
Università di Pisa

Dipartimento di Informatica

Technical Report

Dynamic smoothness

parameter for fast gradient

methods

Antonio Frangioni
Dipartimento di Informatica, Università di Pisa

frangio@di.unipi.it

Bernard Gendron
Centre Interuniversitaire de Recherche sur les

Réseaux d’Entreprise, la Logistique et le Transport (CIRRELT)
and Department of Computer Science and Operations Research

Université de Montréal
Bernard.Gendron@cirrelt.ca

Enrico Gorgone
Indian Institute of Management Bangalore (IIMB)

enrico.gorgone@iimb.ernet.in

March 6, 2017
ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UnipiEprints

https://core.ac.uk/display/83387095?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Dynamic smoothness parameter for fast gradient

methods

Antonio Frangioni
Dipartimento di Informatica, Università di Pisa

frangio@di.unipi.it

Bernard Gendron
Centre Interuniversitaire de Recherche sur les

Réseaux d’Entreprise, la Logistique et le Transport (CIRRELT)
and Department of Computer Science and Operations Research

Université de Montréal
Bernard.Gendron@cirrelt.ca

Enrico Gorgone
Indian Institute of Management Bangalore (IIMB)

enrico.gorgone@iimb.ernet.in

March 6, 2017

Abstract

We present and computationally evaluate a variant of the fast gradient

method by Nesterov that is capable of exploiting information, even if approx-

imate, about the optimal value of the problem. This information is available

in some applications, among which the computation of bounds for hard integer

programs. We show that dynamically changing the smoothness parameter of

the algorithm using this information results in a better convergence profile of

the algorithm in practice.

Keywords: Fast gradient method, Lagrangian relaxation

1 Introduction

One of the crucial components of solution algorithms for mixed integer linear pro-
grams (MILP) is the computation of tight bounds upon the optimal value of the
problem. Although the solution of the continuous relaxation (CR) of the MILP, usu-
ally strengthened by valid inequalities, is often the method of choice, forming a La-
grangian relaxation (LR) and (approximately) solving the corresponding Lagrangian
dual (LD) can be preferable in some cases. This is true in particular when the LR
decomposes into several smaller subproblems (e.g., [8, 9] and the references therein).
The LD is typically a non-smooth problem, and it is usually solved by algorithms of
two different families: subgradient methods (SM) [6, 9, 14] and bundle methods (BM)
[7, 8, 10]. The former are easier to implement and their iteration cost is dominated by

1

the function computation, whereas the latter are more complex and require the solu-
tion of a (potentially, costly) subproblem at each iteration; however, they have better
convergence in practice. The right trade-off depends on many factors, among which
the required (relative or absolute) accuracy; the numerical experiments of [9] show
that SM can be competitive, in a prototypical application, provided that a substantial
amount of tuning is performed to choose the many algorithmic parameters. Among
SM, the primal-dual variants (PDSM) [12] are particularly attractive because they
have much fewer parameters to tune. However, their practical performance might be
worse than that of other variants. The analysis in [9] seems to indicate that one of
the factors at play is that most SM, but not PDSM, can incorporate external infor-
mation about the optimal value of the problem (in particular, for the selection of the
stepsize). Hence, exploiting this information might be useful computationally.

This work provides an initial step towards that goal by analyzing a different, but
related, family of non-smooth optimization algorithms, that of fast gradient methods
(FG) [1, 2, 3, 11, 13], that have efficiency estimates of the order O(1/ǫ)—with ǫ the
required absolute accuracy—whereas the complexity of any black-box non-smooth
method is at best O(1/ǫ2). The downside is that FG require an explicit modification
of the oracle, which might negatively impact the total running time. In the standard
version, FG do not exploit any knowledge on the optimal value. However they have
one crucial smoothness parameter that is naturally related with the current distance
(on the value axis) from the optimum. We propose a simple scheme, in two variants,
for dynamically managing the smoothness parameter to exploit (approximate) infor-
mation on the optimal value, showing that this leads to a significant improvement of
the convergence profile of the approach. We test the variant on two different LD of
a hard MILP. The approach could be useful in several other applications particularly
suited to FG, such as imaging [1, 4].

2 The method

We study approaches for the numerical solution of the problem

f∗ = min
{

f(λ) = f̂(λ) + max{ 〈Bλ, z〉 − φ(z) : z ∈ Z } : λ ∈ Λ
}

(1)

where Λ ⊆ R
n is closed and convex, and f : Rn → R is a proper convex nondifferen-

tiable function due to the inner maximization (being φ continuous and convex on the

bounded closed convex set Z and B a linear operator), while f̂ ∈ C1,1. The idea of
FG methods is to make (1) smooth by defining

fµ(λ) = f̂(λ) + max{ 〈Bλ, z〉 − φ(z)− µr2(z) : z ∈ Z } , (2)

which is a smooth lower approximation of f if the prox-function r2(z) ≥ 0 is continu-
ous and strongly convex on Z. The smoothness parameter µ > 0 connects the minima
of f and fµ, so appropriately managing µ one can apply a fast gradient approach to
fµ and obtain an approximate solution to (1). This approach has been successfully
applied in machine learning, data mining, inverse problems, and imaging [1, 4], and
has inspired further research [2, 3, 11]. The FG is based on two prox-functions, that
for simplicity we take as r1(λ) = ‖λ − λ̄‖2/2 and r2(z) = ‖z − z̄‖2/2, λ̄ and ū be-
ing the centres. Since Z is bounded, max{ r2(z) : z ∈ Z } ≤ R2 < ∞; therefore,
fµ(λ) ≤ f(λ) ≤ fµ(λ) + µR2, which implies that any method minimizing fµ over Λ
leads to an approximate solution of (1) if µ ց 0. Given the (unique) optimal solution

z∗µ(λ) of (2), ∇fµ(λk) = ∇f̂(λk) + z∗µ(λk)B; it can be seen [13, Theorem 1] that ∇fµ
is Lipschitz continuous with constant Lµ = M + ‖B‖2/µ, where M is the Lipschitz

2

constant of ∇f̂ . For any µ, the FG approach to minimizing fµ is based on arbitrarily

selecting a sequence of weights υk such that υ0 ∈ (0, 1] and υ2
k ≤ ∆k =

∑k
i=0

υi for
k ≥ 1, and solving the two problems

πk =argmin
{

〈∇fµ(λk), λ− λk〉+ Lµ‖λ− λk‖2/2 : λ ∈ Λ
}

(3)

ζk =argmin
{

Lµr1(λ) +
∑k

i=0
υi[fµ(λi) + 〈∇fµ(λi), λ− λi〉] : λ ∈ Λ

}

(4)

Then, with ιk+1 = υk+1/∆k+1, the next iterate is computed as λk+1 = ιk+1ζk + (1−
ιk+1)πk (with λ0 = λ̄). We now reproduce the convergence analysis of [13] replacing
the requirement that Λ be bounded, which does not hold in our application, with
f∗ = f(λ∗) > −∞, so that R1 = r1(λ

∗) < ∞. As in the original development we
take υk = (k + 1)/2, so that ∆k = (k + 1)(k + 2)/4. The findamental result is that
if M = 0, then for any ǫ > 0 by setting µ = ǫ/(2R2) the inequality f(πk) − f∗ ≤ ǫ
is satisfied in at most k + 1 = 4‖B‖

√
R1R2/ǫ iterations. Indeed, by [13, Theorem 2],

for any k ≥ 0 we have

∆kfµ(πk) ≤ min
{

Lµr1(λ) +
∑k

i=0
υi[fµ(λi) + 〈∇fµ(λi), λ− λi〉] : λ ∈ Λ

}

,

and from both convexity and ∆k =
∑k

i=0
υi it follows that

∆kfµ(πk) ≤ min
{

Lµr1(λ) +
∑k

i=0
υifµ(λ) : λ ∈ Λ

}

≤ LµR1 +∆kfµ(λ
∗) .

Using Lµ = M + ‖B‖2/µ we get ∆kfµ(πk) ≤ (M + ‖B‖2/µ)R1 + ∆kfµ(λ
∗), and

therefore fµ(πk)− fµ(λ
∗) ≤ (1/∆k)

(

M + ‖B‖2/µ
)

R1. The fact that fµ ≤ f implies
that fµ(λ

∗) ≤ f∗. In addition, f(λ) ≤ fµ(λ) + µR2 holds for any λ and, hence, in
particular for πk, yielding

f(πk)− f∗ ≤ (1/∆k)
(

M + ‖B‖2/µ
)

R1 + µR2 .

One can then use ∆k = (k + 1)(k + 2)/4 and find the value of µ minimizing the
right-hand side above; this gives µ = (2‖B‖

√

R1/R2)/(k + 1), whence

0 ≤ f(πk)− f∗ ≤ 4
(

MR1/(k + 1) + ‖B‖
√

R1R2

)

/(k + 1) ≤ ǫ

from which the desired result immediately follows.
The minimization problems (3)–(4) actually reduce to closed-form formulæ when ei-
ther Λ = R

n or Λ = R
n
+. Indeed, in the first case πk = π̄k = λk − ∇fµ(λk)/Lµ and

ζk = ζ̄k = λ̄ −
∑k−1

i=0
υi∇fµ(λi)/Lµ, while in the second case πk = max{ 0 , π̄k } and

ζk = max{ 0 , ζ̄k }. Furthermore, the simple recursive formula dk = ιk∇fµ(λk) + (1−
ιk)dk−1 = (1/∆k)

∑k
i=0

υi∇fµ(λi), whose correctness is easily verified by induction,
can be used to avoid keeping all the gradients to compute ζk, thereby making each
iteration inexpensive.

The analysis therefore suggests to keep µ fixed to a value directly proportional to
the desired absolute error ǫ. Because typically one wants to specify relative tolerances
ǫr instead, the practical implementation must be akin to

µ = ǫr|fref |/(2R2) (5)

where fref is some reference value providing an estimate of f∗. In some applications
a lower bound flb ≤ f∗ is available that can be used as fref . However, knowledge of
flb could be put to even better use. Indeed, µ is proportional to ǫ, and the algorithm
basically performs steps of 1/Lµ = µ/‖B‖2 (if M = 0) along the direction dk, as
recalled above. Therefore, a small value of µ, necessary to attain a high accuracy,

3

leads to small steps when one if “far” from f∗. It would therefore be intuitively
attractive to have larger values of µ early on and reduce it as the algorithm proceeds.
Availability of flb suggests the rule

µk = max{ f best
k − flb , ǫr|flb| }/(2R2) , (6)

where f best
k = min{ f(λi) : i ≤ k }. We show below that (6) actually improves the

convergence rate of the algorithm when flb is accurate, and can be modified to handle
the case when it is not.

3 Application to Multicommodity Network Design

The fixed-charge multicommodity capacitated network design problem (FC-MCND)
is a general network design problem with many applications (see [5, 8, 9] and the
references therein). Efficiently computing tight lower bounds on its optimal value is
crucial for solution approaches, and Lagrangian techniques have been shown to be
competitive. In [9], gradient-like approaches have been thoroughly analysed, showing
how the availability of lower bounds on the optimal value improves the efficiency of
solution approaches that can make use of this information. We aim at verifying if
an analogous phenomenon occurs for FG, that can also be applied to FC-MCND as
briefly described here. The data of FC-MCND is a directed graph G = (N,A), where
Fi and Bi respectively denote the set of outbound and inbound arcs of node i ∈ N ,
and a set of commodities K. Each k ∈ K has a deficit vector bk = [bki]i∈N that
denotes the net amount of flow asked at each node. Each arc (a+, a−) = a ∈ A can
only be used if the corresponding fixed cost fa > 0 is paid, in which case the mutual

capacity ua > 0 bounds the total amount of flow on a, while individual capacities uk
a

bound the flow of commodity k. The routing cost cka has to be paid for each unit of
commodity k moving through a. A formulation is

min
∑

k∈K

∑

a∈A ckax
k
a +

∑

a∈A faya (7)
∑

a∈Fi
xk
a −∑

a∈Bi
xk
a = bki i ∈ N , k ∈ K (8)

∑

k∈K xk
a ≤ uaya a ∈ A (9)

xk
a ≤ uk

aya a ∈ A , k ∈ K (10)

0 ≤ xk
a ≤ uk

a a ∈ A , k ∈ K (11)

ya ∈ {0, 1} a ∈ A (12)

Two classical approaches for deriving lower bounds on its optimal value are the flow

relaxation (FR) and the knapsack relaxation (KR). In the former one relaxes con-
straints (9)–(10) with multipliers λ = [α , β] = [αa , β

k
a]a∈A , k∈K ≥ 0. This yields

the objective function

min
∑

k∈K

∑

a∈A(c
k
a + αij + βk

a)x
k
a +

∑

a∈A(fa − αaua −
∑

k∈K uk
aβ

k
a)ya

whose minimization subject to the remaining (8), (11)–(12) reduce to |K| single-
commodity linear minimum cost network (MCF) problems plus |A| trivial single-
variable integer problems. Applying FG means adding to (7) the term

µ
∑

a∈A[(ya − ȳa)
2 +

∑

k∈K(xk
a − x̄k

a)
2]/2 (13)

with arbitrary x̄ and ȳ, yielding fµ(λ) = f0 +
∑

k∈K fk
µ(λ) +

∑

a∈A fa
µ(λ) with

f0 =−∑

a∈A µ[(ȳa)
2 +

∑

k∈K(x̄k
a)

2]/2

fk
µ (λ) =−min

{
∑

a∈A[c̄
k
ax

k
a + µ(xk

a)
2/2] : (8) , (11)

}

(14)

fa
µ(λ) =−min

{

f̄aya + µy2a/2 : (12)
}

(15)

4

where c̄ka = cka+αa+βk
a −µx̄k

a and f̄a = fa−αaua−
∑

k∈K uk
aβ

k
a −µȳa; (14) is now a

(convex, separable) quadratic MCF problem, which is still efficiently solvable, albeit
less so in practice than the linear version. In order to apply FG the R2 constant has
to be computed by maximizing (13) over (8), (11)–(12), which is a hard problem. Yet
it decomposes in |K|+ |A| independent subproblems, the latter being single-variable
ones. To deal with the remaining part we consider the linear upper approximation
of (xk

a − x̄k
a)

2 given by the gradient computed at xa = uk
a/2, i.e., R2 ≤ (

∑

k∈K Rk
2 +

∑

a∈Amax{ ȳ2a , (1− ȳa)
2 })/2 with

Rk
2 =

∑

a∈A(x̄
k
a)

2 +max
{
∑

a∈A(u
k
a/2− x̄k

a)x
k
a : (8) , (11)

}

.

In the KR, one rather dualizes the flow conservation constraints (8) with multi-
pliers λ = [λk

i]i∈N,k∈K ; this yields the objective function

min
∑

a∈A

[
∑

k∈K(cka + λk
a+

− λk
a
−

)xk
a + faya

]

+
∑

i∈N

∑

k∈K λk
i b

k
i

whose minimization subject to (9)–(12) reduce to |A| independent continuous knap-
sack problems (KP). Applying FG corresponds again to adding (13), leading to
fµ(λ) = f0 +

∑

a∈A fa
µ(λ) with

f0 =−∑

i∈N

∑

k∈K λk
i b

k
i − µ

∑

a∈A(ȳ
2
a +

∑

k∈K(x̄k
a)

2)/2

fa
µ(λ) =−min { (ga(λ) + fa − µȳa)ya : (12) }
ga(λ) =min

{
∑

k∈K [c̄kax
k
a + µ(xk

a)
2/2] :

∑

k∈K xk
a ≤ ua , (11)

}

(16)

being c̄ka = cka + λk
a+

− λk
a
−

− µx̄k
a. Now the crucial part is the quadratic KP (16),

which is still easy to solve. Again, estimating the constant R2, i.e., maximising the
convex (13) over the feasible region, is not so. However, we can use the same trick by
rather maximising a linear upper approximation, i.e., solving the continuous KP

ḡa(λ) = max
{
∑

k∈K(uk
a/2− x̄k

a) :
∑

k∈K xk
a ≤ ua , (11)

}

and using ḡa(λ) similarly to ga(λ) to provide an upper estimate to R2.

4 Numerical experiments

The FG method has been developed in C++, compiled with GNU g++ 4.4.5 (with
-O3 optimization option) and ran on an Opteron 6174 processor (2.2 GHz) with 32 GB
of RAM, under a i686 GNU/Linux operating system. The solvers for quadratic MCF
(14) and KP (16) are available thanks to the MCFClass and CQKnPClass projects,
respectively, available at

http://www.di.unipi.it/optimize/Software/MCF.html

http://www.di.unipi.it/optimize/Software/CQKnP.html

The numerical experiments have been performed on 80 randomly generated instances
already used in several papers [8, 9], and available at

http://www.di.unipi.it/optimize/Data/MMCF.html#Canad .

The purpose of the testing is to compare the static rule (5) proposed in [13] with
the dynamic rule (6) making use of flb. To compare different algorithms we report
convergence charts plotting the obtained relative gap, (f best

k − f∗)/|f∗|, against both
iteration and time. As in [9], the time charts for different instances become almost
indistinguishable when the horizontal axis represents the normalized time, i.e., the
running time divided by the product |A| · |K|. This is illustrated in the right part of

5

Figure 1 (in the left one, the horizontal axis represents iterations) where convergence
charts are separately reported, averaged on small instances (|A| ≤ 300), medium
ones (300 < |A| ≤ 600) and large ones (|A| > 600): the individual lines are barely
distinguishable among them and with the total average. The normalized time plots
are a bit more apart from each other, which is reasonable because (14) and (16) are
“complex” subproblems that cannot be expected to scale linearly with size, but still
the difference is not large. As this consistently happens in all cases, in the following,
we only report the global average.

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06

G
A
P

1e-08 1e-06 1e-04 1e-02 1e+00

avg
small
med.
large

Figure 1: Partly disaggregated results for dynamic µ with flb = f∗

We start by discussing the KR. In Figure 2 and 3 we report the (average) conver-
gence plots for the static rule (5) and the dynamic rule (6) when the lower bound
is “accurate”, i.e., flb = f∗ and, respectively, ǫr = 1e−4 and ǫr = 1e−6. As before,
on the left side we plot the gap against the number of iterations, and on the right
side against normalised time. To better put the results in perspective we also re-
port results for two highly tuned version of the subgradient algorithm applied to the
standard (non-smoothed) Lagrangian dual, using volume deflection and, respectively,
FumeroTV (SVF) and colorTV (SVC) stepsize rules, with the best algorithmic pa-
rameters found in [9]. Because we know a (tight) bound on the optimal value, we
can stop all variants as soon as an accurate enough solution has been found, i.e.,
f best
k − f∗ ≤ ǫr|f∗|.

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06

G
A
P

1e-08 1e-06 1e-04 1e-02 1e+00

(6)
(17)
SVF
SVC
(5)

Figure 2: Results for the KR with flb = f∗ and ǫr = 1e−4

The figures clearly show that the dynamic rule (6) significantly outperforms the
static one (5). In particular, the convergence plots show a first “flat” leg where
progress is slow; comparing Figure 2 and Figure 3 (purposely plotted in identical
horizontal scale) shows that the flat leg for (5) with ǫr = 1e−6 is much longer than
with ǫr = 1e−4. This is somewhat unsettling, in that the final desired accuracy should
not, in principle, influence the convergence speed at the beginning; yet it does for the

6

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06

G
A
P

1e-08 1e-06 1e-04 1e-02 1e+00

(5)
(17)
SVF
SVC
(6)

Figure 3: Results for the KR with flb = f∗ and ǫr = 1e−6

static rule. The dynamic one attains, after a shorter flat leg, a remarkably linear
convergence rate which is (correctly) not influenced by the value of ǫr. The FG with
dynamic rule is roughly competitive with the subgradient variants (which also exploit
knowledge of f∗ for computing the stepsize) for ǫr = 1e−4, despite having to solve a
more complex Lagrangian problem. The convergence profile of subgradient methods
is considerably more erratic than that of the FG. Furthermore, they are basically
incapable of attaining accuracy greater than ǫr = 1e−4 (and not even that for SVF),
whereas the FG has no issues to get to ǫr = 1e−6, and likely beyond.

However, the picture is different when flb ≪ f∗, as Figure 4 and 5 show. There
we use the significantly worse estimate for flb = f∗ − 0.1|f∗| (denoted as “10%f∗”
for short). The result is that the dynamic rule “flattens out” far from the required
accuracy, basically ceasing to converge. This is due to the fact that in (6) µk only
becomes small if f best

k approaches flb, which cannot happen because flb ≪ f∗. Hence,
µ is never set to the value required for attaining an accurate solution, and the FG
basically stalls. Note that in the figures we plot two different versions of the static
rule (5): (5’) uses fref = flb, while (5”) uses fref = f best

k . The first option turns
out to be preferable, but both versions show the “flat leg” that grows longer as the
required accuracy increases.

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06

G
A
P

1e-08 1e-06 1e-04 1e-02 1e+00

(6)
(17)
(5’)
(5”)
SVF
SVC

Figure 4: Results for the KR with flb = 10%f∗ and ǫr = 1e−4

A possible approach to remedy this drawback of the dynamic rule is to observe that,
when flb−f∗, the convergence rate becomes very nearly linear on a doubly-logarithmic
scale from a certain iteration ı̂ onwards. In other words, experimentally

[

log
(

(f(λi)− f∗)/f∗)− log
(

(f(λı̂)− f∗)/f∗)
]

/[log(i)− log(ı̂)] = −α

holds with quite good accuracy for all i larger than a properly chosen ı̂. This imme-
diately suggests the empiric formula

µk = min{ (fı̂ − flb)(̂ı/k)
α , (f best

k − flb) }/(2R2) (17)

for dynamically adjusting µ when flb might not be an accurate estimate of f∗. The
parameters α = 1.2 and ı̂ = 10 are easily derived from the (average) convergence plot

7

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06

G
A
P

1e-08 1e-06 1e-04 1e-02 1e+00

(6)
(17)
(5’)
(5”)
SVF
SVC

Figure 5: Results for the KR with flb = 10%f∗ and ǫr = 1e−6

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06

G
A
P

1e-06 1e-04 1e-02 1e+00

(6)
(17)
SVP
(5)
(6)

Figure 6: Results for the FR with flb = f∗ and ǫr = 1e−4

for flb = f∗, and used uniformly for all instances (being the convergence plots almost
identical). Figures 2 and 3 show that the new dynamic strategy (17), albeit not as
efficient as (6) with the accurate estimate of f∗, is still consistently superior to the
static strategy (5). Furthermore, it is resilient to rather inaccurate estimates of f∗;
indeed, it is by far the preferable option in Figures 4 and 5.

The results for the FR are analogous, with a few differences. First of all, the
quadratic MCF solvers had numerical issues with small values of µ, preventing us to
reliably obtain runs for ǫr = 1e−6, which is why we only report results for ǫr = 1e−4.
Second, according to [9], the best subgradient variant for this problem rather uses a
Polyak stepsize rule (SVP). Finally, using the actual value of ‖B‖ corresponding to
(14)–(15) actually led to a surprisingly slow convergence. We (basically, by chance)
discovered that using ‖B‖ = 1 instead recovered a much faster convergence. While
this suggests that the FG may benefit from some tuning, exploring this issue is out
of the scope of the present paper. Therefore, in Figures 6 and 7, we mainly report
the results of the three rules when using ‖B‖ = 1, denoted by (5), (6) and (17), while
only plotting in Figure 6, the results of the original rule (6) to show how much worse
the performances are (those of the other rules are similarly degraded).
All in all, the results closely mirror those of the KR. The subgradient method is
considerably faster than FG, more so than in the KR, which is not surprising because
quadratic MCFs now have to be solved; however, it struggles to reach ǫr = 1e−4

accuracy. The dynamic rule (6) is preferable when flb = f∗, but it stalls far from the
required accuracy when the lower bound is not accurate, in which case the dynamic
rule (6) is preferable. In general, the static rule (5), in both variants, is less effective
than the dynamic ones. The exception is at the end of the convergence plot in Figure
7; however, this corresponds to the case where the desired accuracy has already been
attained, but the FG is not capable of stopping (quickly) because the lower bound
is not accurate enough. Only in that final phase the static strategy outperforms the

8

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06

G
A
P

1e-06 1e-04 1e-02 1e+00

(6)
(17)
(5

′

)
(5

′′

)
SVP

Figure 7: Results for the FR with flb = 10%f∗ and ǫr = 1e−4

dynamic one.

5 Conclusion

We have devised a simple rule for dynamically adjusting the crucial smoothness pa-
rameter µ in the fast gradient approach. The rule exploits information about the
optimal value of the problem to significantly improve the convergence properties of
the method, at least in practice on our test instances. The rule is very effective
when the estimate is tight, but it can also be adapted to work when the estimate
is loose. This requires tuning two parameters, which in our experience seems to be
easy. The proposed modification is therefore interesting for all the applications where
bounds on the optimal value are readily available, as it happens, e.g., in integer op-
timization. Besides possibly proving useful for various applications that can benefit
from FG approaches, we hope that our result stimulates research into finding ways
for exploiting information about the optimal function value in the related, although
different, primal-dual subgradient methods (PDSM) [12] that do not require modify-
ing the function computation to work. The inability to exploit this information has
been identified as a potential weakness in PDSM [9], which limits the applicability of
this otherwise interesting—both for its performances and for being almost parameter-
free—class of subgradient algorithms. Our results on FG seem to indicate that this
line of research could bear interesting fruits.

References

[1] M. Ahookhosh. Optimal subgradient algorithms with application to large-scale
linear inverse problems. Technical report, Optimization Online, 2014.

[2] A. Beck and M. Teboulle. Smoothing and first order methods: a unified frame-
work. SIAM Journal on Optimization, 22(2):557–580, 2012.

[3] R.I. Bot and C. Hendrich. A variable smoothing algorithm for solving convex
optimization problems. TOP, 2014.

[4] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex prob-
lems with applications to imaging. Journal of Mathematical Imaging and Vision,
40(1):120–145, 2011.

[5] M. Chouman, T.G. Crainic, and B. Gendron. Commodity Representations and
Cut-Set-Based Inequalities for Multicommodity Capacitated Fixed-Charge Net-
work Design. Transportation Science, 2016. [Online; posted 27-July-2016].

9

[6] G. d’Antonio and A. Frangioni. Convergence Analysis of Deflected Conditional
Approximate Subgradient Methods. SIAM Journal on Optimization, 20(1):357–
386, 2009.

[7] A. Frangioni. Generalized bundle methods. SIAM Journal on Optimization,
13(1):117–156, 2002.

[8] A. Frangioni and E. Gorgone. Generalized bundle methods for sum-functions
with “easy” components: Applications to multicommodity network design. Math-

ematical Programming, 145(1):133–161, 2014.

[9] A. Frangioni, E. Gorgone, and B. Gendron. On the computational efficiency of
subgradient methods: A case study in combinatorial optimization. Tech. report,
CIRRELT, 2015.

[10] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Al-

gorithms II—Advanced Theory and Bundle Methods, volume 306 of Grundlehren

Math. Wiss. Springer-Verlag, New York, 1993.

[11] G. Lan and Y. Zhou. Approximation accuracy, gradient methods, and er-
ror bound for structured convex optimization. Technical report, University of
Florida, 2014.

[12] Y. Nesterov. Primal-dual subgradient methods for convex optimization. Siam J.

Optim., 12:109–138, 2001.

[13] Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Pro-

gramming, 103:127–152, 2005.

[14] N.Z. Shor. Minimization methods for nondifferentiable functions. Springer-
Verlag, Berlin, 1985.

10

	Introduction
	The method
	Application to Multicommodity Network Design
	Numerical experiments
	Conclusion

