a random number, associated to an image, is chosen. A possible negative drawback here is 

Figure 3-5. Some images from the Chamonix training dataset 
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that randomly choosing a number does not guarantee that images like the third one of Figure 3-5 

are chosen and this can affect the final positions of the positive samples. The main parameter to 

be set here is the descriptor type, that can be either BRIEF or FREAK, but also the matching 

algorithm is important; indeed, once the descriptors have been extracted around the points, the 

way in which they are compared can affect the final result. The tested alternatives are the Brute-

Force Matcher, that takes the descriptor of one feature and compares it to all the others, and two 

matchers from the “Fast Library for Approximate Nearest Neighbors” [11] that use KDTree and 

Locality Sensitive Hashing. These two last methods are very fast in case of large dataset and for 

high dimensional features, but, since this is not the case, they are slower with respect to Brute-

Force Matcher.  

The objective of this matching step is to fill a table with information about the “goodness” of every 

point in terms of matchability. This table is initialized as shown in Table 3-2, where X and Y are 

Table 3-2. Score table initialization 

 

the coordinates of the sampled points, ID is necessary to identify every keypoint and the score is 

a value that indicates how many times a point has given a correct match over the sequence of 

images. When the first descriptor matching is executed, every point of the list of matches is 

checked and if the corresponding point given by the matching algorithm is in the correct position, 

where correct means in the same position of the first point of the pair, then the location 

coordinates are stored in a vector. It is important to note that a small matching error (1 or 2 pixels) 

is accepted and then a point gives a correct correspondence even if it is not exactly at the right 

position.  

X Y ID SCORE 

0 0 1 0 

0 Sampling rate 2 0 

… … … … 

Max width Max height Max ID 0 

Figure 3-6. Matching error 
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At the end of this step, every positive location of the vector is sought over the score table and its 

score is increased by 
1

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠
 that, in the case of straight matching, is equal 

to 
1

𝑁−1
 , where N is the number of images, while in the case of cross matching is 

2

𝑁(𝑁−1)
 since the 

number of comparisons is 
𝑁!

2(𝑁−2)!
 . The last case, namely the cross-random approach, is slightly 

different because the score of a positive point is increased by 
1

𝑁∗𝑖𝑚𝑔𝑠𝑇𝑜𝐶𝑜𝑚𝑝𝑎𝑟𝑒
 , where 

imgsToCompare is how many random numbers are extracted for every image. When a point gives 

a correct correspondence, its location is updated and, as already mentioned before, no similarity 

transformation is needed since the training set is already aligned. 

3.1.3 Positive and negative sample extraction 

At this point, every location of the image has its own score that tells us how good the descriptor 

is, around those points to be matched later. In order to choose the best points, we have two 

possibilities: set a threshold on the scores and take all the points above that threshold or sort out 

all the points of the table from the one with the highest score and use a dynamic threshold that, 

starting from 1, keeps decreasing until the number of points with a score higher than the 

threshold is greater than a predefined value. In the first case, when we set the threshold to a 

certain value, for instance 0.6, we do not know how many points will be found later and this can 

Figure 3-7. Fixed threshold (a) and dynamic threshold (b) 

(a) (b) 



 

20 

 

be very bad because we could get either too many or too few points. For example, if a sequence 

of images is not affected by strong transformations, all the sampled points of the images can get 

a very high score and, with a low threshold, they could be all labeled as positive samples and 

during the testing step this results in a very low selective keypoint detector. Moreover, if the 

positive samples distribution is too dense, when the negative samples will have to be randomly 

picked, it will be hard to find points that are far enough from the good sample locations. On the 

other hand, if the dynamic threshold is used, the minimum number of positive samples that we 

want must be chosen beforehand, but the threshold changes and decreases as long as enough 

points are selected. This could result in a set of positive samples with a very low score that will 

have a bad influence on the final classifier. In this work, the dynamic threshold approach is used 

during the positive extraction procedure and the afore-mentioned problem does not exist 

anymore since the images suffer from illumination changes and not from similarity 

transformations, which means that many points can get a high score. Later in the process, during 

the testing step with random forests, will be necessary to decide which approach to use between 

the fixed and the dynamic threshold, and the best solution will be a fixed threshold since it is 

possible to adjust it before the real use of the algorithm.  

The sampling rate defined during the first step of the process, when the images are sampled, could 

discard many points that could get a high matching score during the second step. As already 

mentioned, the best solution would be to analyze every pixel so to be sure that no good locations 

are left behind. However, this approach would require a lot of time and moreover, the OpenCV 

library, used in this thesis, does not allow to fill the set of training descriptors with more than 

262144 items, limit that is easily reached by images like the one in Figure 3-8. Another important 

Figure 3-8. Positive (black) and negative (white) locations: (a) Sampling rate = 5. (b) Sampling  

rate = 3, with non-maxima suppression 

(a) (b) 
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problem associated with the dense sampling is that many points of the same area can be detected 

as positive and this can lead the process to an extraction of many descriptors (in case of random 

forests) or patches (in case of CNNs) that are too similar.  

Having a large variety of training data is fundamental for a good estimation because, otherwise, 

the algorithm cannot learn enough features and its predictions are not precise. In order to spread 

the points and cover a wider surface, the points are sorted from the one with the highest matching 

score to the one with the lowest. Then, starting from the first point, the locations around its 

coordinates within a certain radius are checked and, if their scores are lower with respect to the 

central one, they are discarded from the list of positives. Figure 3-8 (a) shows an example of 

positive samples extraction with a sampling rate of 5 pixels without any improvement, while 

Figure 3-8 (b) shows a training image with a sampling rate of 3 pixels and the previously explained 

technique with a radius of suppression equal to 6 pixels. Since the sampling rate is 3 pixels, having 

a radius of suppression equal to 6, 7 or 8 pixels does not make difference, because it is not possible 

to find a sampled pixel between the 6th and the 8th pixels. 

3.1.4 Features extraction 

When the final set of positive locations is complete, the features set that will be used for the 

random forest training is formed by all the descriptors computed at the positive locations over 

every image of the training dataset, even in those where a certain location did not give a correct 

Figure 3-9. Example of positive (black) and negative (white) locations with 

sampling rate = 10 and negative radius = 10 
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match during the previous step. Regarding the CNN, instead of the descriptors set, a set of patches 

extracted from the area around the selected positive and negative points is used. 

The negative locations are randomly picked from the images in such a way that they are far 

enough from every positive location and every negative location. 

Basically, a pair of integers are randomly sampled within a range 

defined by the width and the height of the images of the dataset; 

then, they are compared to the coordinates of the positive samples 

and if they are far enough from every positive location they are 

labeled as non-positive locations. In order to have a large variety of 

negative samples, the non-positive coordinates are also compared 

to all the points that are already inside the negative samples set and 

if the distance is greater than a certain value they can be inserted 

into the negative samples set. Figure 3-9 shows an example where 

the sampling rate is 10 pixels and the negatives (white dots) must 

have at least a distance of 10 pixels from both the positive and 

negative locations. In this thesis work the negative radius will be 

equal to 30 pixels. Using the random forest trained with the 

descriptors computed at the positive and negative locations is more efficient with respect to the 

CNN, because all the descriptors we need are already available from the sample extraction. When 

applying the CNN, instead, all the patches centered at the positive and negative points must be 

extracted and used for the training of the network. 

3.1.5 Training of the random forest 

The last step is the training of the machine learning algorithm. For this work, the chosen 

classifiers are the random forest, similarly to what has been done in “Learning a Descriptor-

Figure 3-11. Random Forest structure 

Figure 3-10. Some of the 

32x32 patches used to train 

the CNN 
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specific 3D Keypoint Detector” and a convolutional neural network. A Random Forest is a cluster 

of decisional trees that, given an input sample, tries to predict which class the input belongs to by 

computing the means of all the results coming from each tree. The word “random” means that the 

initial dataset is randomly split in many overlapping subsets and the same is done to the 

“questions” to be asked at every node. When the classifier is trained, a bunch of labelled elements 

(in this case the labels are “positive sample” and “negative sample”) is given to the algorithm that 

decides which are the best question to be asked in order to get the best split of the input data. The 

parameters to be tuned here are two: the number of trees to be used inside the forest and the 

depth of every tree, which is measured in terms of how many times we want the classifier to split 

the input data into smaller subsets or how many samples we want to be left at a node. Having a 

high number of trees and a high depth can be better in terms of quality but worse in terms of 

speed, thus a good trade-off should be found. When the classifier is trained, the algorithm asks a 

sequence of questions to every feature we put inside of it and it gives back the probability 

associated to a final leaf. In this thesis work, the features used for the training of the classifier are 

the description vectors obtained at certain locations using either the BRIEF descriptor and the 

FREAK descriptor. Using a descriptor to train a classifier can be very useful when dealing with 

illumination changes. Indeed, the method used in BRIEF and FREAK relies on intensity differences 

Figure 3-12. Example of problems with clouds: Frankfurt webcam using a random forest trained 

on Chamonix dataset 
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between pairs of pixels and if both the intensities of a pair change in the same way the result of 

the test remains constant. However, the dataset used in this work contains images of the same 

scenes under different weather conditions and the illumination changes are not linear and 

uniform all over the images. The presence of shadows or, for instance, rain over the glass of the 

camera could modify only the intensity of one of the pixels subjected to the test of the descriptor, 

and then the result would be biased. Finally, another problem is related to the presence of clouds. 

Indeed, a special characteristic of the AMOS dataset is that many webcams partly point to the sky 

and then the sun and the clouds strongly modify the images. When training the random forest, no 

descriptor comes from an area of the sky where there might be clouds; however, the descriptors 

contain only values that indicate a sort of gradient associated to the pixel intensities and this 

gradient can be obtained also with different configurations. 

3.1.6 Training of the neural network 

As already mentioned before, while when training the random forest, a set of descriptors has been 

used, here patches centered at the locations obtained in the previous steps are extracted and 

directly used as training set, since descriptors are implicitly learned by the network. After the 

extraction of the patches pixel by pixel, it is necessary to create a dataset that will be used by the 

neural network. This dataset is obviously composed by all the patches, but it must also contain all 

the labels, associated with their corresponding images, that indicate to which class the sample 

belongs to. This thesis work is aimed at finding highly distinctive keypoints and to do that is 

necessary to analyze all the pixels of an input image and identify them as positive or negative. The 

classification approach to be used, then, is a binary classification that involves two classes. 

 

Figure 3-13. Example of one-hot encoding 
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The labels to be used can be of two different types:  

• dense labels, which means that, in this specific case, it is necessary to assign a value to one 

class and another value to the other class; in this thesis work the label 1 is assigned to the 

positive samples while the label 0 to the negative ones; 

• one-hot labels, which means that starting from a set of dense labels, a binary vector of 0s 

is created for each label and a 1 in different position identify a label. Figure 3-14 shows an 

example. 

In this work, a binary classification is required, thus it is possible to use both a simple dense 

labeling or a one-hot labeling. In case of multiclass classification, like, for instance, in the 

handwritten digit classification or letters classification, the one-hot encoding is necessary to 

identify each class using only 0s and 1s.  

Chapter 2 explained how an image can be processed through the neural network by operators, 

like convolution, pooling, activation functions and dropout. The architecture that has been used 

in this thesis is shown in Figure 3.14 and it is the same for both training and testing.  

After having created a training dataset, composed by many 32x32 patches, the procedure for the 

training is the following: 

1. Take the first image of the training dataset. 

2. Apply 32 convolutions using a filter of size of 5x5; the output tensor (stack of images) has 

a size of 32x32x32. The size of every image after the convolution does not change because 

a padding is applied before the filter. 

Figure 3-14. Architecture of the CNN 
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3. Apply the activation function. In this case, the REctified Linear Unit is used, but also the 

tanh can be used. 

4. Apply a max pooling with a filter of size 2x2 and a stride of 2. The depth of the output 

remains constant while the size of every image is halved. The output has a size of 

16x16x32. 

5. Apply 64 convolutions using a filter of size of 3x3; the output tensor has a size of 16x16x64. 

The size of every image after the convolution does not change because a padding is 

applied before the filter. 

6. Apply the activation function. 

7. Apply a max pooling with a filter of size 2x2 and a stride of 2. The output has a size of 

8x8x64. 

8. Apply 128 convolutions using a filter of size of 3x3; the output tensor has a size of 8x8x128. 

The size of every image after the convolution does not change because a padding is 

applied before the filter. 

9. Apply the activation function. 

10. Apply a max pooling with a filter of size 2x2 and a stride of 2. The output has a size of 

4x4x128. 

11. Apply 1024 convolutions using a filter of size of 4x4x128; the output tensor has a size of 

1x1x1024. The size of every image after the convolution changes because no padding is 

used. 

12. Apply the activation function. 

13. Apply dropout. 

14. Apply 2 convolutions using a filter of size of 1x1x1024; the output tensor has a size of 

1x1x2.  

15. Compare the output of the network to the label associated with the input image and 

optimize the weights and the biases in order to minimize the cross entropy. The optimizer 

used in this thesis is the Adam optimizer. 

16. Take the next image of the training set and repeat from step 2. 

At the end of this process, every patch will have been analyzed and the set of weights and biases 

inside every convolution will have been updated depending on the loss function.  

The framework that has been used in this thesis for the CNN is TensorFlow [12] that makes the 

creation and the training of a neural network very easy. The only thing to do, at the beginning of 

the code, is to create two placeholders: one for the input images and one for the labels associated 

with these images. Then it is necessary to create a function for the initialization of the weights 
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from a truncated Gaussian distribution (other types of initialization can be used) and a function 

for the initialization of the biases to a small value different from zero. This last value and the 

standard deviation of the Gaussian curve are the same of the MNIST tutorial code provided by 

TensorFlow. This framework allows, also, to monitor the results of the neural network, how the 

weights and biases change and the output of every convolution. Inside the code, indeed, it is 

possible to use commands like “tf.summary.image” or “tf.summary.histogram” to keep track of the 

elements of the flow and then it is possible to visualize them using a tool called TensorBoard.  

Figure 3-15 shows the first page of TensorBoard once it has been launched using the command 

“tensorboard –logdir=path_to_logdir/logs” and the web browser has been navigated to 

“localhost:6006”. After having correctly configurated TensorBoard, it is possible to visualize the 

TensorFlow plots, images, graphs and other elements and this can be very useful for the 

understanding of the network, the debugging and the optimization. When visualizing plots of 

Figure 3-15. TensorBoard homepage 

Figure 3-16. Cost function with (a) smoothing = 1 and (b) smoothing = 0 

(a) (b) 
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scalars, like the accuracy or the cost it is always possible to adjust the smoothing of the curve in 

order to understand better the real behavior of the data. Two very important parameters of the 

neural network are the batch size, namely how many images must be processed at every iteration 

and the total number of iterations. As it is shown in Figure 3-16, the number of iterations in that 

specific case is 500, while the used batch size is 100. These two parameters must be carefully 

chosen because a small batch size would need much more time to converge to a minimum, but 

can be more general, whereas a big batch size would behave in the opposite way. A good trade-

off must be found by looking at the accuracy and the loss function that, in this case, is the cross 

entropy.  

After having trained the neural network, a test dataset is created from some test images. In this 

case, it is not necessary to extract the patches from the test images because the convolutions of 

the neural network work themselves on small areas of the input images. For instance, when 

testing the network on the Courbevoie webcam dataset, the size of every input images is 640x471, 

but there is no need to modify the network. However, the changes applied to the input images by 

the network are the same that have been used over the training sequence and then, if the training 

image height is halved by the max pooling layer, the test image height will be halved as well. At 

the end of the pipeline, instead of a 1x1x2 tensor, i.e. two probabilities, one for each class, there 

will be a heat-map with a probability for every pixel of the image. The procedure to be followed 

is the same of the training but with trained weights and biases and different sizes: 

1. Take the first image of the test dataset (in this case with size 640x471). 

2. Apply 32 convolutions using a filter of size of 5x5 with the trained weights and biases; the 

output tensor has a size of 640x471x32. The size of every image after the convolution 

does not change because a padding is applied before the filter. 

3. Apply the activation function. 

4. Apply a max pooling with a filter of size 2x2 and a stride of 2. The output has a size of 

235x320x32. 

Figure 3-17. Example of convolutions applied to an input patch 
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5. Apply 64 convolutions using a filter of size of 3x3; the output tensor has a size of 

235x320x64. The size of every image after the convolution does not change because a 

padding is applied before the filter. 

6. Apply the activation function. 

7. Apply a max pooling with a filter of size 2x2 and a stride of 2. The output has a size of 

117x160x64. 

8. Apply 128 convolutions using a filter of size of 3x3; the output tensor has a size of 

117x160x128. The size of every image after the convolution does not change because a 

padding is applied before the filter. 

9. Apply the activation function. 

10. Apply a max pooling with a filter of size 2x2 and a stride of 2. The output has a size of 

58x80x128. 

11. Apply 1024 convolutions using a filter of size of 4x4x128; the output tensor has a size of 

54x76x1024. The size of every image after the convolution changes because no padding 

is used. 

12. Apply the activation function. 

13. Apply dropout. 

14. Apply 2 convolutions using a filter of size of 1x1x1024; the output tensor has a size of 

54x76x2. 

15. Take the next image of the test set and repeat from step 2. 

The output of the last convolution is, then, no longer 1x1x2 as it was in the training step, but it is 

54x76x2. The last dimension is 2 because we have the probabilities of belonging to one class 

instead of the other, but the only one we care about is the probability of belonging to the positive 

class. Therefore, we can slice the tensor and keep only the 1D heat-mat associated with the 

positive class. The problem now, is that we have to overlap the output heat-map with size 54x76 

to the original test image with size 640x471 in order to find which pixels are positive and which 

are negative. After all the pooling and the convolutions, the 1 to 1 pixel correspondence is lost 

and, in this specific case, one element in the heat-map corresponds to a patch size of roughly 8x8 

pixels. The solution to this problem is a simple image upsampling using bilinear interpolation. 

When resizing images from a lower dimension to a higher dimension the main problem is that 

the final image is made of many more pixels that were not there before. The intensity of these 

pixels must be inferred by looking at the intensities of the neighbor pixels. After the upsampling, 

then, the size of the heat-map is the same of the input test image and it is possible to extract the 

positive keypoints. To do that all the points with a probability greater than 50% are stored in a 
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vector and then a non-maxima suppression is applied in order to keep as positive only the points 

with the highest response.  

3.2 Validation  

The training step requires, of course, the parameters to be set before it is executed, therefore it is 

necessary to find the best combination that allows to get the best results for the test images. The 

set of images that are used for the validation is a portion of the training dataset that is different 

with respect to the testing dataset. When the descriptors are placed inside the classifier, the result 

is a value that spans from -1 to +1, where +1 means that the input element belongs to the positive 

samples set with a probability of 100%, and -1 the opposite. So, it is necessary to define a 

threshold that identifies all the descriptors with a prediction value over such threshold as salient 

points. The validation process is executed in different ways depending on the type of parameter 

to be tuned. Up to now, the parameters to be validated for the random forest are:  

• the sampling rate of the input training image; 

• the non-maxima suppression radius for the training images; 

• the matching type, i.e. straight, cross and cross-random matching; 

• the number of trees and the two parameters of the tree depth;  

• the threshold that defines positive and negative samples; 

• the non-maxima suppression radius for the test images. 

On the other hand, when dealing with the neural network, the parameters to be tuned are 

different; indeed, during the training step it is important to define the learning rate of the 

optimization algorithm, the number of iterations and the batch size that is randomly sampled 

from the training samples. After the computation of the probabilities for a test image and after 

having upsampled the heat-map, another parameter must be defined, namely the non-maxima 

suppression radius. The subsequent paragraphs explain the techniques used for the validation of 

the random forest and the CNN. 

Figure 3-18. Example of upsampling 
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3.2.1 Training and test error 

The first method used for the validation consists in computing the training and the test error of 

the matched images. This procedure is fundamental for the validation of two parameters of the 

random forest: the number of trees and the depth of the trees. First of all, all the other parameters 

are initialized to certain values, then the set features (the descriptors) associated with their labels 

is created and converted into a construct of OpenCV called TrainData. This cluster of training data 

is then split in two smaller groups: one to be used for the training and one for the validation. Now, 

using a for loop, it is possible to vary one parameter and keep the others fixed while training the 

random forest and computing the error on both the training set and the validation set. After 

having changed the parameter under analysis, the procedure is repeated for a range of possible 

values and, at the end, a list of errors is available and can be used to decide the best arrangement 

for the parameters. This approach is used for the validation of the following parameters: 

• number of trees; 

• tree depth; 

• number of samples to be left at a node. 

The main criterion to be used when deciding which is the best value for a specific parameter is 

usually the decreasing rate of the error curve, i.e. when the error stops decreasing is no longer 

necessary to increase or decrease the parameter that is being analyzed. However, another aspect 

must be kept into consideration; indeed, if the training error keeps decreasing while the 

validation error increases, the forest is suffering from overfitting, i.e. the machine learning 

algorithm is trained too much over the training data and can hardly manage new input data. 

Figure 3-19. Example of training and test error with different numbers of trees 
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3.2.2 Precision-Recall curve 

The second approach is based on the computation of the Precision-Recall curve, a very useful tool 

for binary classification that measures the performances of a searching algorithm by looking at 

the amount of the correct information retrieved and the mistakes made while searching for that 

correct information. This method can be used both for the validation of some parameters of the 

random forest, similarly to what has been done with the parameters listed at the end of this 

subchapter, and for the comparison of the result of many keypoint detectors in terms of 

matchability.  

Given a list of matches it is possible to compute two very important indices:  

• the precision, which is the fraction of the elements taken into account that are relevant to 

our purpose; 

• the recall, which is the fraction of the relevant elements that are retrieved.  

Basically, after having sampled the first image of the dataset and after having computed the 

descriptors over the sampled points, the random forest trained with a certain set of initial 

parameters is applied to every image of the dataset and a matching algorithm is used in order to 

find the best nearest neighbor for every descriptor of the first image and all the others. For every 

matched pair, the distance between the two descriptors is normalized using the maximum 

distance that two binary descriptors can have, that is the length of the description vector, and if 

the match is correct it is put inside the true positives (TP) set, while if it is wrong it is put inside 

the false positives (FP) set.  

By varying a threshold over the distance between the descriptors to accept a match, the values 

for “1 - Precision” and Recall are computed using the following formulas: 

                             1 − 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝐹𝑃

𝑇𝑃+𝐹𝑃
 ,                           (3-1) 

and 

                                    𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑃
 ,                             (3-2) 

where P is, in this case, the total number of matches, i.e. the total number of sampled points. Once 

the curves have been created, the best one is selected by looking at the area under the curve (AUC) 

and the highest its value, the better the set of used parameters. Figure 3-20 shows an example of 

comparison between two models with a different threshold applied to the random forest to 

accept the positive elements; the AUC of the red curve is higher with respect to the AUC of the 

blue one and then a threshold equal to 0.5 should be chosen.  
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The dataset used for the computation of the precision-recall curve must be different from the 

training dataset, of course. The splits between training, validation and test datasets used in this 

work are the same used in TILDE and then, the number of images is 100 for the training dataset, 

20 for the validation and 20 for the test. All the images are different because of the different 

weather and illumination conditions, but the scene is always the same since the pictures come 

from fixed webcam. 

This precision-recall method is used for the validation of the following parameters: 

• the sampling rate of the input training image; 

• the non-maxima suppression radius for the training images; 

• the matching type; 

• the threshold that defines positive and negative samples; 

• the non-maxima suppression radius for the test images. 

Finally, the Precision-Recall curves are also used to compare the method proposed in this work 

to TILDE in order to contrast the performances of the whole detection-description-matching 

pipeline. 

 

 

 

 

 

 

 

Figure 3-20. Example of 1 - Precision / Recall curve 
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CHAPTER 4                                          

RESULTS 

This chapter presents in detail the results obtained in this thesis work. The first two parts 

illustrate the validation of the parameters of random forest and convolutional neural network, 

the third part shows the results obtained during the testing step, while the last part shows the 

results from the comparison between the methods developed in this thesis and the TILDE 

keypoint detector. 

4.1 Positive and negative sample extraction 

The first step of the algorithm is the extraction of the positive and negative samples from the 

dataset. As already mentioned in the previous chapter, the most important parameters to be 

validated in this step are the ones related to the extraction of the training points, i.e. the sampling 

rate of the input images along with its non-maxima suppression radius, the type of matching to 

use and the type of descriptor. The parameters used here will be the same for both the random 

forest and the CNN, since this first part is common to both the approaches. The speed here is not 

very important since the extraction of the positive and negative samples and the training of the 

classifiers can be executed offline without any influence on the online performance. However, a 

faster training is always better in terms of practicability. Table 4-1 shows the speed, in seconds, 

for every combination of parameters of the sample extraction. 

Table 4-1. Speed comparison of all the combinations of parameters 

SAMPLING RATE + NMS 

radius 
3 + 8 5 + 8 8 + 0 

MATCHING 

TYPE 

DESCRIPTOR 

TYPE 
BRIEF FREAK BRIEF FREAK BRIEF FREAK 

STRAIGHT 800s 1500s 100s 200s 20s 35s 

CROSS 30 3500s 7000s 440s 800s 90s 150s 

CROSS-RANDOM 5 4400s 8400s 500s 1000s 100s 180s 
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It is possible to see that the aspects to consider when analyzing the speed of the algorithm are 

multiple. Indeed, all the parameters have their own influence; for instance, the sampling rate has 

a strong influence on speed since changing its value from 3 to 5 halves the time and from 5 to 8 

the speed is more than doubled. The matching type is also very important, because each method 

analyzes a number of images that varies; indeed, the straight matching compares only the first 

image of the training dataset to all the others and, since the dataset size is 100 images, the number 

of comparisons will be 99. The second matching type analyzes all the combinations among 30 

images which means 435 comparisons, while the cross-random method uses 5 randomly chosen 

images for every image of the dataset, i.e. 500 comparisons. Finally, the descriptor type is 

important because of the extraction of the descriptors, but also for the matching step. As already 

mentioned in Chapter 2, BRIEF descriptor tests less pairs with respect to FREAK so it is faster in 

this first step, but when the matching must be executed the comparison between FREAK 

descriptors is faster due to their structure.  

Once the positive and negative samples are extracted it is possible to see the qualitative results 

by looking at the locations that have been detected. For instance, Figure 4-1 shows a comparison 

between three different types of samples extraction. In the first two images, it is used a small 

sampling rate plus a non-maxima suppression in order to avoid too dense clusters of points, while 

in the last one it is used a sampling rate equal to 8 without any NMS.  

Usually, the best points to be found should be the ones in very distinctive locations that can be 

easily found over the image and the points that are surrounded by specific shapes, like, for 

instance, corners or blobs. However, the approach used in this thesis wants to find points that 

present a very high descriptor distinctiveness and not a high repeatability. When two descriptors 

Figure 4-1. Comparison between sample extraction using BRIEF and a straight matching with (a) 

sampling rate 3, (b) sampling rate 5, (c) sampling rate 8. The black dots are positive samples while 

the white dots are the negatives. 

(a) (b) (c) 
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are matched, one of the most important things is the way they have been described which is, in 

this case, either using BRIEF or FREAK. Figure 4-2 shows a comparison between two images: the 

first is obtained using BRIEF, while the second using FREAK. It is easy to note that both the 

positive and the negative locations are different. The reason behind this is that a different type of 

descriptor can make a point easier to be found when matched to another point, not because of 

the different way of comparing the two vectors, but because the distribution of intensities that is 

analyzed can be more similar to a vector of description that does not correspond to the right 

correspondence. In other words, when matching a pair of 

images, due to a reduced distinctiveness of the description 

vector, a point can be associated with a wrong corresponding 

location, and this generates different errors. For instance, in 

Figure 4-2 (a), where BRIEF descriptor is used, a dozen positive 

points are detected over the dark mountain on the left in an 

apparently non-salient area, while in the image on the right, 

only three points are detected over the mountain but six can be 

found on the edge of the mountain. Another difference is the 

number of points on the stairs that is higher when using FREAK. 

The positive samples on the front of the house, instead, are 

detected independently with respect to the used descriptor. 

Another important aspect to consider when judging whether a sample extraction is good or not 

is the position of the negative samples. The white dots of the images are randomly sampled over 

(a) (b) 

Figure 4-2. Positive (in black) and negative (in white) points obtained using (a) BRIEF description 

and (b) FREAK description 

Figure 4-3. Positive (in black) 

and negative (in white) samples 

using BRIEF (up) and FREAK 

(down) 
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the image in such a way that they are at least 30 pixels far from all the positive points and all the 

negative points. In this way, it is possible to cover the entire image and there is no overlapping 

between the patches around these points. By looking at Figure 4-2 it is possible to see that on the 

edge of the darker mountain, BRIEF randomly picks some negative locations, while FREAK finds 

Figure 4-5. Positive (in black) and negative (in white) samples using the 

straight matching 

Figure 4-4. Positive (in black) and negative (in white) samples using the 

cross matching 
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some positive samples and then cannot pick negatives in that area. This will have consequences 

both when using the random forest and when using the neural network as classifier. 

Finally, Figure 4-4, Figure 4-5 and Figure 4-6 show the results obtained using the three matching 

types created in this thesis work. 

4.2 Training 

After having found the positive and negative locations, it is possible to use them in order to train 

the classifier. In this work, the classifiers that have been used are a random forest and a 

convolutional neural network. In the first case the features to be used for the training of the 

classifier are the descriptors computed at the sample coordinates over the images of the training 

dataset; in the second case, there is no need for some a priori defined features since the network, 

given a set of input patches with their correspondent labels, can autonomously infer some specific 

patterns. The following subchapters show in detail the results of the parameter tuning for the two 

classifiers. 

4.2.1 Random forest 

As already mentioned, the random forest is trained using the descriptors computed at the positive 

and negative locations. These descriptors are already available because they have been 

Figure 4-6. Positive (in black) and negative (in white) samples using the 

cross-random matching 
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previously stored during the extraction of the samples. The only thing to do, then, is to create a 

dataset suitable for the construct of the random forest in OpenCV.   

In this step the validation of three parameters takes place: 

• number of trees to be used inside the random forest; 

• maximum depth of every tree of the random forest; 

• minimum number of samples to be left at a node. 

The range of values used for every parameter is different; indeed, the number of trees varies from 

0 to 95, the maximum depth from 10 to 40 and the number of samples from 30 samples to 1. The 

default values for the parameters of the random forest in OpenCV are: 5 for the maximum depth, 

10 for the minimum samples required at a node for it to be split and 50 for the number of trees. 

Figure 4-8 shows the error curve associated with a training set, composed by roughly 15000 

elements, and the test error curve from a test dataset of about 3500 descriptors. The behavior of 

the two distributions is quite similar but shifted of approximately 0.1 points over the y-axis. This 

is because, of course, the error computed over the dataset used to train the forest will always be 

lower than the error computed training the forest over one dataset and computing the error over 

a different dataset. Regarding the number of trees to be used in the random forest, it is possible 

to note in Figure 4-8 that the error decreases with a very low rate after 30 trees and, even if it gets 

better and better after this point, it is important to consider that the number of trees increases 

Figure 4-7. Example of an xml file containing the descriptors used for the 

training of the forest 
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the prediction time linearly. Another important parameter is the maximum depth that every tree 

has; Figure 4-9 shows how the training and test error varies with respect to a maximum depth 

range between 10 and 40. It is possible to note that the training error decreases smoothly and it 

completely stops decreasing when using 24 levels or more. On the other hand, the test error 

reaches its minimum at the 19th level, but it immediately gets back to a higher value and then it 

remains constant except for a small fluctuation around the 24th level. When the training error 

goes down but the test error increases, the classifier is overfitting the dataset and then it is 

necessary to stop. The maximum depth that will be used for the training of the forest is, then 18. 

Figure 4-8. Training and test error when using a different value for the number of trees 

Figure 4-9. Training and test error when using a different value for the depth of the trees 
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Finally, the number of samples to be left at a node is chosen to be 3 because, while the training 

curve keeps decreasing with an almost linear trend, the test error curve fluctuates even if the 

general trend is always the same except for the last part where it starts increasing. Moreover, the 

training error over the last values used for the samples stops decreasing with a constant rate. 

Now it is possible to train the forests using the set of descriptors obtained during the positive and 

negative sample extraction with the parameters that have been validated, i.e. 30 trees, a 

maximum depth of 18 levels and a minimum number of samples at a leaf node equal to 3. At this 

point, the only parameters that still needs to be validated are the matching type and the sampling 

Figure 4-10. Training and test error when using a different value for the number of samples to be 

left at a node 

Figure 4-11. Comparison between precision-recall curves obtained using the straight matching 

type and different sampling rates 
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rate of the training images. To do that, the precision-recall curve and its area under the curve have 

been used: the higher the AUC the better the set of used parameters. Figure 4-11 shows the 

comparison between three curves obtained using the same matching type, the same descriptor 

type, but different sampling rates of 3, 5 and 8 respectively. It is easy to see that the lowest 

sampling rate gives the best result, with an AUC of 0.19. Note that the highest sampling rate is not 

the worst; indeed, using a sampling rate of 5 with a non-maxima suppression radius of 8 gives an 

AUC equal to 0.15, while a higher sampling rate of 8 without any NMS gives an AUC equal to 0.17. 

Figure 4-12 shows a comparison between different sampling rates with the cross-random 

matching type; note that, in this case, the lowest sampling rate does not give the best result 

Figure 4-12. Comparison between precision-recall curves obtained using the cross-random 

matching type and different sampling rates 

Figure 4-13. Comparison between precision-recall curves obtained using different matching types 
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because its AUC is the lowest among the three. The best result is obtained with a sampling rate of 

5 and a non-maxima suppression of 8. In the case of cross matching type, the best result is again 

achieved using a sampling rate equal to 5 and a NMS equal to 8. Finally, the three matching types 

can be compared using the best combination of parameters for each of them and, as shown in 

Figure 4-13, the best result is achieved using the cross-random matching type with a sampling 

rate equal to 5 and a NMS equal to 8. Even if both the descriptor types will be used in the final 

step, it is interesting to see which one performs better on a validation dataset. Figure 4-14 shows 

a comparison between two precision-recall curves obtained using BRIEF and FREAK descriptors, 

while Figure 4.15 shows an example of prediction on an image from the validation dataset. The 

difference between the two methods strongly depends on the prediction threshold that is chosen, 

because if the same value is used a descriptor type can find either too few keypoints or too many. 

Another aspect to consider is the time: while BRIEF can be applied quickly over every pixel of the 

image, FREAK requires more time and can be very slow. A good alternative would be to sample 

the test images in order to have less points to be analyzed and, then, speed up the process. In this 

case, it is necessary to lower the prediction threshold because otherwise too few points are 

detected. The best result to achieve is with the BRIEF descriptor, because its AUC is equal to 0.13 

versus an AUC of 0.8 and 0.75 for the other two curves. Note that a variation of only 0.05 points 

of the area under the curve of the FREAK descriptor applied to a sampled test image makes the 

detection faster of almost 25 seconds. 

Figure 4-14. Comparison between precision-recall curves obtained using different descriptor 

types 



 

44 

 

4.2.2 Convolutional neural network 

The training of the CNN, already explained in Chapter 3, is executed using the patches extracted 

from the positive and negative locations. One of the inputs to the preprocessing code written in 

Python consists of a pair of text files containing a list of coordinates for both the positive and the 

negative samples. The parameters to be tuned in the CNN are the learning rate of the network, 

the number of iterations and the batch size. These parameters can be tuned by looking at the cost 

function that the network is trying to minimize and by stopping when the lowest cost is reached. 

The validation of the CNN requires, of course, some positive and negative locations; therefore, 

one among the set of already extracted sample points must be randomly chosen. Figure 4-16 

C
O

ST
 

ITERATIONS 

Figure 4-16. Comparison between a batch size of 50 (orange) and a batch size of 100 (blue) 

Figure 4-15. Random forest prediction over a validation image 
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shows a comparison between the cost function obtained using a batch size of 50 and 100 and a 

number of iterations equal to 1000. It is possible to note that using a lower number of iterations 

is not convenient since the cost keeps decreasing with a consistent rate until 1000 iterations. Here, 

in the same way as in the random forest, the training step is entirely an offline process and then 

the time required is not so important. However, the neural networks require a lot of time to learn 

all the weights and biases and it is convenient, from a practical point of view, to get the best result 

in the lowest timing. Table 4-2 shows a comparison of the costs obtained by playing with the 

parameters along with the timings required. A very fast training, like the one with 300 iterations 

and a batch size of 50, does not allow the network to learn the best weights and the biases for a 

very low prediction error, while with many iterations the cost function can reach lower values 

and better predictions. 

Table 4-2. Comparison of all the combinations of parameters 

NUMBER OF 

ITERATIONS 
BATCH SIZE 

LEARNING 

RATE 
FINAL COST TIME 

300 

50 1e-4 0.65 4m 26s 

100 

1e-4 0.52 9m 14s 

1e-2 0.87 9m 31s 

500 

50 1e-4 0.49 7m 33s 

100 

1e-4 0.24 15m 27s 

1e-2 0.26 15m 45s 

700 

50 1e-4 0.22 10m 17s 

100 

1e-4 0.25 21m 40s 

1e-2 0.05 21m 36s 

1000 

50 1e-4 0.28 14m 56s 

100 

1e-4 0.17 30m 53s 

1e-2 0.08 30m 44s 
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4.3 Test 

Once all the parameters have been validated, it is possible to test the two trained classifiers over 

a new input dataset. Some of the previously mentioned parameters have not been tested yet, 

because they depend on the test dataset itself like, for instance, the prediction threshold to be 

used in the random forest. The images used for the testing step come from the AMOS dataset like 

the ones used for the training of the classifiers, but from another fixed webcam over different 

scenes.  

At the end of the whole training and validation process, the three methods used during the test 

are: 

• a random forest trained with the BRIEF descriptors computed at the positive and negative 

samples obtained using a sampling rate of 5 pixels and a NMS radius of 8 pixels; 

• a random forest trained with the FREAK descriptors computed at the positive and 

negative samples obtained using a sampling rate of 5 pixels and a NMS radius of 8 pixels; 

• a CNN trained using the patches extracted at the positive and negative samples obtained 

using a sampling rate of 5 pixels and a NMS radius of 8 pixels. 

In order to speed up the process, since the difference of area under the curve during the validation 

was not so high, when extracting the FREAK descriptors over unseen input images, these images 

Figure 4-17. Random forest prediction using FREAK descriptors on an image from the Frankfurt 

webcam 
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are regularly sampled with a sampling rate equal to 2. Figure 4-17 and Figure 4-18 show some 

qualitative examples obtained using the random forest classifier with the FREAK descriptor. 

When analyzing an image in a qualitative manner, it is important to define as good the keypoints 

in specific positions, because the saliency of the points and, consequently, their ease to be found 

in other images, strongly depend on the pixel neighborhood intensities. However, in this case, 

since the points that we are looking for are not the ones with the highest repeatability, 

understanding the quality of the detection without any data is quite hard. For instance, Figure 4-

19 shows a comparison between the predictions of a random forest trained using BRIEF 

descriptors and a random forest trained using FREAK descriptors. At a first glance, FREAK seems 

to be the best one, because it covers the most important areas and it follows the edges of the 

shapes inside the image. On the other hand, BRIEF avoids some aspects of the image and, 

moreover, seems to find points with no meaning, like the three points on the top left corner. 

However, the matchability score obtained with the latter is higher with respect to the former, and 

this can be explained by looking at the characteristics of the description methods. Indeed, both 

BRIEF and FREAK extract some information from the intensities of the pixels in the neighborhood 

Figure 4-18. Random forest prediction using FREAK descriptors on an image from the Courbevoie 

webcam 
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of the salient point and this can lead to identify a point as positive even if it is not exactly on an 

edge, but, maybe, near to an edge or to a region that presents a high saliency. It is important to 

remember that the points we would like to find are the ones that can be found again in a similar 

image and then, if a point does not belong to an important object or region of the image it does 

not mean that it could not be an interesting location. As already mentioned, the prediction 

threshold for a specific dataset has not been fixed yet because, as a consequence, it could be 

Figure 4-19. Comparison between a random forest prediction using FREAK descriptors (up) and 

BRIEF descriptors (down) 
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possible to end with no detected points or too many detected points and this would mean a wrong 

detection in any case. A good solution would be to use the dynamic threshold used during the 

extraction of the positive and negative samples, but this could lead to very low prediction 

thresholds, which means keypoints with a bad quality.  

Table 4-3. Thresholds and average number of keypoints for every webcam 

DATASET COURBEVOIE FRANKFURT MEXICO PANORAMA STLOUIS 

DESCRIPTOR 

METHOD 
BRIEF FREAK BRIEF FREAK BRIEF FREAK BRIEF FREAK BRIEF FREAK 

THRESHOLD 0.68 0.75 0.7 0.8 0.65 0.7 0.7 0.8 0.7 0.85 

AVG #KEYP 275 366 600 478 322 417 414 354 330 240 

The average number of keypoints is important because when analyzing the methods through the 

precision-recall, the total number of points has a strong influence on the final result. It is 

important to note that in this thesis, the used labels for the random forest are -1 for the negative 

samples and +1 for the positive samples, thus the threshold can span from -1 to +1. Figure 4-20 

and Figure 4-21 show the comparison between the precision-recall curve obtained using different 

predictive threshold over the Courbevoie and StLouis dataset respectively. In the case of 

Courbevoie, when using the FREAK descriptor, a high value like 0.8 for the predictive threshold 

penalizes the area under the curve, while a value of 0.75 gives the best result. In the same way, 

Figure 4-20. Comparison between P-R curves obtained using FREAK descriptor and different 

predictive thresholds over the Courbevoie dataset 
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the comparison between the predictive thresholds applied to the StLouis dataset shows that a too 

high value for the threshold penalizes the detection. 

Another important aspect is the speed of the detector. When a set of descriptors is fed to the 

random forest they are analyzed one by one and they are assigned a prediction value that defines 

their score. If the set of descriptors is big, a lot of time will be required for the forest to process 

the input and the detection will be slow. Other parameters that influence the speed of the 

classifier are, for instance, the chosen number of trees and the depth of each tree. In Table 4-4 are 

shown the timings of the random forest applied to the test dataset. 

Table 4-4. Average speed of the random forest applied to one image of the dataset (note that when 

using FREAK a sampling rate of 2 is applied to the image) 

 COURBEVOIE FRANKFURT MEXICO PANORAMA STLOUIS 

BRIEF 2.7s 8.4s 2.7s 4.3s 2.7s 

FREAK 2.6s 7s 2.2s 5.8s 3.9s 

The convolutional neural network behaves in a similar way because a prediction threshold must 

be chosen and the definition of the positive points depend on that value. After the upsampling of 

the heat-map that the CNN produces, though, a NMS is necessary in order to get rid of all the 

points that have been added to the image during the upsampling that are not maxima. Figure 4.20 

shows an example of CNN trained over the Chamonix dataset and applied to an image from the 

Figure 4-21. Comparison between P-R curves obtained using BRIEF descriptor and different 

predictive thresholds over the StLouis dataset 
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StLouis dataset. At a first glance, the main difference that can be noted with respect to the results 

from the random forests is that the tree on the left does not contain many positive points, while 

as shown in Figure 4-19, the random forest identifies a lot of keypoints among the pixels of that 

tree. This behavior is, probably, a consequence of the way the random forest is trained; indeed, 

as already mentioned in Chapter 3 when talking about the clouds, training a classifier using a set 

of descriptors can lead to a wrong classification due to a similar distribution of intensities in those 

Figure 4-23. CNN classifier applied to an image from the StLouis webcam 

Figure 4-22. CNN classifier applied to an image from the StLouis webcam 
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positions where the test of the descriptor is executed. When using patches, instead, this is less 

likely to happen because the whole intensities distribution of a patch is hardly similar to other 

intensities distributions inside the image. However, the detection of keypoints in the last case can 

vary depending on the intensities and this makes the detection algorithm not robust with respect 

to illumination changes. Indeed, when applying the CNN to the StLouis webcam images, if the tree 

on the left is very dark few pixels are detected as keypoint, whereas if the tree is clearer the 

detection is different. Figure 4-23 shows another example of CNN applied to an image of the 

StLouis dataset with a strong illumination, where the tree clearly presents many salient points. 

As a consequence, the results obtained using the precision-recall curve are not so good for the 

CNN because many points are not consistently detected over the sequence of images. A possible 

solution to this problem would be a higher number of training samples to be fed to the CNN during 

the training step. The more the training data the higher the variety of patches to be analyzed by 

the neural network that will learn, then, more robust weights and biases.  

Figure 4-24 shows a comparison between 4 precision-call curves computed using the random 

forest with both BRIEF and FREAK descriptors and the CNN again with both BRIEF and FREAK 

descriptors. It is necessary to specify a description method also for the CNN because when 

computing the curves a matching step is necessary to compare all the images with the first one. 

The precision-recall curve with the highest area under the curve is the CNN with the BRIEF 

descriptor, but also the random forest again with BRIEF has a great advantage over the other two 

curves. In general, the CNN performs better than the random forest, but it is possible to have some 

misleading results due to an error that occurs when upsampling the image with the bilinear 

Figure 4-24. Comparisons between random forest and CNN with both BRIEF and FREAK 

descriptors over the Mexico sequence 
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interpolation. Indeed, some new points that have a prediction value inferred by looking at the 

neighborhood, could have an equal score and this can lead to a detection that is too dense in 

specific areas. Since when 

building the precision-recall 

curves a matching error is 

considered, if many points 

are too near is easy to get a 

higher result. A solution to 

this problem could be a non-

maxima suppression, but 

since all the points have the 

same prediction, the only 

result would be to keep them 

all or to discard them. In this 

thesis those points are kept. 

This phenomenon can happen with some test images, but it is not always the case; indeed, Figure 

4-25 and Figure 4-26 show that when applying the network to the Mexico sequence this problem 

is not present, while when dealing with the Courbevoie dataset it is possible to have it. 

Figure 4-25. CNN keypoint detection over an image from the 

Mexico sequence 

Figure 4-26.CNN keypoint detection over an image from the Courbevoie sequence 
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4.4 Comparison with TILDE 

“Temporally Invariant Learned DEtector” uses a different approach for both the extraction of the 

positive locations and for the classification. However, the general idea is the same, i.e. building a 

keypoint detector using a trained classification algorithm. One of the most important differences 

Figure 4-27. Keypoint detection using TILDE on an image from the Mexico sequence 

Figure 4-28. Keypoint detection using the random forest on an image from the 

Mexico sequence 
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between TILDE and the method developed in this thesis is that TILDE detect always almost 500 

keypoints, while, with the random forest used here, the number of detected keypoints depends 

on the threshold that is chosen. The few number of keypoints detected using the CNN is probably 

due to the fact that too few training images have been used in this work, and this leads to values 

of the predictions that are too low.  

Figure 4-30 shows a comparison between the precision-recall curves obtained using the random 

forest, the neural network and the method proposed in TILDE, all applied to the Courbevoie 

Figure 4-29. Keypoint detection using the CNN on an image from the Mexico sequence 

Figure 4-30. Comparisons between random forest, CNN and TILDE using BRIEF descriptor over the 

Courbevoie sequence 
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sequence. It is easy to see that TILDE (only the best result that TILDE can obtain between the 

“normal” approach and the fast one is considered here) outperforms the other two methods with 

a final value of 0.37 for the recall and an AUC equal to 0.17. Figure 4-31 and Figure 4-32 show the 

results from two others webcam sequences, namely Mexico and StLouis. In the case of Mexico, 

the result is quite similar to the previous one, with a good performance from TILDE and worse 

performances from the other two methods. When analyzing the StLouis sequence, instead, the 

Random forest slightly outperforms TILDE with an AUC of 0.013 against 0.010. However, the 

scores obtained over such dataset are quite small and, then, the difference is not so remarkable. 

Figure 4-31. Comparisons between random forest, CNN and TILDE using BRIEF descriptor over the 

Mexico sequence 

Figure 4-32. Comparisons between random forest, CNN and TILDE using BRIEF descriptor over the 

StLouis sequence 
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CHAPTER 5                                 

CONCLUSIONS AND FUTURE WORK 

This work presented a machine learning approach for the first step of the detection-description-

matching pipeline, a common paradigm for many computer vision applications. The state of the 

art of keypoint detection is composed by many algorithms that have been created and optimized 

in order to find specific shapes and to detect keypoints that present a very high repeatability. 

However, this does not guarantee that the salient points will be the optimal ones during the 

successive matching step. In this thesis, an innovative approach has been developed for the 

keypoint detection, with the purpose of maximizing the matchability of the detected keypoint. 

The idea behind this work comes from “Learning a Descriptor-specific 3D Keypoint Detector” [9], 

a paper in which the authors used a random forest classifier to detect points in 3D objects. 

However, this thesis focused on the 2D case instead of the 3D and requires, then, an a priori 

definition of the transformations the detector should be invariant to. In the 3D case the 

transformations were 3D viewpoint changes, while here they consist of illumination changes due 

to drastic weather variations.  

The classifiers used in this work were a random forest and a convolutional neural network, both 

trained after the definition of the positive and negative locations from which the training samples 

are extracted. These positive and negative locations are the coordinates of the points that give 

correct correspondences during a first matching step and the descriptors extracted at each one 

of these points compose the set of training data for the random forest. The neural network, 

instead, does not require any feature to be defined a priori because the salient information is 

extracted autonomously from the patches that are used for the training of the network. After the 

training of the classifiers, a validation of the parameters, such as the sampling rate of the training 

images, the number of trees to be used in the forest, the learning rate of the neural network and 

some others, has been done. During the final testing step, some possible configurations of 

parameters, like the description method or the predictive threshold of the random forest, have 

been tested on unseen input images undergoing the same type of transformation, i.e. illumination 

changes, and compared to each other. In the last part of Chapter 4, the results obtained using the 

methods developed in this thesis have been compared to the performances of the detector 

developed in [6], in which a similar approach to the keypoint detection has been studied.  

The gap of performances between TILDE and the two methods proposed in this work could be 

filled with some expedients. For instance, it is possible to consider other transformations in 

addition to the already considered illumination changes like, for example, rotation, translation 
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and scale. The positive and negative samples that are robust to such transformations can be used 

for the extraction of the descriptors for the training of the random forest and for the extraction of 

the patches to be used with the neural network. Regarding the CNN, a larger training dataset 

would make the network more robust and more capable of finding keypoints. The only problem 

with larger dataset is that it would be necessary to add samples to the already existing one that 

are perfectly aligned or, otherwise, to align every image to the previous ones before the extraction 

of the samples. It is also possible to train a different and more complex convolutional neural 

network in order to better infer the weights and the biases. Finally, a possible solution to the 

cluster of points with equal prediction values would be the definition of a function that can extract 

a single point or some points from the clusters, for example by looking at the geometry of such 

clusters. All these possible improvements are left to future investigations.  
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