
IJCSN International Journal of Computer Science and Network, Volume 6, Issue 2, April 2017
ISSN (Online): 2277-5420
www.IJCSN.org
Impact Factor: 1.5

58

Copyright (c) 2017 International Journal of Computer Science and Network. All Rights Reserved.

Incremental Aggregation on MOLAP Cube

Based on n-Dimensional Extendible Karnaugh

Arrays

1 Jakaria Rabbi; 2 Md. Abdul Awal; 3 K M Azharul Hasan

1, 2, 3 Department of Computer Science and Engineering,
Khulna University of Engineering & Technology (KUET), Khulna 9203, Bangladesh.

Abstract - Data is increasing so rapidly that new data warehousing approaches are required to process and analyze data. Aggregation

of data incrementally is needed to fast access of data and compute aggregation functions. Multidimensional arrays are generally used

for this purpose. But some disadvantages such as address space requirement is large and processing time is comparatively slow in case

of aggregation. For this purpose we use Extendible Karnaugh Array (EKA). EKA is an efficient scheme which has better performance
than other data structures that we have tested in our research. In this research work we use EKA as basic structure for implementing
incremental aggregation of data and evaluate its performance over other approaches. We use Multidimensional Online Analytical

Processing (MOLAP) which stores data in optimized multi-dimensional array storage, rather than in a relational database. We create
4 and 6 dimensional MOLAP data cube using Traditional Multidimensional Array (TMA) and EKA scheme and compare incremental

aggregation with Relational Online Analytical Processing (ROLAP). The effective outcome of EKA structure for incremental
aggregation on 4 and 6 dimensional MOLAP structure is shown by some experimental results and efficiency is proved for n higher

dimensions.

Keywords—Multidimensional Array, Extendible Array, Karnaugh Map, Dynamic Extension, Data Cube, ROLAP, OLAP, MOLAP,

EKA, TMA.

1. Introduction

ggregation of data is widely used in data

warehousing applications for rapid calculation

and easy access. Methods of aggregation has been

studied and commercialized with great success [1]. Data

warehouse and aggregates can be recomputed with the

addition of new data, but it is quite expensive to recompute

the whole process. Since the degree of modification to

base data cube is normally small, incremental aggregation

method can be applied for dynamically increasing

database datasets [2]. However, recently, the emergence
of the data stream processing presents new challenges to

compute incremental aggregates over ever-changing data

streams [1]. Various data structures are used to compute

incremental aggregation efficiently with less time and less

storage. Here we implement Extendible Karnaugh Array

(EKA) scheme to aggregate data incrementally.

Performance of incremental aggregation using EKA is

quite enhanced in comparison to traditional

multidimensional array and relational database. In EKA

address space overflow occurs later in comparison to

traditional extendible array. So, better performance is

achieved.

Multidimensional Online Analytical Processing

(MOLAP) is an alternative to the Relational Online

Analytical Processing (ROLAP) technology. Both

ROLAP and MOLAP are designed to allow analysis of

data through the use of a multidimensional data model, but

MOLAP differs significantly in the way that it requires the

pre-computation and storage of information in the data

cube. Most MOLAP solutions store these data in

optimized multidimensional array storage, rather than in a
relational database (i.e. in ROLAP). There are many

existing array systems to represent multidimensional data

for MOLAP and incremental aggregation such as

Traditional Multidimensional Array (TMA) [3][4],

Extended Karnaugh Map Representation (EKMR) [5][6]

and Karnaugh Representation of Extendible Array (KEA)

[7]. TMA is one of the storage structures for MOLAP and

incremental aggregation of data but one serious drawback

is that they are not dynamically extendible. To insert a new

column value in the TMA the total reorganization of the

data in array is necessary. The idea of extendible array
solves the problem of extendibility. So, an efficient

extendible array is necessary for efficient incremental

aggregation.

Extendible Karnaugh Array (EKA) proposed in [8][9] is

an efficient scheme which has better performance than

other data structures. We evaluated the performance of

this data structure when implemented for MOLAP. 4 and

6 dimensional MOLAP data cube is used here. The

remainder of this paper is organized as follows. In section

2, we discuss about EKA briefly. Then in section 3, we

A

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by E-LIS

https://core.ac.uk/display/83519164?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IJCSN International Journal of Computer Science and Network, Volume 6, Issue 2, April 2017
ISSN (Online): 2277-5420
www.IJCSN.org
Impact Factor: 1.5

59

Copyright (c) 2017 International Journal of Computer Science and Network. All Rights Reserved.

focus on incremental aggregation using this scheme.

Experimental result is discussed in section 4. Works that

are related to this work are mentioned in section 5. The

paper concludes with section 6, which presents a summary

of our work and application.

2. Extendible Karnaugh Array

2.1 The Four Dimensional EKA Scheme

The idea of EKA is based on Karnaugh Map (K-map)

which is used for minimizing Boolean expressions. Details

of EKA structure is proposed in [8][9]. In this section we

have little insight of EKA. Figure 1 (a) shows a 4 variable

K-map to represent possible 24 combinations of a Boolean

function. The variables (w, x) represent the row and the

variables (y, z) represent the column that indicates the

possible combinations in a two dimensional array for the

four Boolean variables. We can have array representation

of the K-map for 4 variable Boolean functions which is
shown in Figure 1(b).

Figure 1. Boolean function using K-map.

DEFINITION 1: (Adjacent Dimension). The dimensions (or

index variables) that are placed together in the Boolean

function representation of K-map are termed as adjacent

dimensions (written as adj(i) = j). The dimensions (w, x)

are the adjacent dimensions in Fig. 1(a) and (b) i.e. adj(w)

= x or adj(x) = w.

Figure 2 shows the dynamic extension of the array of

Figure 1(b). EKA is a system of array which is the

combination of sub arrays. To maintain dynamic extension

and the subarrays, three types of auxiliary tables are

needed. They are history table, coefficient table, and

address table. These tables are maintained for each

dimension. Construction history of the subarrays is stored

in the history table. The address table stores the first

address of a segment and is used to compute the correct

position of an element. Any element in the n dimensional

array is determined by an addressing function as follows

1 2 2 1

1 2 1 1 2 2 1 1 2 1

(, , , . . . , ,)

n n n

n n n n

f x x x x x

l l l x l l l x l x x

− −

− − −
= + + + +

The coefficients of the addressing function namely 〈

1221121 ,...,...,... lllllll nn −−
〉 are referred as coefficient

vector which are stored in coefficient table. The subarrays

are divided into equal size segments (See Figure 2) that

can be stored contiguously on the disk. Consider a 4-

dimensional array of size A[l1, l2, l3, l4] where li (i = 1, 2,

3, 4) is the length of each dimension di that varies from 0

to li −1. The dimension (d1, d3) and (d2, d4) are grouped as

adjacent dimensions respectively. The length of the

extended subarray which is allocated dynamically for the

extension along dimension di is determined by

∏ ��
�
��� (� ≠
)

The number of segments in any subarray (belongs to

dimension di) is determined by the length of the adjacent

dimension of di. The number of segments determines the

number of entries in the address table and is equal to from

the length of adjacent dimension. After extending along
any dimension di, the length of the corresponding

dimension is incremented by 1. For each extension the

auxiliary tables namely history table, address table and

coefficient tables are maintained. Figure 4 shows the

extension realization of a 4 dimensional EKA, where Hd1,

Cd1

Figure 2. Logical extension of 4-dimensional EKA.

and Ad1 are history table, coefficient table and address

tables of dimension 1. In this figure extension is occurred

by extending d2, then d3,d4 and d1 The EKA scheme can

be generalized to n dimensions using a set of EKA(4)s. We
write EKA(n) to denote an n dimensional EKA. Figure 3

shows an EKA(6) represented by a set of EKA(4)s in two

levels containing 5th and 6th dimensions each of lengths 3

and 2 respectively. Each higher dimensions (d5 and d6) are

represented as one dimensional array of pointers that

points to the next lower dimension and each cell of d5

points to each of the EKA(4). So each EKA(4) can be

accessed simply by using the subscripts of higher

dimensions. In the case of EKA(n), the similar hierarchical

structure will be needed to locate the appropriate EKA(4).

Hence the EKA(n) is a set of EKA(4)s and a set of pointer
arrays. The segments are always 2 dimensional for an

00 01 11 10

00

01

11

 10

yz
wx 0

0 1 1 0

0

1

1

0

(a) 4 variable K-map

1
y

(b) Array representation of K-map

w
x

z

0

1 0 1 0 1

0

1

0

1

0

1

d2

d3

d4

Extend d2

Extend d4

Extend d3

Extend d1

(a)

0 1

d1

(b)

0 1

0

1

2

0 1 0 1

0
1

0

1
0

1

(c)

0 1 0 1 0 1

0 1 2

0

1

0

1

0

1

0 1 2 0 1 2

(e)

0 1

0

1

0

1

0

1
0

1

(d)

0 1

0

1

2
0

1

2

 0 1 0 1

IJCSN International Journal of Computer Science and Network, Volume 6, Issue 2, April 2017
ISSN (Online): 2277-5420
www.IJCSN.org
Impact Factor: 1.5

60

Copyright (c) 2017 International Journal of Computer Science and Network. All Rights Reserved.

EKA (n). Hence in this model the coefficient vector

becomes single dimensional such as 〈l1〉 only. The EKA
can be extended along any dimension dynamically during

runtime only by the cost of these auxiliary tables.

Let the value stored in the subscript (x1, x2, x3, x4) is to be

retrieved. The maximum history value among the

subscripts hmax = max (Hd1[x1], Hd2[x2], Hd3[x3], Hd4[x4])

and its corresponding dimension (say d1) that corresponds

the hmax is determined. hmax is the subarray that contains

our desired element. The first address and offset from the
first address is found out using the auxiliary tables. The

adjacent dimension adj(d1) (say d3) and its subscript x3 is

found. The first address is found from Hd1[x1].Ad1[x3]. The

offset from the first address is computed using the

addressing function; coefficient vectors are stored in Cd1.

Then adding the offset with the first address, the desired

array cell (x1, x2, x3, x4) is found.

Figure 3. The realization of EKA(n).

2.2 Illustrative Example of Four Dimensional EKA

We illustrate an example in this section. Here, from the

initial set up EKA(4) is extended through d2, d3, d4, d1

dimensions sequentially. The values of the subscripts (1,
0, 1, 1) are determined as follows (See Fig. 4). Here hmax

= max(Hd1[1] = 4, Hd2[0] = 0, Hd3[1] = 2, Hd4[1] = 3) =4,

and dimension corresponding to hmax is d1 whose subscript

is x1=1 and adj(d1) = d3 and x3 = 1. So the first address is

in Hd1[1]. Ad1[1] = 12, and offset is calculated using the

coefficient vector stored in coefficient table Cd1[1] = 2.

Here offset = Cd1[1] * x4 + x2 = 2*1+0 = 2. Finally adding

the first address with the offset the desired location 12 + 2

= 14 is found (encircled in Figure 4)

Figure 4. Illustrative example of 4-dimensional EKA.

3. Incremental Aggregation of data using

EKA

3.1 Traditional ways for Incremental Aggregation

a) TMA: Traditional multidimensional arrays are used for

incremental aggregation. Their main disadvantage is that,

when we add length of a dimension then whole array must

be reorganized. For adding extra dimension, a new array of

new dimension is declared and all data from the array of

previous dimension is to be copied to the new array.

b) ROLAP: Relational OLAP is maintained inrelational

data table stored in a database management systems. Data
cube is created according to aggregation function. When

new data is to be inserted the whole data with previous and

new data need to be recalculated. The reqiured storage and

time to aggregate data is also high compared to the array

storage system.

 Here in Figure 5 (a) we see a relational base table and

Figure 5 (b) there is ROLAP data cube for various

combination for SUM aggregate. If we add new data in the

Figure 5 (a), then data cube is recomputed. In this way, we

can create 6 dimensional EKA and ROLAP base table and

data cube.

(a) Base Table

 …

 …

d5

d6

 0 1 …

 0 1 2 …

EKA(4) EKA(4) EKA(4) EKA(4) EKA(4) EKA(4)

0 1 2 …

 …

IJCSN International Journal of Computer Science and Network, Volume 6, Issue 2, April 2017
ISSN (Online): 2277-5420
www.IJCSN.org
Impact Factor: 1.5

61

Copyright (c) 2017 International Journal of Computer Science and Network. All Rights Reserved.

(b) Data Cube

Figure 5. ROLAP Base table and Data Cube.

3.2 Construction of MOLAP Structure using EKA

Using EKA structure illustrated in section 2 we made data

cube. We use data file to write the value of the price and

used mapping for each index. Four tuple such as <0,0,0,0>

is used to indicate the position of the value in file. If S1,

P1, T1 and C1 is to be selected then tuple is created as

<1,1,1,1> and this key value is pointed to the position of

address of a file. Data cube is computed for all
combination and stored incrementally. If new data is

inserted than sum is calculated from previous sum and

new data. For n higher dimension we use n tuples. Here

we use 6 tuples for EKA(6) data cube.

Figure 6. Data mapping from primary memory to secondary storage.

3.3 Incremental Aggregation calculation on

MOLAP using EKA Data Structure

In Figure 7 we propose our structure graphically for

incremental aggregation. We use EKA structure as the

base of our aggregate

Figure 7. Incremental Aggregation calculation on MOLAP using EKA

Data Structure.

structure. We calculate SUM() aggregation function in

four dimensional EKA scheme along with additional data

structure which hold sum of value such as product price in
the extendible array and also we keep track of four

properties of value along with four dimensions. From this

structure we can derive much more complex system which

has numerous prices of various combinations of shop,

product, time and city. We have added country and

continent by using 6 dimensional EKA. In these way we

can get our results for n (n = 4, 5, 6, 7…n) dimensional

EKA. With the inclusion of new price value of different

combination of these four variables the sum is

incrementally updated using the previous sum. So, we

need not calculate whole aggregation from the beginning.

4. Experimental Results

In our method we used EKA scheme for both 4 and 6

dimensions. EKA and TMA is stored in secondary storage.

An auxiliary table of EKA and mapping function to point

position of data is stored in main memory as their size is

small. The test results for aggregation function SUM() is

analyzed in this section.

We run all our tests on a computer with 4GB RAM having

4 Kbyte of disk page size and processor of 2.5 GHz (4

CPU’s).

IJCSN International Journal of Computer Science and Network, Volume 6, Issue 2, April 2017
ISSN (Online): 2277-5420
www.IJCSN.org
Impact Factor: 1.5

62

Copyright (c) 2017 International Journal of Computer Science and Network. All Rights Reserved.

4.1 Incremental Aggregation Computing Time

Comparison

We computed time for incremental aggregation and

storage needed in MOLAP using EKA, TMA and ROLAP

when length (L) of all dimensions is 20 and 40 for both 4

and 6 dimensional MOLAP.

a) Computation for 4 dimension:

When data density (ρ) is less MOLAP using TMA(4) has

bad performance compared to MOLAP using EKA(4) and

ROLAP(4). When data density increases ROLAP(4)

needs increased time compared to other two methods and

performance of MOLAP using EKA(4) is increased. At ρ

= 0.7 we observed that ROLAP(4) needs 13 times more

time than MOLAP using EKA(4) when L= 20 and 17
times more when L = 40.

Figure 8. Incremental operation time comparison between MOLAP

using EKA(4), TMA(4) and ROLAP(4) (L=20)

Figure 9. Incremental operation time comparison between MOLAP
using EKA(4), TMA(4) and ROLAP(4) (L=40)

b) Computation for 6 dimension:

When data density (ρ) is less MOLAP using TMA(6) has

bad performance compared to MOLAP using EKA(6) and

ROLAP(6). When data density increases ROLAP(6)

needs increased time compared to other two methods and

performance of MOLAP using EKA(6) is increased. At ρ

= 0.7 we observed that ROLAP(6) needs 11 times more

time than MOLAP using EKA(6) when L= 20 and 35

times more when L = 40.

Figure 10. Incremental operation time comparison between MOLAP

using EKA(6), TMA(6) and ROLAP(6) (L=20)

Figure 11. Incremental operation time comparison between MOLAP

using EKA(6), TMA(6) and ROLAP(6) (L=40)

4.2 Storage Comparison for Incremental

Aggregation

a) Computation for 4 dimension:

In storage comparison we observed that MOLAP using

EKA(4) and TMA(4) takes same space. When data density

is less ROLAP(4) takes less space. But with the increase

of data density MOLAP using EKA(4) and TMA(4) take

less space than ROLAP(4). At ρ = 0.7 we observed that

ROLAP(4) needs 4 times more space than MOLAP using

EKA(4) for both configuration of L = 20 and L= 40.

Figure 12. Storage comparison between MOLAP using EKA(4),

TMA(4) and ROLAP (L=20)

IJCSN International Journal of Computer Science and Network, Volume 6, Issue 2, April 2017
ISSN (Online): 2277-5420
www.IJCSN.org
Impact Factor: 1.5

63

Copyright (c) 2017 International Journal of Computer Science and Network. All Rights Reserved.

Figure 13. Storage comparison between MOLAP using EKA(4),

TMA(4) and ROLAP (L=40)

b) Computation for 6 dimension:

In storage comparison we observed that MOLAP using

EKA(6) and TMA(6) takes same space. When data density

is less ROLAP(6) takes less space. But with the increase

of data density MOLAP using EKA(6) and TMA(6) take

less space than ROLAP(6). At ρ = 0.7 we observed that

ROLAP(6) needs 4 times more space than MOLAP using

EKA(6) for both configuration of L = 20 and L= 40.

Figure 14. Storage comparison between MOLAP using EKA(6),

TMA(6) and ROLAP (L=20)

Figure 15. Storage comparison between MOLAP using EKA(6),

TMA(6) and ROLAP (L=40)

5. Related Works

There are several works has been done on incremental

aggregation on multidimensional array scheme. In [10]

aggregation is calculated with relational table and

multidimensional array. But extendible arrays are not used

here to evaluate performance. Processing in the array

based algorithm is done chunk by chunk basis on MOLAP

systems in [10][11]. They also uses conventional

multidimensional array. Multidimensional extendible

array is used in [12] and a data structure is proposed to

retrieve, compress and reorganize data for fast access and

less memory. So, none of these works evaluate the

performance of EKA scheme on MOLAP cube and

incremental aggregation. We have shown that EKA

structure is quite better to calculate incremental aggregates

in MOLAP systems

6. Conclusion

We propose and evaluate the performance of an efficient

extendible MOLAP system to aggregate data

incrementally with low cost in comparison with other two

approaches. This approach saves both time and storage for

aggregation. A large amount of space and time is reduced

in this approach as data reorganization is not necessary.
This technique can be used in data warehousing

applications for efficient aggregation and data analysis.

7. Future Scope

This technique can be used in data warehousing

applications for efficient aggregation and data analysis.

References

[1] Jin, Chun, and Jaime Carbonell, "Incremental aggregation on

multiple continuous queries," Foundations of Intelligent

Systems, Springer Berlin Heidelberg, pp. 167-177, 2006.

[2] Nesamoney, Diaz, et al, "Method for incremental aggregation of

dynamically increasing database data sets," U.S. Patent No.

5,794,246. 11 Aug. 1998.

[3] K.E. Seamons and M. Winslett (1994),“Physical schemas for

large multidimensional arrays in scientific computing

applications,” Proceedings of SSDBM, pp. 218-227.

[4] S. Sarawagi and M. Stonebraker (1994), “ Efficient organization

of large multidimensional arrays,” Proceedings of ICDE, pp.
328-336.

[5] Y.L. Chun, C.C. Yeh, and S.L. Jen (2002), “Efficient
Representation Scheme for Multidimensional Array Operations,

”IEEE Transactions on Computers, 51(3), pp. 327-345.

[6] Y.L. Chun, C.C. Yeh, and S.L. Jen (2003), “Efficient Data

Parallel Algorithms for Multidimensional Array Operations
Based on the EKMR Scheme for Distributed Memory

Multicomputer,” IEEE Transactions on Parallel and Distributed

Systems, 14(7), pp. 625-639.

[7] KMA Hasan, K Islam, M Islam, T Tsuji, “An extendible data

structure for handling large multidimensional data sets”,

Proceedings of 12th International Conference on Computer and

Information Technology (ICCIT), Dhaka, Bangladesh, pp. 669-

674, 2009.

[8] Ahsan, Sk Md Masudul, and KM Azharul Hasan, "An
implementation scheme for multidimensional extendable array

operations and its evaluation,” Informatics Engineering and

Information Science. Springer Berlin Heidelberg, 2011. 136-
150.

[9] M Ahsan, S Md, KM Hasan, “An Efficient Encoding Scheme to

Handle the Address Space Overflow for Large

Multidimensional Arrays,” Journal of Computers 8 (5), pp.

1136-1144, 2013.

[10] Y. Zhao, P. M. Deshpande and J. F. Naughton, “An array-based

algorithm for simultaneous multidimensional aggregates”, In

Proceedings of the ACM SIGMOD Conference on Management

of Data, pp.159-170, 1997.

IJCSN International Journal of Computer Science and Network, Volume 6, Issue 2, April 2017
ISSN (Online): 2277-5420
www.IJCSN.org
Impact Factor: 1.5

64

Copyright (c) 2017 International Journal of Computer Science and Network. All Rights Reserved.

[11] S. Sarawagi and M. Stonebraker, “Efficient organization of large

multidimensional arrays”, Proc. of ICDE, pp. 328-336, 1994.

[12] Hasan, KM Azharul, Tatsuo Tsuji, and Ken Higuchi. "An

efficient implementation for MOLAP basic data structure and its

evaluation," Advances in Databases: Concepts, Systems and
Applications. Springer Berlin Heidelberg, 2007. 288-299.

Jakaria Rabbi

Department of Computer Science and Engineering, Khulna
University of Engineering & Technology (KUET), Khulna 9203,
Bangladesh.

Abdul Awal

Department of Computer Science and Engineering, Khulna
University of Engineering & Technology (KUET), Khulna 9203,
Bangladesh.

K M Azharul Hasan

Department of Computer Science and Engineering, Khulna
University of Engineering & Technology (KUET), Khulna 9203,
Bangladesh.

