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Abstract - Data is increasing so rapidly that new data warehousing approaches are required to process and analyze data. Aggregation 

of data incrementally is needed to fast access of data and compute aggregation functions. Multidimensional arrays are generally used 

for this purpose. But some disadvantages such as address space requirement is large and processing time is comparatively slow in case 

of aggregation. For this purpose we use Extendible Karnaugh Array (EKA). EKA is an efficient scheme which has better performance 
than other data structures that we have tested in our research. In this research work we use EKA as basic structure for implementing 
incremental aggregation of data and evaluate its performance over other approaches. We use Multidimensional Online Analytical 

Processing (MOLAP) which stores data in optimized multi-dimensional array storage, rather than in a relational database. We create 
4 and 6 dimensional MOLAP data cube using Traditional Multidimensional Array (TMA) and EKA scheme and compare incremental 

aggregation with Relational Online Analytical Processing (ROLAP). The effective outcome of EKA structure for incremental 
aggregation on 4 and 6 dimensional MOLAP structure is shown by some experimental results and efficiency is proved for n higher 

dimensions. 
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1. Introduction 

 

ggregation of data is widely used in data 

warehousing applications for rapid calculation 

and easy access. Methods of aggregation has been 

studied and commercialized with great success [1]. Data 

warehouse and aggregates can be recomputed with the 

addition of new data, but it is quite expensive to recompute 

the whole process. Since the degree of modification to 

base data cube is normally small, incremental aggregation 

method can be applied for dynamically increasing 

database datasets [2]. However, recently, the emergence 
of the data stream processing presents new challenges to 

compute incremental aggregates over ever-changing data 

streams [1]. Various data structures are used to compute 

incremental aggregation efficiently with less time and less 

storage. Here we implement Extendible Karnaugh Array 

(EKA) scheme to aggregate data incrementally. 

Performance of incremental aggregation using EKA is 

quite enhanced in comparison to traditional 

multidimensional array and relational database. In EKA 

address space overflow occurs later in comparison to 

traditional extendible array. So, better performance is 

achieved. 

 

Multidimensional Online Analytical Processing 

(MOLAP) is an alternative to the Relational Online 

Analytical Processing (ROLAP) technology. Both 

ROLAP and MOLAP are designed to allow analysis of 

data through the use of a multidimensional data model, but 

MOLAP differs significantly in the way that it requires the 

pre-computation and storage of information in the data 

cube. Most MOLAP solutions store these data in 

optimized multidimensional array storage, rather than in a 
relational database (i.e. in ROLAP). There are many 

existing array systems to represent multidimensional data 

for MOLAP and incremental aggregation such as 

Traditional Multidimensional Array (TMA) [3][4], 

Extended Karnaugh Map Representation (EKMR) [5][6] 

and Karnaugh Representation of Extendible Array (KEA) 

[7]. TMA is one of the storage structures for MOLAP and 

incremental aggregation of data but one serious drawback 

is that they are not dynamically extendible. To insert a new 

column value in the TMA the total reorganization of the 

data in array is necessary. The idea of extendible array 
solves the problem of extendibility. So, an efficient 

extendible array is necessary for efficient incremental 

aggregation.  

 

Extendible Karnaugh Array (EKA) proposed in [8][9] is 

an efficient scheme which has better performance than 

other data structures. We evaluated the performance of 

this data structure when implemented for MOLAP. 4 and 

6 dimensional MOLAP data cube is used here. The 

remainder of this paper is organized as follows. In section 

2, we discuss about EKA briefly. Then in section 3, we 

A
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focus on incremental aggregation using this scheme. 

Experimental result is discussed in section 4. Works that 

are related to this work are mentioned in section 5. The 

paper concludes with section 6, which presents a summary 

of our work and application. 

 

2. Extendible Karnaugh Array 

2.1 The Four Dimensional EKA Scheme 

The idea of EKA is based on Karnaugh Map (K-map) 

which is used for minimizing Boolean expressions. Details 

of EKA structure is proposed in [8][9]. In this section we 

have little insight of EKA. Figure 1 (a) shows a 4 variable 

K-map to represent possible 24 combinations of a Boolean 

function. The variables (w, x) represent the row and the 

variables (y, z) represent the column that indicates the 

possible combinations in a two dimensional array for the 

four Boolean variables. We can have array representation 

of the K-map for 4 variable Boolean functions which is 
shown in Figure 1(b). 

 

 

Figure 1.  Boolean function using K-map. 

DEFINITION 1: (Adjacent Dimension). The dimensions (or 

index variables) that are placed together in the Boolean 

function representation of K-map are termed as adjacent 

dimensions (written as adj(i) = j). The dimensions (w, x) 

are the adjacent dimensions in Fig. 1(a) and (b) i.e. adj(w) 

= x or adj(x) = w.    

Figure 2 shows the dynamic extension of the array of 

Figure 1(b). EKA is a system of array which is the 

combination of sub arrays. To maintain dynamic extension 

and the subarrays, three types of auxiliary tables are 

needed. They are history table, coefficient table, and 

address table. These tables are maintained for each 

dimension. Construction history of the subarrays is stored 

in the history table. The address table stores the first 

address of a segment and is used to compute the correct 

position of an element. Any element in the n dimensional 

array is determined by an addressing function as follows 
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The coefficients of the addressing function namely  〈

1221121 ,...,...,... lllllll nn −−
〉 are referred as coefficient 

vector which are stored in coefficient table. The subarrays 

are divided into equal size segments (See Figure 2) that 

can be stored contiguously on the disk. Consider a 4-

dimensional array of size A[l1, l2, l3, l4]  where li (i = 1, 2, 

3, 4) is the length of each dimension di that varies from 0 

to li −1.  The dimension (d1, d3) and (d2, d4) are grouped as 

adjacent dimensions respectively. The length of the 

extended subarray which is allocated dynamically for the 

extension along dimension di is determined by 

∏ ��
�
��� (� ≠ 
) 

 

The number of segments in any subarray (belongs to 

dimension di) is determined by the length of the adjacent 

dimension of di. The number of segments determines the 

number of entries in the address table and is equal to from 

the length of adjacent dimension. After extending along 
any dimension di, the length of the corresponding 

dimension is incremented by 1. For each extension the 

auxiliary tables namely history table, address table and 

coefficient tables are maintained. Figure 4 shows the 

extension realization of a 4 dimensional EKA, where Hd1, 

Cd1  

 

 
 

Figure 2. Logical extension of 4-dimensional EKA. 

 

and Ad1 are history table, coefficient table and address 

tables of dimension 1. In this figure extension is occurred 

by extending d2, then d3,d4 and d1  The EKA scheme can 

be generalized to n dimensions using a set of EKA(4)s. We 
write EKA(n) to denote an n dimensional EKA. Figure 3 

shows an EKA(6) represented by a set of EKA(4)s in two 

levels containing 5th and 6th dimensions each of lengths 3 

and 2 respectively. Each higher dimensions (d5 and d6) are 

represented as one dimensional array of pointers that 

points to the next lower dimension and each cell of d5 

points to each of the EKA(4). So each EKA(4) can be 

accessed simply by using the subscripts of higher 

dimensions. In the case of EKA(n), the similar hierarchical 

structure will be needed to locate the appropriate EKA(4). 

Hence the EKA(n) is a set of EKA(4)s and a set of pointer 
arrays. The segments are always 2 dimensional for an 
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EKA (n). Hence in this model the coefficient vector 

becomes single dimensional such as 〈l1〉 only. The EKA 
can be extended along any dimension dynamically during 

runtime only by the cost of these auxiliary tables. 

 

Let the value stored in the subscript (x1, x2, x3, x4) is to be 

retrieved. The maximum history value among the 

subscripts hmax = max (Hd1[x1], Hd2[x2], Hd3[x3], Hd4[x4]) 

and its corresponding dimension (say d1) that corresponds 

the hmax is determined. hmax is the subarray that contains 

our desired element. The first address and offset from the 
first address is found out using the auxiliary tables. The 

adjacent dimension adj(d1) (say d3 ) and its subscript x3 is 

found. The first address is found from Hd1[x1].Ad1[x3]. The 

offset from the first address is computed using the 

addressing function; coefficient vectors are stored in Cd1. 

Then adding the offset with the first address, the desired 

array cell (x1, x2, x3, x4) is found. 

 

 
 

Figure 3. The realization of EKA(n). 

 

 

2.2 Illustrative Example of Four Dimensional EKA 
 

We illustrate an example in this section. Here, from the 

initial set up EKA(4) is extended through d2, d3, d4, d1 

dimensions sequentially. The values of the subscripts (1, 
0, 1, 1) are determined as follows (See Fig. 4). Here hmax 

= max( Hd1[1] = 4, Hd2[0] = 0, Hd3[1] = 2, Hd4[1] = 3) =4, 

and dimension corresponding to hmax is d1 whose subscript 

is x1=1 and adj(d1) = d3 and x3 = 1. So the first address is 

in Hd1[1]. Ad1[1] = 12, and offset is calculated using the 

coefficient vector stored in coefficient table Cd1[1] = 2. 

Here offset = Cd1[1] * x4 + x2 = 2*1+0 = 2. Finally adding 

the first address with the offset the desired location 12 + 2 

= 14 is found (encircled in Figure 4) 

 

 
 

Figure 4.  Illustrative example of 4-dimensional EKA. 

3. Incremental Aggregation of data using 

EKA 

3.1 Traditional ways for Incremental Aggregation 

a) TMA: Traditional multidimensional arrays are used for 

incremental aggregation. Their main disadvantage is that, 

when we add length of a dimension then whole array must 

be reorganized. For adding extra dimension, a new array of 

new dimension is declared and all data from the array of 

previous dimension is to be copied to the new array.  

b) ROLAP: Relational OLAP is maintained inrelational 

data table stored in a database management systems. Data 
cube is created according to aggregation function. When 

new data is to be inserted the whole data with previous and 

new data need to be recalculated. The reqiured storage and 

time to aggregate data is also high compared to the array 

storage system. 

 Here in Figure 5 (a) we see a relational base table and 

Figure 5 (b) there is ROLAP data cube for various 

combination for SUM aggregate. If we add new data in the 

Figure 5 (a), then data cube is recomputed. In this way, we 

can create 6 dimensional EKA and ROLAP base table and 

data cube. 

 

 
(a) Base Table 

   … 

 

  … 
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(b) Data Cube 

 

Figure 5. ROLAP Base table and Data Cube. 

 

3.2 Construction of MOLAP Structure using EKA 

 
Using EKA structure illustrated in section 2 we made data 

cube. We use data file to write the value of the price and 

used mapping for each index. Four tuple such as <0,0,0,0> 

is used to indicate the position of the value in file. If S1, 

P1, T1 and C1 is to be selected then tuple is created as 

<1,1,1,1> and this key value is pointed to the position of 

address of a file. Data cube is computed for all 
combination and stored incrementally. If new data is 

inserted than sum is calculated from previous sum and 

new data. For n higher dimension we use n tuples. Here 

we use 6 tuples for EKA(6) data cube. 

 

 

Figure 6. Data mapping from primary memory to secondary storage. 

3.3 Incremental Aggregation calculation on 

MOLAP using EKA Data Structure 

 

In Figure 7 we propose our structure graphically for 

incremental aggregation. We use EKA structure as the 

base of our aggregate  

 

 

 

 

 

Figure 7. Incremental Aggregation calculation on MOLAP using EKA 

Data Structure. 
 

structure. We calculate SUM() aggregation function in 

four dimensional EKA scheme along with additional data 

structure which hold sum of value such as product price in 
the extendible array and also we keep track of four 

properties of value along with four dimensions. From this 

structure we can derive much more complex system which 

has numerous prices of various combinations of shop, 

product, time and city. We have added country and 

continent by using 6 dimensional EKA. In these way we 

can get our results for n (n = 4, 5, 6, 7…n) dimensional 

EKA. With the inclusion of new price value of different 

combination of these four variables the sum is 

incrementally updated using the previous sum. So, we 

need not calculate whole aggregation from the beginning. 

 

4. Experimental Results 
 

In our method we used EKA scheme for both 4 and 6 

dimensions. EKA and TMA is stored in secondary storage. 

An auxiliary table of EKA and mapping function to point 

position of data is stored in main memory as their size is 

small. The test results for aggregation function SUM() is 

analyzed in this section.  

 

We run all our tests on a computer with 4GB RAM having 

4 Kbyte of disk page size and processor of 2.5 GHz (4 

CPU’s). 
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4.1 Incremental Aggregation Computing Time 

Comparison 

 

We computed time for incremental aggregation and 

storage needed in MOLAP using EKA, TMA and ROLAP 

when length (L) of all dimensions is 20 and 40 for both 4 

and 6 dimensional MOLAP. 

 

a) Computation for 4 dimension:  

 
When data density (ρ) is less MOLAP using TMA(4) has 

bad performance compared to MOLAP using EKA(4) and 

ROLAP(4). When data density increases ROLAP(4) 

needs increased time compared to other two methods and 

performance of MOLAP using EKA(4) is increased. At ρ 

= 0.7 we observed that ROLAP(4) needs 13 times more 

time than MOLAP using EKA(4) when L= 20 and 17 
times more when L =  40. 

 

 
Figure 8. Incremental operation time comparison between MOLAP 

using EKA(4), TMA(4) and ROLAP(4) (L=20) 

 

 
 

Figure 9. Incremental operation time comparison between MOLAP 
using EKA(4), TMA(4) and ROLAP(4) (L=40) 

 

b) Computation for 6 dimension:  
 

When data density (ρ) is less MOLAP using TMA(6) has 

bad performance compared to MOLAP using EKA(6) and 

ROLAP(6). When data density increases ROLAP(6) 

needs increased time compared to other two methods and 

performance of MOLAP using EKA(6) is increased. At ρ 

= 0.7 we observed that ROLAP(6) needs 11 times more 

time than MOLAP using EKA(6) when L= 20 and 35 

times more when L =  40. 

 

 
Figure 10. Incremental operation time comparison between MOLAP 

using EKA(6), TMA(6) and ROLAP(6) (L=20) 

 

 
Figure 11. Incremental operation time comparison between MOLAP 

using EKA(6), TMA(6) and ROLAP(6) (L=40) 

 

4.2 Storage Comparison for Incremental 

Aggregation 

 

a) Computation for 4 dimension:  
 

In storage comparison we observed that MOLAP using 

EKA(4) and TMA(4) takes same space. When data density 

is less ROLAP(4) takes less space. But with the increase 

of data density MOLAP using EKA(4) and TMA(4) take 

less space than ROLAP(4). At ρ = 0.7 we observed that 

ROLAP(4) needs 4 times more space than MOLAP using 

EKA(4) for both configuration of L = 20 and L= 40. 

 

 
Figure 12. Storage comparison between MOLAP using EKA(4), 

TMA(4) and ROLAP (L=20) 
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Figure 13. Storage comparison between MOLAP using EKA(4), 

TMA(4) and ROLAP (L=40) 
 

b) Computation for 6 dimension: 
 

In storage comparison we observed that MOLAP using 

EKA(6) and TMA(6) takes same space. When data density 

is less ROLAP(6) takes less space. But with the increase 

of data density MOLAP using EKA(6) and TMA(6) take 

less space than ROLAP(6). At ρ = 0.7 we observed that 

ROLAP(6) needs 4 times more space than MOLAP using 

EKA(6) for both configuration of L = 20 and L= 40. 
 

 
Figure 14. Storage comparison between MOLAP using EKA(6), 

TMA(6) and ROLAP (L=20) 

 

 
Figure 15. Storage comparison between MOLAP using EKA(6), 

TMA(6) and ROLAP (L=40) 

 

5. Related Works 
 

There are several works has been done on incremental 

aggregation on multidimensional array scheme. In [10] 

aggregation is calculated with relational table and 

multidimensional array. But extendible arrays are not used 

here to evaluate performance. Processing in the array 

based algorithm is done chunk by chunk basis on MOLAP 

systems in [10][11]. They also uses conventional 

multidimensional array. Multidimensional extendible 

array is used in [12] and a data structure is proposed to 

retrieve, compress and reorganize data for fast access and 

less memory. So, none of these works evaluate the 

performance of EKA scheme on MOLAP cube and 

incremental aggregation. We have shown that EKA 

structure is quite better to calculate incremental aggregates 

in MOLAP systems 

 

6. Conclusion 
 

We propose and evaluate the performance of an efficient 

extendible MOLAP system to aggregate data 

incrementally with low cost in comparison with other two 

approaches. This approach saves both time and storage for 

aggregation. A large amount of space and time is reduced 

in this approach as data reorganization is not necessary. 
This technique can be used in data warehousing 

applications for efficient aggregation and data analysis. 

 

7. Future Scope 
 

This technique can be used in data warehousing 

applications for efficient aggregation and data analysis. 
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