

Anno accademico 2016/2017

Sessione III

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

SCUOLA DI INGEGNERIA E ARCHITETTURA
DIPARTIMENTO DI INGEGNERIA DELL’ENERGIA ELETTRICA E DELL’INFORMAZIONE

“Guglielmo Marconi”
DEI

CORSO DI LAUREA IN INGEGNERIA DELL’AUTOMAZIONE

TESI DI LAUREA

in

Computer Vision e Machine Learning

LEARNING TO DETECT GOOD IMAGE

FEATURES

CANDIDATO RELATORE

Andrea Avigni Chiar.mo Prof. Luigi Di Stefano

CORRELATORE

Dott. Federico Tombari

 III

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisors Prof. Luigi Di Stefano and Dr. Federico

Tombari for the opportunity they offered me and for their guidance and support in the

development of the project and the preparation of the thesis.

In addition, I would like to thank the students of the CAMPAR of the Technical University of

Munich, David, Keisuke, Christian and Iro, who helped me with the tools necessary for the thesis,

and Pietro for his help in the writing of the thesis.

 IV

TABLE OF CONTENTS

PAGE

ACKNOWLEDGEMENTS ... III

LIST OF TABLES .. VI

LIST OF FIGURES ... VII

LIST OF SYMBOLS AND ABBREVATIONS ..XI

RIASSUNTO .. XII

ABSTRACT .. XIII

CHAPTER 1 INTRODUCTION ... 1

CHAPTER 2 LITERATURE REVIEW ... 4

2.1 Learning a Descriptor-specific 3D Keypoint Detector ... 4

2.1.1 Definition of the training set.. 4

2.1.2 Design of the classifier ... 5

2.2 Temporally Invariant Learned Detector .. 6

2.2.1 Definition of the training set.. 6

2.2.2 Design of the regressor .. 6

2.3 BRIEF and FREAK Descriptors ... 7

2.4 Neural networks .. 8

2.4.1 Artificial neural networks ... 9

2.4.2 Deep neural networks ... 10

CHAPTER 3 METHODS .. 13

3.1 Samples extraction and training of the classifier .. 13

3.1.1 Sampling and description .. 14

3.1.2 Matching ... 16

3.1.3 Positive and negative sample extraction ... 19

3.1.4 Features extraction .. 21

3.1.5 Training of the random forest .. 22

 V

3.1.6 Training of the neural network ... 24

3.2 Validation ... 30

3.2.1 Training and test error ... 31

3.2.2 Precision-Recall curve ... 32

CHAPTER 4 RESULTS ... 34

4.1 Positive and negative sample extraction .. 34

4.2 Training .. 38

4.2.1 Random forest .. 38

4.2.2 Convolutional neural network ... 44

4.3 Test 46

4.4 Comparison with TILDE .. 54

CHAPTER 5 CONCLUSIONS AND FUTURE WORK .. 57

REFERENCES ... 59

 VI

LIST OF TABLES

Table 3-1 List of the parameters ... 14

Table 3-2. Score table initialization ... 18

Table 4-1. Speed comparison of all the combinations of parameters .. 34

Table 4-2. Comparison of all the combinations of parameters .. 45

Table 4-3. Thresholds and average number of keypoints for every webcam 49

Table 4-4. Average speed of the random forest applied to one image of the dataset (note that when

using FREAK a sampling rate of 2 is applied to the image).. 50

 VII

LIST OF FIGURES

Figure 1-1. SIFT detector ... 1

Figure 1-2. FAST detector ... 1

Figure 1-3. Description matching .. 2

Figure 2-1. Overview of the definition of positive samples .. 4

Figure 2-2. Feature extraction... 5

Figure 2-3. TILDE positives extraction .. 6

Figure 2-4. BRIEF pairs .. 7

Figure 2-5. FREAK test points ... 8

Figure 2-6. Some digits from MNIST... 8

Figure 2-7. Simple neural network architecture ... 9

Figure 2-8. ReLU .. 10

Figure 2-9. Convolution .. 11

Figure 2-10. Max pooling .. 12

Figure 2-11. LeNet architecture .. 12

Figure 3-1. Images from AMOS (a) and Panorama (b) datasets... 13

Figure 3-2. Image sampling and computation of the descriptors ... 14

Figure 3-3. Keypoints removal: (a) before the computation of the descriptors, (b) after 15

Figure 3-4. Matching types: straight matching (a) and cross matching (b) .. 16

Figure 3-5. Some images from the Chamonix training dataset .. 17

Figure 3-6. Matching error .. 18

Figure 3-7. Fixed threshold (a) and dynamic threshold (b) .. 19

Figure 3-8. Positive (black) and negative (white) locations: (a) Sampling rate = 5. (b) Sampling

rate = 3, with non-maxima suppression .. 20

Figure 3-9. Example of positive (black) and negative (white) locations with sampling rate = 10

and negative radius = 10 .. 21

Figure 3-10. Some of the 32x32 patches used to train the CNN .. 22

Figure 3-11. Random Forest structure ... 22

file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669375
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669376
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669377
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669378
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669379
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669380
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669381
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669382
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669383
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669385
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669386
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669387
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669388
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669390
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669391
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669392
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669393
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669394
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669395
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669396
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669396
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669397
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669397
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669398
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669399

 VIII

Figure 3-12. Example of problems with clouds: Frankfurt webcam using a random forest trained

on Chamonix dataset .. 23

Figure 3-13. Example of one-hot encoding ... 24

Figure 3-14. Architecture of the CNN .. 25

Figure 3-15. TensorBoard homepage ... 27

Figure 3-16. Cost function with (a) smoothing = 1 and (b) smoothing = 0 ... 27

Figure 3-17. Example of convolutions applied to an input patch .. 28

Figure 3-18. Example of upsampling ... 30

Figure 3-19. Example of training and test error with different numbers of trees 31

Figure 3-20. Example of 1 - Precision / Recall curve .. 33

Figure 4-1. Comparison between sample extraction using BRIEF and a straight matching with (a)

sampling rate 3, (b) sampling rate 5, (c) sampling rate 8. The black dots are positive samples while

the white dots are the negatives. .. 35

Figure 4-2. Positive (in black) and negative (in white) points obtained using (a) BRIEF description

and (b) FREAK description .. 36

Figure 4-3. Positive (in black) and negative (in white) samples using BRIEF (up) and FREAK

(down) .. 36

Figure 4-5. Positive (in black) and negative (in white) samples using the cross matching 37

Figure 4-4. Positive (in black) and negative (in white) samples using the straight matching 37

Figure 4-6. Positive (in black) and negative (in white) samples using the cross-random matching

 ... 38

Figure 4-7. Example of an xml file containing the descriptors used for the training of the forest

 ... 39

Figure 4-8. Training and test error when using a different value for the number of trees 40

Figure 4-9. Training and test error when using a different value for the depth of the trees 40

Figure 4-10. Training and test error when using a different value for the number of samples to be

left at a node .. 41

Figure 4-11. Comparison between precision-recall curves obtained using the straight matching

type and different sampling rates ... 41

file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669400
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669400
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669401
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669402
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669403
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669404
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669405
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669406
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669407
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669408
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669409
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669409
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669409
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669410
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669410
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669411
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669411
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669412
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669413
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669414
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669414
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669415
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669415
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669416
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669417
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669418
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669418
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669419
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669419

 IX

Figure 4-12. Comparison between precision-recall curves obtained using the cross-random

matching type and different sampling rates .. 42

Figure 4-13. Comparison between precision-recall curves obtained using different matching

types .. 42

Figure 4-14. Comparison between precision-recall curves obtained using different descriptor

types .. 43

Figure 4-15. Random forest prediction over a validation image ... 44

Figure 4-16. Comparison between a batch size of 50 (orange) and a batch size of 100 (blue) 44

Figure 4-17. Random forest prediction using FREAK descriptors on an image from the Frankfurt

webcam .. 46

Figure 4-18. Random forest prediction using FREAK descriptors on an image from the Courbevoie

webcam .. 47

Figure 4-19. Comparison between a random forest prediction using FREAK descriptors (up) and

BRIEF descriptors (down) ... 48

Figure 4-20. Comparison between P-R curves obtained using FREAK descriptor and different

predictive thresholds over the Courbevoie dataset .. 49

Figure 4-21. Comparison between P-R curves obtained using BRIEF descriptor and different

predictive thresholds over the StLouis dataset .. 50

Figure 4-22. CNN classifier applied to an image from the StLouis webcam ... 51

Figure 4-23. CNN classifier applied to an image from the StLouis webcam ... 51

Figure 4-24. Comparisons between random forest and CNN with both BRIEF and FREAK

descriptors over the Mexico sequence ... 52

Figure 4-25. CNN keypoint detection over an image from the Mexico sequence 53

Figure 4-26.CNN keypoint detection over an image from the Courbevoie sequence 53

Figure 4-27. Keypoint detection using TILDE on an image from the Mexico sequence 54

Figure 4-28. Keypoint detection using the random forest on an image from the Mexico sequence

 ... 54

Figure 4-29. Keypoint detection using the CNN on an image from the Mexico sequence 55

Figure 4-30. Comparisons between random forest, CNN and TILDE using BRIEF descriptor over

the Courbevoie sequence ... 55

file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669420
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669420
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669421
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669421
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669422
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669422
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669423
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669424
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669425
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669425
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669426
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669426
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669427
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669427
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669428
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669428
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669429
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669429
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669430
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669431
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669432
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669432
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669433
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669434
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669435
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669436
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669436
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669437
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669438
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669438

 X

Figure 4-31. Comparisons between random forest, CNN and TILDE using BRIEF descriptor over

the Mexico sequence .. 56

Figure 4-32. Comparisons between random forest, CNN and TILDE using BRIEF descriptor over

the StLouis sequence .. 56

file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669439
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669439
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669440
file:///C:/Users/Andre/GoogleDriveNuovo/LAUREA%20MAGISTRALE%20IN%20AUTOMAZIONE/Tesi%20e%20Laurea/Tesi%20-%20doc%20e%20slides/Andrea_Avigni_Tesi_Learning_to_detect_good_image_features%20-%20corrected.docx%23_Toc476669440

 XI

LIST OF SYMBOLS AND ABBREVATIONS

SIFT Scale Invariant Feature Transform

FREAK Fast REtinA Keypoint

BRIEF Binary Robust Independent Elementary Features

TILDE Temporally Invariant Learned DEtector

AMOS Archive of Many Outdoor Scenes

ANN Artificial Neural Network

CNN Convolutional Neural Network

 XII

RIASSUNTO

Gli algoritmi di feature detection allo stato dell’arte sono stati pensati per estrarre determinate

strutture da immagini e per raggiungere un alto livello di ripetibilità dei punti salienti, ossia per

rilevare gli stessi punti in immagini sottoposte a determinate trasformazioni. Tuttavia, questo

criterio non garantisce che i punti trovati saranno ottimali durante la fase successiva: il matching.

L’approccio sviluppato all’interno di questo lavoro è volto all’estrazione di punti salienti che

massimizzino le prestazioni del matching in accordo con il tipo di descrittore scelto. Per fare ciò,

un classificatore è stato addestrato utilizzando un insieme di descrittori “positivi” e “negativi”

estratti da immagini sottoposte a trasformazioni definite in precedenza. Prima di tutto, le

immagini utilizzate per l’addestramento sono state campionate e confrontate analizzando le

distanze tra i descrittori ottenuti attraverso uno specifico procedimento. Successivamente, si è

creato l’insieme dei campioni positivi prendendo i descrittori relativi a quei punti che hanno dato

corrispondenze corrette durante la fase di matching. Contrariamente, punti campionati

casualmente e sufficientemente distanti dagli esempi positivi sono stati classificati come negativi.

Infine, i descrittori calcolati in corrispondenza delle posizioni positive e negative sono stati

utilizzati per addestrare il classificatore, il quale, ricevendo in input nuove immagini, può definire

autonomamente la salienza dei punti sulla base dei loro descrittori e ottenere, così, un insieme di

posizioni chiave. Questo procedimento richiede, però, l’estrazione dei descrittori in ogni punto

dell’immagine e ciò comporta un alto carico computazionale. Questo, insieme allo stretto legame

che vincola il metodo di descrizione utilizzato in fase di training a quello utilizzato durante il

testing, limita la performance del detector. Per evitare queste problematiche, l’ultima parte del

lavoro di tesi si è concentrato sulla creazione e addestramento di una rete neurale convoluzionale,

utilizzando come esempi positivi piccole porzioni di immagine centrate nei punti in grado di

fornire corrispondenze corrette tra diverse immagini. Si sono infine analizzate le performance

dell’algoritmo sviluppato confrontandolo con lo stato dell’arte su un benchmark pubblico di

riferimento.

 XIII

ABSTRACT

State-of-the-art keypoint detection algorithms have been designed to extract specific structures

from images and to achieve a high keypoint repeatability, which means that they should find the

same points in images undergoing specific transformations. However, this criterion does not

guarantee that the selected keypoints will be the optimal ones during the successive matching

step. The approach that has been developed in this thesis work is aimed at extracting keypoints

that maximize the matching performance according to a pre-selected image descriptor. In order

to do that, a classifier has been trained on a set of “good” and “bad” descriptors extracted from

training images that are affected by a set of pre-defined nuisances. First of all, the images used for

the training have been sampled and matched by comparing the descriptor vectors obtained using

a specific descriptor method. Then, the set of “good” keypoints is filled with those vectors that are

related to the points that gave correct matches. On the contrary, randomly chosen points that are

far away from the positives are labeled as “bad” keypoints. Finally, the descriptors computed at

the “good” and “bad” locations form the set of features used to train the classifier that will judge

each pixel of an unseen input image as a good or bad candidate for driving the extraction of a set

of keypoints. This approach requires, though, the descriptors to be computed at every pixel of the

image and this leads to a high computational effort. Moreover, if a certain descriptor extractor is

used during the training step, it must be used also during the testing. In order to overcome these

problems, the last part of this thesis has been focused on the creation and training of a

convolutional neural network (CNN) that uses as positive samples the patches centered at those

locations that give correct correspondences during the matching step. Eventually, the results and

the performances of the developed algorithm have compared to the state-of-the-art using a public

benchmark.

1

CHAPTER 1

INTRODUCTION

The paradigm of local features has been widely studied from the early 2000s and it is still matter

of discussion among researchers all over the world. The most “interesting” points of an image,

also known as keypoints, are the pivots of such paradigm that is based on three main steps:

detection, description and matching. Finding corresponding points between images is a

fundamental task for many applications, like object detection, SLAM (Simultaneous Localization

And Mapping), augmented reality and many others.

The first step is the local features detection which searches across the images for points or shapes

that are likely to be found in other images. In order to accomplish this requirement, it is necessary

to define a priori what is the most distinctive characteristic that a group of pixels should deploy.

For instance, the so called “Canny Edge Detector” [1] is one of the most popular algorithm when it

comes to finding points between two image regions,

whereas the method proposed by Chris Harris and Mike

Stephens [2] relies on a function that gives negative

values in case of edges, positive values for corners and

zero for flat regions. Finally, algorithms exist that aim at

the detection of regions of images that differ in

properties. For instance, SIFT [3] (Scale Invariance

Feature Detection) searches for the extrema of the

Difference of Gaussian, i.e. the difference between

several images obtained by applying a Gaussian filter

with an increasing smoothing effect to the same initial image. The maximum is sought in space (8

pixels) and in scale (18 pixels).

Another example of feature detector

is FAST [4] (Features from

Accelerated Segment Test), where a

point p is identified as keypoint if

enough points on a circle centered at

p all have a higher or a lower intensity

with respect to the intensity of the

central point.

Figure 1-1. SIFT detector

Figure 1-2. FAST detector

2

State-of-the-art keypoint detectors, such as the abovementioned ones, have been designed in

order to achieve a high keypoint repeatability, which means that salient points have to be found

in different views of the same scene despite possible transformations applied to the image, and

in order to find specific shapes. For instance, Canny edge detector can find edges only, while Harris

detector can identify both edges and corners. SIFT and FAST, instead, are specialized in both

corners and blobs (regions).

After having detected the salient points over the images, they must be described so that it is easy

to find them afterwards. This second step is aimed at creating a vector of numbers, by looking at

the neighborhood of the point, in such a way that the result will have a high distinctiveness, i.e. it

will capture the salient information around the keypoint, and a high compactness, namely low

memory occupancy. Finally, as shown in Figure 1-3, corresponding points must be found in order

to localize the salient point of the first image into the second one.

Each element of the paradigm of local feature must work well itself; for instance, a measure of

goodness for detectors is the repeatability, i.e. how many times the same point is detected over a

sequence of different images of the same scene. However, the most important aspect is the whole

detector-descriptor-matching pipeline output and this is only partially related to the repeatability

of the detector. As previously mentioned, state-of-the-art keypoint detectors try to maximize the

keypoint repeatability, but this does not guarantee that the points that have been found will be

the optimal ones during the subsequent steps (description and matching). The idea behind this

thesis is to create a keypoint detector that searches over input images for those points that will

yield highly distinctive description vectors. In order to do that, a classifier has been trained so

that it will judge each pixel of an unseen input image as a good or bad candidate for driving the

extraction of a set of keypoints. This thesis work is a follow-up to a recently proposed paper titled

“Learning a Descriptor-specific 3D Keypoint Detector” [9] that uses the same idea applied to the

Figure 1-3. Description matching

3

3D case. As an alternative, in order to decouple the detector method from the choice of a specific

keypoint descriptor, a convolutional neural network has been trained so that it is no longer

necessary to define a priori the feature type.

The research approach of this work has been mainly developed using C++ and OpenCV along with

already existing images datasets, namely some of the ones used as training set in “Temporally

Invariant Learned Detector” (TILDE) [6], that is composed by images from the “Archive of Many

Outdoor Scenes” (AMOS) [13] and panoramic images, in addition to the “Oxford” [14] and “EF” [15]

datasets. For the last part, regarding the neural network modeling, Python and TensorFlow have

been used.

The work is organized as follows: Chapter II describes the literature, in particular the paper

TILDE, in which a classifier is trained using highly repeatable keypoints, and the paper “Learning

a Descriptor-specific 3D Keypoint Detector”, since these are the papers that are mostly related to

this work; at the end of this chapter a brief explanation is also given about the two keypoint

description methods used and some hints about how neural networks operate. Chapter III

explains in detail the methods used in this work for the extraction of the positive and the negative

samples, the training step and the testing procedure; Chapter IV shows the experimental setup

and the qualitative and quantitative results obtained from the comparison between this method

and the one proposed in TILDE; eventually, Chapter V gives some conclusions and an overview of

the future work.

4

CHAPTER 2

LITERATURE REVIEW

The keypoint detectors that have been described in the introduction are all different and each one

has its own specific algorithm; however, it is possible to split them in two main groups: the

handcrafted keypoint detectors and the learned keypoint detectors. The former tries to overcome

all the possible transformations an image can be subject to by looking for specific image

structures, whereas the latter uses machine learning techniques to make the algorithm

understand which are the most important features to be sought, starting from an initial input

training set. For instance, SIFT [3] uses the Difference of Gaussian function as saliency function

and it searches for the maxima of such function, while TILDE [6] and “Learning a Descriptor-

specific 3D Keypoint Detector” [9] rely on previously trained classifiers for the keypoint detection.

We will focus on these two papers.

2.1 Learning a Descriptor-specific 3D Keypoint Detector

The standard approach in 2D and 3D keypoint detection involves local saliency functions that give

relevant locations at their maxima. However, this is not related to the quality of the descriptor

that will be computed at those coordinates. In this work, it is proposed to train a classifier with

points from a point cloud image that gives correct matches over a sequence of partially

overlapping 2.5D views of the same 3D object.

2.1.1 Definition of the training set

The classifier that the authors want to train needs two separate sets: the positive sample set and

the negative one. The extraction process of the positive sample points from the 3D image is shown

in Figure 2-1 and it is composed of five main steps. First of all, let {Vi} be the N partially overlapping

views of the 3D object and let νi be the set of views partially overlapping with a view Vi. Then, in

Figure 2-1. Overview of the definition of positive samples

5

the third step, for every view Vi the SHOT [10] descriptor is computed at each point and the

nearest neighbor SHOT descriptor in the overlapping view Vj is sought. Now the list of matched

points is analyzed and if the match is correct the point is added to the list of positive samples,

otherwise it is removed from the list. In the fourth step the list of positives is refined by checking

if the positive samples can be robustly matched also in the other overlapping views. On the other

hand, the set of negative points is randomly sampled from the set of points not included in the

positive set.

2.1.2 Design of the classifier

The chosen classifier is a Random Forest [5], essentially because it is one of the fastest classifiers

and, since it must be applied to every point of the point cloud, the speed is one of the most

important elements to be considered. When using a classifier, a feature must be defined; usually,

simple binary features such as intensity differences are used, but they need a local reference

frame to be defined, in order to preserve rotation invariance, and this increases the computational

load. In this work, the authors store the cosine of the angle between the normal at the reference

point p and the normal at every point within a radius rfeat in several histograms and use them as

features. Since the histograms are computed for spherical shells, they are rotation invariant and

then the local reference frame is no longer needed. Finally, when the classifier is applied to unseen

input point clouds, the number of trees Tp that identify a point as a keypoint is counted and if the

score Tp/T, where T is the total number of trees, is higher than a minimum score smin ≥ 0.5 and it

is the highest value in a neighborhood of radius rnms, then the keypoint is validated.

The procedure that has been used in this paper for the extraction of the positive samples is equal

to the one used in this thesis work, except for the use of different invariant transformations.

Indeed, in the 3D case, these transformations are 3D viewpoint changes, while in the 2D case,

which is the one explored in this work, they are illumination changes.

Figure 2-2. Feature extraction

6

2.2 Temporally Invariant Learned Detector

A great variety of keypoint detectors has been proposed since the 1980s and, even if they exhibit

excellent repeatability with scale and viewpoint changes, they are all very sensitive with respect

to illumination changes. In this work, the authors train a regressor using points that have been

consistently found over a sequence of images that present drastic illumination changes due to

different weather conditions.

2.2.1 Definition of the training set

The dataset that has been used for the training step is composed of two main groups:

• some images from the “Archive of Many Outdoor Scenes” (AMOS), that is a dataset that

collects pictures from fixed webcams all over the world; the images are taken at different

times of the day and different seasons;

• some panoramic images from a fixed camera located at the top of a building.

The authors trained the regressor on the images of one fixed webcam and then tested on the

others along with further images from different datasets. After having collected a certain number

of images from one webcam, they applied SIFT detector to every image and they kept the 100 best

repeated locations. Then, the set of positive samples is filled with the patches around these points

even in the images where they have not been detected. The negative locations, instead, are just

points far enough from the keypoints used to create the set of positive samples.

2.2.2 Design of the regressor

The features that the authors of the paper used are the three components of the LUV color space,

the vertical and horizontal gradients and the gradient magnitude computed at each pixel of the

Figure 2-3. TILDE positives extraction

7

patches. Since the detector will be applied to each location of the images, the speed of the

algorithm is a crucial element. Thus, here a fast regressor is used, that applies only simple

convolutions and pixel-wise maximum operators:

 𝐹(𝑥; 𝜔) = ∑ 𝛿𝑛 max
m=1

𝑤
𝑀

𝑛𝑚
𝑇 𝑥𝑁

𝑛=1 , (2-1)

where x is a vector of image features extracted from the patches, ω is the vector of parameters of

the regressor and it can be decomposed in a combination of linear filters wnm and a set of

parameters δn. The linear filters are the elements to be learned through an optimization function

over the training images and they can be approximated as a linear combination of separable

filters. At the end two different methods can be used: TILDE-P, that uses the original filters and

TILDE-P24 that uses 24 separable filter in order to speed up the process.

As already mentioned, TILDE is probably the most related to this thesis work in the sense that the

authors used a machine learning technique to learn a 2D keypoint detector starting from a set of

positive and negative samples. As a consequence, the datasets used in this work for the training

and testing steps are the same.

2.3 BRIEF and FREAK Descriptors

“Binary Robust Independent Elementary Features” [7] is a description method that, when applied

to a certain image patch around a point of interest, returns a binary descriptor, where binary

means that is composed by 0s and 1s only. When we want to find

correspondences among points of more images, the comparison

between such type of descriptors can be very convenient with respect

to non-binary vectors, because it allows the use of the Hamming

distance and, then, a considerable speed-up of the matching step. SIFT

descriptor would require a conversion from the standard vector to the

binary equivalent if the Hamming distance is being used, whereas

BRIEF extracts a binary value directly from the patch itself. Indeed, the

idea behind BRIEF is to pick random points from a Gaussian distribution and test them. The

Gaussian distribution has the following form:

 (𝑥, 𝑦) ~ 𝑖. 𝑖. 𝑑 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (0,
1

2∗𝑆
∗ 𝑆2) , (2-2)

where S is the patch size. The test gives as result 1 if the intensity of the pixel x is lower with

respect to the intensity of y and 0 otherwise. If we proceed through many pairs we will end with

a string of binary values that is the BRIEF Descriptor.

Figure 2-4. BRIEF pairs

8

This type of descriptor, tough, is very sensitive to rotation; indeed, if the image is rotated by more

than a few degrees, the matching performances of BRIEF falls off

sharply. Randomly picking up points from a Gaussian

distribution is not the only possible choice to select the locations

that are processed by the test. The authors of the work “Fast

REtinA Keypoint” [4] tried to understand which are the best

pairs to be used for the test by analyzing the human visual

system. Figure 2-5 shows the comparison between the points

used for the test along with their Gaussian blur radius and a

human retina region responsible for sharp central vision that is composed by three main

elements: fovea, parafovea and perifovea. Similarly to what happens in our eyes, the outer points

(perifoveal area) are the first to be analyzed because they are the most discriminative locations,

while the central points (foveal area), that are the least blurred ones, are the last pairs to be tested.

Regarding rotation invariance, the orientation is estimated by summing the local gradients of

some pairs that are symmetric with respect to the center of the patch.

2.4 Neural networks

Neural networks are one of the most used machine learning techniques that have become very

popular in the last few years thanks to the decrease of hardware prices and to more performant

GPUs (Graphic Processing Units) for personal use. Neural networks with different architectures

are used for countless applications, like speech recognition, understanding of biological data,

character text generation and many others. Concerning the computer vision field, deep learning,

i.e. the branch of machine learning that uses neural networks, is widely used for object

classification, colorization of black and white images, medical images segmentation and so on.

The human visual system can perform extremely complex image analysis. This ability is the

consequence of millions of neurons linked by billions of

connections inside the five visual cortices of our brain. Our

efficiency in visual pattern recognition is the result of a

long training process that last many years and that teaches

us how to perfectly use our powerful eyes. As a

consequence, it is not so easy to imitate the human visual

system in all its complexity and to carry out a proper

training procedure. Figure 2.6, which shows some

handwritten digits from the MNIST (Mixed National

Figure 2-5. FREAK test points

Figure 2-6. Some digits from MNIST

9

Institute of Standards and Technology) dataset, is an example of how easy is for the human brain

to recognize such images as meaningful information. If we want to create a computer program

capable of understanding which number is in front of a camera, though, it would not be easy at

all. For instance, we could try to identify the digit “1” by assuming that a fundamental

characteristic is the bar at the bottom of the stroke. The problem would be that with such a precise

rule it can be hard to identify other “ones” that deploy different features and if we start adding

exceptions we could end up in many wrong classifications. Therefore, we need something more

powerful and, at the same time, flexible with respect to small variations.

2.4.1 Artificial neural networks

Artificial neural networks (ANNs) are a machine learning technique that can infer specific

characteristics of an input training sample and then seek them during the testing step. When we

use this algorithm, we do not need to define a priori which shapes identify a sample as belonging

to a certain class; indeed, it is the network itself that will learn how the elements of the training

data associated with a label must be distributed. For instance, in the case of handwritten digit

classification, the feature to be learned is the distribution of pixel intensities over the images.

Figure 2-7. Simple neural network architecture

ANNs are inspired by and loosely based on biological neural networks. Indeed, the idea behind

the functioning of ANNs is to use many linked elementary units in order to achieve high

performances when dealing with complex tasks. All these interconnected neurons exchange

information and update every time a new training sample is injected along with its label. In

10

practice, the neural network should learn a set of weights and biases that, when combined with

the input will give us back a probable prediction of a certain label as output. For instance, if our

input is x we must initialize the set of weights and biases and then, using the formula

 ŷ = 𝑊 ∗ 𝑥 + 𝑏 (2-3)

we compute the predicted output and we compare it to the real value of y, that we know since all

the training data come with their own labels. The aim of this procedure is to minimize a cost

function time by time, by updating weights and biases at every step of the training. This

optimization problem can be solved in several ways, for example using gradient descent,

stochastic gradient descent and some others. The

output of every node is the result of a linear process

and, even if its efficiency is high, especially using GPUs

and simple matrix operations, a non-linear component

is necessary, otherwise the network would lose the

ability to model non-linear patterns. Therefore, the

output of the linear equation (2-3) is processed by the

so-called activation function. Figure 2.8 shows an

example of activation function called ReLU (Rectified

Linear Unit) that gives y=0 if x is negative and y=x if x is

positive. The advantages of this function are that it is differentiable everywhere except in zero

and its derivative is very simple: zero if x is negative and 1 if x is positive.

A simple ANN (for example with only 2 layers) can approximate a large variety of models but it

uses many nodes and it needs many training images in order to get acceptable values for every

parameter. A good solution to these problems is to increase the depth of a network by adding

many layers and to reduce the number of nodes per layer.

2.4.2 Deep neural networks

A deep neural network is a very powerful tool that uses many layers of abstraction to infer

features of some input signals. The structure of such network is composed by several layers one

on top of the other in a way that every layer tries to elaborate the outputs of the previous layer in

order to get the best possible prediction for the output. When using deep network, the number of

inputs used for the training procedure can be lower with respect to the simple ANNs, and this can

easily lead to overfitting, namely the problem of having a too complex model that can hardly work

in a general case. In order to solve this problem, it is used the so-called regularization and a

possible technique that has been recently proposed is called dropout. The idea behind this

Figure 2-8. ReLU

11

technique is to deactivate 50% of the nodes during each iteration of the training step such that

the algorithm can never rely on the same inputs.

Deep neural networks, like ANNs, can be developed using many possible architectures that

change depending on the depth of the network and on the type of layers used. When dealing with

images, a widely used types of layers are convolutional layers and pooling layers, that can be

combined together in order to analyze the spatial

information of an image. The main reason it is

possible to use this approach with images is that

pixels can share their weights to reduce the degrees

of freedom of the model.

A convolutional layer is a layer in which a simple

square filter is applied as a sliding window over the

images. The main parameters here are the dimension

of the filter, the stride to use, i.e. how many pixels

must be skipped between two filters and whether the

size of the image after the convolution should remain

constant or not. When applying convolutions on the

borders of an image, some pixels could be missing since the filter is only partially overlaid to the

image. In this case, we have two possibilities:

• use some padding (for instance zero-padding) in order to get some information also on

the edges of the images;

• apply the convolution without any padding and skip all the locations where the filter

could not be computed. In this case the dimension of the images will not remain constant.

The output of this layer will be, then, an image with the same dimension (if padding is present)

and a certain depth that indicates the number of channels. Figure 2.9 shows an example of

convolution with a stride of 1 along all the directions. In this case the padding is not used, thus,

the final image has a smaller dimension, more specifically, one pixel is “lost” on one boundary and

one on the other boundary.

Another type of layer is the pooling layer that is used to reduce the spatial dimension but it keeps

the same number of channel of the input image. The downsampling is carried out by taking some

information from a cluster of pixels using a specific criterion. For instance, Figure 2.10 shows the

so-called max pooling layer, that takes the maximum intensity among the ones of the pixels within

Figure 2-9. Convolution

12

a sliding window. The parameters to be set here are the size of such sliding window and the

strides.

As already mentioned before, many architectures can be implemented by changing the

parameters of the layers and the number of layers itself. Figure 2.11 shows the so-called “LeNet”

architecture, created in 1998 by Yann LeCun for handwritten letters recognition.

Figure 2-10. Max pooling

Figure 2-11. LeNet architecture

13

CHAPTER 3

METHODS

3.1 Samples extraction and training of the classifier

The procedure that has been used in this thesis is the same as in the previously mentioned

“Learning a Descriptor-specific 3D Keypoint Detector”; indeed, the set of positive samples has been

extracted from those points that gave a good correspondence during the matching between

images of the same scene affected by specific transformations. In the 3D case, these

transformations were 3D viewpoint changes, while here the viewpoint is always the same, but

the images have acquired under different lighting conditions. Since this work is aimed at learning

features from 2D images, the most relevant comparison that can be performed is with TILDE and,

in order to make an even comparison, the dataset used here is the same of the one used in TILDE,

for both training and testing. As already mentioned, the training dataset is composed by some

images from the “Archive of Many Outdoor Scenes” (AMOS) dataset and panoramic images

collected by the authors of TILDE, while the testing dataset is composed again by some images

from AMOS and panorama.

 (a) (b)

Figure 3-1. Images from AMOS (a) and Panorama (b) datasets

The whole procedure is developed through many small steps and each one of them needs specific

parameters to be tuned. First of all, all the images of the training dataset are sampled and a

descriptor is computed at every location; then, a matching step is performed and a table

containing information about how many times a point has given a correct match is created; finally,

the points are sorted from the ones with the highest goodness score down and the best ones are

kept as positive sample locations. The set of negative samples is randomly sampled over the

images in such a way that every point is far enough from both the already computed positives and

the other negatives. In one of the two approaches used in this work, the features that will be used

during the training of the classifier are vectors of description computed at the positive and

14

negative locations of every image of the training dataset, that are stored into vectors and will be

used later. In the other case, with CNNs, it is not necessary to determine a priori the features that

we need to feed because the neural network can learn these features autonomously, therefore the

only thing we need from the locations detected by the matching procedure is the distribution of

the intensities around them. Table 3-1 shows all the possible parameters that are combined and

compared in order to determine which is the best arrangement to be used for the first step of this

keypoint detector. The extraction of positive and negative samples is, of course, used in both

random forest approach and CNN approach. The comparison will take place during the validation

step and it will involve also other settings related to the classifier. In the next sections, the steps

for the positive and negative samples extraction are explained in detail.

Table 3-1 List of the parameters

SAMPLING RATE 3 5 8
DESCRIPTOR TYPE BRIEF FREAK

MATCHING TYPE STRAIGHT CROSS CROSS-RANDOM

3.1.1 Sampling and description

The first important step is the training images sampling. Indeed, we need a set of points that will

be compared to the others belonging to the remaining images of the dataset. Even if the sample

extraction and the training of the classifier are both offline processes, meaning that they can be

computed before the application of the keypoint detector to the test images, the speed of the

whole process is important in practice. On the other hand, if we speed up the process by applying

a very low sampling rate, many points would be discarded and the number of positive candidates

would be too low. To sum up, a dense sampling would be better in terms of quality of the positive

Figure 3-2. Image sampling and computation of the descriptors

15

samples, but very slow, while a high sampling rate would make the process fast but not very

precise.

The main parameters to be set here are two:

• the sampling rate of the input images;

• the descriptor to be used.

For the latter, while both detector and descriptor are included in the SIFT procedure, descriptor

methods like “Binary Robust Independent Elementary Features” (BRIEF) [7] and “Fast REtinA

Keypoint” (FREAK) [8] do not have an already integrated detector. The choice of the description

method in this step must be the same during the final testing step when using the random forest,

because if we train a classifier to recognize a specific pattern that is related to a certain descriptor

type it will not recognize vectors created in a different way. It is possible to note in Figure 3.2 that

many points on the borders are missing; the reason is that when the descriptor vectors are

created, as already mentioned in Chapter 2, the intensities of many points around the central one

(in this case the sampled point) are compared by looking at their intensities and if one or both

points happen to be outside the image a problem occurs. In this case the point of interest is

skipped and it is removed by the set of keypoints, but this aspect strongly depends on the choice

of the description method.

In the case of CNNs, the problem of computing vectors of description before the testing procedure

is not important since the features are inferred directly by the network. However, this first step

has two purposes: the localization of the points that should be good for the training procedure

and the extraction of the descriptors that will be used later when training the random forest. The

former aim is common to both the random forest and the CNN and it needs anyway the

computation of the descriptors in order to perform the matching procedure; thus, the problem of

missing keypoints near to the boundaries cannot be avoided. The CNN, though, deals with patches

Figure 3-3. Keypoints removal: (a) before the computation of the descriptors, (b) after

(a) (b)

16

and, even if there are no intensity differences, it could be possible that a portion of some patches

covers an area that exceeds the boundaries of the image. Since we are discarding some points that

are far enough from the borders, it will be always possible to extract all the patches centered at

those points.

3.1.2 Matching

The second step is the matching, in which all the descriptors of two images are compared in order

to find the best correspondences. This is the main difference with respect to TILDE, because, while

TILDE extracts the best locations by applying an already existing keypoint detector and it labels

a point as positive if it can be consistently found over the sequence of images, here a point is good

only if it gives many times a good correspondence. In this specific case, since all the training

images are already aligned, a good correspondence means that a point on the first image of a

compared pair must point to a location in the second image of the pair with exactly the same

coordinates. If it was not the case and similarity transformations were applied, a perspective

matrix would have been needed in order to find the correct position.

The procedure to follow in order to find the positive locations can be various and the main

parameter to decide here is which images will be compared. As already mentioned before, the

used dataset is the same of TILDE, in which 100 images from the same webcam form the training

set. Of course, the best solution would be to perform a cross matching between all the possible

Figure 3-4. Matching types: straight matching (a) and cross matching (b)

(a) (b)

17

pairs of a training dataset, but it would require a lot of time. A workaround to this problem is to

perform the matching step only over a subset of images from the training set and then extract the

descriptors from the whole set, but this forces us to choose the images to use. This decision is

very important since a wrong choice of the images could lead to favor specific features. For

instance, Figure 3.5 shows a comparison between 3 different images of the same scene under

different illumination and weather conditions. It is easy to note that if images with the same

illumination and weather of the third image are not present among the images that must be

compared, some points of the mountains in the background could be detected as positive and the

final result could be biased. On the other hand, checking all the images and trying to manually

hardcode the dataset could be very time wasting. A possible solution, then, is to inject randomness

and let it decide for us. In this work three possibilities have been developed:

• a match between the descriptors of the first image of the dataset and all the others

(straight approach);

• a match between pairs of images from a subset of the dataset composed by the first 30

images of the dataset (cross approach);

• a match between every image of the dataset and a subset of the dataset (cross-random

approach).

In the first case the number of combinations is obviously smaller; indeed, if N is the number of

images inside the dataset, N-1 matchings will be necessary, while in the cross matching case the

procedure must be executed
𝑁!

𝑘!(𝑁−𝑘)!
 times, where k is 2 since every comparison is between 2

images only. In order to keep the sample extraction time almost constant, N must vary depending

on the matching type we want to use. In the “straight” matching, 100 images have been used,

exactly like TILDE, whereas, in the cross matching, 15 and 30 images have been used, resulting in

105 and 435 comparisons respectively. In the last case, every image of the training set is

compared to some randomly chosen images, thus the number of comparisons depends on the

times a random number, associated to an image, is chosen. A possible negative drawback here is

Figure 3-5. Some images from the Chamonix training dataset

18

that randomly choosing a number does not guarantee that images like the third one of Figure 3-5

are chosen and this can affect the final positions of the positive samples. The main parameter to

be set here is the descriptor type, that can be either BRIEF or FREAK, but also the matching

algorithm is important; indeed, once the descriptors have been extracted around the points, the

way in which they are compared can affect the final result. The tested alternatives are the Brute-

Force Matcher, that takes the descriptor of one feature and compares it to all the others, and two

matchers from the “Fast Library for Approximate Nearest Neighbors” [11] that use KDTree and

Locality Sensitive Hashing. These two last methods are very fast in case of large dataset and for

high dimensional features, but, since this is not the case, they are slower with respect to Brute-

Force Matcher.

The objective of this matching step is to fill a table with information about the “goodness” of every

point in terms of matchability. This table is initialized as shown in Table 3-2, where X and Y are

Table 3-2. Score table initialization

the coordinates of the sampled points, ID is necessary to identify every keypoint and the score is

a value that indicates how many times a point has given a correct match over the sequence of

images. When the first descriptor matching is executed, every point of the list of matches is

checked and if the corresponding point given by the matching algorithm is in the correct position,

where correct means in the same position of the first point of the pair, then the location

coordinates are stored in a vector. It is important to note that a small matching error (1 or 2 pixels)

is accepted and then a point gives a correct correspondence even if it is not exactly at the right

position.

X Y ID SCORE

0 0 1 0

0 Sampling rate 2 0

… … … …

Max width Max height Max ID 0

Figure 3-6. Matching error

19

At the end of this step, every positive location of the vector is sought over the score table and its

score is increased by
1

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠
 that, in the case of straight matching, is equal

to
1

𝑁−1
 , where N is the number of images, while in the case of cross matching is

2

𝑁(𝑁−1)
 since the

number of comparisons is
𝑁!

2(𝑁−2)!
 . The last case, namely the cross-random approach, is slightly

different because the score of a positive point is increased by
1

𝑁∗𝑖𝑚𝑔𝑠𝑇𝑜𝐶𝑜𝑚𝑝𝑎𝑟𝑒
 , where

imgsToCompare is how many random numbers are extracted for every image. When a point gives

a correct correspondence, its location is updated and, as already mentioned before, no similarity

transformation is needed since the training set is already aligned.

3.1.3 Positive and negative sample extraction

At this point, every location of the image has its own score that tells us how good the descriptor

is, around those points to be matched later. In order to choose the best points, we have two

possibilities: set a threshold on the scores and take all the points above that threshold or sort out

all the points of the table from the one with the highest score and use a dynamic threshold that,

starting from 1, keeps decreasing until the number of points with a score higher than the

threshold is greater than a predefined value. In the first case, when we set the threshold to a

certain value, for instance 0.6, we do not know how many points will be found later and this can

Figure 3-7. Fixed threshold (a) and dynamic threshold (b)

(a) (b)

20

be very bad because we could get either too many or too few points. For example, if a sequence

of images is not affected by strong transformations, all the sampled points of the images can get

a very high score and, with a low threshold, they could be all labeled as positive samples and

during the testing step this results in a very low selective keypoint detector. Moreover, if the

positive samples distribution is too dense, when the negative samples will have to be randomly

picked, it will be hard to find points that are far enough from the good sample locations. On the

other hand, if the dynamic threshold is used, the minimum number of positive samples that we

want must be chosen beforehand, but the threshold changes and decreases as long as enough

points are selected. This could result in a set of positive samples with a very low score that will

have a bad influence on the final classifier. In this work, the dynamic threshold approach is used

during the positive extraction procedure and the afore-mentioned problem does not exist

anymore since the images suffer from illumination changes and not from similarity

transformations, which means that many points can get a high score. Later in the process, during

the testing step with random forests, will be necessary to decide which approach to use between

the fixed and the dynamic threshold, and the best solution will be a fixed threshold since it is

possible to adjust it before the real use of the algorithm.

The sampling rate defined during the first step of the process, when the images are sampled, could

discard many points that could get a high matching score during the second step. As already

mentioned, the best solution would be to analyze every pixel so to be sure that no good locations

are left behind. However, this approach would require a lot of time and moreover, the OpenCV

library, used in this thesis, does not allow to fill the set of training descriptors with more than

262144 items, limit that is easily reached by images like the one in Figure 3-8. Another important

Figure 3-8. Positive (black) and negative (white) locations: (a) Sampling rate = 5. (b) Sampling

rate = 3, with non-maxima suppression

(a) (b)

21

problem associated with the dense sampling is that many points of the same area can be detected

as positive and this can lead the process to an extraction of many descriptors (in case of random

forests) or patches (in case of CNNs) that are too similar.

Having a large variety of training data is fundamental for a good estimation because, otherwise,

the algorithm cannot learn enough features and its predictions are not precise. In order to spread

the points and cover a wider surface, the points are sorted from the one with the highest matching

score to the one with the lowest. Then, starting from the first point, the locations around its

coordinates within a certain radius are checked and, if their scores are lower with respect to the

central one, they are discarded from the list of positives. Figure 3-8 (a) shows an example of

positive samples extraction with a sampling rate of 5 pixels without any improvement, while

Figure 3-8 (b) shows a training image with a sampling rate of 3 pixels and the previously explained

technique with a radius of suppression equal to 6 pixels. Since the sampling rate is 3 pixels, having

a radius of suppression equal to 6, 7 or 8 pixels does not make difference, because it is not possible

to find a sampled pixel between the 6th and the 8th pixels.

3.1.4 Features extraction

When the final set of positive locations is complete, the features set that will be used for the

random forest training is formed by all the descriptors computed at the positive locations over

every image of the training dataset, even in those where a certain location did not give a correct

Figure 3-9. Example of positive (black) and negative (white) locations with

sampling rate = 10 and negative radius = 10

22

match during the previous step. Regarding the CNN, instead of the descriptors set, a set of patches

extracted from the area around the selected positive and negative points is used.

The negative locations are randomly picked from the images in such a way that they are far

enough from every positive location and every negative location.

Basically, a pair of integers are randomly sampled within a range

defined by the width and the height of the images of the dataset;

then, they are compared to the coordinates of the positive samples

and if they are far enough from every positive location they are

labeled as non-positive locations. In order to have a large variety of

negative samples, the non-positive coordinates are also compared

to all the points that are already inside the negative samples set and

if the distance is greater than a certain value they can be inserted

into the negative samples set. Figure 3-9 shows an example where

the sampling rate is 10 pixels and the negatives (white dots) must

have at least a distance of 10 pixels from both the positive and

negative locations. In this thesis work the negative radius will be

equal to 30 pixels. Using the random forest trained with the

descriptors computed at the positive and negative locations is more efficient with respect to the

CNN, because all the descriptors we need are already available from the sample extraction. When

applying the CNN, instead, all the patches centered at the positive and negative points must be

extracted and used for the training of the network.

3.1.5 Training of the random forest

The last step is the training of the machine learning algorithm. For this work, the chosen

classifiers are the random forest, similarly to what has been done in “Learning a Descriptor-

Figure 3-11. Random Forest structure

Figure 3-10. Some of the

32x32 patches used to train

the CNN

23

specific 3D Keypoint Detector” and a convolutional neural network. A Random Forest is a cluster

of decisional trees that, given an input sample, tries to predict which class the input belongs to by

computing the means of all the results coming from each tree. The word “random” means that the

initial dataset is randomly split in many overlapping subsets and the same is done to the

“questions” to be asked at every node. When the classifier is trained, a bunch of labelled elements

(in this case the labels are “positive sample” and “negative sample”) is given to the algorithm that

decides which are the best question to be asked in order to get the best split of the input data. The

parameters to be tuned here are two: the number of trees to be used inside the forest and the

depth of every tree, which is measured in terms of how many times we want the classifier to split

the input data into smaller subsets or how many samples we want to be left at a node. Having a

high number of trees and a high depth can be better in terms of quality but worse in terms of

speed, thus a good trade-off should be found. When the classifier is trained, the algorithm asks a

sequence of questions to every feature we put inside of it and it gives back the probability

associated to a final leaf. In this thesis work, the features used for the training of the classifier are

the description vectors obtained at certain locations using either the BRIEF descriptor and the

FREAK descriptor. Using a descriptor to train a classifier can be very useful when dealing with

illumination changes. Indeed, the method used in BRIEF and FREAK relies on intensity differences

Figure 3-12. Example of problems with clouds: Frankfurt webcam using a random forest trained

on Chamonix dataset

24

between pairs of pixels and if both the intensities of a pair change in the same way the result of

the test remains constant. However, the dataset used in this work contains images of the same

scenes under different weather conditions and the illumination changes are not linear and

uniform all over the images. The presence of shadows or, for instance, rain over the glass of the

camera could modify only the intensity of one of the pixels subjected to the test of the descriptor,

and then the result would be biased. Finally, another problem is related to the presence of clouds.

Indeed, a special characteristic of the AMOS dataset is that many webcams partly point to the sky

and then the sun and the clouds strongly modify the images. When training the random forest, no

descriptor comes from an area of the sky where there might be clouds; however, the descriptors

contain only values that indicate a sort of gradient associated to the pixel intensities and this

gradient can be obtained also with different configurations.

3.1.6 Training of the neural network

As already mentioned before, while when training the random forest, a set of descriptors has been

used, here patches centered at the locations obtained in the previous steps are extracted and

directly used as training set, since descriptors are implicitly learned by the network. After the

extraction of the patches pixel by pixel, it is necessary to create a dataset that will be used by the

neural network. This dataset is obviously composed by all the patches, but it must also contain all

the labels, associated with their corresponding images, that indicate to which class the sample

belongs to. This thesis work is aimed at finding highly distinctive keypoints and to do that is

necessary to analyze all the pixels of an input image and identify them as positive or negative. The

classification approach to be used, then, is a binary classification that involves two classes.

Figure 3-13. Example of one-hot encoding

25

The labels to be used can be of two different types:

• dense labels, which means that, in this specific case, it is necessary to assign a value to one

class and another value to the other class; in this thesis work the label 1 is assigned to the

positive samples while the label 0 to the negative ones;

• one-hot labels, which means that starting from a set of dense labels, a binary vector of 0s

is created for each label and a 1 in different position identify a label. Figure 3-14 shows an

example.

In this work, a binary classification is required, thus it is possible to use both a simple dense

labeling or a one-hot labeling. In case of multiclass classification, like, for instance, in the

handwritten digit classification or letters classification, the one-hot encoding is necessary to

identify each class using only 0s and 1s.

Chapter 2 explained how an image can be processed through the neural network by operators,

like convolution, pooling, activation functions and dropout. The architecture that has been used

in this thesis is shown in Figure 3.14 and it is the same for both training and testing.

After having created a training dataset, composed by many 32x32 patches, the procedure for the

training is the following:

1. Take the first image of the training dataset.

2. Apply 32 convolutions using a filter of size of 5x5; the output tensor (stack of images) has

a size of 32x32x32. The size of every image after the convolution does not change because

a padding is applied before the filter.

Figure 3-14. Architecture of the CNN

26

3. Apply the activation function. In this case, the REctified Linear Unit is used, but also the

tanh can be used.

4. Apply a max pooling with a filter of size 2x2 and a stride of 2. The depth of the output

remains constant while the size of every image is halved. The output has a size of

16x16x32.

5. Apply 64 convolutions using a filter of size of 3x3; the output tensor has a size of 16x16x64.

The size of every image after the convolution does not change because a padding is

applied before the filter.

6. Apply the activation function.

7. Apply a max pooling with a filter of size 2x2 and a stride of 2. The output has a size of

8x8x64.

8. Apply 128 convolutions using a filter of size of 3x3; the output tensor has a size of 8x8x128.

The size of every image after the convolution does not change because a padding is

applied before the filter.

9. Apply the activation function.

10. Apply a max pooling with a filter of size 2x2 and a stride of 2. The output has a size of

4x4x128.

11. Apply 1024 convolutions using a filter of size of 4x4x128; the output tensor has a size of

1x1x1024. The size of every image after the convolution changes because no padding is

used.

12. Apply the activation function.

13. Apply dropout.

14. Apply 2 convolutions using a filter of size of 1x1x1024; the output tensor has a size of

1x1x2.

15. Compare the output of the network to the label associated with the input image and

optimize the weights and the biases in order to minimize the cross entropy. The optimizer

used in this thesis is the Adam optimizer.

16. Take the next image of the training set and repeat from step 2.

At the end of this process, every patch will have been analyzed and the set of weights and biases

inside every convolution will have been updated depending on the loss function.

The framework that has been used in this thesis for the CNN is TensorFlow [12] that makes the

creation and the training of a neural network very easy. The only thing to do, at the beginning of

the code, is to create two placeholders: one for the input images and one for the labels associated

with these images. Then it is necessary to create a function for the initialization of the weights

27

from a truncated Gaussian distribution (other types of initialization can be used) and a function

for the initialization of the biases to a small value different from zero. This last value and the

standard deviation of the Gaussian curve are the same of the MNIST tutorial code provided by

TensorFlow. This framework allows, also, to monitor the results of the neural network, how the

weights and biases change and the output of every convolution. Inside the code, indeed, it is

possible to use commands like “tf.summary.image” or “tf.summary.histogram” to keep track of the

elements of the flow and then it is possible to visualize them using a tool called TensorBoard.

Figure 3-15 shows the first page of TensorBoard once it has been launched using the command

“tensorboard –logdir=path_to_logdir/logs” and the web browser has been navigated to

“localhost:6006”. After having correctly configurated TensorBoard, it is possible to visualize the

TensorFlow plots, images, graphs and other elements and this can be very useful for the

understanding of the network, the debugging and the optimization. When visualizing plots of

Figure 3-15. TensorBoard homepage

Figure 3-16. Cost function with (a) smoothing = 1 and (b) smoothing = 0

(a) (b)

28

scalars, like the accuracy or the cost it is always possible to adjust the smoothing of the curve in

order to understand better the real behavior of the data. Two very important parameters of the

neural network are the batch size, namely how many images must be processed at every iteration

and the total number of iterations. As it is shown in Figure 3-16, the number of iterations in that

specific case is 500, while the used batch size is 100. These two parameters must be carefully

chosen because a small batch size would need much more time to converge to a minimum, but

can be more general, whereas a big batch size would behave in the opposite way. A good trade-

off must be found by looking at the accuracy and the loss function that, in this case, is the cross

entropy.

After having trained the neural network, a test dataset is created from some test images. In this

case, it is not necessary to extract the patches from the test images because the convolutions of

the neural network work themselves on small areas of the input images. For instance, when

testing the network on the Courbevoie webcam dataset, the size of every input images is 640x471,

but there is no need to modify the network. However, the changes applied to the input images by

the network are the same that have been used over the training sequence and then, if the training

image height is halved by the max pooling layer, the test image height will be halved as well. At

the end of the pipeline, instead of a 1x1x2 tensor, i.e. two probabilities, one for each class, there

will be a heat-map with a probability for every pixel of the image. The procedure to be followed

is the same of the training but with trained weights and biases and different sizes:

1. Take the first image of the test dataset (in this case with size 640x471).

2. Apply 32 convolutions using a filter of size of 5x5 with the trained weights and biases; the

output tensor has a size of 640x471x32. The size of every image after the convolution

does not change because a padding is applied before the filter.

3. Apply the activation function.

4. Apply a max pooling with a filter of size 2x2 and a stride of 2. The output has a size of

235x320x32.

Figure 3-17. Example of convolutions applied to an input patch

29

5. Apply 64 convolutions using a filter of size of 3x3; the output tensor has a size of

235x320x64. The size of every image after the convolution does not change because a

padding is applied before the filter.

6. Apply the activation function.

7. Apply a max pooling with a filter of size 2x2 and a stride of 2. The output has a size of

117x160x64.

8. Apply 128 convolutions using a filter of size of 3x3; the output tensor has a size of

117x160x128. The size of every image after the convolution does not change because a

padding is applied before the filter.

9. Apply the activation function.

10. Apply a max pooling with a filter of size 2x2 and a stride of 2. The output has a size of

58x80x128.

11. Apply 1024 convolutions using a filter of size of 4x4x128; the output tensor has a size of

54x76x1024. The size of every image after the convolution changes because no padding

is used.

12. Apply the activation function.

13. Apply dropout.

14. Apply 2 convolutions using a filter of size of 1x1x1024; the output tensor has a size of

54x76x2.

15. Take the next image of the test set and repeat from step 2.

The output of the last convolution is, then, no longer 1x1x2 as it was in the training step, but it is

54x76x2. The last dimension is 2 because we have the probabilities of belonging to one class

instead of the other, but the only one we care about is the probability of belonging to the positive

class. Therefore, we can slice the tensor and keep only the 1D heat-mat associated with the

positive class. The problem now, is that we have to overlap the output heat-map with size 54x76

to the original test image with size 640x471 in order to find which pixels are positive and which

are negative. After all the pooling and the convolutions, the 1 to 1 pixel correspondence is lost

and, in this specific case, one element in the heat-map corresponds to a patch size of roughly 8x8

pixels. The solution to this problem is a simple image upsampling using bilinear interpolation.

When resizing images from a lower dimension to a higher dimension the main problem is that

the final image is made of many more pixels that were not there before. The intensity of these

pixels must be inferred by looking at the intensities of the neighbor pixels. After the upsampling,

then, the size of the heat-map is the same of the input test image and it is possible to extract the

positive keypoints. To do that all the points with a probability greater than 50% are stored in a

30

vector and then a non-maxima suppression is applied in order to keep as positive only the points

with the highest response.

3.2 Validation

The training step requires, of course, the parameters to be set before it is executed, therefore it is

necessary to find the best combination that allows to get the best results for the test images. The

set of images that are used for the validation is a portion of the training dataset that is different

with respect to the testing dataset. When the descriptors are placed inside the classifier, the result

is a value that spans from -1 to +1, where +1 means that the input element belongs to the positive

samples set with a probability of 100%, and -1 the opposite. So, it is necessary to define a

threshold that identifies all the descriptors with a prediction value over such threshold as salient

points. The validation process is executed in different ways depending on the type of parameter

to be tuned. Up to now, the parameters to be validated for the random forest are:

• the sampling rate of the input training image;

• the non-maxima suppression radius for the training images;

• the matching type, i.e. straight, cross and cross-random matching;

• the number of trees and the two parameters of the tree depth;

• the threshold that defines positive and negative samples;

• the non-maxima suppression radius for the test images.

On the other hand, when dealing with the neural network, the parameters to be tuned are

different; indeed, during the training step it is important to define the learning rate of the

optimization algorithm, the number of iterations and the batch size that is randomly sampled

from the training samples. After the computation of the probabilities for a test image and after

having upsampled the heat-map, another parameter must be defined, namely the non-maxima

suppression radius. The subsequent paragraphs explain the techniques used for the validation of

the random forest and the CNN.

Figure 3-18. Example of upsampling

31

3.2.1 Training and test error

The first method used for the validation consists in computing the training and the test error of

the matched images. This procedure is fundamental for the validation of two parameters of the

random forest: the number of trees and the depth of the trees. First of all, all the other parameters

are initialized to certain values, then the set features (the descriptors) associated with their labels

is created and converted into a construct of OpenCV called TrainData. This cluster of training data

is then split in two smaller groups: one to be used for the training and one for the validation. Now,

using a for loop, it is possible to vary one parameter and keep the others fixed while training the

random forest and computing the error on both the training set and the validation set. After

having changed the parameter under analysis, the procedure is repeated for a range of possible

values and, at the end, a list of errors is available and can be used to decide the best arrangement

for the parameters. This approach is used for the validation of the following parameters:

• number of trees;

• tree depth;

• number of samples to be left at a node.

The main criterion to be used when deciding which is the best value for a specific parameter is

usually the decreasing rate of the error curve, i.e. when the error stops decreasing is no longer

necessary to increase or decrease the parameter that is being analyzed. However, another aspect

must be kept into consideration; indeed, if the training error keeps decreasing while the

validation error increases, the forest is suffering from overfitting, i.e. the machine learning

algorithm is trained too much over the training data and can hardly manage new input data.

Figure 3-19. Example of training and test error with different numbers of trees

32

3.2.2 Precision-Recall curve

The second approach is based on the computation of the Precision-Recall curve, a very useful tool

for binary classification that measures the performances of a searching algorithm by looking at

the amount of the correct information retrieved and the mistakes made while searching for that

correct information. This method can be used both for the validation of some parameters of the

random forest, similarly to what has been done with the parameters listed at the end of this

subchapter, and for the comparison of the result of many keypoint detectors in terms of

matchability.

Given a list of matches it is possible to compute two very important indices:

• the precision, which is the fraction of the elements taken into account that are relevant to

our purpose;

• the recall, which is the fraction of the relevant elements that are retrieved.

Basically, after having sampled the first image of the dataset and after having computed the

descriptors over the sampled points, the random forest trained with a certain set of initial

parameters is applied to every image of the dataset and a matching algorithm is used in order to

find the best nearest neighbor for every descriptor of the first image and all the others. For every

matched pair, the distance between the two descriptors is normalized using the maximum

distance that two binary descriptors can have, that is the length of the description vector, and if

the match is correct it is put inside the true positives (TP) set, while if it is wrong it is put inside

the false positives (FP) set.

By varying a threshold over the distance between the descriptors to accept a match, the values

for “1 - Precision” and Recall are computed using the following formulas:

 1 − 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐹𝑃

𝑇𝑃+𝐹𝑃
 , (3-1)

and

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑃
 , (3-2)

where P is, in this case, the total number of matches, i.e. the total number of sampled points. Once

the curves have been created, the best one is selected by looking at the area under the curve (AUC)

and the highest its value, the better the set of used parameters. Figure 3-20 shows an example of

comparison between two models with a different threshold applied to the random forest to

accept the positive elements; the AUC of the red curve is higher with respect to the AUC of the

blue one and then a threshold equal to 0.5 should be chosen.

33

The dataset used for the computation of the precision-recall curve must be different from the

training dataset, of course. The splits between training, validation and test datasets used in this

work are the same used in TILDE and then, the number of images is 100 for the training dataset,

20 for the validation and 20 for the test. All the images are different because of the different

weather and illumination conditions, but the scene is always the same since the pictures come

from fixed webcam.

This precision-recall method is used for the validation of the following parameters:

• the sampling rate of the input training image;

• the non-maxima suppression radius for the training images;

• the matching type;

• the threshold that defines positive and negative samples;

• the non-maxima suppression radius for the test images.

Finally, the Precision-Recall curves are also used to compare the method proposed in this work

to TILDE in order to contrast the performances of the whole detection-description-matching

pipeline.

Figure 3-20. Example of 1 - Precision / Recall curve

34

CHAPTER 4

RESULTS

This chapter presents in detail the results obtained in this thesis work. The first two parts

illustrate the validation of the parameters of random forest and convolutional neural network,

the third part shows the results obtained during the testing step, while the last part shows the

results from the comparison between the methods developed in this thesis and the TILDE

keypoint detector.

4.1 Positive and negative sample extraction

The first step of the algorithm is the extraction of the positive and negative samples from the

dataset. As already mentioned in the previous chapter, the most important parameters to be

validated in this step are the ones related to the extraction of the training points, i.e. the sampling

rate of the input images along with its non-maxima suppression radius, the type of matching to

use and the type of descriptor. The parameters used here will be the same for both the random

forest and the CNN, since this first part is common to both the approaches. The speed here is not

very important since the extraction of the positive and negative samples and the training of the

classifiers can be executed offline without any influence on the online performance. However, a

faster training is always better in terms of practicability. Table 4-1 shows the speed, in seconds,

for every combination of parameters of the sample extraction.

Table 4-1. Speed comparison of all the combinations of parameters

SAMPLING RATE + NMS

radius
3 + 8 5 + 8 8 + 0

MATCHING

TYPE

DESCRIPTOR

TYPE
BRIEF FREAK BRIEF FREAK BRIEF FREAK

STRAIGHT 800s 1500s 100s 200s 20s 35s

CROSS 30 3500s 7000s 440s 800s 90s 150s

CROSS-RANDOM 5 4400s 8400s 500s 1000s 100s 180s

35

It is possible to see that the aspects to consider when analyzing the speed of the algorithm are

multiple. Indeed, all the parameters have their own influence; for instance, the sampling rate has

a strong influence on speed since changing its value from 3 to 5 halves the time and from 5 to 8

the speed is more than doubled. The matching type is also very important, because each method

analyzes a number of images that varies; indeed, the straight matching compares only the first

image of the training dataset to all the others and, since the dataset size is 100 images, the number

of comparisons will be 99. The second matching type analyzes all the combinations among 30

images which means 435 comparisons, while the cross-random method uses 5 randomly chosen

images for every image of the dataset, i.e. 500 comparisons. Finally, the descriptor type is

important because of the extraction of the descriptors, but also for the matching step. As already

mentioned in Chapter 2, BRIEF descriptor tests less pairs with respect to FREAK so it is faster in

this first step, but when the matching must be executed the comparison between FREAK

descriptors is faster due to their structure.

Once the positive and negative samples are extracted it is possible to see the qualitative results

by looking at the locations that have been detected. For instance, Figure 4-1 shows a comparison

between three different types of samples extraction. In the first two images, it is used a small

sampling rate plus a non-maxima suppression in order to avoid too dense clusters of points, while

in the last one it is used a sampling rate equal to 8 without any NMS.

Usually, the best points to be found should be the ones in very distinctive locations that can be

easily found over the image and the points that are surrounded by specific shapes, like, for

instance, corners or blobs. However, the approach used in this thesis wants to find points that

present a very high descriptor distinctiveness and not a high repeatability. When two descriptors

Figure 4-1. Comparison between sample extraction using BRIEF and a straight matching with (a)

sampling rate 3, (b) sampling rate 5, (c) sampling rate 8. The black dots are positive samples while

the white dots are the negatives.

(a) (b) (c)

36

are matched, one of the most important things is the way they have been described which is, in

this case, either using BRIEF or FREAK. Figure 4-2 shows a comparison between two images: the

first is obtained using BRIEF, while the second using FREAK. It is easy to note that both the

positive and the negative locations are different. The reason behind this is that a different type of

descriptor can make a point easier to be found when matched to another point, not because of

the different way of comparing the two vectors, but because the distribution of intensities that is

analyzed can be more similar to a vector of description that does not correspond to the right

correspondence. In other words, when matching a pair of

images, due to a reduced distinctiveness of the description

vector, a point can be associated with a wrong corresponding

location, and this generates different errors. For instance, in

Figure 4-2 (a), where BRIEF descriptor is used, a dozen positive

points are detected over the dark mountain on the left in an

apparently non-salient area, while in the image on the right,

only three points are detected over the mountain but six can be

found on the edge of the mountain. Another difference is the

number of points on the stairs that is higher when using FREAK.

The positive samples on the front of the house, instead, are

detected independently with respect to the used descriptor.

Another important aspect to consider when judging whether a sample extraction is good or not

is the position of the negative samples. The white dots of the images are randomly sampled over

(a) (b)

Figure 4-2. Positive (in black) and negative (in white) points obtained using (a) BRIEF description

and (b) FREAK description

Figure 4-3. Positive (in black)

and negative (in white) samples

using BRIEF (up) and FREAK

(down)

37

the image in such a way that they are at least 30 pixels far from all the positive points and all the

negative points. In this way, it is possible to cover the entire image and there is no overlapping

between the patches around these points. By looking at Figure 4-2 it is possible to see that on the

edge of the darker mountain, BRIEF randomly picks some negative locations, while FREAK finds

Figure 4-5. Positive (in black) and negative (in white) samples using the

straight matching

Figure 4-4. Positive (in black) and negative (in white) samples using the

cross matching

38

some positive samples and then cannot pick negatives in that area. This will have consequences

both when using the random forest and when using the neural network as classifier.

Finally, Figure 4-4, Figure 4-5 and Figure 4-6 show the results obtained using the three matching

types created in this thesis work.

4.2 Training

After having found the positive and negative locations, it is possible to use them in order to train

the classifier. In this work, the classifiers that have been used are a random forest and a

convolutional neural network. In the first case the features to be used for the training of the

classifier are the descriptors computed at the sample coordinates over the images of the training

dataset; in the second case, there is no need for some a priori defined features since the network,

given a set of input patches with their correspondent labels, can autonomously infer some specific

patterns. The following subchapters show in detail the results of the parameter tuning for the two

classifiers.

4.2.1 Random forest

As already mentioned, the random forest is trained using the descriptors computed at the positive

and negative locations. These descriptors are already available because they have been

Figure 4-6. Positive (in black) and negative (in white) samples using the

cross-random matching

39

previously stored during the extraction of the samples. The only thing to do, then, is to create a

dataset suitable for the construct of the random forest in OpenCV.

In this step the validation of three parameters takes place:

• number of trees to be used inside the random forest;

• maximum depth of every tree of the random forest;

• minimum number of samples to be left at a node.

The range of values used for every parameter is different; indeed, the number of trees varies from

0 to 95, the maximum depth from 10 to 40 and the number of samples from 30 samples to 1. The

default values for the parameters of the random forest in OpenCV are: 5 for the maximum depth,

10 for the minimum samples required at a node for it to be split and 50 for the number of trees.

Figure 4-8 shows the error curve associated with a training set, composed by roughly 15000

elements, and the test error curve from a test dataset of about 3500 descriptors. The behavior of

the two distributions is quite similar but shifted of approximately 0.1 points over the y-axis. This

is because, of course, the error computed over the dataset used to train the forest will always be

lower than the error computed training the forest over one dataset and computing the error over

a different dataset. Regarding the number of trees to be used in the random forest, it is possible

to note in Figure 4-8 that the error decreases with a very low rate after 30 trees and, even if it gets

better and better after this point, it is important to consider that the number of trees increases

Figure 4-7. Example of an xml file containing the descriptors used for the

training of the forest

40

the prediction time linearly. Another important parameter is the maximum depth that every tree

has; Figure 4-9 shows how the training and test error varies with respect to a maximum depth

range between 10 and 40. It is possible to note that the training error decreases smoothly and it

completely stops decreasing when using 24 levels or more. On the other hand, the test error

reaches its minimum at the 19th level, but it immediately gets back to a higher value and then it

remains constant except for a small fluctuation around the 24th level. When the training error

goes down but the test error increases, the classifier is overfitting the dataset and then it is

necessary to stop. The maximum depth that will be used for the training of the forest is, then 18.

Figure 4-8. Training and test error when using a different value for the number of trees

Figure 4-9. Training and test error when using a different value for the depth of the trees

41

Finally, the number of samples to be left at a node is chosen to be 3 because, while the training

curve keeps decreasing with an almost linear trend, the test error curve fluctuates even if the

general trend is always the same except for the last part where it starts increasing. Moreover, the

training error over the last values used for the samples stops decreasing with a constant rate.

Now it is possible to train the forests using the set of descriptors obtained during the positive and

negative sample extraction with the parameters that have been validated, i.e. 30 trees, a

maximum depth of 18 levels and a minimum number of samples at a leaf node equal to 3. At this

point, the only parameters that still needs to be validated are the matching type and the sampling

Figure 4-10. Training and test error when using a different value for the number of samples to be

left at a node

Figure 4-11. Comparison between precision-recall curves obtained using the straight matching

type and different sampling rates

42

rate of the training images. To do that, the precision-recall curve and its area under the curve have

been used: the higher the AUC the better the set of used parameters. Figure 4-11 shows the

comparison between three curves obtained using the same matching type, the same descriptor

type, but different sampling rates of 3, 5 and 8 respectively. It is easy to see that the lowest

sampling rate gives the best result, with an AUC of 0.19. Note that the highest sampling rate is not

the worst; indeed, using a sampling rate of 5 with a non-maxima suppression radius of 8 gives an

AUC equal to 0.15, while a higher sampling rate of 8 without any NMS gives an AUC equal to 0.17.

Figure 4-12 shows a comparison between different sampling rates with the cross-random

matching type; note that, in this case, the lowest sampling rate does not give the best result

Figure 4-12. Comparison between precision-recall curves obtained using the cross-random

matching type and different sampling rates

Figure 4-13. Comparison between precision-recall curves obtained using different matching types

43

because its AUC is the lowest among the three. The best result is obtained with a sampling rate of

5 and a non-maxima suppression of 8. In the case of cross matching type, the best result is again

achieved using a sampling rate equal to 5 and a NMS equal to 8. Finally, the three matching types

can be compared using the best combination of parameters for each of them and, as shown in

Figure 4-13, the best result is achieved using the cross-random matching type with a sampling

rate equal to 5 and a NMS equal to 8. Even if both the descriptor types will be used in the final

step, it is interesting to see which one performs better on a validation dataset. Figure 4-14 shows

a comparison between two precision-recall curves obtained using BRIEF and FREAK descriptors,

while Figure 4.15 shows an example of prediction on an image from the validation dataset. The

difference between the two methods strongly depends on the prediction threshold that is chosen,

because if the same value is used a descriptor type can find either too few keypoints or too many.

Another aspect to consider is the time: while BRIEF can be applied quickly over every pixel of the

image, FREAK requires more time and can be very slow. A good alternative would be to sample

the test images in order to have less points to be analyzed and, then, speed up the process. In this

case, it is necessary to lower the prediction threshold because otherwise too few points are

detected. The best result to achieve is with the BRIEF descriptor, because its AUC is equal to 0.13

versus an AUC of 0.8 and 0.75 for the other two curves. Note that a variation of only 0.05 points

of the area under the curve of the FREAK descriptor applied to a sampled test image makes the

detection faster of almost 25 seconds.

Figure 4-14. Comparison between precision-recall curves obtained using different descriptor

types

44

4.2.2 Convolutional neural network

The training of the CNN, already explained in Chapter 3, is executed using the patches extracted

from the positive and negative locations. One of the inputs to the preprocessing code written in

Python consists of a pair of text files containing a list of coordinates for both the positive and the

negative samples. The parameters to be tuned in the CNN are the learning rate of the network,

the number of iterations and the batch size. These parameters can be tuned by looking at the cost

function that the network is trying to minimize and by stopping when the lowest cost is reached.

The validation of the CNN requires, of course, some positive and negative locations; therefore,

one among the set of already extracted sample points must be randomly chosen. Figure 4-16

C
O

ST

ITERATIONS

Figure 4-16. Comparison between a batch size of 50 (orange) and a batch size of 100 (blue)

Figure 4-15. Random forest prediction over a validation image

45

shows a comparison between the cost function obtained using a batch size of 50 and 100 and a

number of iterations equal to 1000. It is possible to note that using a lower number of iterations

is not convenient since the cost keeps decreasing with a consistent rate until 1000 iterations. Here,

in the same way as in the random forest, the training step is entirely an offline process and then

the time required is not so important. However, the neural networks require a lot of time to learn

all the weights and biases and it is convenient, from a practical point of view, to get the best result

in the lowest timing. Table 4-2 shows a comparison of the costs obtained by playing with the

parameters along with the timings required. A very fast training, like the one with 300 iterations

and a batch size of 50, does not allow the network to learn the best weights and the biases for a

very low prediction error, while with many iterations the cost function can reach lower values

and better predictions.

Table 4-2. Comparison of all the combinations of parameters

NUMBER OF

ITERATIONS
BATCH SIZE

LEARNING

RATE
FINAL COST TIME

300

50 1e-4 0.65 4m 26s

100

1e-4 0.52 9m 14s

1e-2 0.87 9m 31s

500

50 1e-4 0.49 7m 33s

100

1e-4 0.24 15m 27s

1e-2 0.26 15m 45s

700

50 1e-4 0.22 10m 17s

100

1e-4 0.25 21m 40s

1e-2 0.05 21m 36s

1000

50 1e-4 0.28 14m 56s

100

1e-4 0.17 30m 53s

1e-2 0.08 30m 44s

46

4.3 Test

Once all the parameters have been validated, it is possible to test the two trained classifiers over

a new input dataset. Some of the previously mentioned parameters have not been tested yet,

because they depend on the test dataset itself like, for instance, the prediction threshold to be

used in the random forest. The images used for the testing step come from the AMOS dataset like

the ones used for the training of the classifiers, but from another fixed webcam over different

scenes.

At the end of the whole training and validation process, the three methods used during the test

are:

• a random forest trained with the BRIEF descriptors computed at the positive and negative

samples obtained using a sampling rate of 5 pixels and a NMS radius of 8 pixels;

• a random forest trained with the FREAK descriptors computed at the positive and

negative samples obtained using a sampling rate of 5 pixels and a NMS radius of 8 pixels;

• a CNN trained using the patches extracted at the positive and negative samples obtained

using a sampling rate of 5 pixels and a NMS radius of 8 pixels.

In order to speed up the process, since the difference of area under the curve during the validation

was not so high, when extracting the FREAK descriptors over unseen input images, these images

Figure 4-17. Random forest prediction using FREAK descriptors on an image from the Frankfurt

webcam

47

are regularly sampled with a sampling rate equal to 2. Figure 4-17 and Figure 4-18 show some

qualitative examples obtained using the random forest classifier with the FREAK descriptor.

When analyzing an image in a qualitative manner, it is important to define as good the keypoints

in specific positions, because the saliency of the points and, consequently, their ease to be found

in other images, strongly depend on the pixel neighborhood intensities. However, in this case,

since the points that we are looking for are not the ones with the highest repeatability,

understanding the quality of the detection without any data is quite hard. For instance, Figure 4-

19 shows a comparison between the predictions of a random forest trained using BRIEF

descriptors and a random forest trained using FREAK descriptors. At a first glance, FREAK seems

to be the best one, because it covers the most important areas and it follows the edges of the

shapes inside the image. On the other hand, BRIEF avoids some aspects of the image and,

moreover, seems to find points with no meaning, like the three points on the top left corner.

However, the matchability score obtained with the latter is higher with respect to the former, and

this can be explained by looking at the characteristics of the description methods. Indeed, both

BRIEF and FREAK extract some information from the intensities of the pixels in the neighborhood

Figure 4-18. Random forest prediction using FREAK descriptors on an image from the Courbevoie

webcam

48

of the salient point and this can lead to identify a point as positive even if it is not exactly on an

edge, but, maybe, near to an edge or to a region that presents a high saliency. It is important to

remember that the points we would like to find are the ones that can be found again in a similar

image and then, if a point does not belong to an important object or region of the image it does

not mean that it could not be an interesting location. As already mentioned, the prediction

threshold for a specific dataset has not been fixed yet because, as a consequence, it could be

Figure 4-19. Comparison between a random forest prediction using FREAK descriptors (up) and

BRIEF descriptors (down)

49

possible to end with no detected points or too many detected points and this would mean a wrong

detection in any case. A good solution would be to use the dynamic threshold used during the

extraction of the positive and negative samples, but this could lead to very low prediction

thresholds, which means keypoints with a bad quality.

Table 4-3. Thresholds and average number of keypoints for every webcam

DATASET COURBEVOIE FRANKFURT MEXICO PANORAMA STLOUIS

DESCRIPTOR

METHOD
BRIEF FREAK BRIEF FREAK BRIEF FREAK BRIEF FREAK BRIEF FREAK

THRESHOLD 0.68 0.75 0.7 0.8 0.65 0.7 0.7 0.8 0.7 0.85

AVG #KEYP 275 366 600 478 322 417 414 354 330 240

The average number of keypoints is important because when analyzing the methods through the

precision-recall, the total number of points has a strong influence on the final result. It is

important to note that in this thesis, the used labels for the random forest are -1 for the negative

samples and +1 for the positive samples, thus the threshold can span from -1 to +1. Figure 4-20

and Figure 4-21 show the comparison between the precision-recall curve obtained using different

predictive threshold over the Courbevoie and StLouis dataset respectively. In the case of

Courbevoie, when using the FREAK descriptor, a high value like 0.8 for the predictive threshold

penalizes the area under the curve, while a value of 0.75 gives the best result. In the same way,

Figure 4-20. Comparison between P-R curves obtained using FREAK descriptor and different

predictive thresholds over the Courbevoie dataset

50

the comparison between the predictive thresholds applied to the StLouis dataset shows that a too

high value for the threshold penalizes the detection.

Another important aspect is the speed of the detector. When a set of descriptors is fed to the

random forest they are analyzed one by one and they are assigned a prediction value that defines

their score. If the set of descriptors is big, a lot of time will be required for the forest to process

the input and the detection will be slow. Other parameters that influence the speed of the

classifier are, for instance, the chosen number of trees and the depth of each tree. In Table 4-4 are

shown the timings of the random forest applied to the test dataset.

Table 4-4. Average speed of the random forest applied to one image of the dataset (note that when

using FREAK a sampling rate of 2 is applied to the image)

 COURBEVOIE FRANKFURT MEXICO PANORAMA STLOUIS

BRIEF 2.7s 8.4s 2.7s 4.3s 2.7s

FREAK 2.6s 7s 2.2s 5.8s 3.9s

The convolutional neural network behaves in a similar way because a prediction threshold must

be chosen and the definition of the positive points depend on that value. After the upsampling of

the heat-map that the CNN produces, though, a NMS is necessary in order to get rid of all the

points that have been added to the image during the upsampling that are not maxima. Figure 4.20

shows an example of CNN trained over the Chamonix dataset and applied to an image from the

Figure 4-21. Comparison between P-R curves obtained using BRIEF descriptor and different

predictive thresholds over the StLouis dataset

51

StLouis dataset. At a first glance, the main difference that can be noted with respect to the results

from the random forests is that the tree on the left does not contain many positive points, while

as shown in Figure 4-19, the random forest identifies a lot of keypoints among the pixels of that

tree. This behavior is, probably, a consequence of the way the random forest is trained; indeed,

as already mentioned in Chapter 3 when talking about the clouds, training a classifier using a set

of descriptors can lead to a wrong classification due to a similar distribution of intensities in those

Figure 4-23. CNN classifier applied to an image from the StLouis webcam

Figure 4-22. CNN classifier applied to an image from the StLouis webcam

52

positions where the test of the descriptor is executed. When using patches, instead, this is less

likely to happen because the whole intensities distribution of a patch is hardly similar to other

intensities distributions inside the image. However, the detection of keypoints in the last case can

vary depending on the intensities and this makes the detection algorithm not robust with respect

to illumination changes. Indeed, when applying the CNN to the StLouis webcam images, if the tree

on the left is very dark few pixels are detected as keypoint, whereas if the tree is clearer the

detection is different. Figure 4-23 shows another example of CNN applied to an image of the

StLouis dataset with a strong illumination, where the tree clearly presents many salient points.

As a consequence, the results obtained using the precision-recall curve are not so good for the

CNN because many points are not consistently detected over the sequence of images. A possible

solution to this problem would be a higher number of training samples to be fed to the CNN during

the training step. The more the training data the higher the variety of patches to be analyzed by

the neural network that will learn, then, more robust weights and biases.

Figure 4-24 shows a comparison between 4 precision-call curves computed using the random

forest with both BRIEF and FREAK descriptors and the CNN again with both BRIEF and FREAK

descriptors. It is necessary to specify a description method also for the CNN because when

computing the curves a matching step is necessary to compare all the images with the first one.

The precision-recall curve with the highest area under the curve is the CNN with the BRIEF

descriptor, but also the random forest again with BRIEF has a great advantage over the other two

curves. In general, the CNN performs better than the random forest, but it is possible to have some

misleading results due to an error that occurs when upsampling the image with the bilinear

Figure 4-24. Comparisons between random forest and CNN with both BRIEF and FREAK

descriptors over the Mexico sequence

53

interpolation. Indeed, some new points that have a prediction value inferred by looking at the

neighborhood, could have an equal score and this can lead to a detection that is too dense in

specific areas. Since when

building the precision-recall

curves a matching error is

considered, if many points

are too near is easy to get a

higher result. A solution to

this problem could be a non-

maxima suppression, but

since all the points have the

same prediction, the only

result would be to keep them

all or to discard them. In this

thesis those points are kept.

This phenomenon can happen with some test images, but it is not always the case; indeed, Figure

4-25 and Figure 4-26 show that when applying the network to the Mexico sequence this problem

is not present, while when dealing with the Courbevoie dataset it is possible to have it.

Figure 4-25. CNN keypoint detection over an image from the

Mexico sequence

Figure 4-26.CNN keypoint detection over an image from the Courbevoie sequence

54

4.4 Comparison with TILDE

“Temporally Invariant Learned DEtector” uses a different approach for both the extraction of the

positive locations and for the classification. However, the general idea is the same, i.e. building a

keypoint detector using a trained classification algorithm. One of the most important differences

Figure 4-27. Keypoint detection using TILDE on an image from the Mexico sequence

Figure 4-28. Keypoint detection using the random forest on an image from the

Mexico sequence

55

between TILDE and the method developed in this thesis is that TILDE detect always almost 500

keypoints, while, with the random forest used here, the number of detected keypoints depends

on the threshold that is chosen. The few number of keypoints detected using the CNN is probably

due to the fact that too few training images have been used in this work, and this leads to values

of the predictions that are too low.

Figure 4-30 shows a comparison between the precision-recall curves obtained using the random

forest, the neural network and the method proposed in TILDE, all applied to the Courbevoie

Figure 4-29. Keypoint detection using the CNN on an image from the Mexico sequence

Figure 4-30. Comparisons between random forest, CNN and TILDE using BRIEF descriptor over the

Courbevoie sequence

56

sequence. It is easy to see that TILDE (only the best result that TILDE can obtain between the

“normal” approach and the fast one is considered here) outperforms the other two methods with

a final value of 0.37 for the recall and an AUC equal to 0.17. Figure 4-31 and Figure 4-32 show the

results from two others webcam sequences, namely Mexico and StLouis. In the case of Mexico,

the result is quite similar to the previous one, with a good performance from TILDE and worse

performances from the other two methods. When analyzing the StLouis sequence, instead, the

Random forest slightly outperforms TILDE with an AUC of 0.013 against 0.010. However, the

scores obtained over such dataset are quite small and, then, the difference is not so remarkable.

Figure 4-31. Comparisons between random forest, CNN and TILDE using BRIEF descriptor over the

Mexico sequence

Figure 4-32. Comparisons between random forest, CNN and TILDE using BRIEF descriptor over the

StLouis sequence

57

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

This work presented a machine learning approach for the first step of the detection-description-

matching pipeline, a common paradigm for many computer vision applications. The state of the

art of keypoint detection is composed by many algorithms that have been created and optimized

in order to find specific shapes and to detect keypoints that present a very high repeatability.

However, this does not guarantee that the salient points will be the optimal ones during the

successive matching step. In this thesis, an innovative approach has been developed for the

keypoint detection, with the purpose of maximizing the matchability of the detected keypoint.

The idea behind this work comes from “Learning a Descriptor-specific 3D Keypoint Detector” [9],

a paper in which the authors used a random forest classifier to detect points in 3D objects.

However, this thesis focused on the 2D case instead of the 3D and requires, then, an a priori

definition of the transformations the detector should be invariant to. In the 3D case the

transformations were 3D viewpoint changes, while here they consist of illumination changes due

to drastic weather variations.

The classifiers used in this work were a random forest and a convolutional neural network, both

trained after the definition of the positive and negative locations from which the training samples

are extracted. These positive and negative locations are the coordinates of the points that give

correct correspondences during a first matching step and the descriptors extracted at each one

of these points compose the set of training data for the random forest. The neural network,

instead, does not require any feature to be defined a priori because the salient information is

extracted autonomously from the patches that are used for the training of the network. After the

training of the classifiers, a validation of the parameters, such as the sampling rate of the training

images, the number of trees to be used in the forest, the learning rate of the neural network and

some others, has been done. During the final testing step, some possible configurations of

parameters, like the description method or the predictive threshold of the random forest, have

been tested on unseen input images undergoing the same type of transformation, i.e. illumination

changes, and compared to each other. In the last part of Chapter 4, the results obtained using the

methods developed in this thesis have been compared to the performances of the detector

developed in [6], in which a similar approach to the keypoint detection has been studied.

The gap of performances between TILDE and the two methods proposed in this work could be

filled with some expedients. For instance, it is possible to consider other transformations in

addition to the already considered illumination changes like, for example, rotation, translation

58

and scale. The positive and negative samples that are robust to such transformations can be used

for the extraction of the descriptors for the training of the random forest and for the extraction of

the patches to be used with the neural network. Regarding the CNN, a larger training dataset

would make the network more robust and more capable of finding keypoints. The only problem

with larger dataset is that it would be necessary to add samples to the already existing one that

are perfectly aligned or, otherwise, to align every image to the previous ones before the extraction

of the samples. It is also possible to train a different and more complex convolutional neural

network in order to better infer the weights and the biases. Finally, a possible solution to the

cluster of points with equal prediction values would be the definition of a function that can extract

a single point or some points from the clusters, for example by looking at the geometry of such

clusters. All these possible improvements are left to future investigations.

59

REFERENCES

[1] J. Canny, “A computational approach to edge detection”, IEEE Trans. PAMI, vol. 8, no. 6, pp. 679

–698, 1986

[2] C. Harris, M. Stephens, “A combined corner and edge detector”, Alvey Vision Conference, 1988

[3] Lowe, D.G., “Object recognition from local scale-invariant features”, International Journal of

Computer Vision, 2004.

[4] Rosten, E., Porter, R., Drummond, T., “Faster and better: A machine learning approach to

corner detection”, IEEE Trans. Pattern Analysis and Machine Intelligence, 2009.

[5] L. Breiman, “Random forests”, Machine Learning, 45(1):5– 32, 2001.

[6] Y. Verdie, K. M. Yi, P. Fua and V. Lepetit, "TILDE: A Temporally Invariant Learned DEtector",

Computer Vision and Patern Recognition (CVPR), 2015.

[7] M. Calonder, V. Lepetit, C. Strecha and P. Fua, “BRIEF: Binary Robust Independent Elementary

Features”, European Conference on Computer Vision, 2010.

[8] A. Alahi, R. Ortiz and P. Vandergheynst. “FREAK: Fast Retina Keypoint”, IEEE Conference on

Computer Vision and Pattern Recognition, 2012.

[9] S. Salti, F. Tombari, R. Spezialetti and L. D. Stefano, “Learning a Descriptor-specific 3D Keypoint

Detector”, Internationl Conference on Computer Vision, 2015.

[10] S. Salti, F. Tombari, and L. D. Stefano, “Shot: Unique signatures of histograms for surface and

texture description”, Computer Vision and Image Understanding, 125(0):251 – 264, 2014.

[11] M. Muja, D. G. Lowe, “Fast Approximate Nearest Neighbors with Automatic Algorithm

Configuration”, International Conference on Computer Vision, 2009.

[12] TensorFlow, https://www.tensorflow.org/

[13] AMOS dataset, N. Jacobs, N. Roman, and R. Pless. "Consistent Temporal Variations in Many

Outdoor Scenes", Computer Vision and Pattern Recognition, 2007.

[14] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and

L. Van Gool, “A Comparison of Affine Region Detectors”, International Journal of Computer Vision,

65(1/2):43–72, 2005.

[15] C. Zitnick and K. Ramnath. “Edge Foci Interest Points”, In International Conference on

Computer Vision, 2011.

