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Abstract: A novel discrete thermostatted kinetic framework is derived for the modeling of
complex adaptive systems subjected to external force �eld (non-equilibrium system). In order
to model the non-equilibrium stationary states of the system, the external force �eld is coupled
to a dissipative term (thermostat). The well-posedness of the new framework is mathematically
investigated (local and global existence and uniqueness of solution of the related Cauchy problem)
thus allowing the framework to be suitable for the derivation of speci�c models and the related
computational analysis. This framework is employed for the modeling of the pedestrian dynamics
at the entrance of a metro station. Speci�cally a model is proposed for analysing the time distribu-
tion of the pedestrians approaching at di�erent gates (turnistiles) according to a choice dynamics
which depends on the microscopic interactions among the pedestrians (internal dynamics). The
microscopic interactions, assumed binary, depend on the local pedestrians density (nonlinear inter-
actions) and follow a game theory approach based on the leader-follower dynamics. The external
force �eld mimics di�erent events that can a�ect signi�cantly pedestrian internal dynamics (col-
lective hurry, preferential gates recommended, periodic sound signals or evacuation alarms), and
the thermostat term allows the conservation of the total number of pedestrians. Numerical simu-
lations are addressed to analyse the system behaviour, and in particular a sensitivity analysis on
the parameters and the initial conditions is performed. The results show that the model is able to
reproduce qualitatively some known emerging behaviours in the metro station, e.g. �ow imposed
by leader dynamics, concentration of pedestrians at the central gates, and pedestrians tendency
to choose progressively with time all the gates available. Moreover the simulations highlight the
capability of the new model to capture non-equilibrium stationary states. Perspectives include the
possibility to introduce the spatial and velocity dynamics for taking into account the geometry of
the domain of interactions.
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Introduction

Recently the modeling of complex systems in nature and society have been a growing object of in-
vestigations. Di�erent approaches inspired to equilibrium and non-equilibrium statistical mechan-
ics have been developed and employed for the description of collective behaviours and macroscopic
features, as the result of microscopic (individual) interactions ([1], [2], [3], [4], [5]). Di�erently
from the inert matter, complex phenomena in living natural systems and in society are also con-
sequence of the ability of the individual to express purposes and develop collective strategies ([1]).
The Kinetic Theory of Active Particles (KTAP) arises and develops in this context in order to
take into account these capabilities ([7], [8], [9]). The KTAP is based on the idea that the com-
plex systems under considerations are composed by a large number of (intelligent) individuals,
called active particles, whose microscopic state, in addition to mechanical variables (e.g. space
and velocity) is described also by an additional variable called activity which represents the indi-
vidual capability to express a speci�c strategy. According to KTAP, the overall system is divided
into di�erent subsystems each of them composed by particles that collectively express the same
biological/social function (functional subsystems). The evolution of each functional subsystem is
described by a distribution function over the microscopic state of the particles and the time evol-
ution of the subsystem is governed by interactions which can change both the microscopic state
(conservative interactions) and the number of particles (nonconservative interactions). Various
systems in life sciences are characterized by the fact that the microscopic state is identi�ed by a
discrete variable rather than a continuous one, in particular when the low number of individuals
weakens the assumption of continuity of the distribution function. Vehicular tra�c and pedestri-
ans or animal dynamics appear the most suitable systems that can be modeled within the Discrete
Kinetic Theory of Active Particles (DKTAP) ([7], [10], [11]). Indeed these systems are based on
the assumption that the entities composing the system move in clusters identi�ed by a discrete set
of variables ([16], [17], [18]), and experiments developed to identify the parameters of the models
are e�ectively performed looking at groups of vehicles or pedestrians with the same velocity or
activity value. The discretization of microscopic variable appears worthy also for biological sys-
tems, as in models of the competition between cancer and immune system cells, where the goal is
to identify the speci�c activities of the di�erent cell populations interacting in a vertebrate ([7],
[21]). Moreover complex living systems are usually not isolated, and they usually express their
functions in situations of non equilibrium. This is expecially true for biological systems ([23],
[24]), but also for social-economical systems ([25], [26]) and pedestrian dynamics ([27]). When an
external force �eld acts on the system, the applied �eld does work on the system thereby moving
it away from equilibrium. The excess energy needs to be removed so as to achieve a steady state.
A method, is the use of deterministic thermostats ([31]). The use of deterministic thermostats
consists in introducing a damping term into the equations of motion, and it is adjusted so as to
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iv Introduction

keep constant the mass or the kinetic energy or other quantities related to the speci�c real system
under consideration. Systems with thermostat are called thermostatted.

This thesis work consists in the derivation of a new discrete thermostatted kinetic framework
(T-DKTAP) for the modeling of complex systems subjected to an external force �eld. In order to
model the non-equilibrium stationary states of the system, the external force �eld is coupled to a
dumping term (thermostat). The well-posedness of the framework is mathematically investigated.
The framework is then employed for the modeling of the pedestrians dynamics at the entrance
of a metro station. Speci�cally, the model analyses the time distribution of the pedestrians ap-
proaching at di�erent gates (turnistiles) according to a choice dynamics which depends on the
microscopic interactions among the pedestrians. The microscopic interactions are assumed binary,
and they depend on the local pedestrians density (nonlinear local interactions) and follow a game
theory approach based on the leader-follower dynamics. The external force �eld in this context
mimics di�erent events that can a�ect signi�cantly pedestrian internal dynamics (collective hurry,
preferential gates recommended, periodic sound signals or evacuation alarms). The thermostat
term allows the conservation of the total number of pedestrians. The system behaviour is analysed
through numerical simulations, with special regard to the sensitivity analysis on the parameters
of the model and on the initial conditions. The results show that the model is able to reproduce
qualitatively some known emerging behaviours in the metro station, e.g. �ow imposed by leader
dynamics, concentration of pedestrians, tendency to choose progressively with time all the gates
available, and ability of self-organization and adaptation in the long time limit when subjected to
an external event.

More speci�cally, the above content is organized in �ve chapters:

� Chapter 1 brie�y summarizes the Kinetic Theory of Active Particles and the thermostat
method. General concepts and domains of applications of the KTAP are presented, and
some speci�c framework of the discrete KTAP useful for the developements in the next
chapters are discussed in detail. Finally, in order to analyse also complex system subjected
to external actions in the KTAP frameworks, the concept of the thermostat coupled to a
system is introduced and discussed, with special focus on the isokinetic Gaussian Thermostat.

� Chapter 2 deals with the mathematical de�nition of the a discrete kinetic framework for the
active particles, for modeling systems whose microscopic state depends only on the activity
variable (social/biological function) and that are subjected to an external force �eld. The
external force �eld is coupled to a dissipative term (thermostat) that allows the system
to reach a stationary state of non-equilibrium. The well-posedness of the framework is
mathematically investigated (local and global existence and uniqueness of solution of the
related Cauchy problem) thus allowing this new discrete thermostatted framework to be
suitable for the derivation of speci�c models and the related computational analysis.

� Chapter 3 develops the application of the T-DKATP framework proposed in the previous
chapter for the modeling of pedestrian dynamics at the entrance of a metro station. The func-
tional subsystems are de�ned, the microscopic interactions are modeled, and the thermostat
term is set in order to conserve of the total number of pedestrians. Numerical simulations in
this chapter are addressed to study the behaviour and the emerging features of the system
when it is not subjected to an external force �eld, in order to focus only on the internal
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dynamics. In particular the sensitivity analysis on the parameters of the model and on the
initial conditions are performed.

� Chapter 4 continues the analysis of Chapter 3, by focusing on the the analysis of the pedes-
trians dynamics subjected to the action of speci�c external force �elds. The functional forms
of the external force �elds are de�ned in order to have a physical meaning for the pedestrians
model under consideration (pedestrian in hurry, preferential gates, periodic sound alarm).
Numerical simulations are addressed to study the behaviour and emerging features of the
system under the action of the external force �eld. In particular, the controlling role of the
thermostat and its action on the system is investigated.
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Chapter 1

Kinetic Theory of Active Particles

(KTAP) and Thermostats

This chapter is devoted to a brief overview o the Kinetic Theory of Active Particles, with a special
focus on the aspects of the theory that will be employed in this thesis work. Speci�cally, in the
�rst section the general concepts and the domains of applications of the KTAP are presented.
Successively the second section develops in detail the discrete Kinetic Theory of Active Particles,
whose frameworks class will be the reference for all the further developments in this work. Finally
in order to take into account systems that are subjected to external e�ects, in the last section the
concept of the thermostat coupled to a system is introduced and discussed.

1.1 General concepts of the KTAP

This section is devoted to the introduction of some conceptual aspects of complexity in living
system, and to the discussion of the approach given by the Kinetic Theory of Active Particles
for describing them ([6]), [7]). These aspects will be useful for the derivation of the speci�cs
frameworks presented in the next section.

Contrarily to non living matter, complex living systems often give rise to phenomena that
emerges from the ability of individuals to express individual and collective strategies. The Kinetic
Theory of Active Particles (KTAP) arises and developes in this context in order to take into
account these capabilities. The KTAP can be applied to systems characterized by the following
common features:

• The system is constituted by a large number of (intelligent) interacting individuals called
active particles. Each active particle is identi�ed by a microscopic state, that in addition
to mechanical variables (e.g. space, velocity) is described also by a scalar variable called
activity. The activity represents the individual capability to express a speci�c biological or
social strategy. Indeed, as already mentioned, living systems have the ability to develop
behaviours that cannot only be explained by classical mechanics laws, and usually such
behaviours are not simply an individual and isolated expression, but generally they depends
on the interactions with other individuals. The variables can be continuous or discrete, or
in some cases some of them are continuous and other are discrete, accordingly to the system
under consideration.
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2 Kinetic Theory of Active Particles (KTAP) and Thermostats

• The system can be decomposed in functional subsystems. A functional subsystem is a collec-
tion of active particles which have the ability to express the same activity. The whole system
is then constituted by several interacting functional subsystems. Generally the link between
a functional subsystem and its activity depends on the speci�c phenomena under consider-
ation. Therefore, the decomposition into functional subsystems is a �exible approach that
can be adapted to each particular investigation. It is worth stressing that the decomposition
into functional subsystems can be regarded as a method to reduce complexity. Indeed, the
active particles in each functional subsystem are not identical or of the same type, but they
can express the same strategy collectively, [1], [12]).

• The microscopic state of each individual is modi�ed by interactions with other individu-
als. Interactions take place not only through contact, but can occur also in space. Indeed,
in complex living systems an individual interact with other individual in a certain interac-
tion domain. For example the interaction domain can be identi�ed with the visibility zone
(pedestrians), nearby cells (biological systems) or communication networks (web networks).

The mathematical frameworks of the KTAP describe complex systems by means of a distribution

function over the microscopic states of each functional subsystem. The �rst step consist in the
modeling of microscopic interactions at the individual level of active particle, where the output of
the interaction is determined by a stochastic game. Subsequently, one derives a set of (ordinary or
partial) di�erential equations for the evolution of the distribution functions. This mathematical
framework is developed within the deterministic causality principles, unless some external noise
is added. This means once interactions are given, the evolution of the system is deterministically
identi�ed.

Moreover complex systems are generally made up of many interacting components, each one
of them constituted by several interacting individuals. This implies that the mathematical models
need to describe the system at its typical scales. The representation scale suitable to describe
each component of the system may not be the same for all of them, because living systems are
characterized by a multiscale essence. However we can distinguish two main scales: the microscopic
scale and the macroscopic scale. The microscopic scale corresponds to modeling the evolution of
the variable that describes the state of each single element of the system. When the system is
constituted by a large number of elements and it is possible to obtain suitable local averages in
space of their state in an elementary space volume ideally tending to zero, the modeling refers to a
macroscopic scale, and it describes the evolution of locally averaged quantities, called macroscopic
variables. A two scales representations is largely used in biology to model multicellular systems
([15]). In many cases is useful to de�ne also a sub-microscopic and a super-macroscopic scales.
For instance, the, microscopic scale in biology corresponds to cells, and their dynamics depends
on the sub-microscopic dynamics of molecules. On the contrary to describe population dynamics
a super-macroscopic approach is often needed ([13], [14]). The above scaling correspond to a
di�erent classes of equations. Generally, models designed at the microscopic scale are stated in
terms of ordinary di�erential equations, while models at the macroscopic scale are stated in terms
of partial di�erential equations. The approach of the Kinetic Theory of Active Particles is to use
the microscopic scale to model the interactive dynamics among active particles, while the overall
state of the system at the macroscopic scale is described by the probability distribution over the
microscopic states.
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At present the KTAP has been pro�tably applied to model complex systems such as the onset
of cancer and competition with the immune system ([1]), tra�c �ow ([66], [34]), social systems
([9], [35]), psychological interactions ([36], [37]), politics ([38], [39]). However the KTAP is large
applied in modeling living systems, suitable developments of the KTAP's methods can be applied
also to model large systems of interacting particles such as mixtures suspensions with continuous
size particles distribution. Finally, it is worth stressing that the mathematical KTAP cannot be
regarded as a straightforward generalization of the classical kinetic theory, because of the di�erent
way of decomposing the system and modeling interactions.

1.2 Discrete KTAP

This sections is devoted to a brief description of some discrete kinetic frameworks already existing
in the literature ([6], [7]). Various systems in life sciences are characterized by the fact that the
microscopic state is identi�ed by a discrete variable rather than a continuous one, in particular when
the low number of individuals weakens the assumption of continuity of the distribution function.
Vehicular tra�c and pedestrians or animal dynamics appear the most suitable systems that can be
modeled within the Discrete Kinetic Theory of Active Particles (DKTAP) ([7], [10], [11]). Indeed
these systems are based on the assumption that the entities composing the system move in clusters
identi�ed by a discrete set of variables ([16],[17], [18], [19],[20]). Moreover experiments developed
to identify the parameters of the models are e�ectively performed looking at groups of vehicles
or pedestrians with the same velocity or activity value. The discretization of the microscopic
variable appears worthy also for biological systems, e.g. in models of the competition between
tumor and immune system cells, where the goal is to identify the speci�c activities of the di�erent
cell populations interacting in a vertebrate. ([7]). In the following we introduce particular cases of
the DKTAP frameworks, suitable for the description of homogeneous or inhomogeneous in space
systems, i.e. systems for which the distribution function only depends on the biological/social
state and the velocity, or can also depend on the space variable. These frameworks will be the
basis for the modeling in the next chapters.

Let us �rst introduce some preliminary notions. Let S be a complex system constituted by
a large number of active particles. The microscopic state of each active particle is denoted by
s = (x, v, u), that includes the space x, the velocity v, and the activity variable u. The overall
distribution of the system in the KTAP is described by the following continuous distribution
function over the microscopic states:

f(t, s) = f(t, x, v, u) : [0 +∞[×Ds → R+, (1.2.1)

withDs = Dx×Dv×Du, where (x, v) ∈ Dx×Dv is the mechanical microscopic state (here including
only the position and velocity variables), and u ∈ Du represents the biological or social microscopic
state. The elementary product f(t, x, v, u) dx dv du is the number of active particles which at time t
are in the elementary volume of the microscopic state [s, s+ds] = [x, x+dx]×[v, v+dv]×[u, u+du].
Macroscopic observable quantities of the system such as mass and kinetic energy are obtained,
under suitable integrability assumptions on f , as momenta of the distribution f . Assuming that
the discrete variables of the microscopic state can attain only �nite values, we de�ne the following
subsets

Ix = {x1, x2, ..., xn}, Iv = {v1, v2, ..., vm}, Ix = {u1, u2, ..., ul},
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where Ix, Iv, Iu, denote the domain for the space, the velocity and the activity variable, respect-
ively. The whole domain is denoted by Is = Ix × Iv × Iu. If x ∈ Ix, v ∈ Iv and u ∈ Iu, then

fkij(t) = f(t, xi, vj , uk) : [0,+∞[→ R+

denotes the discrete distribution function of the active particles at time t located in xi with velocity
vi and activity uk. Consequently the distribution function f of the system S can be written formally
as sum of Dirac delta functions:

f(t, s) = f(t, x, v, u) =
n∑
i=1

m∑
j=1

l∑
k=1

fkij(t)δ(xi − x)δ(vj − v)δ(uk − u). (1.2.2)

The microscopic state of particles is modi�ed, at time t, by localized binary interactions which
occur at the microscopic level and refer to the mutual actions between the candidate individual

and the �eld individual, when the candidate individual enters in the action domain of the �eld
one. The domain is relatively small and the local density is su�ciently small so that only binary
encounters are relevant. We can distinguish between Conservative interactions and Proliferating

or destructive interactions. Conservative interactions modify the microscopic state s (mechanical
and/or biological or social state) of the interacting individuals, but do not modify the size of
the system, i.e. the total number of individuals. On the contrary proliferating or destructive
interactions are interactions that modify the size of the system with birth or death of individuals
due to pair interactions. In this work, we will consider only conservative interactions. As we
have seen in the previous section, a mathematical model within the framework of the KTAP, is a
system of evolution equations for the set fkij , with i = 1, 2, ..., n, j = 1, 2, ...,m, k = 1, 2, ..., l. The
evolution equation is obtained by considering the volume element [s, s + ds] and equating the rate
of growth of individuals per unit time with microscopic state in such a volume to the in�ow and
the out�ow of individuals per unit time in the volume due to interactions and eventually source
terms. Formally such a model can be written generally as follows:

Dfkij = Gfkij − Lfkij , (1.2.3)

where D denotes the linear operator describing the rate of growth, while G and L denotes the non
linear operators linked to the gain (in�ow) and the loss (out�ow) of individuals respectively. The
operators D, G, L take speci�c form depending on the framework under consideration.

We are now ready to discuss particular frameworks of the DKTAP.

1.2.1 Discrete activity in uniform mechanical variables

In this subsection we deal with complex systems whose microscopic state is homogeneous with
respect to the space variable x and the velocity variable v. So the distribution function is inde-
pendent of x and v, and it depends only on the activity variable u, that can attains discrete values
in the set Iu = u1, u2, ..., un. Accordingly, the distribution function f de�ned in (1.2.2) rewrites as
follows:

f(t, u) =
n∑
i=1

f(t, ui)δ(ui − u) =
n∑
i=1

fi(t)δ(ui − u).

Therefore the mathematical model consists in a set of evolution di�erential equations for the
fi(t). The modeling of the microscopic interactions is based on the assumption that the following
quantities can be computed:
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• The Interaction rate:

ηhk = η(uh, uk) : Iu × Iu → R+, (1.2.4)

which depends on the states of the interacting pairs and gives the number of encounters per
unit time between individuals with state uh and individuals with state uk.

• The Transition probability density or Table of Games:

Aihk = A(uh, uk, ui) : Iu × Iu × Iu → R+ (1.2.5)

which is the probability density for a candidate individual with state uh, to change into state
ui of a test individual, after an interaction with a �eld individual with state uk. The above
de�ned transition density function has the structure of a probability density with respect to
the variable ui:

n∑
i=1

Aihk = 1 ∀h, k. (1.2.6)

The evolution equation for fi(t) thus reads:

dfi
dt

= Ji[f ] = Gi[f ]− Li[f ] =
n∑
h=1

n∑
k=1

ηhkA
i
hkfhfk − fi

n∑
k=1

ηikfk, (1.2.7)

where f = f(t) = (f1(t), f2(t), ..., fn(t)) ∈ Rn is the distribution function vector, Gi[f ] = Gi[f ](t)

and Li[f ] = Li[f ](t) represent the gain particles term and the loss particles term, respectively.
Speci�cally the operators Gi[f ] and Li[f ] are the following positive de�nite bilinear operators:

Gi[f ] =
n∑
h=1

n∑
k=1

ηhkA
i
hkfhfk Li[f ] = fi

n∑
k=1

ηikfk ∀i ∈ {1, 2, ...n}. (1.2.8)

The evolution equation (1.2.7) is thus a nonlinear ordinary di�erential equation with second order
nonlinearities.

The related pth-order activity-moment of f is de�ned as follows:

Ep[f ](t) =
n∑
i=1

upi fi(t), p ∈ N. (1.2.9)

In particular the system size, the linear activity-momentum, and the activity-energy are obtained
for p = 0, p = 1, and p = 2, respectively.

It is worth stressing that the framework (1.2.7) has been proposed as a general paradigm for
the derivation of speci�c models in vehicular tra�c, biology and opinion formation, see the main
references listed in [43].

Remark 1.2.1. The global existence and uniqueness of the solution for the related Cauchy problem
of the framework (1.2.7) has been proved in [9] under the assumption that the initial data fi(t =

0) = f0i is a discrete probability density (with the zero-order moment equal to 1) and that the
interaction rate ηhk is uniformly bounded.

Remark 1.2.2. Further nonlinearity can be introduced in the framework (1.2.7) by imposing the
dependence of the interaction rate and of the probability density function by distribution functions
and moments, namely ηhk = ηhk[f ,Ep[f ]] and Aihk = Aihk[f ,Ep[f ]].
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1.2.2 Discrete velocity and activity in continuous space systems

This subsection deals with the modeling of systems where the velocity variable v and the activity
variable u can attain discrete values in the sets Iv = v1, v2, ..., vn and Iu = u1, u2, ..., um respect-
ively, while the space variable x is continuous with x ∈ Dx. By denoting fij(t, x) = f(t, x, vi, uj),
the distribution function f can be written as:

f(t, x, v, u) =
n∑
i=1

m∑
j=1

fij(t, x)δ(vi − v)δ(uj − u).

Accordingly, if the microscopic state of the candidate individual is (x∗, vh, uk), the microscopic
state of the �eld individual (x∗, vr, us), and the microscopic state of the test individual (x, vi, vj),
then

• nrshk = nrshk(x∗, x∗) is the interaction rate between the candidate individual and the �eld
individual.

• Aijhk,rs = Aijhk,rs(x∗, x∗;x), is the probability that the canditate individual with state (x∗, vh, uk),
interacting with the �eld individual with state (x∗, vr, us) falls into the test particle state
(x, vi, vj). Moreover the probability density Aijhk,rs satis�es:

n∑
i=1

m∑
j=1

∫
Dx

Aijhk,rs(x∗ → x|x∗)dx = 1.

for all h, k ∈ 1, 2, ..., n, r, s ∈ 1, 2, ...,m and x∗, x∗ ∈ Dx.

The mathematical framework consists in partials integro-di�erential equations, which includes an
advection part, and thus reads:

∂fij
∂t

+ vi
∂fij
∂x

=
n∑

h,r=1

m∑
k,s=1

G[fhk, frs]−
n∑
r=1

m∑
s=1

L[fij , frs],

with

G[fij , frs] =

∫
Dx×Dx

ηrshk(x∗, x∗)A
ij
hk,rs(x∗ → x|x∗)fhk(t, x∗)frs(t, x∗)dx∗dx∗

L[fhk, frs] = fij

∫
Dx

ηrsij (x, x∗)frs(t, x∗)dx ∗ .

Under suitable integrability assumptions of the vector function f = (f11(t, x), ..., fnm(t, x)), We
can de�ne the (p,q,r)th-order moment as follow:

Ep,q,r[f ](t) =

n∑
i=1

vpi

m∑
j=1

uqj

∫
Dx

xrfij(t, x)dx p, q, r ∈ N.

The above framework can be further specialized if we assume that the probability density Aijhk,rs
is the product of the probability densities related to independent interactions of the activity and
mechanical variables:

Aijhk,rs = Bi
h,r × C

j
k,s.
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1.2.3 Discrete velocity and activity in discrete space systems

This subsection introduces a mathematical framework for complex system characterized by a full
discrete microscopic state. According to the introduction of this section, we assume that the space
variable x, the velocity variable v, and the activity variable u can attain discrete values of the sets
Ix, Iv, Iu respectively. Therefore the distribution function can be written formally as follow:

f(t, x, v, u) =
n∑
is

m∑
js

l∑
ks

fisjsks(t)δ(xis − x)δ(vjs − v)δ(uks − u),

where fisjsks(t) = f(t, xis , vjs , uks). The mathematical framework referes to the evolution equation
for fisjsks(t). Accordingly, if the microscopic state of the candidate individual is (xi1 , vj1 , uk1), the
microscopic state of the �eld individual is (xi2 , vj2 , uk2), and the microscopic state of the test
individual is (xi3 , vj3 , uk3), then

• ηi2j2k2i1j1k1
= η(xi1 , vj1 , uk1 ;xi2 , vj2 , uk2) is the itneraction rate between the candidate indi-

vidual with microscopic state (xi1 , vj1 , uk1) and the �eld individual with microscopic state
(xi2 , vj2 , uk2).

• Ai3j3k3i1j1k1,i2j2k2
= A(xi1 , vj1 , uk1 ;xi2 , vj2 , uk2 ;xi3 , vj3 , uk3) is the probability that the candidate

individual with state (xi1 , vj1 , uk1) falls into the test particle microscopic state (xi3 , vj3 , uk3),
after interacting with the �eld individual with microscopic state (xi2 , vj2 , uk2). Moreover
Ai3j3k3i1j1k1,i2j2k2

satis�es:

n∑
i3

m∑
j3

l∑
k3

Ai3j3k3i1j1k1,i2j2k2
= 1 ∀ i1, j1, k1, i2, j2, k2.

Setting s1 = i1j1k1, s2 = i2j2k2 and s3 = i3j3k3, the mathematical framework in the totally
discrete microscopic state consist in a set of nonlinear ordinary di�erential equation and thus
reads:

dfs3
dt

+ vjsTisjsks(x, f) =
n∑

i1,i2=1

m∑
j1,j2=1

l∑
k1,k2=1

ηs2s1A
s3
s1s2fs1fs2 − fs3

n∑
i2=1

m∑
j2=1

l∑
k2=1

ηs2s3fs2 ,

where vjsTisjsks(x, f) approximate the transport term. More in detail Tisjsks(x, f approximates
the space dericative of the distribution function by using �rst-order upwind point �nite collocation
([49]). Under suitable integrability assumptions of the vector function f = (f111(t), ..., fnml(t)),
We can de�ne the (p,q,r)th-order moment as follow:

Ep,q,r[f ](t) =

n∑
is=1

vpis

m∑
js=1

uqjs

l∑
ks=1

xrksfis(t) p, q, r ∈ N.

Again the framework can be further specialized if we assume that the probability densityAi3j3k3i1j1k1,i2j2k2

can be written as the product of the probability densities related to independent interactions of
the activity and mechanical variables:

Ai3j3k3i1j1k1,i2j2k2
= Ai3i1,i2 ×A

j3
j1,j2
×Ak3k1,k2 .

It is worth stressing that mathematical model with this framework can be derived for the applic-
ations in semiconductor devices and nano-sciences.
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1.3 Thermostats and KTAP

This section then aims at introducing the thermostat method in studying complex systems out of
equilibrium. This brief dissertation will motivate the introduction of KTAP frameworks coupled
with a Gaussian Thermostat for modeling complex systems subjected to external actions.

The frameworks proposed in the previous section consider only internal interactions among
individuals of the system. However complex living systems are usually not isolated, and they usu-
ally express their functions in situations of non-equilibrium. This is especially true for biological
systems ([23], [24]), but also for social-economical systems ([25], [26]) and pedestrian dynamics
([27]). When an external force �eld acts on the system, the applied �eld does work on the sys-
tem thereby moving it away from equilibrium. The excess energy needs to be removed so as
to achieve a steady state. A method, which is common in non-equilibrium molecular dynamics
simulations, is the use of deterministic thermostats. Deterministic thermostats are mathematical
tools used to model non-equilibrium steady states of �uids. These thermostats do not exist in
nature, but non-equilibrium statistical mechanics has been used to prove that under speci�c cir-
cumstances thermodynamic properties and transport coe�cients computed from simulations using
these thermostats are essentially exact ([28], [29], [30]). More speci�cally, in the development of
such algorithms the Hamiltonian equations of motion are augmented with �ctitious driving forces
used to represent the thermodynamic forces driving the system away from equilibrium. Such forces
introduce energy that must be dissipated if non-equilibrium steady states are to be obtained: one
therefore introduces further terms collectively called hermostat, that is adjusted to keep the kinetic
energy constant (see [31] and references therein). In general then thermostats are applied in order
to achieve a stationary state in non-equilibrium situations, e.g. when there is a �ux of energy
through the system, such as induced by external �elds or by imposing temperature or velocity
gradients. In this contest and for our purpose, the following general de�nition for thermostats can
be stated:

De�nition: Thermostats are mechanisms by which the internal energy (or other quantities
related to the speci�c system under consideration) of a many particle-system, can be tuned
onto a speci�c value. Systems with thermostat are called thermostatted.

This way of thermostatting non-equilibrium molecular dynamics simulations by modifying the
equations of motion was put in a theoretical framework when the connection with Gauss principle

of least constraint (1829) was established [42]:

Gauss principle of least constraint: Consider N point particles of mass mi, subjected
to frictionless bilateral constraints Φi and to external forces Fi. Among all motions allowed
by the constraints, the natural one minimize the curvature de�ned as:

C =
N∑
i=1

mi

(
ẍ− Fi

mi

)2

=
N∑
i=1

miΦ
2
i . (1.3.1)

According to Gauss, the �Curvature� C is minimized by the accelerations of real motions or,
equivalently, real motions minimize the action of the constraints. The Gauss Principle su�ers
from some disadvantages when compared to other common used extremal principles of variational
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mechanics, such as Hamilton's Principle: it requires the calculation of accelerations, that are
di�cult to evaluate numerically; moreover it is not independent of coordinate transformation, and
therefore not as generally applicable as Lagrangian and Hamiltonian formulations of mechanics.
However, one advantage of Gauss principle, is that it applies equally to holonomic and non-
holonomic constraints ([32]). In the case of holonomic constraints, Gauss principle is consistent
with the principle of least action, and produces Hamiltonian equations of motion. Di�erently,
nonholomic constraints lead to non-Hamiltonian equations of motions. The Gaussian thermostat
introduced by Evans and Morris ([28]), has great interest with respect the deterministic character
of the equation of motion.

Let ẋ = F (x) be an evolution equation in the phase space Γ = (x,v), where x is the position
and v the velocity of the particle. A Gaussian thermostat constrains the evolution to a prescribed
hypersurface Σ by projecting F (x) for x ∈ Σ, to the tangent plane to Σ at x. Consider the
following equations of motion for a system constituted by interacting particles with unit mass:ẋ = v

v̇ = F1 + F− α(Γ)v,
(1.3.2)

where F1 is a conservative force �eld ( then exist a scalar potential V such that ∂xV = −F1),
F a non conservative vector �eld. The term F mantains the system out of equilibrium, the term
−α(Γ)v is the thermostat and makes the dynamics dissipative, allowing the system to reach a
steady state in the long time limit. Without the term F−αv the dynamic would be Hamiltonian.
The Gauss isokinetic thermostat is obtained by choosing α such that the kinetic energy v2

2 of the
system is kept constant. Accordingly, we have:

0 =
d

dt

(
v2

2

)
= v · (−∂xV + F− α(Γ)v) = −∂xV · v + F · v − α(Γ)v2.

namely

α(Γ) =
v · (−∂xV + F)

v2
.

The force �eld F1 + F − v·(−∂xV+F)
v2 v is called Gaussian isokinetic force. The term α is just a

Lagrange multiplier which implements the Gauss principle of least constraint.
The isoenergetic problem can be also brie�y treated. This problem consist in keeping constant

the energy function

H(t) =
v2

2
+ V (x).

The Gaussian isoenergetic thermostat associated with the force −∂xV + F implies that

˙H(t) = v · (−∂xV + F− α(Γ)v) + ∂xV · v.

The isoenergetic thermostat takes the form

α(Γ) =
F · v
v2

.

It is worth stressing that the isokinetic and the isoenergetic constraints are only two possible
options. A wide range of constraint is possible (isobaric, isochoric, isoenthalpic etc.) depending
on the system under consideration ([31] [33]).
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1.4 Summary

In this chapter we have brie�y introduced the Kinetic Theory of Active Particle (KTAP) for
modeling complex living systems. The system is constituted by a large number of (intelligent)
interacting individuals called active particles. Each active particle is identi�ed by a microscopic

state, that in addition to mechanical variables (space, velocity) is described also by an additional
scalar variable called activity. The activity represents the individual capability to express a speci�c
biological or social strategy. The microscopic state of each individual is modi�ed by interactions
with other individuals. Interaction are consider determined by a stochastic game. The system can
be decomposed in functional subsystems, where each functional subsystem is a collection of active
particles which have the ability to express the same activity. The whole system is then constituted
by several interacting functional subsystems. In the KTAP framework the system is described by
means of a distribution function over the microscopic states of each functional subsystem. After
having set the subsystems and modeled the interactions, one derives a set of (ordinary or partial)
di�erential equations for the evolution of the distribution function. This mathematical framework
is developed within the deterministic causality principles, (unless some external noise is added),
i.e. once interactions are given, the evolution of the system is deterministically identi�ed. Many
system in life science are characterized by the fact that the microscopic state is identi�ed by a
discrete variable rather than a continuous one, in particular when the low number of individuals
weakens the assumption of continuity of the distribution function (animal and pedestrian dynam-
ics, social dynamics). The dynamics for these systems can be modeled within the Discrete Kinetic
Theory of Active Particles (DKTAP). In particular we have discussed the cases for system suit-
able to be described by: discrete activity in uniform mechanical variables, discrete velocity and
activity in continuous space, and discrete velocity and activity in discrete space. Finally we have
introduced the method of the deterministic thermostats as tool to model complex system under
the action of an external force �eld that drives the system out of the equilibrium. The use of the
deterministic thermostats consists in introducing into the equations of motion a damping term
that is adjusted so as to keep constant the mass or the kinetic energy or other peculiar quantities
of the system. In particular we have dealt wit the Gaussian isokinetic thermostat, that relies on
the Gauss Principle of least constraint and that keeps the kinetic energy of the system constant
during its time evolution.



Chapter 2

The Thermostatted Discrete Kinetic

Framework

This chapter deals with the de�nition of a new discrete kinetic framework for active particles.
Speci�cally this framework implements the framework (1.2.7) by introducing an external force �eld
that is independent from the activity variable. The external force �eld is coupled to a dissipative
term (thermostat), that is designed in order to keep constant a general p-th order moment (1.2.9)
of the distribution function, and that allows the system to reach a non-equilibrium stationary state.
The new thermostatted framework is then analysed in order to be suitable for the development
of speci�c models and to perform the related computational analysis. Speci�cally, in the �rst
section the new thermostatted framework is de�ned, and the thermostat term is derived in order
to conserve a general p-th order moment. The second section is concerned with the analysis of the
Cauchy Problem related to the framework, and local and global existence and uniqueness of the
solutions are proved. Finally in the last section, we discuss the introduction in the new framework
of nonlinear interactions, that will be useful for the derivation of the model for pedestrian dynamics
proposed in Chapter 3. The results of this chapter are collected in the paper [44].

2.1 The thermostatted discrete kinetic framework

This section aims at proposing a new discrete thermostatted kinetic framework that takes into
account that the system, which is composed by particles whose microscopic state u is discrete, is
subjected to an external force �eld F and constrained to keep constant (bounded) a p-th order
moment. Speci�cally the kinetic framework (1.2.7) is generalized as follows:

dfi
dt

(t) = Ji[f ](t) + Fi(t)− αfi(t), i ∈ {1, 2, . . . , n}, (2.1.1)

where F(t) = (F1(t), F2(t), . . . , Fn(t)) : [0,+∞[→ Rn+ is the external force �eld that maintains
the system out of the equilibrium, the term −αfi is the dumping term that makes the dynamic
dissipative thus avoiding the unbounded increase of a p-th order moment and allowing the system
to reach a nonequilibrium stationary state in the long-time limit. The parameter α, which is
usually called the thermostat term, is obtained by forcing the conservation of a p-th order moment.
Speci�cally, if the moment Ep[f ](t) = E0

p 6= 0 is constant in time, then

11
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d

dt
(Ep[f ](t)) =

n∑
i=1

upi
dfi
dt

(t) = 0. (2.1.2)

By inserting (2.1.1) into (2.1.2), one obtains:

α = α(J [f ],Ep,F) =

n∑
i=1

upi (Ji[f ] + Fi)

n∑
i=1

upi fi

=
Up · (J[f ] + F)

Ep[f ]
, (2.1.3)

where J[f ] = (J1[f ], J2[f ], . . . , Jn[f ]) and Up = (up1, u
p
2, . . . , u

p
n). The thermostat term α is thus a

dynamical parameter, which depends on the external force �eld F and on the internal dynamic of
the system through J[f ]. Bearing all above in mind, the thermostatted discrete kinetic framework
of active particles, conserving the pth-order moment, reads:

dfi
dt

= Ji[f ] + Fi −
(

Up · (J[f ] + F)

Ep[f ]

)
fi, i ∈ {1, 2, . . . , n}. (2.1.4)

It is worth stressing that, di�erently from the thermostatted discrete kinetic framework proposed
[6], the new framework (2.1.4) requires the de�nition of a discrete thermostat term, which depends
on the inner dynamics of the system under consideration. In particular the derivation of the
discrete thermostat term cannot be considered a straightforward discretization of the continuous
thermostat term proposed in [6].

Remark 2.1.1. It is easy to see that for p = 0, the term Up · J[f ] in (2.1.4) is null thanks to
the property (1.2.6). Accordingly, for complex systems where the number of particles is conserved
(conservation of the zero-order moment E0[f ](t) = E0

0 only), the thermostat term reads:

α = α(F) =

n∑
i=1

Fi

E0
0

. (2.1.5)

As shown in (2.1.5), the thermostat term depends on the external �eld F only.

In general, the term Up · J[f ] reads:

Up · J[f ] =

n∑
h=1

n∑
k=1

n∑
i=1

upi
[
ηhkA

i
hkfhfk − ηikA

h
ikfifk

]
. (2.1.6)

As the relation (2.1.6) shows, all terms with i = h vanish for all k. Further simpli�cations of
(2.1.6) can be obtained by assuming some symmetry relations on the table of games Aihk and on
the encounter rate ηnk. A speci�c analysis to the case n = 2 and n = 3 follows.

• Case n = 2. In this case the equation (2.1.6) reads:

Up · J[f ] = up1
[
(η21A

1
21 − η12A2

12)f1f2 − η11A2
11f

2
1 + η22A

1
22f

2
2

]
+ up2

[
(η12A

2
12 − η21A1

21)f1f2 + η11A
2
11f

2
1 − η22A1

22f
2
2

]
. (2.1.7)

Assuming the following symmetries on the encounter rate and on the table of games:

η12 = η21 and A1
21 = A2

12,
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the previous equation simpli�es as follows:

Up · J[f ] = up1
[
− η11A2

11f
2
1 + η22A

1
22f

2
2

]
+ up2

[
+ η11A

2
11f

2
1 − η22A1

22f
2
2

]
or, equivalently, in compact form:

2∑
i=1

2∑
h=1
h6=i

upi
[
ηhhA

i
hhf

2
h − ηiiA

h
iif

2
i

]
.

• Case n = 3. In this case, each of the three terms of the scalar product (2.1.6) consists in a
sum of 12 terms. The �rst term reads:

(Up · J[f ])1 = up1
[
η11(A

1
11 − 1)f21 + η22A

1
22f

2
2 + η33A

1
33f

2
3

− −(η12A
2
12 + η12A

3
12 − η21A1

21)f1f2

− (η13A
2
13 + η13A

3
13 − η31A1

31)f1f3 + (η23A
1
23 + η32A

1
32)f2f3

]
. (2.1.8)

If ηhk = ηkh and A1
hk = A1

kh, ∀h, k, then the above equation writes:

(Up · J[f ])1 = up1
[
η11(A

1
11 − 1)f21 + η22A

1
22f

2
2 + η33A

1
33f

2
3 + η12(2A

1
12 − 1)f1f2

+ η13(2A
1
13 − 1)f1f3 + 2η23A

1
23f2f3

]
. (2.1.9)

Similar expressions hold true for the other two terms i = 2 and i = 3. If the following
relations on the rates encounters and on the table of games holds true:

ηik = ηki and Aihk = Aikh ∀i, h, k ∈ {1, 2, . . . , n},

then (2.1.6) simpli�es as follows:

3∑
i=1

upi

( 3∑
h6=i

[
ηhh(Aihh − 1)f2h + ηih(2Aiih − 1)fifh

]
+ ηii(A

i
ii − 1)f2i + 2ηhkA

i
hkfhfk

)
,

where the last term holds only for h 6= k 6= i. Moreover if in addition Aiih = 1/2, ∀i, and
Aihk = 0 for h 6= k 6= i, the above equation rewrites:

Up · J[f ] =
3∑
i=1

upi

 3∑
h6=i

ηhh(Aihh)f2h −
1

2
ηii(A

i
ii − 1)f2i

 .

It is worth stressing that the above assumptions on the encounter rates and on the table of
games are not the all conceivable ones, and a priori the system could satisfy only some of
them, or even none. Thus the simpli�cation of the dynamic is strictly related to the speci�c
model under consideration.
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2.1.1 On the multiple thermostats case

This subsection is devoted to the derivation of a discrete thermostatted kinetic framework for com-
plex systems constrained to maintain constant two moments. Speci�cally the subsection focuses
on complex systems whose interactions among the particles do not modify the zero-order moment
and the second-order moment. In order to take into account the conservation of the two moments,
the framework (1.2.7) is modi�ed by introducing two di�erent parameters α1 and α2 as follows:

dfi
dt

= Ji[f ] + α1Fi − α2fi.

By imposing the conservation of the zero- and the second-order moment, the following system of
two algebraic equations in the unknowns α1 and α2 is obtained:

n∑
i=1

Fi α1 − E0
0 α2 = 0

(U2 · F)α1 − E0
2 α2 = 0

(2.1.10)

where E0
0 and E0

2 denote the initial values of the zero-order moment and the second-order moment,
respectively. Accordingly: 

α1 =
U2 · J

F ·
(E0

2

E0
0
−U2

)

α2 =

n∑
i=1

Fi

E0
0

 U2 · J

F ·
(E0

2

E0
0
−U2

)


(2.1.11)

It is worth pointing out that in the partial discrete kinetic framework proposed in [6], only one
thermostat α has been introduced to ensure the total conservation of the zero- and the second-
order moment, respectively. Indeed, as shown in [6], the introduction of one thermostat is su�cient
to ensure the conservation of E0[f ] and E2[f ], considering that the activity variable has been
assumed continuous. Indeed the conservation of the total kinetic energy ensures automatically the
conservation of the total density, under the assumption that border e�ects are negligible. In the
total discrete kinetic framework proposed here, the introduction of one thermostat is not su�cient,
because an analogue condition for the border e�ects cannot be found. However further assumptions
can be considered in order to reduce the number of thermostats. These assumptions can refer to
the dynamics of the system. In particular, it could be possible to require the conservation of both
the zero- and the second-order moment by keeping in the evolution equation only one dynamical
parameter. In this case, the thermostat term writes as in (2.1.5), under the following condition:

F ·
(
E0
2

E0
0

�f −U2

)
= U2 · J,

where �f is the unit vector in the F direction. The physical meaning of this relation depends on
the speci�c model under consideration.
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2.2 The Cauchy problem: Existence and uniqueness of solution

This section is concerned with the analysis of the Cauchy problem for the discrete thermostatted
kinetic framework (2.1.4), which consists in a system of n nonlinear ordinary di�erential equa-
tions in the unknown vector f(t) = (f1(t), f2(t), . . . , fn(t)) where fi : [0,+∞[→ R+, for all
i ∈ {1, 2, . . . , n}.

Let C = C([0,+∞[;Rn+) be the space of the continuous vector function f = f(t) : [0,+∞[→ Rn+,
and Kpf = Kpf (R+;E0

p) the following function set:

Kpf (R+;E0
p) = {f ∈ C([0,+∞[;Rn+) : Ep[f ](t) = E0

p}. (2.2.1)

The set Kpf is composed of vector functions f whose components are positive continuous functions
and such that f conserves the pth-order moment. In particular the set Kpf is closed in C. The
Cauchy problem for the discrete thermostatted kinetic framework (2.1.4) thus reads:

(CP ) :


df

dt
= J[f ] + TF[f ]

f(0) = f0

(2.2.2)

where f0 ∈ Kpf is the initial condition, J[f ] = (J1[f ], J2[f ], . . . , Jn[f ]), with Ji[f ] de�ned in (1.2.7),
and TF[f ] is the thermostat operator:

TF[f ] = F−
(

Up · (J[f ] + F)

Ep[f ]

)
f . (2.2.3)

De�nition 2.2.1. Let U = (u1, u2, . . . , un) ∈ ([1,+∞[)n be the discrete activity vector; ηhk =

η(uh, uk) : Iu × Iu → R+, for h, k ∈ {1, 2, . . . , n}, the interaction rate between the particles with
state uh and uk; Aihk = A(uh, uk, ui) : Iu×Iu×Iu → R+, for all i, h, k ∈ {1, 2, . . . , n}, the transition
probability density satisfying the property (1.2.6), and Fi(t) : R+ → R+, for all i ∈ {1, 2, . . . , n},
the ith external force. The vector function f = (f1, f2, . . . , fn) is said to be solution of the Cauchy
problem (2.2.2) in the interval [0,+∞[ if:

i f is di�erentiable with respect to the variable t, namely fi, for all i ∈ {1, 2, . . . , n}, is di�eren-
tiable with respect to the variable t;

ii f ∈ Kpf

iii f satis�es the following vector equation:

df

dt
(t) = J[f ](t) + TF [f ](t), ∀t ∈ [0,+∞[, (2.2.4)

and f(0) = f0.

Remark 2.2.1. Straightforward computations show that f = (0, 0, . . . , 0) ∈ Rn is not solution
of (2.2.2). Thus, in what follows, the condition Ep[f ] = E0

p 6= 0 can be assumed without loss of
generality.
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Let p ∈ N \ {0} and x = (x1, x2, . . . , xn) ∈ Rn. In what follows, the set Rn is endowed with the `p
norm ‖x‖p:

‖x‖p =

(
n∑
i=1

|xi|p
)1/p

x ∈ Rn.

Moreover the real Banach space (C, ‖ · ‖∞), where ‖f‖∞ = supt∈[0,+∞[ ‖f(t)‖p, will be considered
in the sequel.
The following Lemmas hold true.

Lemma 2.2.1. Let U = (u1, u2, . . . , un) ∈ ([1,+∞[)n be the discrete activity vector, ηhk =

η(uh, uk) : Iu × Iu → R+, for h, k ∈ {1, 2, . . . , n}, a bounded function with upper-bound M ,

and Aihk = A(uh, uk, ui) : Iu×Iu×Iu → R+, for all i, h, k ∈ {1, 2, . . . , n}, the transition probability

density satisfying the property (1.2.6). Then

‖J[f ]− J[g]‖1 ≤ 4ME0
p‖f − g‖1, ∀f ,g ∈ Kpf (R+;E0

p). (2.2.5)

Proof. The operator J[f ] can be written as the sum of the gain operator and the loss operator:

J[f ] = G[f ]− L[f ].

Let f ,g ∈ Kpf (R+;E0
p). For the gain operator G[f ] one has:

‖G[f ]−G[g]‖1 =

n∑
i=1

∣∣Gi[f ]−Gi[g]
∣∣

=

n∑
i=1

∣∣∣∣ n∑
h=1

n∑
k=1

ηhkA
i
hkfhfk −

n∑
h=1

n∑
k=1

ηhkA
i
hkghgk

∣∣∣∣
=

n∑
i=1

∣∣∣∣ n∑
h=1

n∑
k=1

ηhkA
i
hk

[
fhfk − ghgk

]∣∣∣∣.
By employing the triangular inequality, the assumption that ηhk ≤ M , ∀h, k and the assumption
(1.2.6), one obtains:

‖G[f ]−G[g]]‖1 ≤M
n∑
h=1

n∑
k=1

∣∣fhfk − ghgk
∣∣.

By adding and subtracting the term fhgk and rearranging the terms in the sum, one has:

‖G[f ]−G[g]‖1 ≤M
n∑
h=1

n∑
k=1

∣∣fh(fk − gk) + gk(fh − gh)
∣∣

≤M
n∑
h=1

n∑
k=1

[∣∣fh∣∣∣∣(fk − gk)∣∣ +
∣∣gk∣∣∣∣(fh − gh)

∣∣]
= M

[ n∑
h=1

∣∣fh∣∣ +
n∑
h=1

∣∣gh∣∣] n∑
k=1

∣∣(fk − gk)∣∣
= M

(
‖f‖1 + ‖g‖1

)
‖f − g‖1,

and bearing in mind the de�nition of the p-th order momentum Ep, see (1.2.9), the norm ‖f‖1
represents the zero-order momentum E0 (remember that the fi is a positive function). Bearing all
above in mind, the following inequality for the operator G[f ] holds true:

‖G[f ]−G[g]‖1 ≤M
(
E0[f ] + E0[g]

)
‖f − g‖1. (2.2.6)
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Similarly, for the loss operator L[f ], one has:

‖L[f ]− L[g]‖1 =

n∑
i=1

∣∣∣∣fi n∑
k=1

ηikfk + gi

n∑
k=1

ηikgk

∣∣∣∣
≤M

n∑
i=1

n∑
k=1

∣∣fifk − gigk
∣∣

≤M
[ n∑
k=1

∣∣fk∣∣ +

n∑
k=1

∣∣gk∣∣] n∑
i=1

∣∣(fi − gi)∣∣
= M

(
‖f‖1 + ‖g‖1

)
‖f − g‖1,

and thus

‖G[f ]−G[g]‖1 ≤M
(
E0[f ] + E0[g]

)
‖f − g‖1. (2.2.7)

Finally by summing the (2.2.6) and the (2.2.7), one obtains for the operator J [f ]:

‖J[f ]− J[g]‖1 ≤ 2M (E0[f ] + E0[g]) ‖f − g‖1. (2.2.8)

Since ui ≥ 1 and fi ≥ 0, then E0[f ] ≤ Ep[f ]. The proof is concluded.

Lemma 2.2.2. Let U = (u1, u2, . . . , un) ∈ ([1,+∞[)n be the discrete activity vector; Fi(t) : R+ →
R+, for all i ∈ {1, 2, . . . , n}, a bounded function with upper-bound F ; ηhk = η(uh, uk) : Iu × Iu →
R+, for h, k ∈ {1, 2, . . . , n}, a bounded function with upper-bound M , and Aihk = A(uh, uk, ui) :

Iu × Iu × Iu → R+, for all i, h, k ∈ {1, 2, . . . , n}, the transition probability density satisfying the

property (1.2.6). If f ,g ∈ Kpf (R+;E0
p), then

‖T [f ]− T [g]‖1 ≤
(
F‖Up‖1

E0
p

+ 2ME0
p + 4ME0

p‖Up‖1
)
‖f − g‖1. (2.2.9)

Proof. Let f ,g ∈ Kpf (R+;E0
p). For the thermostat operator T [f ] one has:

‖T [f ]− T [g]‖1 =
n∑
i=1

|Ti[f ]− Ti[g]|

=
n∑
i=1

∣∣∣∣Fi − (Up · (J[f ] + F)

Ep[f ]

)
fi − Fi +

(
Up · (J[g] + F)

Ep[g]

)
gi

∣∣∣∣ .
Since f ,g ∈ Kpf (R+;E0

p), then Ep[f ] = Ep[g] = E0
p, and one has:

‖T [f ]− T [g]‖1 =

n∑
i=1

∣∣∣∣−(Up · F
E0
p

)
(fi − gi)−

(
Up · J[f ]

E0
p

)
fi +

(
Up · J[g]

E0
p

)
gi

∣∣∣∣
≤

n∑
i=1

(
Up · F
E0
p

)
|fi − gi|+

n∑
i=1

∣∣∣∣(Up · J[f ]

E0
p

)
fi −

(
Up · J[g]

E0
p

)
gi

∣∣∣∣ .
(2.2.10)

The �rst sum writes:
n∑
i=1

(
Up · F
E0
p

)
|fi − gi| =

(
Up · F
E0
p

)
‖f − g‖1. (2.2.11)
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For the second sum in (2.2.10), recalling that
n∑
l=1

upl fl =
n∑
l=1

upl gl = E0
p, we have:

n∑
i=1

∣∣∣∣(Up · J[f ]

E0
p

)
fi −

(
Up · J[g]

E0
p

)
gi

∣∣∣∣ =

n∑
i=1

∣∣∣∣∣ 1

E0
p

n∑
l=1

upl Jl[f ]fi −
1

E0
p

n∑
l=1

upl Jl[g]gi

∣∣∣∣∣ (2.2.12)

=

n∑
i=1

∣∣∣∣ 1

E0
p

n∑
l=1

upl

n∑
h=1

n∑
k=1

ηhkA
l
hkfhfkfi −

1

E0
p

n∑
l=1

upl fl

n∑
k=1

ηlkfkfi −

− 1

E0
p

n∑
l=1

upl

n∑
h=1

n∑
k=1

ηhkA
l
hkghgkgi +

1

E0
p

n∑
l=1

upl gl

n∑
k=1

ηlkgkgi

∣∣∣∣
=

n∑
i=1

∣∣∣∣∣ 1

E0
p

n∑
l=1

upl

n∑
h=1

n∑
k=1

ηhkA
l
hk [fhfkfi − ghgkgi]−

n∑
k=1

ηlk [fkfi − gkgi]

∣∣∣∣∣ . (2.2.13)

Bearing in mind that ηhk ≤M , 0 < Alhk ≤ 1, ∀l, h, k, and by employing the triangular inequality,
one has:

n∑
i=1

∣∣∣∣∣ 1

E0
p

n∑
l=1

upl

n∑
h=1

n∑
k=1

ηhkA
l
hk [fhfkfi − ghgkgi]−

n∑
k=1

ηlk [fkfi − gkgi]

∣∣∣∣∣
≤ 1

E0
p

n∑
i=1

n∑
l=1

∣∣upl ∣∣ n∑
h=1

n∑
k=1

ηhkA
l
hk |fhfkfi − ghgkgi|+

n∑
i=1

n∑
k=1

ηlk |fkfi − gkgi|

≤ M

E0
p

‖Up‖1
n∑
i=1

n∑
h=1

n∑
k=1

|fhfkfi − ghgkgi|+M

n∑
i=1

n∑
k=1

|fkfi − gkgi| (2.2.14)

By following the same procedure for the operator J[f ] (see Lemma 2.2.1), the �rst term in (2.2.14)
can be rewritten as follows:

M

E0
p

‖Up‖1
n∑
i=1

n∑
h=1

n∑
k=1

|fhfkfi − ghgkgi| =

M

E0
p

‖Up‖1
n∑
i=1

n∑
h=1

n∑
k=1

|fhfk(fi − gi) + gigh(fk − gk) + gifk(fh − gh)|

M

E0
p

‖Up‖1
n∑
i=1

n∑
h=1

n∑
k=1

|fhfk(fi − gi) + gigh(fk − gk) + gifk(fh − gh)|

≤ M

E0
p

‖Up‖1
n∑
i=1

n∑
h=1

n∑
k=1

[|fhfk(fi − gi)|+ |gigh(fk − gk)|+ |gifk(fh − gh)|]

=
M

E0
p

‖Up‖1

[
n∑
h=1

n∑
k=1

|fh||fk|+ |gi||gh|+ |gi||fk|

]
n∑
i=1

|fi − gi|

=
M

E0
p

‖Up‖1
[
‖f‖21 + ‖g‖21 + ‖f‖1‖g‖1

]
‖f − g‖1

≤ M

E0
p

‖Up‖1
[
‖f‖21 + ‖g‖21 + 2‖f‖1‖g‖1

]
‖f − g‖1

=
M

E0
p

‖Up‖1 [‖f‖+‖g‖1]2 ‖f − g‖1

=
M

E0
p

‖Up‖1 [E0[f ] + E0[g]]2 ‖f − g‖1. (2.2.15)
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Thus for the �rst term in (2.2.14) we have:

n∑
i=1

∣∣∣∣(Up · J[f ]

E0
p

)
fi −

(
Up · J[g]

E0
p

)
gi

∣∣∣∣ ≤ M

E0
p

‖Up‖1 [E0[f ] + E0[g]]2 ‖f − g‖1. (2.2.16)

By employing the same procedure for G[f ] and L[f ], for the second term in (2.2.14) one has:

M
n∑
i=1

n∑
k=1

|fkfi − gkgi| ≤M [E0[f ] + E0[g]] ‖f − g‖1. (2.2.17)

Finally by summing (2.2.11), (2.2.16) and (2.2.17), one has:

‖T [f ]−T [g]‖1 ≤
[(

Up · F
E0
p

)
+M (E0[f ] + E0[g]) +

M

E0
p

‖Up‖1 (E0[f ] + E0[g])2
]
‖f−g‖1. (2.2.18)

Since ui ≥ 1, fi ≥ 0 and Fi ≤ F , then E0[f ] ≤ Ep[f ]. The proof is concluded.

Remark 2.2.2. If f ,g ∈ K0
f (R+;E0

0) (the zero-order moment is conserved), then

‖J[f ]− J[g]‖1 ≤ 4ME0
0‖f − g‖1, (2.2.19)

‖T [f ]− T [g]‖1 ≤
(

Up · F
E0
0

+ 2ME0
0 + 4ME0

0‖Up‖1
)
‖f − g‖1. (2.2.20)

The main result of this chapter, concerning the existence and uniqueness solution of the Cauchy
problem (2.2.2), follows:

Theorem 2.2.1. Let U = (u1, u2, . . . , un) ∈ ([1,+∞[)n be the discrete activity vector; Fi(t) :

R+ → R+, for all i ∈ {1, 2, . . . , n}, a bounded function; ηhk, for h, k ∈ {1, 2, . . . , n}, a bounded

positive function; Aihk, for all i, h, k ∈ {1, 2, . . . , n}, the positive function satisfying the property

(??), and f0 ∈ Kpf (R+;E0
p) a given function. Then there exists a unique nonnegative vector function

f ∈ C([0,+∞[;Rn+) ∩ Kpf (R+;E0
p) solution of the Cauchy problem (2.2.2).

Proof. The results gained in the previous two Lemmas ensure the local existence and uniqueness
of the solution of (2.2.2). Indeed the operators J[f ] and TF[f ] are locally Lipschitz in the variable
f , uniformly with respect to the variable t.
In order to prove that f ∈ Kpf (R+;E0

p), the Cauchy problem (2.2.2) is rewritten in the following
Volterra integral vectorial equation:

f(t) = f(0) +

∫ t

0

df

ds
(s)ds

= f(0) +

∫ t

0

[
J [f ](s) + F(s)−

(
Up · (J[f ](s) + F(s))

Ep[f ](s)

)
f(s)

]
ds.

Considering the above vectorial equation componentwise, multiplying both sides for upi and sum-
ming over i, yields:

n∑
i

upi fi(t) =

n∑
i=1

upi fi(0)

+

∫ t

0

[
n∑
i=1

upi (Ji[f ](s) + Fi(s))−
(

Up · (J[f ](s) + F(s))

Ep[f ](s)

) n∑
i=1

upi fi(s)

]
ds.
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Recalling the (1.2.9), the above equation rewrites:

n∑
i=1

upi fi(t) = E0
p +

∫ t

0

[
n∑
i=1

upi (Ji[f ](s) + Fi(s))− (up · (J[f ](s) + F(s))

]
ds.

Since the integrand function of the above equation vanishes for all s, �nally one has:

n∑
i=1

upi fi(t) = Ep[f ](s) = E0
p.

Setting

Qi[f , Fi](t) = Gi[f ](t) + Fi(t), Pi[f , α](t) =

n∑
i=1

ηikfk(t) + α(J [f ],Ep,F), (2.2.21)

the equation (2.2.2) can be rewritten as follows:

dfi
dt

(t) + fi(t)Pi[f , α](t) = Qi[f , Fi](t), (2.2.22)

which is a �rst-order nonhomogeneous di�erential equation in the unknown fi. Let γi(t) be the
formal primitive of Pi[f , α](t) vanishing for t = 0:

γi(t) =

∫ t

0
Pi[f , α](s) ds.

Then equation (2.2.22) writes:

fi(t) = f0i exp(−γi(t)) +

∫ t

0
exp((γi(s)− γi(t)))Qi[f , Fi](s) ds.

Let T : Kpf → C the functional operator whose ith component reads:

(T [f ])i(t) = f0i exp(−γi(t)) +

∫ t

0
exp((γi(s)− γi(t)))Qi[f , Fi](s) ds. (2.2.23)

Every �xed point of T , i.e. every vector function f such that T [f ] = f , in Kpf is solution of the
Cauchy problem (2.2.2). It is easy to see that T maps Kpf into itself, i.e. T [Kpf ] ⊆ Kpf ; indeed the
positivity of the exponential function, the positivity of Qi[f , Fi], and f0i ≥ 0 for all i ∈ {1, 2, . . . , n},
ensure that the relation fi(t) ≥ 0 holds true for all t ∈ [0,+∞[.

The global existence of solution is easily gained. Indeed the occurrence of the global existence
of a solution f(t) on the interval t ∈ [0,+∞[ would be violated only if |f(t)| → +∞ as t→ t∗ for
some t∗ ≤ +∞. Since fi(t) ≥ 0 and

n∑
i=1

fi(t) ≤
n∑
i=1

upi fi(t) = E0
p < +∞,

the solution is bounded. Accordingly f ∈ C([0,+∞[;Rn+). The proof of the theorem is thus
concluded.

Remark 2.2.3. The set Kpf (R+;E0
p) is positively invariant for the system (2.2.2). Indeed if f0 ∈

Kpf (R+;E0
p) then f(t) ∈ Kpf (R+;E0

p).

Remark 2.2.4. In general, if Du ⊂ R (discrete activity), the pth-order moment can be zero even
if the distribution vector f 6= 0.
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2.3 The introduction of nonlinear interactions

The aim of this subsection is to brie�y discuss the role of nonlinear interactions in the KTAP
frameworks. Nonlinear interactions will be employed in the next chapter for the derivation of
a speci�c model for pedestrian dynamics in a metro station. The framework proposed in (2.1)
is based on the assumption that interactions at the microscopic scale are linearly additive and
conservative. However many living systems show complex behaviours that cannot be modeled and
simulated simply by linear interactions (see [6] [7]). The introduction of nonlinear interactions
consist in assuming that rate ηhk and/or the table of games Aihk depends explicitly on the values
of the activity variable u, on the distribution functions fi and the momenta Ep. In this contest
the introduction of a distance dhk between the active particles of the h-th and the k-th functional
subsystems is needed. The following functions are the most common for modeling the distance
dhk:

• dhk = η0hk ∈ R+ is simply a real positive constant that depends on the encounter rate of the
interacting functional subsystems.

• dhk = dhk(uh, uk) depends on the microscopic states of the two interacting particles. The
most common case is when dhk depends on the relative di�erence between the microscopic
states of interacting particles:

dhk = |uh − uk|α α ∈ R.

• dhk = dhk[fh, fk](t) depends on the distribution functions of the two interacting particles.
For example the Euclidean distance between fh and fk:

dhk = dhk[fh, fk](t) = |fh − fk|.

Additional models and examples can be proposed according to the speci�c characteristic of the
system under consideration. In particular the modeling of the encounter rate ηhk can be achieved
in a fashion such that increasing values of the distance dhk correspond to decreasing values of the
encounter rate ηhk. A high level of nonlinearity is introduced when the probability transition Aihk
is conditioned by the microscopic states pf the particles or by the distributions functions, or by
the momenta:

Aihk = Aihk(uh, uk, ui, fh, fk, fi,Ep[f ]).

Moreover the role of the local interactions need to be de�ned. Speci�cally the interaction domain
of the candidate particle with state uh is not the whole domain Du, but a subset Iuk which contains
the particle uk ∈ Iuk that are able to interact with the candidate particle. Bearing all above in mind
the thermostatted kinetic framework (2.1.4) that takes into account the nonlinear interactions can
be rewritten as follows:

dfi
dt

=

n∑
h=1

n∑
k=1

ηhk(dhk)A
i
hk(uh, uk, ui, fh, fk, fi,Ep[f ])fhfk − fi

n∑
k=1

ηik(dik)fk +

+ Fi −
(

up · (J[f ] + F)

Ep

)
fi,

(2.3.1)
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where the time dependence has been omitted for simplicity. It is worth stressing that the well-
posedness of the framework (2.3.1) with nonlinear interactions can be technically proved as an
extension of Theorem (2.2.1). The framework (2.3.1) will be employed in the next chapter for the
derivation of a speci�c model for pedestrian dynamic in a metro station.

2.4 Summary

In this chapter we have de�ned a new discrete kinetic framework for active particles subjected to
an external force �eld and whose microscopic state depends only on the activity variable. The
external force �eld is independent from the activity variable, and it is coupled to a dumping term
(thermostat), that is designed in order to keep constant a general p-th order moment Ep[f ](t) =∑n

i=1 u
p
i fi(t) of the distribution function. The new framework reads:

dfi(t)

dt
=

n∑
h=1

n∑
k=1

ηhkA
i
hkfh(t)fk(t)− fi(t)

n∑
k=1

ηikfk(t) + Fi(t)−
(

up · (J[f ] + F)

Ep

)
fi(t),

where:

� f(t) = (f1(t), f2(t), . . . , fn(t)) is the vector of the distribution functions, where each fi is the distri-

bution function of the i-th functional subsystem with activity variable ui.

� ηhk is the interaction rate (1.2.4) and Ai
hk the probability density (1.2.5)

� F(t) = (F1(t), F2(t), . . . , Fn(t)) is the external force �eld.

� J[f ] = (J1[f ], J2[f ], . . . , Jn[f ]) is the vector of the internal interactions, where Ji[f ] is given by the

RHS of (1.2.7).

� Up = (up1, u
p
2, . . . , u

p
n) is the vector of the activity variable.

The �rst two terms in the R.H.S. represent the internal interactions among active particles, the
second term is the external force �eld acting on the ith subsystem, and the last term is the
thermostat term. It is worth stressing that the thermostat term generally depends on the inner
dynamics of the system, the external force �eld and the p-th order moment, but it has the same
functional form given by α for all the functional subsystems. This new framework is suitable to
describe complex systems subjected to an external force �eld where the low number of individuals
weakens the assumption of continuity of the distribution function. The main results of this chapter
is the prove of local and global existence of solutions for the Cauchy Problem related to the new
thermostatted framework.



Chapter 3

Modeling pedestrian dynamics in a

metro station

This chapter aims at developing an application of the general thermostatted kinetic framework
proposed in the previous chapter. This new framework is be employed for the modeling of pedes-
trian dynamics at the entrance of a metro station when an external event (sound signals, collective
hurry, evacuation alarm) can a�ect signi�cantly their internal dynamics. The model is proposed
for analysing the time distribution of the pedestrians approaching at di�erent gates (turnistiles).
In particular the pedestrian dynamics is analysed in absence of the external force �eld acting on
the system, in order to focus only on the internal dynamics of the system (the analysis with the ex-
ternal force �eld is developed in Chapter 4). Speci�cally, the chapter is organized in three sections.
The �rst section deals with the derivation of the model, in particular with the characterization
of the functional subsystems, the derivation of the evolution equations and the modeling of the
microscopic interactions. The second section concerns the analytical analysis of the equilibrium
solutions by means of the classical stability theory of perturbations for two speci�c cases. Finally
the last section is addressed to the numerical analysis of the system, which aims at depicting the
dynamics and the emerging behaviours described by the model. In particular a sensitivity analysis
on the parameters and the initial conditions is performed.

3.1 The Model

This section deals with the derivation of a model for pedestrian dynamics in a metro station in
the framework of the thermostatted kinetic theory for active particles proposed in Chapter 2. The
section is presented through �ve sequential subsections. First we deal with a schematic phenomen-
ological analysis of the system (pedestrians in a metro station), then with the characterization
of the functional subsystems and the derivation of the evolution equations, and then with the
modeling of the internal microscopic interactions. Finally we discuss few initial conditions that
have a phenomenological meaning for this model, and that will be employed for the computational
analysis.

23
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Figure 3.1: Sketch of the metro gates zone.

3.1.1 The system

Let G be a set of N pedestrian that enters 1 in a metro station composed of n gates. The entrance
area is assume a rectangle. Gates occupy one side of the rectangle, and they are ordered in as-
cending way from left to right, while pedestrians come towards them from the opposite side. For
simplicity in what follows these two zones are called the gates side and the enter side, respectively.
See Figure 3.1. The number of pedestrians N is supposed to be �xed and constant in time. The
last assumption takes into account either the dynamics of a �nite group of pedestrians or the
dynamics of a constant �ux of pedestrians, considering N as the number of pedestrians per unit
time entering in the metro station.
Bearing all above in mind, how do pedestrians distributed themselves in time in the n gates, in
presence or not of some external factors that in�uence their internal dynamics in normal situ-
ations, such as collective hurry in the early morning, sound signal for fast evacuation or visual
signal that recommend some preferential gates? The aim of the proposed model derived with the
thermostatted discrete framework (2.1.4) is then to reproduce the main features of this dynamics,
once �xed the initial distribution f0i of pedestrians, the interactions among individuals through
the design of the interaction rate ηhk and the table of games Aihk, and the de�nition of an external
force �eld F coupled with the thermostat term.

3.1.2 The activity variable and the functional subsystems

As already mentioned in Chapter 2, the general thermostatted structure de�ned in (2.1) is a
paradigm for the derivation of a speci�c model in homogeneous space and velocity, and depends
only on the activity variable u. In the pedestrian modeling we are dealing with the activity variable
represents the pedestrian choices. Speci�cally the activity variable ui denotes the choice of ith

gate by a generic pedestrian. Consequently the system is divided into n functional subsystems,
one associated to each gate choice, and the distribution function fi(t) represents the number of

1The case where pedestrians exit the metro through the gates can be represented exactly by the same model.

For simplicity, here we focus only on pedestrians who enter a metro station.
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pedestrians that at time t has chosen the ith gate to enter. As already mentioned, the model is
based on the assumption that the number N of pedestrians is kept constant, then the zero-order
moment E0 is conserved:

E0[f ](t) = E0

n∑
i=1

fi(t) = N. (3.1.1)

Bearing in mind the thermostat term (2.1.5) in the case of the conservation of the zero-order
momentum E0, the evolution equations of the model coupled to the initial values (2.2.2) writes:

df

dt
= Ji[f ] + Fi −


n∑
i=1

Fi

E0

 fi

f(0) = f0

(3.1.2)

where the term of the internal interactions Ji[f ] reads:

Ji[f ] =
n∑
h=1

n∑
k=1

ηhkA
i
hkfhfk − fi

n∑
k=1

ηikfk. (3.1.3)

Is easy to see that, the number of equation of the system is equal to the number of gates n under
consideration, that will be taken into account as an additional parameter of the model. It is
worth stressing that the thermostat term (2.1.5), that allows the conservation of the zero-order
momentum, is proportional to the magnitude of the total external force.

3.1.3 The microscopic interaction terms

Referring to the model (3.1.2), the next step is the modeling of the interactions among individuals
of the various subsystems and the de�nition of the related external force �eld F. Thus in the sequel
the interaction rate ηhk, the table of games Aihk and the external force �eld F are designed for the
speci�c model. It is worth stressing that for the internal interactions, only binary interactions are
taken into account.

• The Interaction Rate

The interaction rate ηhk is modeled by considering the local interactions. Speci�cally it is
assumed that a pedestrian can interact with pedestrians allocated in a certain number m of
gates, that will be referred to as the interaction range. The interaction range m is assumed
to be a function of the number n of total gates:

m(n) =

n if n ≤ 5

[13n+ 10
3 ] if n > 5,

(3.1.4)

where [a] denotes the integer part of a. The above choice reproduces the fact that if the total
number of gates is low, then a pedestrian can interact with all the other pedestrians within
the entire extension of the gates side; as the total number of gates increases, a pedestrian
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Figure 3.2: Discrete functions of interaction range and interaction rate.

can physically interact with pedestrians that �nd themselves in a limited range of gates.
In both cases the dependence is modeled as linear, but with di�erent slopes. Moreover for
the second subcase we take the integer part to be coherent with the discretization of the
activity variable chose in the previous subsection. The cut-o� between these two di�erent
linear behaviours has been chosen at m = 5.
The interaction rate ηhk is then designed assuming that it depends only on the relative
distance between two gates |h− k| and on m. Speci�cally:

if h 6= k:

ηhk = η(|h− k|) =

 1
|h−k| if |h− k| ≤ m

0 if |h− k| > m,
(3.1.5)

if h = k:
ηhh = 1. (3.1.6)

The Eq. (3.1.4) shows that the probability of interaction decreases as the relative distance
between the gates within the interaction range m, while beyond this limit no interaction is
allowed. Figure 3.2 shows the two functions m(n) and ηhk.
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• The table of games

The table of game Aihk is derived according to a local leader-follower dynamic 2 which is
function of the local density. This is obtained by introducing in the dynamics an explicit
dependence on the distribution functions fi, and non-linear interactions as discussed at the
end of Chapter 2. For sake of simplicity, the pedestrian that at time t chooses the ith gate, is
identi�ed as the ith pedestrian. For designing the table of games the following assumptions
are taken into account:

A1) The candidate pedestrian h can interact only with a pedestrian k within the range of
interaction m according to Eq.(3.1.4) and the choice of the new gate is within this range
(locality).

A2) The new gate i chosen by the pedestrian h after the encounter with the pedestrian k
belongs to the range h < i ≤ k if gate h < k, or k ≤ i < h if gate k > h. Moreover
the probability to choose the i-th gate decreases with the distance between the hth
and the ith gate. These hypothesis want to reproduce a leader-following dynamic:
the candidate h is in�uenced by the choice of the pedestrian k in the sense that the
pedestrian h partially follows the choice of the leader pedestrian k. In brief, when the
candidate h encounters the pedestrian k, he follows the direction of the pedestrian k.
This fact allows the pedestrian h to visualize the gates between him and the pedestrian
k, and to take into consideration this range of gates for a possible new choice. Moreover
in general the candidate h considers a new gate that is not too far from his position.

A3) The probability to choose the new ith gate is proportional to a local density ρh de�ned
as ρh = fh

N , that is a measure of how many pedestrians are queuing, at time t, in the
hth gate. This assumption simply models the fact that a pedestrian tends to choose a
new gate if there is a lot of queue forming in the one he has chosen (leader).

A4) The probability to choose the new i-th gate is be proportional to a normalized �uidity

parameter S. This parameter takes into account the pedestrian �ow �uidity, that can
be in�uenced by di�erent factors, e.g. age of pedestrians, mechanical quality of the
gates, pedestrians with luggages.

A5) The pedestrian h that interacts with another pedestrian h, keeps his current choice to
gate h.

Let εih be a transition probability de�ned as follows:

εih(t) =
Sρh(t)

|h− i|p
with ρh =

fh(t)

E0
, S ∈]0, 1], p ≥ 0, (3.1.7)

where E0 = N is the conserved zero-order momentum. The parameter p is the �t-best
parameter that we denote as the leader parameter because it controls how strong is the
leader-follower term. The term εih(t) partially takes into account assumptions A2), A3), A4).
It is worth stressing that the dynamic is symmetric in the left and in the right directions, in
the sense that there is no di�erence if the candidate h encounters the pedestrian k coming
from the left or from the right, because in the transition probability εih the new gate i that

2The reader interested in a more deeper understanding about leader-follower dynamics is referred to [45]
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i < h h < i ≤ k i > k i = h i < k k ≤ i < h i > h

|h− k| > m

∀ h, k 0 0 0 1 0 0 0

|h− k| ≤ m

k < h / / / 1−
∑
k≤i<h

εih 0 εih 0

k > h 0 εih 0 1−
∑
h<i≤k

εih / / /

k = h 0 0 0 1 0 0 0

Table 3.1: The table of game for the model (3.1.2) of pedestrian dynamics in a metro station.

the candidate h can choose depends only on the absolute di�erence of gates. According to
all the above assumptions, Table 3.1 summarizes the table of games. It is easy to see that
the table of games Aihk is conservative, i.e. it respects the completeness property:

n∑
i=1

Aihk = 1 ∀h, k ∈ {1, 2, ..., n}.

3.1.4 The External Force Field

As mentioned in the introduction of the chapter, the external force �eld F can represent collective
hurry in the early morning, sound signals or visual signals, or evacuation alarms, that can a�ect
signi�cantly the internal dynamics of pedestrian. The explicit de�nition of the external force �eld
will be give casewise, and will be analyzed in the next Chapter, that is devoted to the study of
the system under the action of the external force �eld coupled with the thermostat term.

3.1.5 The Initial Conditions

The numerical analysis is based on the de�nition of �ve di�erent initial conditions f0 which spe-
ci�cally are (see Figure 3.3):

Initial condition U : uniform distribution

f0i = N/n ∀i, (3.1.8)

. This initial condition reproduces the case in which pedestrians enter uniformly from the
entrance side. Such a situation can be found in big metro stations, where the bigger available
space allows people to move freely and arrange themselves uniformly in the gates zone.

Initial condition L : all pedestrians are allocated in the �rst (left) gate

f0i =

N if i = 1

0 otherwise.
(3.1.9)
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This initial condition correspond to the case in which all pedestrians reach the gates zone
from the left side of the entrance zone. In terms of f0i this is translated into the fact that,
at t = 0, pedestrians all choose the �rst gate.

Initial condition R : all pedestrians are allocated in the last (right) gate

f0i =

N if i = n

0 otherwise.
(3.1.10)

This condition is the analogous of the previous one, but now all the pedestrians enter from
the right side of the entrance zone. In terms of f0i this is translated into the fact that, at
t = 0, pedestrians are all choose the last gate n.

Initial condition C : all pedestrians are allocated in the central gate

if n is a even number f0i =

N
2 if i = n/2 ∨ i = n/2 + 1.

0 otherwise,
(3.1.11)

if n is an odd number f0i =

N if i = n/2 + 1/2

0 otherwise.
(3.1.12)

This initial condition corresponds to the case where all the pedestrians enter from the center
of the entrance zone. In the case of odd number n of gates, this is translated into the fact
that, at t = 0, all pedestrians choose the only central gate. In the case of even number n of
gates, pedestrians choose the two central gates with equal probability.

Initial condition H : pedestrians are allocated in the �rst gate (left) and in the last gate (right)

f0i =

N
2 if i = 1 ∨ i = n

0 otherwise.
(3.1.13)

This initial condition corresponds to the case in which N/2 pedestrians enter from the left
side of the entrance zone, and the other N/2 pedestrians enter from the right side of the
entrance zone. In terms of f0i this is translated into the fact that, at t = 0, N/2 pedestrians
choose the �rst gate, and the other N/2 choose the last gate.

In all the sets of the numerical simulations the number N of total pedestrians is kept constant. This
choice is in agreement with the problem under consideration. In fact according to the table of games
we have built up, the dynamic depends only by a local density in (3.1.7) through the candidate
local density ρh = fh

N , and not on a global density, then N does not a�ect the qualitative results of
simulations. Since the model aims at describing the dynamic of a constant group of pedestrians,
the number of total pedestrians is set N = 100. This choice is coherent with real data in Paris
metro stations: 100 is the mean number of pedestrians passing through each metro station every
10 minutes (rough evaluation). 3

3 Paris Metro counts 303 metro stations and the annual ridership in 2012 counted over 1.5 billion passengers

(daily 4.21 billion). References: The Network - The Metro: a Parisian institution, RATP. Retrieved 2014-01-29.

http://www.ratp.fr/en/ratp/c_10556/the-metro-a-parisian-institution/.

http://www.ratp.fr/en/ratp/c_10556/the-metro-a-parisian-institution/
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Figure 3.3: The Five initial conditions for the case n = 7, N = 100. From left to right: U, L, R, C, H.

3.2 A qualitative analysis for the case F = 0: equilibrium solutions

This section is concerned with a qualitative analysis of the model introduced in the previous
section. The external force �eld, and consequently the thermostat term, are assumed to be equals
to zero, and then the analysis is focused only on the internal dynamics of the system given by the
term J[f ] in (3.1.2). The study is limited to the case of low number of gates n = 2 and n = 3,
for which an analytical analysis on the equilibrium solutions is feasible by means of the classical
stability theory of perturbations. The analysis aims understanding explicitly the equations of the
thermostatted framework (3.1.2), and to obtain a �rst qualitative insight on some general features
of the system and of the parameters of the model S, and p. Indeed, the analysis of the asymptotic
behaviour of the system allows a deeper comprehension of the transient behaviour, that has a
fundamental role in the current application to pedestrian dynamics.

3.2.1 The case n = 2

In the case of n = 2 gates without external force �eld, the model (3.1.2) consists of the following
two equations: 

df1(t)

dt
= η11A

1
11f

2
1 + η12A

1
12f1f2 + η21A

1
21f1f2 + η22A

1
22f

2
2

df2(t)

dt
= η11A

2
11f

2
1 + η12A

2
12f1f2 + η21A

2
21f1f2 + η22A

2
22f

2
2 .

(3.2.1)

The interaction range (3.1.4) is given by m = 2, and as consequence the interaction rate is simply
given by ηhk = 1, ∀h, k ∈ {1, 2}, according to (3.1.5). The table of games is given by the matrices
A1, A2 that explicitly take the form:

A1 =

(
1 1− ε21
ε12 0

)
A2 =

(
0 ε21

1− ε12 1

)
(3.2.2)
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where each εhk is given by (3.1.7). Bearing all above in mind, the model (3.2.1) reads:
df1(t)
dt = f21 + (1− ε21)f1f2 + ε12f1f2 − f21 − f1f2

df2(t)
dt = ε12f1f2 + (1− ε12)f1f2 + f22 − f1f2 − f22 ,

(3.2.3)

and considering the transition probability εhk (3.1.7), then the direct computation gives the �nal
system of two nonlinear di�erential equations:

df1(t)
dt = S

N f1f2(f2 − f1)

df2(t)
dt = S

N f1f2(f1 − f2).

(3.2.4)

As one can easily see, the ratio S/N governs the speed of the evolution of the system. The fact
that the ratio S/N is linked to the speed of the evolution is in agreement with what one could
expect: the more pedestrian are in the gates zone, the less fast they can move because of their high
global density that is proportional to N and vice versa. Pedestrians move less fast also if there is a
slow (small S ≈ 0) or a fast (high S ≈ 1) pedestrian �ow. Moreover in this case the equations are
independent of the parameter p, because the leader-follower term in Eq.(3.1.7) is equal to 1. This
is in agreement with the fact that with only two gates the realization of a leader-following dynamic
is not really possible. It is important to notice that df2(t)/dt = −df1(t)/dt, that is consistent with
the conservation of total number of pedestrians N , that in this case means f1+f2 = N (recall that
for the discrete framework without thermostat, the conservation of the zero-order momentum E0

is automatically assured, as previously demonstrated in section (2.1). Thus a model with n gates
is described by a system of n − 1 coupled di�erential equations. Then by using the substitution
f2 = N − f1, the stability analysis is limited to the equation:

df1(t)

dt
=
S

N
f1(N − f1)(N − 2f1). (3.2.5)

It is easy to see that there are three positive equilibrium points f̄1:

A) f̄1 = 0 B) f̄1 = N C) f̄1 = N/2. (3.2.6)

In order to test the linear stability of these solutions we need to study the evolution in time of
the perturbations. Let f̄1 be the equilibrium con�gurations and δf a small perturbation around
it. The evolution problem (3.1.2) relative to (f̄ + δf) is obtained by developing Eq. (3.2.5) up to
the �rst order in δf , and taking into account that f̄ is a solution of this equation, one obtains:

δf1(t)

dt
= (N2 − 6Nf̄1 + 6f̄1

2
) δf1. (3.2.7)

By evaluating the r.h.s. of Eq. (3.2.7) in each equilibrium, perturbations grows with time for
equilibrium A) and equilibrium C), while they decrease for equilibrium B). Equilibrium f̄1 = N/2

then turns out to be the only stable equilibrium for any initial condition. Recalling the expression
for f2, the whole equilibrium for the system is:

(f̄1, f̄2) =

(
N

2
,
N

2

)
, (3.2.8)
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that is a uniform distribution. The asymptotic behaviour of the system is then to �ll partially all
the available gates. We will see in the next subsection that this behaviour holds true also for the
case n = 3.

3.2.2 The case n = 3

In the case of n = 3 gates the analysis follows the same steps of the case n = 2. The interaction
range is m = 3, and the interaction rate ηhk is always non zero. The table of Ggmes is given by
the three matrices A1, A2, A3, that take the following form:

A1 =

 1 1− ε21 1− ε21 − ε31
ε12 0 0

ε13 0 0

 A2 =

 0 ε21 ε21
1− ε12 1 1− ε32
ε23 ε23 0



A3 =

 0 0 ε31
0 0 ε32

1− ε13 − ε23 1− ε23 1


(3.2.9)

where each εhk is given again by Eq. (3.1.7). It is easy to see that the matrices (3.2.2) for n = 2

are the upper-left sub-matrices 2 × 2 of this case. This is a recurrent relation that holds true
in the general dimension n, i.e. the table of game matrices in the case n − 1 are the upper-left
(n − 1) × (n − 1) sub-matrices of the case n. By replacing the explicit expression of the table of
games and of εhk in (3.1.2), the system of equations for three gates reads:



df1(t)
dt = S

N · (f1f2(f2 − f1) + 1
2f1f3(

1
2p (f3 − f1)− f1))

df2(t)
dt = S

N · (f1f2(f1 − f2) + 1
2(f1 + f3) + f2f3(f3 − f2))

df3(t)
dt = S

N · (f2f3(f2 − f3) + 1
2f1f3(

1
2p (f1 − f3)− f3)).

(3.2.10)

The ratio S/N governs again the speed of the dynamical evolution, but unlike the case n = 2, in this
case the dynamic depends on the parameter p. Indeed with n = 3 a leader-follower dynamics can
take place more likely. The zero-order moment E0 = N is conserved, then the problem is reduced
to a system of two coupled di�erential equations. By means of the substitution f3 = N − f1 − f2,
the system (3.2.10) then writes:


df1(t)
dt = S

N · (f1f2(f2 − f1) + 1
2p+1 f1(f1 + f2 −N)(f1(2 + 2p) + f2 −N))

df2(t)
dt = S

N · (f1f2(f1 − f2) + 1
2(N − f2)(N − f1 − f2) + f2(N − f1 − f2)(N − f1 − 2f2)).

(3.2.11)

By equating to zero the r.h.s. of (3.2.11), the following nine equilibrium con�gurations are obtained:
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equilibrium point TrM DetM stability

A) > 0 > 0 unstable
B) > 0 < 0 unstable
C) > 0 > 0 unstable
D) < 0 < 0 unstable
E) < 0 < 0 unstable
G) < 0 > 0 stable

Table 3.2: Stability of the equilibrium points for the case of n = 3.

A) (0, 0) B) (N, 0) C) (0, N) D) (N/2, N/2) E) (0, N/2)

F)

(
N

11
(5 +

√
3),

N

11
(1− 2

√
3)

)
G)

(
N

11
(5−

√
3),

N

11
(1 + 2

√
3)

)

H) =

(
N

2p
√

2 + 2p +
√

2p(4p − 2− 2p+1)√
2 + 2p(2p+1 − 1)

,
N

1− 2p+1

)

I) =

(
N

2p
√

(2 + 2p)−
√

2p(4p − 2− 2p+1)√
2 + 2p(2p+1 − 1)

,
N

1− 2p+1

)
.

(3.2.12)

Under the model constraints N > 0, 0 < S ≤ 1 and fi ≥ 0, ∀ i, all the equilibrium points are
acceptable except the points F), H), and I) for which f2 < 0 for all N > 0 and p ≥ 0.
It is worth stressing that all equilibrium points depends on N as expected, but only two equilibrium
points, H) and I), show a dependence on p. In order to test the linear stability of the above
solutions, the evolution problem (3.1.2) relative to (f̄ + δf) is derived as follows:

d(f̄i + δfi)

dt
= Gi[f̄i + δfi]− Li[f̄i + δfi] i ∈ {1, 2, 3}. (3.2.13)

By expanding Eq. (3.2.11) up to the �rst order in δf , and taking into account that f̄ is a solution
of it, after some straightforward computing, the following linear system for the perturbations
evolution is obtained:

δ̇f = M(f̄1, f̄2)δf , (3.2.14)

where dotted δ̇f in the l.h.s. of Eq. (3.2.14) stays for derivative respect to time, matrix M is
evaluated at the equilibrium point (f̄1, f̄2) and its explicit expression is given by:

M =
S

N
·
(
M11 M12

M21 M22

)
(3.2.15)
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Figure 3.4: Trajectory in the 3D space of the system evolution. The initial conditions (3.1.5) are labeled

and marked as green points. Asymptotic state is given by the blue diamond. For N = 100 the asymptotic

state is given by (f̄1 = 29.7, f̄2 = 40.6, f̄3 = 29.7).

where:

M11 = f̄2
2 − 2f̄1f̄2 +

1

2p+1
(f̄1

2
(4 + 2p+1) + (f̄2 −N)(f̄2 −N + f̄1(4 + 2p))) (3.2.16)

M12 = 2f̄1f̄2 − f̄1
2

+
f̄1
2p

(f̄2 −N) +
f̄1

2

2p+1
(3− 2p) (3.2.17)

M21 = N2 + 5f̄2
2

+ 10f̄1f̄2 − 2Nf̄1 − 6Nf̄2 (3.2.18)

M22 = N2 +
5

2
f̄1

2
+ 6f̄2

2
+ 5f̄1f̄2 − 3Nf̄1 − 6Nf̄2. (3.2.19)

Because of the complex form of the matrix M , the stability analysis of equilibriums will be per-
formed through the evaluation of the determinant DetM and the trace TrM . An equilibrium point
is stable if and only if DetM > 0 and TrM < 0 ([48]). Table 3.2 sums up this quite simple but
long analysis. The only stable equilibrium point is G). Then, taking into account also f3, the
asymptotic con�guration for the system with n = 3 reads:

(f̄1, f̄2, f̄3) =

(
N

11
(5−

√
3),

N

11
(1 + 2

√
3),

N

11
(5−

√
3)

)
. (3.2.20)

It is worth stressing that the only equilibrium point of the system, as for the case n = 2, depends
only on the macro-parameter N , and not on S or p that are exclusively linked to the microscopic
dynamic. Being the only stable point, the equilibrium (3.2.20) is the attractor for all the initial
conditions. Moreover the steady state is a symmetric distribution, centred at the middle gate
n = 2. Figure 3.4 shows the numerical solution f in the 3D space for the di�erent initial condition
in (3.1.5). Parameters are �xed at p = 1, S = 1, N = 100. All the trajectories end at the same
asymptotic state, and this is in agreement with the previous analytical analysis. It is worth stressing
that the trajectories in the 3D space for initial conditions R and L are symmetric. It is clear from
Figure 3.4 that the trajectory starting from the initial condition U is part of the trajectory for the
initial condition H. It means that for n = 3, the dynamics for pedestrian entering in the metro
with a uniform initial condition U, is a subcase of the dynamics of pedestrian entering in the metro
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with initial condition H. In the next subsection we will see that the two last facts hold true also
for higher values of n.

3.3 Simulations and analysis of emerging behaviours (the case

F = 0)

This section deals with numerical simulations addressed to give an insight both to the transient
dynamics and to the asymptotic dynamics described by the model, in cases in which no analytical
results are available or expensive to obtain. The computational analysis aims at depicting the
emerging behaviours described by the model when varying the parameters' magnitude, the number
n of the initial distribution functions fi and their shape, i.e. initial conditions for the Cauchy
Problem (3.1.2). Simulations give a complete insight into the system dynamics in order to to
show the typical pedestrians' behaviours on the macroscale that emerge from the dynamics at
the microscale: pedestrian �ow imposed by the leader-follower dynamics, changes in pedestrian
�ow velocity, concentration of pedestrians, stuck periods at the gates side, and tendency to �ll
progressively in time all the gates available. In particular, as objectives of the computational
analysis, we focus on the sensitivity of parameters S, p and on the initial conditions described in
(3.1.5); �nally on the analysis of the dynamics for increasing value of gates n.
The sensitivity analysis is developed through four sequential subsections, while the last subsection
is devoted to a �nal discussion that sums up the results of the computational analysis. As in the
previous section, the system is not subjected to an external force �eld, and then we focus only on
the internal interactions of the system. In this case with F = 0 the model (3.1.2) simply reads:

df

dt
= Ji[f ] =

n∑
h=1

n∑
k=1

ηhkA
i
hkfhfk − fi

n∑
k=1

ηikfk.

f(0) = f0

(3.3.1)

It is worth recalling that the conservation of the zero-order momentum E0 = N in the case with
only internal interaction is automatically assured, as previously demonstrated in Sec.2.1. For
what concerns simulations, it is worth stressing that simulations refer to the evolution and the
behaviour of the distribution functions in Eq.(3.3.1). Since the model is a system of ordinary
di�erential equations for the distribution functions, the general computational scheme adopted is
that of the well-known iterative method. Speci�cally simulations are performed by means of a
Runge-Kutta (4, 5) formula, on the programming language and numerical analysis environment
MATLAB ([50], [51]). In all the performed simulations, the only parameter kept constant is the
numberN of pedestrians, that we set atN = 100 as mentioned in subsection 3.1.5. On the contrary
the values of the other parameters S, p and n are set casewise as detailed in the next subsections.
Moreover time scales and comparison between di�erent times that will be done throughout the
chapter have to be consider relatively, because they are simulations times. The rescaling to real
situation has to be done in the moment of the validation of the model. It is important to underline
that the simulations developed in this section, with their phenomenological interpretations do not
cover the whole variety of conceivable pedestrian dynamical situations that can be observed at the
entrance of a metro station.
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Figure 3.5: Analysis of the parameter S. Asymptotic distribution (upper panel), and whole dynamic evolution

(lower panel) for the initial condition H for the three di�erent values of S: S = 0.1,S = 0.5, S = 1.

3.3.1 The sensitivity analysis of the �uidity parameter S

In this subsection we analyse how the emerging behaviours change when we increase the �uidity
parameter S, introduced in the table of games (3.1) in the transition probability εih of Eq.(3.1.7).
Speci�cally, after �xing the parameter N , we set n = 7 (number of gates) and p = 1 (leader
parameter). Then we �x an initial condition among (3.1.5), and we let S vary in the interval ]0, 1].
The system dynamics is analysed for three representative values of S:

• S = 0.1 (low �uidity)

• S = 0.5 (intermediate �uidity)

• S = 1 (high �uidity).

Letting S vary from low to high values, we expect an increase in pedestrian �ow velocity.
For each simulation, we depict the dynamical evolution in time of the the whole system, and the
asymptotic distribution. For the dynamical evolution of the whole system for �xed S, we show in
the same �gure the evolution in time of each fi(t), represented by a single line. The asymptotic
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distribution is represented by an histogram, where the bars are enumerated in ascending order
from left to right as the gates are. The ith bar then shows the number of pedestrian that at �nite
time has chosen the ith gate. A general discussion on the asymptotic distribution is not reported
here, but it is postponed to subsection 3.3.5 where we discuss the results of the whole sensitivity
analysis.

The results of the simulations indeed show that by varying the magnitude of the parameter S,
time convergence towards the asymptotic distribution decreases for increasing values of S. The
evolution dynamics remains instead the same, as shown in the right panel of Figure 3.5, that
depicts the time evolution for the initial condition H (3.1.13). The fact that by varying S the
same dynamic takes place on shorter time scale, is further con�rmed by the independence of the
asymptotic distribution from S (see the left panel of Figure 3.5). Further simulations show that
the convergence time towards the asymptotic distribution varies continuously with S, and the
scenario just described is qualitative the same for all the initial condition (3.1.5).
The above results are in agreement with the role of the parameter S as indicator for the pedestrian
�uidity. Indeed, the less �uid is the people �ow (small values of S), the slow the dynamic is and
the time needed for reach the gates increases. This fact can be explained also from a mathematical
point of view. Actually S in εih (3.1.7) tunes the probability of transition to other gates. The less
probable the change is, the more time is needed for the system to evolve and reach the asymptotic
distribution.

3.3.2 The sensitivity analysis of the leader parameter p

In this subsection we let vary the leader parameter p introduced in the table of game via εih in Eq.
(3.1.7). Similar simulations performed for the �uidity parameter S are done also for investigating
the e�ects of the leader parameter p.
As before we �x N = 100 and n = 7, and we set S = 1 and an initial condition among (3.1.5), and
we let then p vary from low to higher values. As for parameter S, we expect that p a�ects time
convergence towards the asymptotic distribution, i.e. pedestrian �ow velocity. For each simulation,
we depict the dynamical evolution in time of the the whole system, and the asymptotic distribution.
Before discussing simulation, we perform a preliminary asymptotic analysis on parameter p. By
referring to Eq.(3.1.7), if we let p→ +∞ the term εih goes towards zero, and The table of games
(3.1) then depicts a scenario where pedestrians do not move, but on the contrary they rather prefer
the gate choice they have done (all term equal zero except for i = h). Consequently, the possible
dynamics is reduced, and the interactions are quite �xed. On the contrary, in the other limit as
p→ 0 the transition probability εih will not depend on the leader-follower term, and all the gates
admitted by the interaction range m(n) will be all equiprobable. Then for p = 0 there are the
maximum interaction possibilities for the dynamics.
The results of the simulations performed on the leader parameter p are summarized as follow:
for low values of the parameter p (p <∼ 7), simulations show that the convergence time towards
the asymptotic state grows with p (see right panel of Figure 3.6). Actually by recalling the
modeling of the microscopic interactions in the table of games, as p increases the probability of
displacement in εih (3.1.7) to new gates decreases. This simulation results can represent the leader
in�uence in determining the velocity of pedestrian �ow: if there are strong leaders that take the
initiative to move to other gates, the dynamic is more various and the pedestrians reach faster
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Figure 3.6: Analysis of the parameter p. Stationary distribution (upper panel) and dynamic evolution

(lower panel) for the initial condition C, for four di�erent low values of p: p = 0.5 p = 1 p = 2 p = 3.

their asymptotic distribution. On the contrary if there are weak leaders the dynamics struggles to
evolve. Moreover, as shown in the left panel of Figure 3.6, the parameter p has a role in tuning
the dispersion σ of the asymptotic distribution. Simulations show that the dispersion σ of the
stationary distribution decreases as p increases. If the leader parameter p grows within a range
of low values of p, pedestrian tends to be more concentrate in their asymptotic behaviour. The
concentration of pedestrians in their asymptotic distribution obtained by increasing p, can not
be predicted a priori from the interactions at the microscale of the table of games, but it is an
emerging characteristic of the system. It is worth stressing that the asymptotic distribution always
�lls all the gates available.

For higher values of the parameter p (p >∼ 7) the simulations shows that neither the conver-
gence time towards the asymptotic distribution nor σ of the asymptotic distribution changes after
a certain value of the parameter p, as shown in the panel (a) and in the panel (b) of Figure 3.7
respectively. The e�ects on the dynamics for increasing p reach then a saturation point. These
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(b) Saturation of the dispersion σ of the asymptotic distribution. The

dispersion σ2 is computed as the dispersion of a discrete distribution:

σ2 =
∑n

i=1 pi(i − µ)2, with probability weight pi for each gate i given

by the relative frequency pi = fi/N , and with mean µ given by µ = n/2

for even number of gates n and µ = n/2 + 1/2 for odd number of gates.

Figure 3.7: The p e�ects on the dynamics for the initial condition U.

saturation e�ects can be explained by taking into account the asymptotic analysis on parameter p
performed above, the fact that the system reaches a stationary state that involves all gates, and to
conservation of total number of pedestrians N . The combination of these three results, gives rise
to a sort of incompressibility e�ect on the asymptotic distribution of pedestrians for high values
of p. The saturations e�ects are important because we can impose a signi�cant upper-bound in
changing the parameter p. It is worth noting that the stationary distribution reach the maximum
dispersion σ for p = 0. Indeed, as previously mentioned, for p = 0 there are the maximum inter-
action possibilities for the dynamics. The dispersion of the stationary distribution is then linked
to the interaction possibilities for the dynamics: high values of the dispersion means high interac-
tions among the pedestrians. Moreover the fact that p is an indicator of the dispersion asymptotic
distribution of pedestrians, allows in principle to obtain the value of p from empirical data.
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3.3.3 The sensitivity analysis of the initial conditions

In this subsection we analyse how the di�erent initial conditions mentioned in (3.1.5) give rise to a
very heterogeneous dynamics and we investigate the behaviour of the asymptotic distribution. In
particular the simulations should visualize the emergent behaviours in the system dynamics that
the interactions at the microscale given by the table of games (3.1) give rise to. Speci�cally, we
�x N = 100 (total number of pedestrians), we select n = 7 (number of gates) and we set p = 1

(leader parameter) and S = 1 (�uidity parameter). The case n = 7 selects a small number of
gates that allows to have a better comprehension of the graphics and of the detailed dynamics.
Moreover this is a common number of gates in many metro stations as order of magnitude. It
is worth stressing that the interaction range (3.1.4) for the case n = 7 is equal to m = 5, then
the interactions involve nearly the whole gates side. We will see the importance of the interaction
range m, especially when we will analyse the dynamics for the initial condition H.
The sensitivity analysis of the initial condition is performed as follow: for each one of the initial
conditions in (3.1.5) we perform a simulation and the we discuss the obtained results. We depict
the results of each simulation with two �gures. The �rst �gure is a sequence of histograms that
represents the pedestrians distribution at consecutive instants of time. In each histogram, at �xed
time t, the ith bar shows fi(t), i.e. the number of pedestrians that at time t chooses the ith gate.
The distribution at �xed time t can be interpreted as the distribution with which all pedestrians
(or the �ux of pedestrians) pass the gates side if they have t time available. The second �gure
instead represents the whole dynamical evolution f(t) in time of the system. Each coloured line
in the graph represents the evolution in time of each fi(t). The results of the simulations are
summarized for each initial condition as follow:

Initial condition U. As shown in Figure 3.8 (a), for the dynamics where pedestrians come uni-
formly from the entrance side (initial condition (3.1.8)), we can identify a leader at the
central gate i = 4. Indeed, from the beginning of the evolution, pedestrians tend to choose
the central gates and concentrate simmetrically around the central gate. The evolution con-
tinues until pedestrians reach a symmetric asymptotic distribution (see the last histogram
of Figure 3.8 (a)). For what concerns the speed of the pedestrians �ux during the evolution,
the dynamics is faster at the beginning and then converges slowly in a strictly monotonically
ascending way to the asymptotic distribution, see Figure 3.8 (b). During the evolution there
are no short time intervals in which pedestrians keep the same distribution (i.e. the system
does not evolve during this short time intervals). We can de�ne these time intervals periods
of stuck in time. We underling the absence of periods of stuck in time for the dynamics with
the initial condition U in contrast to other cases (see below the dynamics for initial condition
L, R and C). It is worth stressing that the symmetry in the evolution respect to the central
gate i = 4, is clear from the fact that only four lines are distinguishable in Figure 3.8 (b).
Indeed pedestrians at gates i = 1 and i = 7 follow the same dynamics, as well as pedestrians
at gate i = 2 and i = 6, and �nally as pedestrians at gate i = 3 and i = 5.

Initial condition L. When all pedestrians enter in the metro station all from the left side of
the gates zone (initial condition 3.1.9), at the beginning there are no interactions among
�rst-neighbours, because all pedestrians �nd themselves in front of a single gate (see the �rst
histogram of Figure 3.9 (a)). Then what allows the dynamic to start is the high local density
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Figure 3.8: The pedestrians distribution at consecutive �xed instants of time (a), and the whole time

evolution of f(t) for the initial condition U (b).

ρh (recall the probability transition εih de�ned in Eq.(3.1.7)). Indeed the high number of
pedestrian queuing at gate i = 1, induces some leaders to choose the second gate. Other
pedestrians follow the leaders choice of gate i = 2, and the dynamics evolves until pedestrians
reach a distribution where half of them choose the gate i = 1, and the other half the gate
i = 2, as shown in the second histogram of Figure 3.9 (a). The described scenario is a likely
situation in a real metro station: when pedestrians enter all from one side of the gates zone
(say left), many of them choose as their �rst choice the second gate and not the �rst gate
closest to them. The distribution where half of the pedestrians choose the gate i = 1 and
the other half the gate i = 2, stabilises for a short time. It is exactly a period of stuck in
time, that we have mentioned when we analysed the dynamics for the initial condition U.
The behaviour is clear in Figure 3.9(b) at t ∼ 0.3, where dynamics stops for a short time.
The dynamics then restarts when some new leaders move from gates i = 1 and i = 2 to gate
i = 3. As shown in the third histogram of Figure 3.9 (a), there are more pedestrians moving
from gate i = 1 to gate i = 3 than pedestrian moving from gate i = 2 to gate i = 3 (see also
Figure 3.9 (b) at t ∼ 0.5: f1 decrease more than f2). This scenario where there is a notable
�ux of pedestrians moving from gate i = 1 to gate i = 3, can be explained as follow: some
leaders queuing at gate i = 1 decide to pass over gate i = 2 and reach directly gate i = 3,
that is the nearest empty gate. Consequently other pedestrians are in�uenced by the choice
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Figure 3.9: The pedestrians distribution at di�erent instants of time (a), and the whole time evolution of

f(t) for the initial condition L (b).

of these leaders, and they choose to move from gate i = 1 to gate i = 3 too. Gradually
pedestrian reaches a new metastable distribution, symmetrically centred at gate i = 2, as
shown in the third histogram of Figure 3.9 (a). The dynamic then restarts again when a
new leaders decides to move from gate i = 1 and i = 2 to gate i = 4, a similar dynamics of
the one just described take place again. This trend continues until the system reaches the
stationary distribution, where all the 7 gates are partially �lled, as shown in the last four
histogram of Figure 3.9 (b). The dynamics for the initial condition L then depicts a scenario
where the pedestrians tend to choose gradually all the gates from gate i = 1 up to gate
i = 7, giving rise to a global pedestrian �ow in this direction. As shown in Figure 3.9 (a),
the pedestrian �ow is realised through local symmetric metastable distributions, that include
increasing number of gates. The last histogram in Figure 3.9 (a) is the con�guration that
coincides with the asymptotic distribution. The symmetry of local metastable distributions
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can �nd an explanation in the symmetry of the interaction in the table of games. For what
concerns the speed of the pedestrians' �ow, as for the initial condition U, at the beginning
the dynamic is faster, and the lifetime of metastable con�gurations is then shorter; as the
time goes on, the dynamics becomes slower and the lifetime of metastable states increases
as the more number of gates is �lled. The progressive �lling of the gates that emerges in the
dynamics, can be explained by the leader-follower dynamic in the table of games (3.1) allows
pedestrians to choose a new gate in the range thto the gate chosen by the leader. Moreover,
the leader chooses as new gate the nearest empty gate. The combination of the two results
generates this progressive �lling of the gates.
It is worth clarifying that the dynamic just described can be thought also as the dynamic
of a single line of pedestrians, and no only as the dynamic for the initial condition L. From
this point of view then, the analysis focus on the internal interactions of the pedestrian line.
This analysis allows to isolate and better understand the single pedestrian line behaviour, in
fact the whole dynamics is not the sum of the single lines dynamics, then it clari�es why it
is a complex system.

Initial condition R. As Figure 3.10 shows, the dynamics where all pedestrians comes from the
right side of the gates zone (initial condition (3.1.10)) is completely symmetric to the dynam-
ics where all pedestrians coming from the left side of the gates zone that we have previous
analysed. This behaviour is due to the symmetry in the interactions of the table of games
and in the interaction rate ηhk. Then it is not surprising that Figure 3.10 (b) and Figure 3.9
(b) are identical.

Initial condition C. When pedestrians enter in the metro station all from the center of the
gates zone (initial condition (3.1.12)), simulations show an inverse trend with respect to the
dynamics for the initial condition U. Indeed as in Figure 3.11 (a) shows, there is a symmetric
�ow of pedestrians moving from the gate i = 4 towards the external gates i = 1 and i = 7. It
is possible to recognize two groups of leaders, one that leads pedestrian from the central gate
towards the left part of the gates side, and the other one leads pedestrians to the right part
of the gates side. The symmetric behaviour of the �ow of pedestrians is again consequence
of the fact that the transition probability εih in (3.1.7) and the interaction rate ηhk depends
only on the absolute distances between gates |h− k|. As for the dynamics in the case of the
initials conditions L and R, the systems evolves through local symmetric metastable states
with increasing life time. The metastable states are always symmetric distributions (with
respect to the gate i = 4) involving only increasing odd number of gates (1,3,5,7), while the
symmetric distributions with even number of gates are not stable (see Figure 3.11 (b)). The
local symmetric metastable distributions are then the ones that keep the symmetry with
respect to the central gate i = 4. On the contrary as we have previously seen, the dynamics
for the initials conditions L and R allows local symmetric metastable distributions involving
increasingly all the number of gates, from i = 1 to i = 7. This behaviour is due to the fact
that initial conditions L and R are not symmetric respect to the central gate i = 4, while
the initial condition C is symmetric with respect to gate i = 4, and the systems in this
last case keeps this symmetry during the evolution. Moreover this symmetric evolution is
clear in Figure 3.11 (b), where, as for the dynamic in the case of initial condition U, we can
distinguish only 4 lines. As for all the previous cases, the dynamic is fast at the beginning
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Figure 3.10: The pedestrians distribution at di�erent instants of time (a), and the whole time evolution of

f(t) for the initial condition R (b).

and then it tends to stabilize as the time goes on and all gates are progressively chosen.

Initial condition H. When half of the group of the pedestrians enters in the metro station from
the left side of the gates zone, and the other half enters from the right side of the gates zone
(initial condition (3.1.13)), simulations show that the dynamics does not start at t = 0 as
in the previous cases, but a bit later (see Figure 3.12 (b)). The delay in the starting time
of the dynamics is due to two distinct facts: from one side the neighbour interactions are
not possible (recall that for n = 7 the interaction range is m = 5) then the two groups of
pedestrians, one at gate i = 1 and the other one at gate i = 7, can not interact one with
another immediately. From the other side, the probability to choose a new gate εih is lower
with respect to the cases of initial condition L and R, because the local density ρh at gates
i = 1 and gate i = 7 is lower (it is equal to ρh = 1/2, while for the other two cases is ρh = 1).
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Figure 3.11: The pedestrians distribution at di�erent instants of time (a), and the whole time evolution of

f(t) for the initial condition C (b).

What allows the dynamics to start, is then the leader-follower e�ect: a leader decides to
change gate, and is followed by other pedestrians. As shown in Figure 3.12 (a) and (b), there
is a fast symmetric decreasing �ow of pedestrians going from the gate i = 1 and gate i = 7

to the center central gate i = 4, followed by a slower concentration towards the center with a
dynamic similar to the case with initial condition U (compare Figure 3.12(b)) after t ∼ 0.65

with Figure 3.8 (b). Indeed as shown in Figure 3.12(b), the system never pass through the
uniform distribution, because there is no time at witch all lines intersect at the same point,
even though they are very close at t ∼ .0.65. The dynamics develops always in a symmetric
way towards the center. One could expect that the evolution with the initial condition H

could be the superposition of the dynamics with initial conditions L and R, i.e. the system
could evolve through two separated sequences of metastable distributions, one evolving from
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Figure 3.12: The pedestrians distribution at di�erent instants of time (a), and the whole time evolution of

f(t) for the initial condition H (b).

the left side and one from the right side, until they join together to reach the asymptotic
distribution. The scenario is not possible for the case n = 7, because the role of interactions
between neighbours prevents this type of dynamics. Indeed since values of gates i = 2 and
gate i = 6 start to be partially �lled, the two group of pedestrians can start to interact (recall
m = 5 and then ηhk is always di�erent from zero), giving rise to the �ow towards the center
and then to the concentration in the middle of the gates side, with a continuous evolution
without meta-stable states.

3.3.4 Analysis for increasing number of gates n

In this subsection we focus on the analysis of the system dynamics when varying the number
of gates n. It is worth stressing that n is not an intrinsic parameter of the model. Indeed the
dynamical system (3.1.2) is properly de�ned when we �x the number of subsystems n and the
initial condition. Nevertheless, for the aims of the model to pedestrian dynamics in a metro
station, is also important to analyse the pedestrians distribution when varying the number n of
gates available in the gates zone. Accordingly, after �xing the parameters N = 100, S = 1, p = 1,
we let vary the number of gates n from n = 2 up to n = 25 (number n of gates higher then
this value are not signi�cant for real applications to pedestrian dynamics in metro station). The
results of the simulations show that increasing values of the number n of gates depict the following
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behaviours:

1. The importance of the local interactions clearly emerges in the dynamics when we let n
increase. As shown in Figure 3.13 (a) (case n = 20 gates), the dynamics for the initial
condition H (3.1.13) starts as the dynamics of two independent groups of pedestrians, one
entering from the left side and one from the right side. Indeed the group of pedestrians
entering from left locally behaves as an entire group of pedestrians entering from left (compare
the �rst three histograms of Figure 3.13 (a) with Figure 3.9 (a)), and similarly the group
of pedestrians entering from right locally behaves as an entire group of pedestrians entering
from right (compare the �rst three histograms of Figure 3.13 (a) with Figure 3.10(a)). This
behaviour is clearly due to the local interaction structure of the table of games (3.1). Indeed
the interaction rangem(n) introduced in (3.1.4) marks a limit in the number of gates involved
in the interactions between pedestrians. For the case n = 20 this limit is m = 10. Then
at the beginning of the system evolution the number of gates between the two groups of
pedestrians is too big (equal to 18) in order to develop mutual interactions. The two groups
of pedestrians continue to evolve independently as described above until the number of
empty gates that divides them is less than m = 10. As shown in the last three histograms
of Figure 3.13 (a), when this threshold is passed, the two groups start to interact, and the
arising dynamics is analogue to the dynamics for the case n = 7 for the initial condition
H depicted in Figure 3.12 (b): there is no more the formation of metastable states, and
the distribution converges monotonically increasing towards its asymptotic state. One can
clearly see in Figure 3.13(b) the two di�erent dynamical behaviour just described, the �rst
phase of independent evolutions and then the second phase that concerns the interaction of
the two groups. For the initial conditions U, C, L, R, simulations show that the dynamics is
qualitatively the same as in the case for n = 7 described in the previous subsection. Indeed
the dynamics in these cases starts from a single nucleus of pedestrians, so interactions are
always within this group, and then nothing changes in the dynamical behaviour from the
analogue cases for n = 7.

2. Simulations show that the convergence time towards the asymptotic distribution grows
exponentially-like as n increases, as shown in Figure 3.14. The Figure refers to the con-
vergence time for the initial condition U, but the behaviour of the convergence time is
qualitatively the same for all the other four initial conditions. Indeed, as seen in the analysis
of the previous subsection, what changes among the di�erent initial conditions is the conver-
gence time at �xed n. Then the behaviour of the convergence time versus n for each initial
condition will be the same, but on di�erent timescales. The growing in the convergence time
can be explained as follow: as the number n of gates increases, the number of gates that a
single pedestrian can choose grows with the interaction range m(n) (and ηhk grows as con-
sequence). Then pedestrian a priori have more choice and more time for deciding the gate,
i.e. the dynamics becomes more heterogeneous during the evolution of the system. Moreover
the stationary distribution �lls partially always all the gates (see Figure 3.15), and for �lling
a higher number of gates more time is obviously needed.

3. As shown in Figure 3.15, as we let vary the number n, of gates the asymptotic distribution
is always a Gaussian distribution centred in the middle of the gates side, but with a greater
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Figure 3.13: The pedestrians distribution at di�erent instants of time (a), and the whole time evolution of

f(t) for the initial condition H (b) for n = 20 number of gates.
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dispersion σ for increasing n. Then pedestrians tends to distribute asymptotically in a
more uniform way if there are more gates available. This behaviour of the asymptotic
distribution can be seen as a direct consequence of the conservation of the total the number
N of pedestrians (or the �ux of pedestrians per unit time) and of the fact that the stationary
distribution �lls all the gates. Indeed if the asymptotic distribution must involve all the
gates but always with the same �xed number of pedestrian N , its dispersion σ must increase
with increasing n. Notice that for odd number of gates the stationary distribution is centred
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Figure 3.15: Asymptotic distribution for di�erent values of n

at one gate, while for even a the two central gates. It can be seen from the shape of the
maximum of the Gaussian: it is picked for odd n while �at for even.

3.3.5 Discussion of the computational analysis results

This last subsection contains some general and conclusive observations on the emerging dynamics
caught by the previous analysis:

• According to the table of games (3.1), to the interaction range m and the interaction rate
ηhk, the pedestrian dynamics is driven by a leader-follower dynamics based on the local
density. Simulations performed in this chapter show that the macro dynamics that arises from
the microscales interactions reproduces qualitatively some known behaviours of pedestrians
distribution in time at the entrance of the metro station: the �ow imposed by the leader
dynamics, concentration of pedestrians, stuck periods and tendency to �ll progressively with
time all the gates available.

• As expected, the conservation of the zero-order momentum E0, i.e. the total number of
pedestrians N is ensured in each simulation. Figure 3.16 show the conservations of N for
the case n = 7 and initial condition U.

• The time evolution of the pedestrians distribution shows for all the initial conditions in
(3.1.5), a symmetric or locally symmetric structure, with respect to the gate order. This
symmetry property holds true also for the asymptotic distribution. This behaviour is in
agreement with the modeling of the Table of Game and in the encounter rate ηhk. Indeed
interactions depend only on the relative distance between gates.
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Figure 3.16: Conservation of total number of pedestrians N for n = 7, S = 1, p = 1 with initial condition

U.

• The local metastable states that arise for some initial conditions, that we called periods of
stuck in time, can be thought as instants where pedestrians are thinking what to do, or just
waiting to see if the situation in front of the gates changes. The dynamics then restarts when
a new leader decides to move to another gate. The stuck periods are more and more longer
as the system approaches to the asymptotic con�guration, because when almost all the gates
are partially �lled, pedestrians tends to keep their current gate choice instead of choose a new
gate. Simulations show that only the initial conditions depicting situations where pedestrians
enter in the metro coming all from one speci�c point (L, R, C) show this stuck periods. On
the contrary the initial conditions that depict situations where more pedestrians enter in the
metro gates zone from more than one point do not show this behaviour (U, H), but they
exhibit a continue evolution. The model give rise to these two di�erent scenarios because in
the �rst case the dynamics evolves from a single group of pedestrians where interaction are
always internal to the group, that then tends to locally stabilizes itself; in the second case,
there are interactions among di�erent groups of pedestrians that prevent local stability. The
modeling of local interactions are fundamental for the formation or not of meta-stable states
during the evolution.

• The performed simulations show that the asymptotic distribution has always the shape of a
Gaussian centred in the central gate of the gates side. The asymptotic distribution can be
seen as the distribution that pedestrians will have if they had an ïn�nite time�to choose the
gates. It is worth stressing that the asymptotic distribution always �lls partially all the gates
available (say n). This fact is in agreement with the real situation in the metro station, i.e.
when pedestrians have long time to choose, all the gates will be chosen.

• The simulations show that the asymptotic distribution is not only qualitative but quantit-
ative the same for all the tested initial condition. Moreover from the sensitivity analysis for
the parameters S and p, we can deduce that there is just one asymptotic state depending on
p. Mathematically, this means that all these initial conditions belongs to the same attractor
�eld. However from a mathematical point of view we cannot say if it is just the only asymp-
totic state for the system or if it is just one of the possible attractors. For the asymptotic
state of the model then, there is no memory of the initial condition. This likely reproduces
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the fact that if pedestrians have a lot of time to enter in the metro, it does not really matter
from where they come from. Nevertheless in a more realistic case, there is a limited time
for pedestrians to pass through the metro gates. Then initial conditions and the transient
dynamics that follows become really determinant in the e�ective distribution of pedestrians,
as we have seen in the sensitivity analysis of the initial conditions. The stationary distribu-
tion then is not so important itself for the aim of the model (which is more interested in the
dynamic of people in �nite time), but however it is central to understand the transient part
of the evolution.

• The convergence time towards the asymptotic distribution depends strongly on initial condi-
tions. Because the stationary distribution is always a Gaussian centred at the central gate of
the gates side that �lls (partially) all the gates, the system that starts from an asymmetric
initial conditions respect to the center takes more time to reach the stationary distribution.
Compared to the other four cases, then the evolution in time for the uniform initial distri-
bution (initial condition U) is faster to converge to the stationary state, because is the only
initial condition we have tested with all gates partially �lled from the beginning. On the
contrary the slowest situations to reach the asymptotic distributions are the situations where
pedestrians enter the metro or all from the left side (initial condition L) or all from right
side (initial condition R). The case with the initial conditions C and L places in the middle
of these two cases (see the time scales of �gures 3.8, 3.9, 3.10, 3.11, 3.12).

3.4 Summary

In this chapter we have derived a speci�c model for pedestrian dynamics in a metro station in the
framework of the thermostatted kinetic theory proposed in Chapter 2. In particular the model
is proposed for analysing the time distribution of a �nite group of N pedestrians at approaching
di�erent gates (turnistiles) at the entrance of a metro station when an external event can a�ect
signi�cantly their internal dynamics (sound signals, collective hurry, evacuation alarm). The aim
of the model is to reproduce the main features of this dynamics, once �xed the initial distribution
f0i of pedestrians, the interactions among individuals through the design of the interaction rate
ηhk and the table of games Aihk, and the de�nition of an external force �eld F coupled with the
thermostat term. Accordingly with the new thermostatted framework developed in Section (2.1),
in the pedestrian modeling we are dealing with the activity variable represents the pedestrian

choices. Speci�cally the activity variable ui denotes the choice of ith gate by a generic pedestrian.
Consequently the system is divided into n functional subsystems, one associated to each gate
choice, and the distribution function fi(t) represents the number of pedestrians that at time t
has chosen the ith gate to enter. The model keeps the number N of pedestrians constant (the
zero-order moment E0 is conserved). The evolution equations of the model coupled to the initial
values are given by (3.3.1). The microscopic interactions are considered binary, and modelized
as follow: the interaction rate ηhk (3.1.5) considers only local interactions, through the de�nition
of an interaction range m (3.1.4); the table of games (3.1) is derived according to a local leader-
follower dynamics that depends on the local density of pedestrians. The model depends on two
free parameters, S (�uidity parameter) and p (leader parameter), introduced in the table of games
in the transition probability term (3.1.7). The numerical analysis is based on the de�nition of �ve
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initial conditions f0i (3.1.5), that have a speci�c meaning for the model and its applications. In
the computational analysis performed in this chapter the external force �eld, and consequently the
thermostat term, are assumed to be equal to zero, in order to focus only on the internal dynamics
of the system. In particular the simulations have been addressed to the sensitivity analysis of the
parameters S and p, on the sensitivity analysis on the initial conditions (3.1.5) and on the analysis
of the dynamics for increasing values of gates n. The results of the simulations are summarized as
follows:

� The �uidity parameter S controls the convergence time towards the asymptotic distribution,
that decreases for increasing values of S. This is in agreement with the role of the parameter
S as indicator of pedestrian �uidity as de�ned in (3.1.7).

� The leader parameter p represents the leader in�uence in determining the velocity of the
pedestrian �ow. Indeed p controls the convergence time towards the asymptotic distribution:
as p increases (weaker leader), the convergence time increases. Moreover p has a role in tuning
the dispersion of the asymptotic distribution, that decreases as p increases. In both cases
the e�ect of increasing p reaches a saturation point.

� The time evolution of the pedestrians distribution shows a symmetric or locally symmetric
evolution. This behaviour is in agreement with the modeling of microscopic interactions,
that depend only on the relative distance between gates.

� The asymptotic distribution (that can be seen as the distribution that pedestrians will have
if they had in�nite time to choose the gates) has always the shape of a Gaussian centred in
the central gate of the gates side, and it is quantitative the same for all the tested initial
condition. The asymptotic distribution always �lls partially all the n gates available. This
fact is in agreement with the real situation in the metro station: when pedestrians have long
time to choose, all the gates will be chosen.

� The convergence time towards the asymptotic distribution depends strongly on the initial
conditions. Because the stationary distribution is always a Gaussian centred at the central
gate of the gates side that �lls (partially) all the n gates available, the system that starts from
an asymmetric initial condition respect to the center takes more time to reach the stationary
distribution.

� Local metastable states arise during the evolution in time for some initial conditions (periods
of stuck in time). This phenomenon arises only when the dynamics evolves from a single
group of pedestrians (initial conditions 3.1.9, 3.1.10, 3.1.12), because interaction are always
internal to the group, and the group tends to locally stabilizes itself. On the contrary
when the dynamics evolves from an initial condition with more than one local group of
pedestrians (initial conditions 3.1.8, 3.1.13), the interactions among di�erent groups prevent
local stability. The modeling of local interactions are then fundamental for the formation of
meta-stable states during the evolution of the system.

� By increasing the number of gates n, the role of local interactions clearly emerges. The
asymptotic distribution is always a Gaussian that involves all the gates available. From this
fact, and from the conservation of the total number N of pedestrians, the dispersion of the
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asymptotic distribution increases as n increases. Moreover the convergence time towards the
asymptotic distribution grows with n, because the asymptotic state always involves all the
gates available, and then the system takes more time to choose all the gates.

The simulations performed and the above considerations show that the dynamics that arises from
the microscales interactions reproduces qualitatively some known behaviours of pedestrians distri-
bution in time at the entrance of the metro station: the �ow imposed by the leader dynamics, the
concentration of pedestrians in time, the tendency to choose progressively with time all the gates
available and periods of stuck in time, i.e. instants where pedestrians are thinking what to do, or
just waiting to see if the situation in front of the gates changes.
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Chapter 4

Pedestrian dynamics under the action of

an external force �eld

This chapter is devoted to the analysis of the pedestrian dynamics when subjected to an external
event. In particular, the analysis focuses on the model (3.1.2) for speci�c external force �elds
acting on the systems, whose functional forms are de�ned in order to have a physical meaning for
the pedestrians model under consideration (pedestrian in hurry, preferential gates, sound alarm
and so on). The investigation on the system dynamics is performed through numerical simulations
that focus on how the internal dynamics of the system is a�ected by the presence of an external
force �eld (changes in the asymptotic distribution and in convergence time, symmetry breaking of
the internal dynamics). In particular the emergent features of the dynamics are stressed out, and
the role of the thermostat in allowing the system to reach a stationary state is underlined. The
analysis of the model follows the same outline and style of the analysis presented in Chapter 3 for
the internal dynamics of pedestrians. Speci�cally in the �rst section the model is analysed in the
case of a constant an uniform external force �eld, in the second section in the case of a constant
non uniform external force �eld, and in the third section in the case of a uniform time dependent
force �eld.

4.1 The case of a constant uniform external force �eld

This section is concerned with a qualitative analysis of the pedestrian dynamics subjected to a
constant and uniform external force �eld. Speci�cally the external force �eld F is constant and
acts with the same magnitude on all the gates, i.e. Fi = F > 0, ∀i. For the system depicting the
dynamics of pedestrians in a metro station, the constant uniform external force �eld can represent
an event where pedestrians are in a hurry to reach the gate (think about metro station at 8 a.m.
in the morning, when pedestrians are pushed for going to work), or some audio announcement
to evacuate the metro as soon as possible. The thermostat term (2.1.1) in this case simply reads
α = nF

N , and the related Cauchy problem for the pedestrian dynamics in a metro station (3.1.2)
rewrites: 

df

dt
= Ji[f ] + F −

( n
N
F
)
fi

f(0) = f0

(4.1.1)

55
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The analysis of the system (4.1.1) follows the same outline and style of the analysis presented in
Chapter 3 for the internal dynamics of pedestrians in Section 3.3. Firstly for a �xed magnitude
F of the external �eld F we investigate the case of low number of gates analytically, and then
we perform a sensitivity analysis on the initial conditions (3.1.5) and an analysis for increasing
number of gates. Finally the system dynamics is analyzed for increasing values of the magnitude
F of the external force �eld, and we investigate the role of the force magnitude in a�ecting the
emergent behaviours of pedestrians.

4.1.1 Analytical analysis for the case n = 2

In this simple case of n = 2 gates with uniform force �eld the model4.1.1) is explicitly given by
the two following equations system:

df1(t)
dt = S

N f1f2(f2 − f1) + F − 2F
N f1

df2(t)
dt = S

N f1f2(f1 − f2) + F − 2F
N f2

(4.1.2)

where for the �rst term of each equation we have simply rewritten the terms in (3.2.4) for the
case without external force �eld. The total number of pedestrian N is conserved, then recalling
f2 = N − f1, the system analysis is limited to the equation:

df1(t)

dt
= 2

S

N
f31 − 3Sf21 +

(
SN − 2

F

N

)
f1 + F. (4.1.3)

In order to �nd a stationary solution the following equation must be solved:

2
S

N
f31 − 3Sf21 +

(
SN − 2

F

N

)
f1 + F = 0, (4.1.4)

which is a polynomium of degree 3 in the variable f1 and with real coe�cients. The stationary
solution problem of (4.1.2) then reduces to �nd out the real roots of the polynomium (4.1.4).
Straightforward computation gives the following roots:

A) f̄1 =
N

2
B) f̄1 =

A

2
+

1

2

√
4F +N2S

S
C) f̄1 =

A

2
− 1

2

√
4F +N2S

S
. (4.1.5)

It is worth to notice that for F = 0 we recover the three solutions of (3.2.6) that we have found in
the analysis of the n = 2 case without external force �eld (Section 3.2). In order to test the linear
stability of these solutions, we study the evolution in time of the perturbations as we performed
in subsection 3.2.1. Considering the evolution problem of (f̄ + δf), and expanding Eq. (4.1.3), up
to the �rst order in δf one obtains:

δf1(t)

dt
= (6

S

N
f̄1

2 − 6Sf̄1 +NS − 2
F

N
) δf1. (4.1.6)

Then the evaluation of the R.H.S. of Eq. (4.1.6) in each equilibrium in (4.1.5) reads:

A)
δf1(t)

dt
= −

(
2F

N
+
NS

2

)
δf1 (4.1.7)

B)
δf1(t)

dt
= +

(
4F

N
+NS

)
δf1 (4.1.8)

C)
δf1(t)

dt
= +

(
4F

N
+NS

)
δf1. (4.1.9)
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For N > 0, < S ≤ 1 and F > 0 the only stable solution for every initial conditions, is the solution
A) f̄1 = N

2 . Recalling the expression for f2, the whole equilibrium for the system (4.1.2) is:

(f̄1, f̄2) =

(
N

2
,
N

2

)
. (4.1.10)

This is the same stable solution we obtained in the analysis of the case n = 2 without external force
�eld in Section 3.2.1, and it is independent on the external force �eld. However we will see that
this is a peculiar fact for the case n = 2, because for n ≥ 3 simulations show that the stationary
solution depends on the magnitude F of the external force �eld (see subsection 4.1.4).
It is worth stressing that one could have derived the stable equilibrium solution (4.1.10) simply by
considering symmetry arguments. Indeed, because the system is subjected to a uniform external
force �eld, symmetry in the evolution is conserved. It follows that also the stationary distribution
must be symmetric, and then the only possibility for the case n = 2 is the uniform distribution,
that is independent from the magnitude F of the external force �eld.

4.1.2 The sensitivity analysis on the initial conditions

In this subsection we analyse the dynamics of the system (4.1.1) subjected to an uniform external
force �eld with �xed magnitude F . Again, simulations focus on the analysis of the system behaviour
with initial conditions (3.1.5). The computational analysis aims at analyze how the presence of an
external force �eld modi�es the qualitative behaviours and the emergent features of the dynamics,
compared to the case where the system is not subjected to an external force �eld (see section 3.3.3).
In particular the role of the thermostat in controlling the system behaviour is stressed out. The
sensitivity analysis of the initial conditions is performed following the same scheme we have used
to investigate the system behaviour in absence of the external force �eld in subsection 3.3.3. In
particular, the parameters kept at constant values for all simulations are chosen as in subsection
3.3.3. We �x N = 100 (total number of pedestrians), we select n = 7 (number of gates), the
interaction range (3.1.4) is then equal to m = 5, and we set p = 1 (leader parameter) and S = 1

(�uidity parameter). Finally the magnitude of the external force is set to F = 100. Figures 4.1,
4.2, 4.3, 4.4, 4.5 show the dynamical evolutions of the system for the initial conditions U, L, R,
C, H, respectively.
The results of the simulations are summarized as follows:

For all the tested initial conditions, the system reaches a non equilibrium stationary state,
as shown in Figures 4.1, 4.2, 4.3, 4.4, 4.5. This means that even if pedestrians are subjected to
an external event, in a long timescale they manage to organize themselves as they did when no
external event is in�uencing their gate choice. This is in agreement with real situations. The
existence of a stationary state is a remarkable result, because it underlines the capability of the
thermostat term in mimic the system capacity of self-organization with respect to the environment
accordingly to the physical constraints it is subjected. Always referring to Figures 4.1, 4.2, 4.3,
4.4, 4.5, simulations show that the asymptotic state is qualitative always a Gaussian distribution
centred in the central gate. Further computational investigations show that the asymptotic state
is quantitative the same distribution for the initial conditions U, L, R, C, H. However it is
quantitatively di�erent from the case where no external force �eld acts on the system. This
characteristic will be further investigated in subsection 4.1.4.
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Figure 4.1: System subjected to an uniform external force �eld of magnitude F = 100. The pedestrians

distribution for di�erent instants of time (a), and the whole time evolution of f(t) for the initial condition

U (b).

The pedestrians dynamics subjected to a constant uniform external force �eld is faster than
the pedestrians dynamics where no external agent is present, in the sense that the system reaches
its asymptotic distribution in less time compared to the case where only internal interactions drive
the pedestrians dynamics, compare the timescales of Figures 3.8 and 4.1, Figures 3.9 and 4.2,
Figures 3.10 and 4.3, Figures 3.11 and 4.4, Figures 3.12 and 4.5.

As shown in Figures 4.1, 4.2, 4.3, 4.4, 4.5, the symmetry with respect to the central gate is
kept in the time evolution of the system, exactly as in the case where no external force �eld acts
on the system. This is obviously due to the fact that the presence of an uniform and constant
external force �eld does not introduce any asymmetry in the system structure of 4.1.1.

As expected, the total number of pedestrians N is always conserved in all the performed
simulations. The computational analysis then con�rm the role of the thermostat term in keeping
constant the zero-order moment despite the presence of an external force �eld, as we purposely set
up in the model (3.1.2).

As already mentioned, there are some common features in the scenarios where pedestrians
dynamics is driven only by internal interactions and where pedestrians are subjected to an external
force �eld. However two intrinsic changes in the qualitative dynamics emerge from simulations.
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Figure 4.2: System subjected to an uniform external force �eld of magnitude F = 100. The pedestrians

distribution for di�erent instants of time (a), and the whole time evolution of f(t) for the initial condition

L (b)

Firstly, for the initial conditions L, R, H, there are no more metastable states during the evolution
(compare Figures 3.9 (b) and 4.2 (b), Figures 3.10 (b) and 4.3 (b), Figures 3.12 (b) and 4.5 (b)).
The presence of an external force �eld acting on the system prevents the formation of self-organized
structures during the evolution of the system that on the contrary would naturally arise from the
internal dynamics. Secondly, for all the initial conditions tested pedestrians start to choose all the
gates from the beginning of the time evolution (see at time t = 0 the evolution in �gure (b) of
Figures 4.1, 4.2, 4.3, 4.4, 4.5).

Accordingly to the results, the global e�ect of the uniform external force �eld acting on the
pedestrians system is to force them to choose all the gates from the beginning, and to �ll them faster
and with a continuous evolution. The scenario agrees qualitatively with what usually happens in
a real metro station in situations of hurry or fast evacuation.
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Figure 4.3: System subjected to an uniform external force �eld of magnitude F = 100. The pedestrians

distribution for di�erent instants of time (a), and the whole time evolution of f(t) for the initial condition

R (b).
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Figure 4.4: System subjected to an uniform external force �eld of magnitude F = 100. The pedestrians

distribution for di�erent instants of time (a), and the whole time evolution of f(t) for the initial condition

C (b)
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Figure 4.5: System subjected to an uniform external force �eld of magnitude F = 100. The pedestrians

distribution for di�erent instants of time (a), and the whole time evolution of f(t) for the initial condition

H (b)

4.1.3 Analysis for increasing number of gates n

In this subsection we focus on the analysis of the system dynamics when varying the number of
gates n, as we did in 3.3.4 for the case where the system is not subjected to an external force �eld.
After �xing the parameters N = 100, S = 1, p = 1 and F = 100, we let again vary the number of
gates n from n = 2 up to n = 25.

The results of the simulations show that the dynamical behaviours and the emergent features
described for the case n = 7 in the previous subsection remains qualitative the same for all n (
and for each initial condition respectively). Figure 4.6 shows the dynamical evolution for the case
n = 15 with the initial condition R.

The role of the thermostat in controlling the behaviours of the system emerges clearly in the
analysis of the convergence time for increasing n. Indeed as shown in Figure 4.7, that reports the
convergence time for di�erent n for the initial condition R, the convergence time �rst increases with
n, then it decreases slowly towards saturation. It is worth noticing that this behaviour is qualitative
the same for all the initial condition tested, then it is not restrictive to limit our considerations
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Figure 4.6: System with n = 15 subjected to an uniform external force �eld of magnitude F = 100. The

whole time evolution of f(t) for the initial condition R (b).

to the dynamics with the initial condition R. The convergence time for a system subjected to
an external force �eld is qualitative di�erent from the case in which it is not subjected to an
external force �eld. Indeed, for the latter case, the convergence time increases exponentially with
n, for the former the convergence saturates with n (compare Figure 4.7 with Figure 3.14). This
behaviour can be addressed to the presence of the thermostat term in Eq. (4.1.1). For increasing
values of n, the convergence time saturates because the thermostat term must balance the action
of the external force �eld (that drives the system out of equilibrium) in order to keep constant
the zero-order moment. The system is then driven to reach a stationary state out of equilibrium
in a �nite time, that is lower than the convergence time for the case without the external force
�eld. Moreover as we have pointed out, the convergence time �rst increases for lower n, and then
decreases as n grows. This behaviour can be explained as arising from a competition between the
internal dynamics given by the term J[f ] and the dynamics that arise from the other two terms
F− αf in the system of equations (3.1.2): the number of pedestrians per gate is higher for low n

(being the total number of pedestrians N constant), and then the internal interactions are stronger
for lower n than for higher n, because internal interactions depend on the local density and on the
leader e�ect (recall the term (3.1.7) in the table of games). On the other hand the external force
term F is always the same for all n, and also the thermostat term can be thought as constant
too (in fact in the thermostat term −αfi, the term α = nF/N grows with n, but fi(t) decreases
on average with n). Consequently for low n internal interactions overcome the external action of
the force �eld, and then the convergence time grows qualitative as the case where the system is
not subjected to the external �eld. On the contrary, for higher n, the action of the external force
�eld overcomes the internal interactions, and the convergence time tends to saturates as explained
before. These considerations explain then the behaviour of the convergence time in Figure 4.7.
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Figure 4.7: Convergence time versus n for F = 100, and the initial condition R.

4.1.4 Analysis for increasing values of F

This subsection investigates the role of the magnitude F of the uniform external force �eld in
a�ecting the pedestrians behaviour. After �xing the parameters n = 7, N = 100, S = 1, p = 1, we
let vary the magnitude of the force F , and we analyse the evolution of system (4.1.1). Simulations
show that the magnitude F of the external force �eld a�ects the intrinsic dynamics, the shape of
the asymptotic distribution and the convergence time to reach the asymptotic distribution.
The results of the simulations can be summarized as follow:

As shown in Figure 4.8, the convergence time T needed to reach the asymptotic distribution
decreases with the value F for all the initial conditions, and it saturates to a non zero value. This
behaviour is in agreement with what is expected in a real situation in the metro station: if the
external event that a�ects pedestrians choice is intense, (magnitude F of the uniform external the
force �eld), the pedestrians are driven to quickly choose a gate, and as a consequence, they reach
the asymptotic distribution in less time.

Simulations show that by increasing the magnitude of the external force �eld F there is an
increasing spreading in the asymptotic distribution. This spreading fast saturate, and the asymp-
totic distribution saturates to the uniform distribution, see Figure 4.9. The dispersion σ2 of the
asymptotic distribution as function of the magnitude force F has been calculated in the same
way as in (3.3.2), see Figure (4.9). This spreading behaviour can be addressed to the fact that
the uniform external force �eld tends indeed to uniform the behaviour of all pedestrians, acting
against the natural concentration of pedestrians towards the center of the gate side that on the
contrary occurs when the system is not subjected to an external force �eld (see Section 3.3).

It is worth stressing that the saturation e�ects on the convergence time T and on the behaviour
of the asymptotic distribution emerging on simulation, can be addressed to the thermostat term.
Indeed the thermostat induces the action of the external force �eld to saturate because of the
bounds imposed on the system: the �xed number of gates n (limited space) induces the satura-
tion of the asymptotic distribution, while limited mean velocity and time reaction of pedestrians
induce the saturation of the convergence time. The thermostat term reproduces the bounded real
conditions of pedestrians displacing at the entrance of a metro station, and this translate in the
saturation of the external force �eld e�ects.
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Figure 4.8: Convergence time T versus the magnitude of the external force �eld F for the initial conditions

U, L, R, C, H.

As additional analysis, Figure 4.10 shows the convergence time T and for di�erent values of
the number of gates n for di�erent magnitudes F . For each value of the magnitude F of the
external force �eld, the behaviour of the convergence time T is qualitative the same as the one
depicted in the previous subsection for the case F = 100. However as F increases, the convergence
time globally decreases for all n (shifting and crushing of the curve towards lower value of the
convergence time), and the maximum convergence time corresponds to smaller values of n (shifting
of the curve maximum towards lower value of number of gate n). This behaviour is consistent
with the results we obtained in this subsection and in the previous one. Indeed as F increases,
the convergence time globally decreases (recall Figure 4.8) and the number of gate n at which
the action of the external force �eld overcomes internal interactions decreases (see the previous
subsection (4.1.3)).

4.2 The case of constant non uniform external force �eld

In this section we focus on the qualitative analysis of the pedestrians dynamics subjected to the
action of a constant non uniform external force �eld. In the context of pedestrians dynamic in
a metro station, a constant and non uniform external force �eld can model an event where there
are preferential gates to take (for season tickets holders, for speci�c exit gates that allow to reach
remarkable places to visit, and so on). The external force �eld then acts only on these gates that
pedestrians are lead to choose. The analysis of the system (3.1.2) subjected to a non uniform
external force �eld is important because it allows to realise how a non symmetric external event
(in our model the symmetry is considered with respect to the center of the gates side) can break
the possible symmetry of the internal evolution and then of the asymptotic distribution, giving
rise to a very heterogeneous dynamic depending strongly on the initial condition. Speci�cally in
this analysis we limit ourselves to the case of an external force �eld F acting only on the �rst gate:
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F =


F > 0 if i = 1

0 else
(4.2.1)

The thermostat term (2.1.5) in this case is symply given by α = F
N . Bearing in mind the functional

form of the external force �eld (4.2.1), the Cauchy problem for the pedestrians dynamic in a metro
station (3.1.2) rewrites: 

dfi
dt

= Ji[f ] + F −
(
F

N

)
fi if i = 1

dfi
dt

= Ji[f ]−
(
F

N

)
fi else

f(0) = f0

(4.2.2)

It is worth stressing that even if the external force �eld acts only on the �rst gate, the thermostat
term −αfi is present in all the equations of the system (4.2.2). Limiting ourselves to the analysis
of case in which the external force �eld acts only on the �rst gate is not reductive. Indeed, we will
see that the emerging features and the dynamical behaviours arising from the analysis of system
(4.2.2) are representative and predictive for many others cases where the system is subjected to
an arbitrary constant and non uniform external force �eld.
The analysis of the case of a system subjected to a constant non uniform external force �eld is
presented in two parts: in the �rst subsection we perform the sensitivity analysis on the initial
conditions (3.1.5) for the system (4.2.2), by focusing on the asymmetry in the dynamic introduced
by the external force �eld (4.2.1), and by discussing the very heterogeneous dynamics that arises;
then in the second subsection we extend the analysis of the �rst subsection to the case of an
arbitrary constant non uniform external force �eld, by considering other speci�c examples and
we infer the typical emergent features and dynamical behaviour for the the system (3.1.2) when
subjected to a constant non uniform external force �eld. Again, the role of the thermostat in
controlling the dynamics and in allowing the system to reach a stationary state of non-equilibrium
is stressed out.

4.2.1 The sensitivity analysis on the initial condition

As mentioned in the introduction of this section, a non uniform external force �eld gives rise to a
very heterogeneous and asymetric dynamic depending strongly on the initial condition. However
in the following sensitivity analysis on the initial conditions we will see that the dynamic reaches
the same (asymetric) asymptotic state for all the initial conditions (3.1.5). The sensitivity analysis
on the initial condition is perfomed as in Section 3.3.3 and in Section 4.1.2. Speci�cally, we �x
N = 100, n = 7, S = 1, and p = 1, and the magnitude of the external force �eld acting on the
�rst gate has been taken equal to F = 500.
The results of the simulations are summarized for each initial condition as follows:

Initial condition U. As shown in Figure 4.11 (b), pedestrians entering uniformly the gate zone
(initial condition 3.1.8) and subjected to the external force �eld (4.2.1) behave as follows:
the external force �eld acting only on the �rst gate, obliges pedestrians to choose the �rst
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Figure 4.11: System subjected to an external force �eld of magnitude F = 500 acting only on the �rst gate

i = 1: the pedestrians distribution at consecutive �xed instants of time, and the whole time evolution of

f(t) in time of the system with the initial condition U.

gate i = 1 from the beginning of the evolution (t = 0). Then evolving in time, the �ux
of pedestrians is overbalanced towards the left part of the gates side: gates i = 1, i = 2,
i = 3 are preferred in time by pedestrians, with descendent preference from i = 1 up to
i = 3 (compare the mean number of pedestrians in time of these gates). The evolution is
not symmetric with respect to the gate i = 4, contrary to the case of the constant uniform
external force �eld (4.1). The symmetric internal leader-follower dynamics is biased by the
presence of the external force �eld, and the pedestrians �ux behaves as if the leaders where
choosing gates only in the left part of the gates side (see Figure 4.11 (a)). Note that the
asymmetric evolution is clear from the fact that all the 7 lines representing each fi(t) are
distinguishable in Figure 4.11 (b). The evolution continues with the described trend just
until pedestrians reach a stationary state of non-equilibrium. As shown in the last histogram
of Figure 4.11 (a), the asymptotic state reached is asymetric: as expected the maximum of
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the distribution corrspond to i = 1 and the distribution monotonically decreases from gate
i = 2 up to gate i = 4. Gates i = 5, i = 6 and i = 7 are empty, and then they are not chosen
by pedestrians in the asymptotic limit. It is worth stressing that the asymptotic state is given
by the balance between the action of the external force �eld F plus the thermostat term −αf ,
and the internal dynamic J[f ]. The action of the internal dynamics J[f ] exactely prevents the
systestem to reach an asymptotic distribution where all pedestrians choose the gate i = 1, as
one could expect by considering an external force �eld acting only on gate i = 1. Indeed the
internal dynamics tends naturally to drive pedestrians to reach an asymptotic distribution
where all the gates are partially �lled. (For example, recall the last hisogram of Figure ??
(a)). The action of the external force �eld force pedestrians to choose speci�c gates, driving
the system to reach an asymptotic state with some gates that are even not chosen. We will
see that the e�ect of lefting some gate empty in the asymptotic limit is strictly linked to
the intensity F of the external force �eld. Finally, it is worth stressing that the thermostat
term allows the system to reach a stationary state of non-equilibrium just described, and it
ensures the conservation of the total number of pedestrians as expected.

Initial condition L. The evolution of pedestrians choice under the action of an external force
�eld acting only on gate i = 1 in the case where all pedestrians enter from the left side of the
gates zone (initial condition 3.1.9), is similar to the analogous case where no external force
�eld acts on the system. In fact, if one compares Figure 4.12(b) to Figure 3.9 (b), the system
evolution in the former case is similar to the latter: for the case where the system is subjected
to the external force �eld (4.2.1), the gates are chosen progressively and metastable states
are reached during the evolution (but in this case they are not symmetric). This similarity in
the evolution is due to the fact that the initial condition (3.1.9) already promotes the action
of the external force �eld 4.2.1, giving rise to a more controlled dynamics with respect to the
cases with initial condition U, R, C, H . As for the previous case with the initial condition
U, also in this case the role of the internal interactions J[f ] is remarkable in in�uencing the
asymptotic distribution: even if all pedestrians enter from the left side of the gates zone,
and the external force �eld forces pedestrians to choose the �rst gate, in long time scales
pedestrians will not all choose the �rst gate. As for the uniform initial condition U just
discussed, the internal interactions of leader-dynamic prevents the static solution where all
pedestrians choose the �rst gate.

Initial condition R. This is the �rst case we analyze where the dynamics of pedestrians entering
all from the right side of the gates zone, is not symmetric to the case where all the pedestrians
enter from the left side of the gates zone, as it happens for the case where the system is not
subjected to an external force �eld (3.3), or it is subjected to a constant and uniform external
force �eld (4.1). This fact is obviously due to the asymmetry introduced in the system by
the non uniform external force �eld. As shown in Figure 4.13 (b), in the case where all
pedestrians enter from the right side of the entrance side (initial condition R) the external
force �eld on the �rst gate forces some pedestrians to choose the �rst gate from the beginning
of the evolution (t = 0). Then a continue �ux of pedestrians moving from the right side of
the gates zone (gate i = 7) towards the left side of the gates zone (gate i = 1) occurs as
the evolution in time goes by. Both the action of the external force �eld and the role of the
leader-follower internal dynamic emerge clearly in the evolution. Indeed on the one hand, in
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Figure 4.12: System subjected to an external force �eld of magnitude F = 500 acting only on the �rst gate

i = 1: the pedestrians distribution at consecutive �xed instants of time, and the whole time evolution of

f(t) in time of the system with the initial condition L.

the right part of the gates side a leader-follower dynamic is established from the beginning
(compare the dynamics in Figure 3.10 whithout external force �eld with the dynamics for
gates i = 5, i = 6, i = 7 in Figure 4.13). On the other hand in the left part of the gates
side, the external force �eld obliges pedestrians to move quickly towards the gate i = 1. The
combination of these two phenomenons give rise to the asymetric pedestrian �ux in Figure
4.13. Finally, the asymptotic state reached by the system �lls the �rst four gates and left
empty the last three ones. (see the last histogram of Figure 4.13 (a)). Further computational
analysis shows that the asymptotic state is the same asymptotic state that the system reaches
when evolves with initial condition U and L.

Initial condition C. The evolution of the system when all pedestrians enter the gates zone from
the center (initial condition (3.1.12)), locally reproduces the evolution of the previous case
where all pedestrians enter from the right side of the gates zone (initial condition U). As
shown in Figure 4.14, pedestrians are forced to choose the �rst gate from the beginning of
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Figure 4.13: System subjected to an external force �eld of magnitude F = 500 acting only on the �rst gate

i = 1: the pedestrians distribution at consecutive �xed instants of time, and the whole time evolution of

f(t) in time of the system with the initial condition R.

the evolution, and this behaviour overlaps to the leader-following dynamics, that is totally
unbalanced towards the left side of the gates zone because of the external force �eld acting
on gate i = 1. The asymptotic state reached by the system is always the same as in the
previous three cases we have analysed (initial conditions U, L, R.)
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Figure 4.14: System subjected to an external force �eld of magnitude F = 500 acting only on the �rst gate

i = 1: the pedestrians distribution at consecutive �xed instants of time, and the whole time evolution of

f(t) in time of the system with the initial condition C.

Initial condition H. As for the initial condition C, for pedestrians entering the gates zone half
of them from the right side and the other half from the left side (initial condition (3.1.13)),
the dynamics is similar to the case where all pedestrians enter from the right side of the
gates zone (initial condition U), see Figure 4.15 and Figure 4.13. However for the initial
condition H, the number of pedestrians that choose the �rst gate decreases at the beginnig,
reproducing locally the dynamics where all pedestrians enter from the left side of the gates
zone (see Figure 4.12). Then the number of pedestrians that choose the �rst gate interchanges
this trend, and it increases until it reaches its asymptotic value. This behaviour is due to the
action of the internal dynamics and of the external force �eld, that act in opposite ways: at
the beginning of the evolution some pedestrians in gate i = 1 choose the empty gates on their
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Figure 4.15: System subjected to an external force �eld of magnitude F = 500 acting only on the �rst gate

i = 1: the pedestrians distribution at consecutive �xed instants of time, and the whole time evolution of

f(t) in time of the system with the initial condition H.

right and follow some leader by choosing gate i = 2 and i = 3 (internal dynamics); this trend
is then inverted when the last three gates start to empty, because the external force �eld
and the biased leader-follower dynamics force pedestrians to consider in their choice only
the left part of the gates side. The asymptotic distribution reached by pedestrians is the
same asymptotic distribution of the four previous cases we have analysed (initial condition
U,L,R,C). The system (4.2.2) reaches the same asymptotic distribution for all the �ve
initial conditions (3.1.5).

4.2.2 Discussion and other non uniform cases

This subsection is devoted to the extension of the the analysis we performed in the previous
subsections to the case of an arbitrary constant non uniform external force �eld. Besides the
results obtained for the case where the external force �eld acts only on the �rst gate, we consider
other speci�c examples, and from them we infer the typical emergent features and the dynamical
behaviour for the system (3.1.2) when subjected to an arbitrary constant non uniform external
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Figure 4.16: System subjected to an external force �eld of magnitude F = 2500 acting only on the �rst

gate i = 1: the pedestrians distribution at consecutive �xed instants of time, and the whole time evolution

of f(t) in time of the system with the initial condition R.

The most important feature that emerges from the sensitivity analysis on the initial conditions
performed in Section 4.2.1, is the balance between the action of the external force �eld and the
action of the internal dynamics, that are mediated by the role of the thermostat that ensures the
conservation of the total number of pedestrians N . As expected simulations performed with the
parameters setting of Section (4.2.1), but with higher magnitude F of the external force �eld,
show that the balance between the action of the external force �eld and the action of the internal
dynamics depends on F . Figure 4.16 depicts the dynamics for the initial condition R for F = 2500,,
the force �eld strongly overcomes the action of the internal dynamics. In the speci�c case of Figure
4.16, the action of the external force �eld is so strong that all pedestrians move directly from gate
i = 7 to gate i = 1, and the internal leader-follower dynamics even does not take place. Moreover
further simulations show that the convergence time towards the asymptotic state decreases with
F , as in the case of the system subjected to an uniform external force �eld.

The shape of the asymptotic distribution also changes with the magnitude F of the external force
�eld on the �rst gate, as Figure 4.17 shows. The asymmetry respect to the central gate i = 4
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Figure 4.17: The asymptotic distribution for di�erent magnitude F of the external force �eld acting only

on gate i = 1.

in the asymptotic distribution increases with F , and the number of gates that are chosen in long
times scales reduces at maximum up to two (gate i = 1 and i = 2). It is worth stressing that even
with very high values of the magnitude F , the internal dynamic is never totally overcome by the
action of the external force �eld. Indeed the asymptotic distribution does not include only the �rst
gate, but at least two of them (see the last histogram in Figure 4.17). Additional computational
analysis also points out that, for a �xed value of F , the asymptotic state is quantitatively the same
for all the initial conditions (3.1.5).

For what concerns the functional form of the external force �eld F, let us consider the two
following examples. Figure 4.18 shows the evolution with the initial condition H for the case with
n = 7 gates with a constant non uniform external force �eld acting on gate i = 2, i = 3, and i = 4

with magnitude F = 500 on all of them. The evolution of the system is driven by the balance
between the action of the external force �eld and the internal dynamics. The system evolves
towards an asymptotic state that is locally symmetric with respect to the gate i = 3. The shape of
the asymptotic state locally reproduces the asymptotic state for the case of the constant uniform
force �eld (recall the anaysis in Sec 4.1). Indeed, if we consider only the gates i = 2, i = 3, i = 4,
locally we have a uniform external force �eld acting on the system. However for the action of the
internal dynamic, also gate i = 1 and i = 5 are chosen on a long time scale, because the external
force �eld is not strong enough to oblige pedestrians to choose only gates i = 2, i = 3, i = 4 on long
time scales. As shown in Figure 4.19, for the case n = 7 with the external force �eld acting with
magnitude F = 500 only on odd gates (i.e. on gates i = 1, i = 3, i = 5, i = 7), the system evolves
from the initial condition H to an asymptotic state that respect the symmetry of the external
force �eld: on odd gates there is an equal number of pedestrian choosing gates i = 1, i = 3, i = 5,
i = 7, while in even gates i = 2, i = 4, i = 6 we can identify a symmetric distribution centred
on gate i = 4. This local symmetric distribution is due to the e�ect of internal interactions that
naturally leads pedestrians to concentrate towards the center. The formation of such a structure
is possible because the external force �eld is not strong enough to overcome completely the action



76 Pedestrian dynamics under the action of an external force �eld

1 2 3 4 5 6 7

0

5

10

15

20

25

30

35

40

45

50

55

time: 0.00

1 2 3 4 5 6 7

0

5

10

15

20

25

30

35

40

45

50
time: 0.30

1 2 3 4 5 6 7

0

5

10

15

20

25

30

35

40

45

50

time: 0.50

1 2 3 4 5 6 7

0

5

10

15

20

25

30

35

40

45

50
time: 1.00

1 2 3 4 5 6 7

0

5

10

15

20

25

30

35

40

45

50

N
u

m
b

e
r 

o
f 

p
e

d
e

s
tr

ia
n

s

gates

time: 5.00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time t

-5

0

5

10

15

20

25

30

35

40

45

50

s
o

lu
ti

o
n

 f
(t

)

f1 f2 f3 f4 f5 f6 f7

Figure 4.18: System subjected to an external force �eld of magnitude F = 500 acting only on gates i = 2,

i = 3, i = 4: the pedestrians distribution at consecutive �xed instants of time, and the whole time evolution

of f(t) with the initial condition H.

of the internal interactions.

By varying the number of gates n, the functional form of the constant non uniform external
force �eld F and the magnitude F , we can infer from simulations that the dynamics and the
shape of the asymptotic state depends continuously on the combination of these parameters. For
example Figure 4.20, shows that for the case n = 10 with an external force �eld acting on the �rst
gate with magnitude F = 500, the dynamics is similar to the case of n = 7 in the same conditions
(see Figure 4.13). However by comparing the asymptotic distribution for the case n = 7 and the
asymptotic distribution for the case n = 10, they are di�erent. Compare the last histogram of
Figure 4.20 (a) with the last histogram of 4.13 (a). This means that the asymptotic distribution
does non depend only on the magnitude F of the external force �eld, but it is also sensitive to the
number of gates n.

Even if the emerging phenomenons described in the previous analysis is heterogeneous, as we
have seen it is in a certain way always predictable, if we bear in mind the considerations about the
balance between the external force �eld and the internal interactions controlled by the magnitude
F of the external force �eld, the symmetry of the external force �eld respect to the gates side, the
role of the thermostat and �nally the role of the number of gates n.
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Figure 4.19: System subjected to an external force �eld of magnitude F = 500 acting only on odd gates

i = 1, i = 3, i = 5, i = 7. The pedestrians distribution at consecutive �xed instants of time, and the whole

time evolution of f(t) with the initial condition R.

4.3 Time dependent external force �eld

This section deals with the qualitative analysis of the system (3.1.2) when subjected to an explicit
time dependent external force �eld F(t). For the model depicting the dynamics of pedestrians in
a metro station, the time dependent external force �eld can represent an event where there are
recurrent announcements in the metro zone (periodic external force �eld), or an alarm situation
that fades during time (external force �eld decreasing in time). In the analysis we will limit
ourselves to the case of a uniform time dependent external force �eld. This is not a reductive
choice, because by bearing in mind the analysis performed in Sec. 4.1, and Sec. ?? the case of a
uniform time dependent force �eld can be easily extended to the non unifom case.
In the case of a uniform time dependent external force �eld, pedestrians are then subjected to
the action of a external force �eld F which has the same functional form for all the gates, i.e.
Fi = F (t), ∀i. It is worth stressing that we must have F (t) ≥ 0 ∀t ≥ 0, because the external force
�eld must be always positive in the thermostatted kinetic framework we are dealing with (See 2.1).
The thermostat term (2.1.1) in this case symply reads α = nF (t)

N , and the related Cauchy problem
for the pedestrian dynamics in a metro station (3.1.2) rewrites:
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Figure 4.20: System with n = 10 subjected to an external force �eld of magnitude F = 500 acting only on

the �rst gate i = 1. The pedestrians distribution at consecutive �xed instants of time, and the whole time

evolution of f(t) with the initial condition H.


df

dt
= Ji[f ] + F (t)−

( n
N
F (t)

)
fi

f(0) = f0

(4.3.1)

It is worth noticing the time dependance of the thermostat term, α(t). Indeed as the system is
subjected to a time dependent external force �eld F(t) the thermostat controls the system evolution
exactly at each time t. We will see in the following analysis that this time dependence will allow
us to see clearly the role of the thermostat in keeping constant the total number of pedestrians N
during the evolution of the system.
In the computational analysis of the system (4.3.1) we focus on a general discussion of the time
evolution of the system for speci�c functional forms of the external force �eld F(t), and expecially
we remark the role of the thermostat in controlling the system dynamic. Speci�cally, as we did in
the previous sections, we �x N = 100, n = 7, p = 1 and S = 1. For the uniform external force
�eld, we choose the following functional forms:
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Figure 4.21: Evolution of the system with initial condition C under the action of the uniform time dependent

external force �eld A) with F = 500.

A) F (t) =

F > 0 if kT < t < (k + 1)T T > 0, k ∈ N

0 else
(4.3.2)

B) F (t) = Ae−
t
b A, b > 0 (4.3.3)

The case A) represents a square wave periodic external force �eld, with period T . The case B)
is the exponential decreasing external force �eld. The values of the parameters F, T,A, b are set
casewise in the simulations.

The results of the simulations are summarized as follows:
For what concerns the periodic external force �eld A), after a �rst transitorial evolution that
depends on the initial condition, the system undergoes oscillations, as shown in Figures 4.21. For
the case A) of the time square periodic external force �eld, when the external force �eld is equal to
F (t) = F , the system go rapidly towards the asymptotic state that correspond to the case where
an uniform external force �eld acts on the system (see Section 4.1), while when the force �eld
stops acting on the system, the system goes slowly towards the asymptotic state that corresponds
to the case where no external force �eld acts on the system (see Section 3.3). Also in the case
B) of the exponential decreasing external force �eld, at each time t, the system tries to reach
the asymptotic state that corresponds to the asymptotic distribution for case where the external
force �eld acts on the system with magnitude F (t), and then as F (t) decreases the asymptotic
state concentrates slowly towards the central gate i = 4. It is worth stressing the fact that the
system adapts continuously itself to the action external of force �eld due to the control role of the
thermostat term. Moreover, the role of the thermostat term in allowing the system to conserve
the total number of pedestrians N all the system can never be in phase with the external force
�eld F (t): some fi must increase and some must decreases.
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Figure 4.22: Evolution of the system with initial condition C under the action of the uniform time dependent

external force �eld B) F (t) = Be−t/b, with B = 500, b = 50.

4.4 Summary

In this chapter we have analysed the pedestrians dynamics subjected to the action of an external
force �eld. In particular, the analysis focused on the model (3.1.2) for speci�c external force
�elds, whose functional forms are de�ned in order to have a physical meaning for the pedestrians
model under consideration. The investigation on the system dynamics has been performed through
numerical simulations that focus on how the internal dynamics of the system is a�ected by the
presence of an external force �eld, and on the role of the thermostat in allowing the system to
reach a stationary state and in controlling other characteristic of the system. Speci�cally, the
system has been analysed in three cases: in the case of a constant an uniform external force �eld,
that can represent an event where pedestrians are in a hurry to reach the gates (early morning,
evacuation alarm); in the case of a constant non uniform external force �eld, that can represent an
event where there are preferential gates to take (for season tickets holders, speci�c exit gates that
allows to reach remarkable place to visit); in the case of a uniform time dependent force �eld, that
can represent an event where there are recurrent announcement in the metro zone, or an alarm
situation that fades during time. The results of the numerical simulations can be summarized as
follow:

� In the case of an uniform external force �eld acting on the system (see section 4.1), the
thermostat term allows the system to reach a non equilibrium stationary state. Two intrinsic
changes emerge from simulations respect to the scenarios where pedestrians dynamics is
driven only by internal interactions. Firstly the presence of an external force �eld prevents
the formation of self-organized structures (periods of stuck in time) during the evolution of
the system that on the contrary arise considering only the internal dynamics. Secondly, the
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pedestrians start to choose all the gates from the beginning of the time evolution. Moreover
by increasing the magnitude of the external force �eld F , the convergence time T needed to
reach the asymptotic distribution decreases with F , while the spreading of the asymptotic
distribution increases with F . Both these behaviours are in agreement with what is expected.
Indeed if the external event that a�ects pedestrians choice is intense, (magnitude F of the
uniform external the force �eld), the pedestrians are driven to quickly choose a gate, and they
reach the asymptotic distribution in less time. The spreading of the asymptotic distribution
on the contrary is addressed to the fact that the uniform external force �eld uniform the
behaviour of all pedestrians, acting against the natural concentration of pedestrians towards
the center of the gate side. Moreover both the convergence time T and the spread of the
asymptotic distribution show a saturation point with respect to the increment of F , that can
be addressed to the controlling role of the thermostat term.

� The analysis of the system subjected to a non uniform external force �eld (see section 4.2)
stresses out how a non symmetric external event can break the symmetry of the internal
evolution and then of the asymptotic distribution, giving rise to a very heterogeneous dy-
namics depending strongly on the initial condition. The time evolution of the system is
driven by the balance between the action of the external force �eld and the action of the
internal leader-follower dynamics, that is mediated by the magnitude F of the external force
�eld. The thermostat term ensures the conservation of the total number of pedestrians and
allows the system to reach an asymptotic state, whose form depends on the functional form
of the external force �eld and its magnitude F , and on the number of gates n. However once
�xed these three condition, simulations show that the asymptotic state is qualitative and
quantitative the same for all the initial condition we have considered (3.1.5).

� In the case of a time dependent force �eld (see section 4.3), the system does not reach a
stationary state, but it adapts continuously itself to the action of the external force �eld.
Indeed the system try to reach at each instant t the asymptotic state that correspond to the
case of a constant external force �eld of magnitude F (t). This behaviour is controlled by the
thermostat term that must ensure the conservation of the total number N of pedestrians.
For example, under the action of a periodic external force �eld, the whole system cannot be
in phase with the external force �eld, because of the conservation of N .

Accordingly to the above results and considerations, the scenario agrees qualitatively with what
happens in a real metro station when pedestrians are subjected to the action of an external event (
situations of hurry, of evacuation from speci�c gates, periodic sounds alarms and so on). The time
evolution of the system is driven by the balance between the action of the external force �eld and the
action of the internal leader-follower dynamics, that is mediated by the magnitude of the external
force �eld. The thermostat term allows the system to reach a stationary state even this means that
even if pedestrians are subjected to an external event, in a long timescale they manage to organize
themselves, and this is in agreement with real situations. The existence of a stationary state
underlines the capability of the thermostat term in mimic the system capacity of self-organization
with respect to the environment accordingly to the physical constraints it is subjected. It is
important to underline that the simulations, with their phenomenological interpretations do not
cover the whole variety of conceivable pedestrian dynamical situations that can be observed at the
entrance of a metro station.
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Conclusions

The �rst part of this thesis work (Chapter 2) has been concerned with the derivation of a new
discrete thermostatted kinetic framework for active particles whose microscopic state depends only
on the activity variable. The proposed framework is designed to take into account, in addition
to the interactions among the individuals of the system, also the e�ects of external actions that
move the system out of equilibrium. For this purpose, the external force �eld is coupled to a
dumping term (thermostat) in the equations, in order to allow the system to reach a stationary
state of non-equilibrium. Moreover the thermostat term is designed in order to conserve a general
p-order moment of the system during the time evolution. As mentioned in the introduction, this
new thermostatted framework is suitable to describe complex systems in life sciences characterized
by the fact that the microscopic state is identi�ed by a discrete variable rather than a continuous
one, especially when the low number of individuals weakens the assumption of continuity of the
distribution function.

The analysis developed for the proposed thermostatted discrete framework refers to the local
and global existence and uniqueness of solution of the related Cauchy problem. The proof of
the existence of solution has been gained by employing the fundamental theorem of existence
of solution for ordinary di�erential equations, and not strong assumptions have been considered
for the internal interactions and for the external force �eld. It is worth stressing that the well-
posedness of the problem is an important topic in the derivation of mathematical frameworks.
Indeed if the framework is well-posedness, it can be considered as a paradigm for the derivation of
speci�c models in the applied sciences and a computational analysis can be performed.

From the research perspective viewpoint, many improvements can be considered. An import-
ant research perspective is also the mathematical proof of the existence of the non-equilibrium
stationary state, which can be pursued by employing �xed point arguments ([56]). Moreover the
modeling approach proposed in the present work is based on the assumption that the system is
homogeneous in the space and velocity variables. For nonhomogeneous systems, the framework
needs to be further generalized for taking into account the role of boundary conditions in bounded
and unbounded domains. From the mathematical point of view, the analysis of such a framework
appears a hard problem considering the di�culty of the quadratic nonlinearity. It is worth pointing
out that the external force �eld introduced in the framework proposed in this work acts at the
macroscopic scale. Further developments of the framework include the possibility to model the
interaction with the force �eld at the microscopic scale. In this context the force �eld is considered
as a known functional subsystem which interacts with the active particles of the main system.

In the second part of this thesis work (Chapter 3 and Chapter 4), we have derived a speci�c
model for pedestrians dynamics in a metro station in the framework of the thermostatted kinetic
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theory proposed in Chapter 2. The model is proposed for analysing the time distribution of
a �nite group of pedestrians approaching at the gates (turnistiles) at the entrance of a metro
station. In particular we are interested to analyse the pedestrian dynamics when pedestrian are
subjected to an external event that can a�ect their internal dynamics (sound signals, collective
hurry, evacuation alarm). The purpose of the proposed model is to reproduce emerging features of
this dynamics, once �xed the interactions among individuals, the initial distribution of pedestrians,
and the de�nition of an external force �eld coupled with the thermostat term. In the pedestrian
modeling we are dealing with the activity variable represents the gate choice performed by a generic
pedestrian. The thermostat term is de�ned in order to keep the number of pedestrians (zero-order
moment) constant during the time evolution of the system.

The microscopic interactions among pedestrians are modeled starting by some reasonable phe-
nomenological hypothesis on the pedestrians behaviour that aims to characterize the pedestrians
interactions in an essential way. We have considered binary local interactions according to a leader-
follower dynamics that depend on the local density of pedestrians. In the analysis we focus on some
functional forms of the external force �eld that have a physical meaning for the pedestrians model
under consideration ( pedestrians are in a hurry to reach the gates in early morning, preferential
gates to take for season tickets holders, speci�c exit gates that allows to reach remarkable place to
visit, recurrent announcement).

Because of the analytical complexity of the model, the system has been investigated by means
of numerical analysis. Firstly, simulations have been addressed to the sensitivity analysis of the
parameters of the model and on selected initial conditions that have a speci�c meaning for the
model and its applications. Then we have analysed the system when subjected to di�erent mag-
nitudes and functional forms of the external force �eld. Further computational analysis has been
performed for investigating the dynamics for increasing number of gates of the metro.

The �rst part of the computational analysis (Chapter 3) focus on the internal dynamics of
the system (external force �eld, and consequently the thermostat term, are set to zero). The
simulations show that the emergents features arising from the interactions at the microscales
reproduce qualitatively some known behaviours of pedestrians when they are approaching to the
entrance gates: the �ow imposed by the leader dynamics, the concentration of pedestrians in time
towards the central gate, the trend to choose progressively all the gates available, and the formation
of periods of stuck in time (metastable local states during the time evolution), i.e. instants where
pedestrians are thinking about their next choice, or just waiting to see if the situation in front of
the gates changes. Some of these emerging behaviours could have been predicted by the looking
at the interactions at the microscale, and thus they verify the model (symmetry in the evolution,
pedestrian �ow imposed by leader dynamics), other of them are emerging collective behaviour
(formation of metastable local state, concentration of pedestrian towards the central gate) that
underline the complex nature of the system.

The second part of the computational analysis (Chapter 4) has been addressed to analyse
pedestrians dynamics when a�ected by the presence of an external force �eld. The scenario depicted
by the simulations agrees qualitatively with what happens in a real metro station when pedestrians
are subjected to the action of an external event. The time evolution of the system is driven by
the balance between the action of the external force �eld and the action of the internal leader-
follower dynamics, and this balance is controlled by the magnitude of the external force �eld. In
particular the analysis of the system subjected to a non uniform external force �eld stresses out
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how a non symmetric external event can break the symmetry of the internal evolution and then of
the asymptotic distribution, giving rise to a very heterogeneous dynamics depending strongly on
the initial condition. The main result shown by simulations is how the thermostat term allows the
system to reach a non-equilibrium stationary state and how it keeps the total number of pedestrians
constant. The existence of a stationary state for the model then underlines the capability of the
thermostat term in mimic the system capacity of self-organization with respect to the environment
accordingly to the physical constraints it is subjected to. Indeed, if pedestrians are subjected to an
external event, in a long timescale they manage to organize themselves, and this is in agreement
with real situations. It is worth stressing that the simulations results with their phenomenological
interpretations, do not cover the whole variety of conceivable pedestrian dynamical situations that
can be observed at the entrance of a metro station. Moreover only the validation of the model
could stress the goodness of these predictively results.

From the research perspective viewpoint, many re�nements and improvements can be con-
sidered. The microscopic interactions can be modeled di�erently, by taking into account others
characteristic of pedestrians behaviour (for the heterogeneity of pedestrians behaviour see [17],
[45]). It is worth stressing that a priori all the modeling are possible, but only the simulations and
the subsequent validation of the model can test the model capability to reproduce e�ciently the
dynamics and the emerging features of the real time distribution of pedestrians in approaching the
gates at the entrance of a metro station. Further improvements can be performed by considering
by taking into account multiple interactions ([49]).

The modeling approach proposed is based on the assumption that the system is homogeneous
in the space and velocity variables. An important research improvement for the proposed model
would be the introduction of the mechanical variable of space and velocity. The introduction
of the mechanical variables would allow a more realistic modeling of pedestrian dynamics in a
metro station, by taking into account the velocity of the pedestrians and their movements within
the metro zone ([68]). For example events like evacuations could be suitable modeled with this
approach ([67]). Moreover macroscopic observable quantities such as local density or the �ux
of pedestrians can be introduced for the studying of the model, by analogy with some tra�c
models ([66]). However, as pointed out in the previous section, for nonhomogeneous systems the
thermostatted framework needs to be further generalized. Finally the model should be validate.
The validation of the model can be based on a suitable comparison between predictions of the
model and empirical data ([69]).
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