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Mechanism design with maxmin agents: Theory and an
application to bilateral trade

Alexander Wolitzky
Department of Economics, MIT

This paper studies mechanism design when agents are maxmin expected utility
maximizers. A first result gives a general necessary condition for a social choice
rule to be implementable. The condition combines an inequality version of the
standard envelope characterization of payoffs in quasilinear environments with
an approach for relating agents’ maxmin expected utilities to their objective ex-
pected utilities under any common prior. The condition is then applied to give an
exact characterization of when efficient trade is possible in the bilateral trading
problem of Myerson and Satterthwaite (1983), under the assumption that agents
know little beyond each other’s expected valuation of the good (which is the in-
formation structure that emerges when agents are uncertain about each other’s
ability to acquire information). Whenever efficient trade is possible, it may be im-
plemented by a relatively simple double auction format. Sometimes, an extremely
simple reference price rule can also implement efficient trade.

Keywords. Mechanism design, maxmin, ambiguity aversion, bilateral trade,
Myerson–Satterthwaite.

JEL classification. D81, D82.

1. Introduction

“Robustness” has been a central concern in game theory and mechanism design since
at least the celebrated argument of Wilson (1989). The Wilson doctrine is usually inter-
preted as calling for mechanisms that perform well in a wide range of environments.
However, there is also growing and complementary interest in robustness concerns on
the part of economic agents instead of (or in addition to) on the part of the mecha-
nism designer; that is, in asking what mechanisms are desirable when agents use “ro-
bustly optimal” strategies. This paper pursues this question in the case where agents
are maxmin expected utility (MMEU) maximizers (Gilboa and Schmeidler 1989), which
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is perhaps the best-established model of robust decision-making under uncertainty, as
well as the model most commonly adopted in prior studies of mechanism design with
robustness concerns on the part of agents. In particular, the paper develops a general
necessary condition for a social choice rule to be implementable, and applies this con-
dition to give an exact characterization of when efficient trade is possible in the classical
bilateral trade setting of Myerson and Satterthwaite (1983).

The necessary condition for implementation generalizes a well known necessary
condition in the Bayesian independent private values setting, namely that the expected
social surplus must exceed the expected sum of information rents left to the agents,
as given by an envelope theorem. That this condition has any analogue with maxmin
agents is rather surprising, for two reasons. First, the usual envelope characterization of
payoffs need not hold with maxmin agents. Second, and more importantly, a maxmin
agent’s subjective belief about the distribution of opposing types depends on her own
type. This is also the situation with Bayesian agents and correlated types, where re-
sults are quite different from those in the classical independent types case (Crémer and
McLean 1985, 1988, McAfee and Reny 1992).

The derivation of the necessary condition (Theorem 1) addresses both of these is-
sues. For the first, I rely on an inequality version of the standard envelope condition
that does hold with maxmin agents. For the second, I note that, by definition, an agent’s
maxmin expected utility is lower than her expected utility under any belief she finds pos-
sible. This implies that the sum of agents’ maxmin expected utilities is lower than the
sum of their “objective” expected utilities under any possible common prior, which in
turn equals the expected social surplus under that prior (for a budget-balanced mecha-
nism). Hence, a necessary condition for a social choice rule to be implementable is that
the resulting expected social surplus exceeds the expected sum of information rents for
any possible common prior; that is, for any prior with marginals that the agents find
possible.

The second part of the paper applies this necessary condition to give an exact char-
acterization of when efficient bilateral trade is implementable, under the assumption
that the agents know each other’s expected valuation of the good (as well as bounds
on the valuations), but little else. As explained below, this is the information structure
that emerges when agents have a (unique) common prior on values at an ex ante stage
and are maxmin about how the other agent might acquire information before partici-
pating in the mechanism. In this setting, the assumption of maxmin behavior may be
an appealing alternative to the Bayesian approach of specifying a prior over the set of
experiments that the other agent may have access to, especially when this set is large
(e.g., consists of all possible experiments) or the agents’ interaction is one shot. Further-
more, the great elegance of Myerson and Satterthwaite’s theorem and proof suggests
that their setting may be one where relaxing the assumption of a unique common prior
is particularly appealing.1

1This is in line with Gilboa’s exhortation in his monograph on decision-making under uncertainty to
“[consider] the MMEU model when a Bayesian result seems to crucially depend on the existence of a
unique, additive prior, which is common to all agents. When you see that, in the course of some proof,
things cancel out too neatly, this is the time to wonder whether introducing a little bit of uncertainty may
provide more realistic results” (Gilboa 2009, p. 169).
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Figure 1. In the bilateral trade setting, efficient trade is possible in the region below the curve
and impossible in the region above it.

The second main result (Theorem 2) shows that the Myerson–Satterthwaite theo-
rem sometimes continues to hold when agents are maxmin about each other’s informa-
tion acquisition technology—but sometimes not. In the simplest bilateral trade setting,
where the range of possible seller costs and buyer values is [0�1], the average seller cost
is c∗, and the average buyer value is v∗, Figure 1 indicates the combination of param-
eters (c∗� v∗) for which an efficient, maxmin incentive compatible, interim individually
rational, and weakly budget balanced mechanism exists. Above the curve, the formula
for which is

c∗

1 − c∗ log
(

1 + 1 − c∗

c∗

)
+ 1 − v∗

v∗ log
(

1 + v∗

1 − v∗

)
= 1�

the Myerson–Satterthwaite theorem persists, despite the lack of a unique common prior
or independent types. Below the curve, the Myerson–Satterthwaite theorem fails.

I call the mechanism that implements efficient trade for all parameters below the
curve in Figure 1 the αi(θi) double auction. It is so-called because when a type θi agent
and a type θj agent trade, the type θi agent receives a share αi(θi) of the gains from
trade that depends only on her own type and not on her opponent’s. The αi(θi) double
auction has the property that an agent’s worst-case belief is the belief that minimizes
the probability that strict gains from trade exist; this may be seen to be the belief that
her opponent’s type always takes on either the most favorable value for which there are
no gains from trade or the most favorable value possible. If an agent misreports her
type to try to get a better price, the requirement that her opponent’s average value is
fixed forces the deviator’s worst-case belief to put more weight on the less favorable of
these values, which reduces her expected probability of trade. The share αi(θi) is set so
that this first-order cost in terms of the probability of trade exactly offsets the first-order
benefit in terms of price, which makes the αi(θi) double auction incentive compatible
for maxmin agents.2 Finally, the αi(θi) double auction is weakly budget balanced if and

2In contrast, the cost of shading one’s report in terms of foregone gains from trade would be second
order for a Bayesian, as both the probability that shading results in a missed opportunity to trade and the
foregone gains from trade conditional on missing a trading opportunity would be small.
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only if α1(θ1)+ α2(θ2) ≤ 1 for all θ1, θ2; that is, if and only if the shares that must be left
to the two agents sum to less than 1. This inequality holds in precisely the region below
the curve in Figure 1.

I also derive some additional results in the bilateral trade setting. Most notably, I
show that if the average types of the two agents do not have gains from trade with each
other (e.g., if the pair (c∗� v∗) lies below the 45° line in Figure 1), then efficient trade
can be implemented with an extremely simple mechanism, which I call a reference rule.
A reference rule works by setting a “reference price” p∗ and specifying that trade occurs
at price p∗ if this is acceptable to both agents, and otherwise that trade occurs (when
efficient) at the reservation price of the agent who refuses to trade at p∗. This result
thus illustrates a case where introducing robustness concerns on the part of agents leads
simple mechanisms to satisfy desirable mechanism design criteria.

This paper joins a growing literature on games and mechanisms with maxmin agents
or with agents who follow “robust” decision rules more generally. In contrast to much
of this literature, the current paper shares the following important features of classical
Bayesian mechanism design: (i) the implementation concept is (partial) Nash imple-
mentation; (ii) the only source of uncertainty in the model concerns exogenous random
variables, namely other agents’ types; (iii) for Theorem 1, the model admits the possibil-
ity of a unique common prior as a special case. Several recent papers derive permissive
implementability results with maxmin agents by relaxing these assumptions, in contrast
to the relatively restrictive necessary condition of Theorem 1.

Bose and Daripa (2009), Bose and Mutuswami (2012), and Bose and Renou (2014) re-
lax (i) by considering dynamic mechanisms that exploit the fact that maxmin agents may
be time-inconsistent. A central feature of their approach is that agents cannot commit to
strategies, so they do not obtain implementation in Nash equilibrium. Their approach
also relies on taking a particular position on how maxmin agents update their beliefs,
an issue that does not arise here. Di Tillio et al. (2014) and Bose and Renou (2014) relax
(ii) by assuming that agents are maxmin over uncertain aspects of the mechanism itself.
This lets the designer extract the agents’ information by introducing “bait” provisions
into the mechanism. The mechanisms considered in these four papers are undoubtedly
interesting and may be appealing in particular applications. However, they arguably rely
on a more thoroughgoing commitment to maxmin behavior than does the current paper
(agents must be time-inconsistent or must be maxmin over endogenous random vari-
ables). Even if one accepts this commitment, it still seems natural to ask what is possible
in the more “standard” case where (i) and (ii) are satisfied.

De Castro and Yannelis (2010) relax (iii) by assuming that agents’ beliefs are com-
pletely unrestricted, and they find that efficient social choice rules are then always im-
plementable. This is consistent with Theorem 1, as with completely unrestricted beliefs
agents can always expect the worst possible allocation, which implies that the neces-
sary condition of Theorem 1 is vacuously satisfied. For example, in the bilateral trade
setting, efficient trade is always implementable, as agents are always certain that they
will not trade and are therefore willing to reveal their types. Thus, De Castro and Yannelis
show that ambiguity aversion can soften the Myerson–Satterthwaite impossible result—
consistent with Theorem 2—but they do so only under the rather extreme assumption
of completely unrestricted beliefs.
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Finally, Bose et al. (2006) and Bodoh-Creed (2012) satisfy (i), (ii), and (iii).3 Their
results are discussed below, but the main differences are that neither of these papers
derives a general necessary condition for implementability like Theorem 1, and their
treatment of applications focuses not on efficiency, but on revenue maximization. Im-
portantly, this revenue maximization is conducted with respect to the mechanism de-
signer’s “true” prior, whereas in my model there is no notion of a true prior and the de-
signer is simply a stand-in for all the various games the agents could play among them-
selves. For example, Bodoh-Creed does consider an application to bilateral trade, but he
investigates the minimum expected budget deficit required to implement efficient trade
(from the designer’s perspective), rather than whether efficient trade is possible with ex
post budget balance.4

The paper proceeds as follows. Section 2 presents the model. Section 3 gives the gen-
eral necessary condition for implementation. Section 4 applies this condition to char-
acterize when efficient bilateral trade is implementable. Section 5 contains additional
results in the bilateral trade setting, including the results on implementation with ref-
erence rules. Section 6 concludes. The Appendix contains omitted proofs and auxiliary
results.

2. Model

Agents and Preferences: A group N of n agents must make a social choice from a bounded
set of alternatives Y ⊆ R

n. Each agent i has a one-dimensional type θi ∈ [¯θi� θ̄i] =�i ⊆R.
Agents have quasilinear utility. In particular, if alternative y = (y1� � � � � yn) is selected and
a type θi agent receives transfer ti, her payoff is θiyi + ti.5

Agent i’s type is her private information. In addition, each agent i has a set of possi-
ble beliefs �−i about her opponents’ types, where �−i is an arbitrary nonempty subset
of �(�−i), the set of Borel measures φ−i on �−i. (Throughout, probability measures
are denoted by φ, and the corresponding cumulative distribution functions are denoted
by F .) Each agent i evaluates her expected utility with respect to the worst possible dis-
tribution of her opponents’ types among those distributions in �−i; that is, the agents
are maxmin optimizers.

3Lopomo et al. (2014) also satisfy (i), (ii), and (iii), but consider agents with incomplete preferences as in
Bewley (2002) rather than maxmin preferences. There are two natural versions of incentive compatibility in
their model, which bracket maxmin incentive compatibility (and Bayesian incentive compatibility) in terms
of strength. They show that the stronger of their notions of incentive compatibility is often equivalent to
ex post incentive compatibility (whereas maxmin incentive compatibility is not), and that full extraction of
information rents is generically possible under the weaker of their notions and is sometimes possible under
the stronger one.

4The literature on mechanism design with risk-averse agents is more tangentially related to the current
paper. Chatterjee and Samuelson (1983) and Garratt and Pycia (2015) propose mechanisms for efficient
bilateral trade with risk-averse agents. In contrast, I maintain the assumption that utility is quasilinear. The
mechanisms I propose bear little resemblance to those proposed for risk-averse agents.

5The assumption that utility is multiplicative in θi and yi is for simplicity. One could instead assume
that utility equals vi(y�θi) + ti for some absolutely continuous and equidifferentiable family of functions
{vi(y� ·)}, as in Milgrom and Segal (2002) or Bodoh-Creed (2012).
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Mechanisms: A direct mechanism (y� t) consists of a measurable allocation rule y :
� → Y and a measurable and bounded transfer rule t : � → R

n. Given a mechanism
(y� t), let

Ui(θ̂i� θ−i;θi) = θiyi(θ̂i� θ−i)+ ti(θ̂i� θ−i)

Ui(θ̂i�φ−i;θi) = Eφ−i [Ui(θ̂i� θ−i;θi)]
Ui(θi) = inf

φ−i∈�−i

Ui(θi�φ−i;θi)�

Thus, Ui(θ̂i� θ−i;θi) is agent i’s utility from reporting type θ̂i against opposing type pro-
file θ−i given true type θi, Ui(θ̂i�φ−i;θi) is agent i’s expected utility from reporting type
θ̂i against belief φ−i given true type θi, and Ui(θi) is agent i’s worst-case expected utility
from reporting her true type θi.6

A distinguishing feature of this paper is the notion of incentive compatibility em-
ployed, which I call maxmin incentive compatibility. A mechanism is maxmin incentive
compatible (MMIC) if

θi ∈ arg max
θ̂i∈�i

inf
φ−i∈�−i

Ui(θ̂i�φ−i;θi) for all θi ∈�i� i ∈N� (1)

I restrict attention to MMIC direct mechanisms throughout the paper. This is with-
out loss of generality under the assumption that agents cannot hedge against ambigu-
ity by randomizing, in that an agent’s utility from playing a mixed strategy μi ∈ �(�i)

is Eμi infφ−i∈�−i
Ui(θ̂i�φ−i;θi) rather than infφ−i∈�i

EμiUi(θ̂i�φ−i;θi). Under this “no-
hedging” assumption, the proof of the revelation principle is completely standard.7

A brief aside on the no-hedging assumption: While the alternative is also reason-
able, the no-hedging assumption is the standard one in decision theory. In particular,
the uncertainty aversion axiom of Schmeidler (1989) and Gilboa and Schmeidler (1989)
says that the agent likes mixing ex post (i.e., state by state); mixing over acts ex ante does
not affect her utility. In addition, as noted by Raiffa (1961), if agents could hedge with
randomization, then one would not observe the Ellsberg paradox or other well docu-
mented, ambiguity-averse behavior. The no-hedging assumption is also standard in the
literature on mechanism design with maxmin agents (e.g., Bose et al. 2006, De Castro
and Yannelis 2010, Bodoh-Creed 2012, Di Tillio et al. 2014).8

In addition to MMIC, I consider the following standard mechanism design criteria.

6The term “worst case” is only used heuristically in this paper, but the meaning is generally that if

minφ−i∈�−i
Ui(θ̂i�φ−i;θi) exists, then a minimizer is a worst-case belief; while if the minimum does not

exist (which is possible, as Ui(θ̂i�φ−i;θi) may not be continuous in φ−i and �−i may not be compact), then
a limit point of a sequence {φ−i} that attains the infimum is a worst-case belief.

7Under the solution concept of Nash equilibrium. In particular, there is no strategic uncertainty or
“higher order ambiguity” (as in Ahn 2007). See the working paper version of this paper (Wolitzky 2016)
for further details.

8However, Agranov and Ortoleva (forthcoming) present experimental evidence that sometimes agents
do display a strict preference for randomization. Models of such preferences include Machina (1985),
Cerreia-Vioglio et al. (2015), and Fudenberg et al. (2015). Saito (2015) axiomatizes a utility function that
identifies an agent’s belief that randomization hedges ambiguity.
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• Ex Post Efficiency (EF): For all θ ∈� y(θ) ∈ arg maxy∈Y
∑

i θiyi.

• Interim Individual Rationality (IR): For all θi ∈�i Ui(θi) ≥ 0.

• Ex Post Weak Budget Balance (WBB): For all θ ∈�
∑

i ti(θ)≤ 0.

• Ex Post Strong Budget Balance (SBB): For all θ ∈�
∑

i ti(θ)= 0.

Efficiency is self-explanatory. Interim individual rationality is imposed with respect
to agents’ own worst-case beliefs; it also happens that all results in the paper continue to
hold with ex post individual rationality (i.e., Ui(θi� θ−i;θi) ≥ 0 for all θi ∈ �i, θ−i ∈ �−i).
The ex post version of budget balance seems appropriate in the absence of a “true” prior
distribution; as indicated above, this focus on ex post budget balance is an important
point of contrast to the otherwise closely related papers of Bose et al. (2006) and Bodoh-
Creed (2012). The difference between weak and strong budget balance is that with weak
budget balance, the mechanism is allowed to run a surplus. For purposes of comparison
with the results of Section 4, recall that the standard Myerson–Satterthwaite theorem
requires only (ex ante) weak budget balance. Also note that since MMIC is a weaker
condition than dominant strategy incentive compatibility, an efficient allocation rule
can always be implemented with a Vickrey–Clarke–Groves (VCG) mechanism if budget
balance is not required.

An allocation rule y is maxmin implementable if there exists a transfer rule t such
that the mechanism (y� t) satisfies MMIC, IR, and WBB.

3. Necessary conditions for implementation

I begin with a general necessary condition for maxmin implementation, which gener-
alizes a standard necessary condition for Bayesian implementation with independent
private values. In an independent private values environment with common prior dis-
tribution F , it is well known that an allocation rule y is Bayesian implementable only if
the expected social surplus under y exceeds the expected information rents that must
be left for the agents so as to satisfy incentive compatibility. It follows from standard
arguments (e.g., Myerson 1981) that this condition may be written as

∑
i

(∫
θ∈�

θiyi(θ)dφ

)
≥

∑
i

(∫
θi∈�i

(1 − Fi(θi))yi(θi�φ−i) dθi

)
� (2)

where

yi(θi�φ−i)= Eφ−i [yi(θi� θ−i)]
(recall that φ is the measure corresponding to cumulative distribution function F). I will
show that a similar condition is necessary for maxmin implementation, despite the lack
of independent types (in that an agent’s worst-case belief over her opponent’s types de-
pends on her own type) or a unique common prior. Intuitively, the required condition
will be that (2) holds for all distributions F with marginals that the agents find possi-
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ble, with the modification that, on the right-hand side of (2), the expected information
rents under F are replaced by the expectation under F of type θi’s “minimum possible”
information rent.

To formalize this, given a measure φ ∈ �(�), let φS denote its marginal with respect
to �S for S ⊆ N . Let �∗ be the set of product measures φ ∈ ∏

i∈N �(�i) such that φ−i ∈
�−i for all i ∈N .

Some examples may clarify this definition.

• If n = 2, then �∗ =�1 ×�2 (where �i ≡�−j).

• Suppose the set of each agent i’s possible beliefs takes the form of a product �−i =∏
j 	=i �

i
j for some sets of measures �i

j ⊆ �(�j). Then �∗ = ∏
j∈N(

⋂
i 	=j �

i
j).

• If n > 2, it is possible that �∗ is empty. For instance, take the previous example
with

⋂
i 	=j �

i
j = ∅ for some j.

Finally, let

ỹi(θi)= inf
φ−i∈�−i

yi(θi�φ−i)�

Thus, ỹi(θi) is the smallest allocation that type θi may expect to receive.
The following result gives the desired necessary condition.

Theorem 1. If allocation rule y is maxmin implementable, then, for every measure
φ ∈�∗, ∑

i

(∫
θ∈�

θiyi(θ)dφ

)
≥

∑
i

(∫
θi∈�i

(1 − Fi(θi))ỹi(θi)dθi

)
� (3)

Comparing (2) and (3), (2) says that the expected social surplus under F must ex-
ceed the expected information rents, whereas (3) says that the expected social surplus
must exceed the expectation of the agents’ minimum possible information rents, re-
flecting the fact that agents’ subjective expected allocations are not derived from F . In
addition, (2) must hold only for the “true” distribution F (i.e., the common prior distri-
bution), while (3) must hold for any “candidate” distribution F (i.e., any distribution in
�∗). Furthermore, (3) is a generalization of (2), since in the case of a unique independent
common prior φ it follows that �−i = {φ−i} for all i, �∗ = {φ}, and ỹi(θi) = yi(θi�φ−i), so
(3) reduces to (2). Finally, if y is continuous, then (3) also shows that (2) changes contin-
uously as a slight degree of ambiguity aversion is introduced into a Bayesian model.

The differences between (2) and (3) suggest that maxmin implementation is nei-
ther easier nor harder than Bayesian implementation in general and, more generally,
that expanding the sets of possible beliefs �−i can make implementation either eas-
ier or harder. In particular, expanding the sets �−i expands �∗, which implies that
(3) must hold for a larger set of measures φ. However, expanding �−i also reduces
ỹi(θi) and, thus, reduces the right-hand side of (3), making (3) easier to satisfy. In-
deed, Section 4 shows that efficient bilateral trade is sometimes maxmin implementable
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in cases where the Myerson–Satterthwaite theorem implies that it is not Bayesian im-
plementable, which demonstrates that maxmin implementation can be easier than
Bayesian implementation. But it is also easy to find examples where expanding the set
of agents’ possible beliefs makes implementation more difficult. For instance, take a
Bayesian bilateral trade setting where all types are certain that gains from trade exist—so
that efficient trade is implementable—and expand the set of possible beliefs by adding a
less favorable prior for which the Myerson–Satterthwaite theorem applies. Condition (3)
will then imply that efficient trade is not implementable, by exactly the same argument
as in Myerson–Satterthwaite.

An important tool for proving Theorem 1 is an inequality version of the usual en-
velope characterization of payoffs, Lemma 1. Lemma 1 was previously derived by Bose
et al. (2006, equation (8), p. 420) in the special case where �i is a set of “ε contaminated”
beliefs, but the proof is the same in the general case and is thus omitted.9

Lemma 1. In any maxmin incentive compatible mechanism,

Ui(θi)≥Ui(¯θi)+
∫ θi

¯θi
ỹi(s)ds for all θi ∈�i� (4)

Lemma 1 is also related to Theorem 1 of Bodoh-Creed (2012), which gives an ex-
act characterization of payoffs using Milgrom and Segal’s (2002) envelope theorem for
saddle point problems. The difference comes because the maxmin problem (1) admits
a saddle point in Bodoh-Creed but not in the present paper; one reason why is that
Bodoh-Creed assumes that yi(θi�φ−i) is continuous in θi and φ−i (his assumption A8),
which may not be the case here.10 For example, efficient allocation rules are not con-
tinuous, so Bodoh-Creed’s characterization need not apply for efficient mechanisms.
I discuss below how Theorem 1 may be strengthened if (1) is assumed to admit a saddle
point.

With Lemma 1 in hand, the proof of Theorem 1 relates the bound on agents’ subjec-
tive expected utilities in (4) to the objective social surplus on the left-hand side of (3).
The key reason why this is possible is that a maxmin agent’s subjective expected util-
ity is a lower bound on her expected utility under any probability distribution she finds
possible. Hence, the sum of agents’ subjective expected utilities is a lower bound on
the sum of their objective expected utilities under any measure φ ∈ �∗, which in turn
is a lower bound on the objective expected social surplus under φ (if weak budget bal-
ance is satisfied). Note that this step relies crucially on the assumption that agents are
maxmin optimizers; for example, it would not apply for Bayesian agents with arbitrary
heterogeneous priors.

9Lemma 1 can also be derived as a corollary of Theorem 1 of Carbajal and Ely (2013). See also Segal and
Whinston (2002) and Kos and Messner (2013) for related approaches.

10A careful reading of Bodoh-Creed (2012) reveals that some additional assumptions are also required for
the existence of a saddle point, such as quasiconcavity assumptions. Bodoh-Creed (2014) provides an al-
ternative derivation of his payoff characterization result under additional continuity assumptions. Neither
set of assumptions is satisfied in the current setting.
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Proof of Theorem 1. Suppose mechanism (y� t) satisfies MMIC, IR, and WBB. For any
measure φi ∈ �(�i), integrating (4) by parts yields∫

�i

Ui(θi)dφi ≥Ui(¯θi)+
∫
�i

(1 − Fi(θi))ỹi(θi)dθi�

Recall that

Ui(θi)≤
∫
�−i

(θiyi(θ)+ ti(θ))dφ−i for all φ−i ∈�−i�

Combining these inequalities implies that, for every measure φ = φi × φ−i ∈ �(�i) ×
�−i, ∫

�i

∫
�−i

(θiyi(θ)+ ti(θ))dφ−i dφi ≥Ui(¯θi)+
∫
�i

(1 − Fi(θi))ỹi(θi)dθi

or ∫
�
(θiyi(θ)+ ti(θ))dφ ≥Ui(¯θi)+

∫
�i

(1 − Fi(θi))ỹi(θi)dθi� (5)

Note that every measure φ ∈ �∗ is of the form φi × φ−i ∈ �(�i) × �−i for each i. Thus,
for every φ ∈ �∗, summing (5) over i yields

∑
i

(∫
�
(θiyi(θ)+ ti(θ))dφ

)
≥

∑
i

Ui(¯θi)+
∑
i

(∫
�i

(1 − Fi(θi))ỹi(θi)dθi

)
�

Finally,
∑

i Ui(¯θi) ≥ 0 by IR and
∑

i

∫
� ti(θ)dφ ≤ 0 by WBB, so this inequality implies

(3). �

If truthtelling in the maxmin problem (1) corresponds to a saddle point (θ̂∗
i (θi)�

φ∗
−i(θi)) (where the agent uses the pure strategy θ̂∗

i (θi) = θi), then letting y∗
i (θi) =

yi(θi�φ
∗
−i(θi)) be type θi’s expected allocation under her worst-case belief φ∗

−i(θi), The-
orem 4 of Milgrom and Segal (2002) or Theorem 1 of Bodoh-Creed (2012) implies that
(4) may be strengthened to

Ui(θi)= Ui(¯θi)+
∫ θi

¯θi
y∗
i (s)ds for all θi ∈ �i� (6)

The same argument as in the proof of Theorem 1 then implies that the necessary condi-
tion (3) can be strengthened to

∑
i

(∫
θ∈�

θiyi(θ)dφ

)
≥

∑
i

(∫
θi∈�i

(1 − Fi(θi))y
∗
i (θi)dθi

)
�

Thus, if truthtelling in the maxmin problem corresponds to a saddle point, then a nec-
essary condition for maxmin implementation is that, for every measure φ ∈ �∗, the ex-
pected social surplus under φ exceeds the expectation under φ of the sum of the agents’
subjective information rents (i.e., the information rents under the worst-case beliefs
φ∗

−i(θi)). Unfortunately, I am not aware of sufficient conditions on the allocation rule
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y alone that ensure the existence of such a saddle point.11 Applying the Debreu–Fan–
Glicksberg fixed point theorem to (1), a sufficient condition on the mechanism (y� t) is
that y and t are continuous in θ, and Ui(θ̂i� θ−i;θi) is quasiconcave in θ̂i and quasiconvex
in θ−i.12

When the type spaces �i are smoothly path-connected, a well known necessary
condition for an efficient allocation rule to be Bayesian implementable is that an in-
dividually rational VCG mechanism runs an expected surplus (Makowski and Mezzetti
1994, Williams 1999, Krishna and Perry 2000). This follows because the standard enve-
lope characterization of payoffs implies that the interim expected utility of each type
in any efficient and Bayesian incentive compatible mechanism is the same as her in-
terim expected utility in a VCG mechanism. However, this result does not go through
with maxmin incentive compatibility, even if (1) admits a saddle point. This is because
the envelope characterization of payoffs with MMIC, (6), depends on types’ expected
allocations under their worst-case beliefs φ∗

−i(θi), and these beliefs in turn depend on
transfers as well as the allocation rule. In particular, distinct efficient and MMIC mech-
anisms that give the same interim subjective expected utility to the lowest type of each
agent need not give the same interim subjective expected utilities to all types, in con-
trast to the usual payoff equivalence under Bayesian incentive compatibility.13 Indeed, I
show in Section 4 that in the context of bilateral trade, the efficient allocation rule may be
maxmin implementable even if all individually rational VCG mechanisms run expected
deficits for some measure φ ∈�∗.

Conversely, the condition that an individually rational VCG mechanism runs an ex-
pected surplus is also sufficient for an efficient allocation rule to be Bayesian imple-
mentable, because, following Arrow (1979) and d’Aspremont and Gérard-Varet (1979),
“lump-sum” transfers that in expectation are constant in θi may be used to balance the
budget ex post without affecting incentives. This result also does not carry over with
maxmin incentive compatibility, as these transfers can affect agents’ worst-case beliefs
and thereby affect incentives. This issue makes constructing satisfactory MMIC mech-
anisms challenging, and this paper does not contain positive results on maxmin imple-
mentation outside of the bilateral trade context—where, however, a full characterization
is provided.

4. Application to bilateral trade

In this section, I show how Theorem 1 can be applied to obtain a full characterization of
when efficient bilateral trade is implementable when agents know each other’s expected
valuation of the good, but know little beyond this.

11To clarify, it is easy to provide conditions under which a saddle point in mixed strategies is guaranteed
to exist (e.g., finiteness of the mechanism). The question here is rather whether there exists a saddle point
in which the agent plays a pure strategy, namely the strategy of always reporting her type truthfully.

12It should also be noted that if (1) admits a saddle point, then the maximizing and minimizing operators
in (1) commute, so that maxmin IC coincides with “minmax” IC. In this case, agents may equivalently be
viewed as pessimistic Bayesians rather than as worst-case optimizers.

13This point was already noted by Bodoh-Creed (2012).
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Formally, a seller s can provide a good at cost c ∈ [0�1], and a buyer b values the good
at v ∈ [0�1].14 Given a realized cost c and value v, let y(c� v) ∈ {0�1} and (ts(c� v)� tb(v� c))

denote the resulting allocation (no trade or trade) and transfers. Thus, efficiency re-
quires that y(c� v) = 0 if c > v and y(c� v) = 1 if c < v.

Note that in the notation of the previous section, θb = v while θs = −c. In what fol-
lows, I therefore use the notation θi to stand for either v (if i = b) or −c (if i = s).

A key assumption is that the agents’ average valuations are known, in that every mea-
sure φi ∈ �i satisfies Eφi [θi] = θ∗

i for some θ∗
i ∈ (¯θi� θ̄i).15 The results in this section ac-

tually require only the weaker assumption that Eφi [θi] ≥ θ∗
i for all φi ∈ �i; the intuition

is that, with maxmin agents, only bounds on how bad an agent’s belief can be are bind-
ing.16 However, Section 5.2 shows that the equality assumption is appropriate if agents
have a unique common prior with mean (c∗� v∗) at an ex ante stage and may acquire
additional information prior to entering the mechanism. I therefore adopt the equality
assumption for consistency with this interpretation.

Two special kinds of distributions φi will play an important role in the analysis. Let
δc∗ be the Dirac measure on c∗, so that δc∗ ∈ �s corresponds to the possibility that the
seller’s cost is c∗ for sure.17 Let δs

cl�ch
be the two-point measure on cl and ch satisfying

E
δs
cl�ch [c] = c∗; that is, δs

cl�ch
is given by c = cl with probability (ch−c∗)/(ch−cl) and c = ch

with probability (c∗ − cl)/(ch − cl).18 Thus, δs
cl�ch

∈�s corresponds to the possibility that

the seller’s cost may take on only value cl or ch.19 The results to follow require δc∗ ∈ �s

and δs
cl�ch

∈�s for certain values of cl, ch (and similarly for the buyer, with the symmetric

notation). This richness assumption on the set of the agents’ possible beliefs imposes a
kind of lower bound on their degree of ambiguity aversion.

It may appear that allowing these Dirac measures introduces an asymmetry with
the classical Myerson–Satterthwaite setting, where types are traditionally assumed to
be distributed with positive density over intervals. However, all that is required for the
Myerson–Satterthwaite theorem to hold is that (i) all types in an interval are “possible,”
in that incentive compatibility is imposed for an interval of types, and (ii) gains from
trade exist with probability strictly between 0 and 1. As per (i), I assume that the set
of possible types of each agent is the unit interval. In contrast, it is not clear how to

14The sets of possible valuations for the seller and buyer are allowed to differ in the Appendix. This
extension is somewhat more significant than in standard Bayesian models, as the set of possible valuations
affects the set of feasible worst-cast beliefs.

15The assumption that θ∗
i lies in the interior of �i is without loss of generality: if θ∗

i ∈ {¯θi� θ̄i}, then there
would be no uncertainty about agent i’s value, and efficient trade could always be implemented with a VCG
mechanism.

16Without a bound on how bad beliefs can be, De Castro and Yannelis’ (2010) theorem shows that effi-
cient trade is always implementable.

17In the information acquisition interpretation of Section 5.2, δc∗ ∈�s corresponds to the possibility that
the seller may acquire no new information about her cost before entering the mechanism.

18I omit the superscript on δs
cl�ch

when it is unambiguous.
19In the information acquisition interpretation of Section 5.2, δs

cl�ch
∈ �s corresponds to the possibility

that the seller may observe a binary signal of her cost before entering the mechanism, where the “good”
signal lowers her expected cost to cl and the “bad” signal raises her expected cost to ch.
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formulate an appropriate analogue of (ii) in the absence of a unique common prior.
However, it will turn out that in the αi(θi) double auction defined below, every type’s
worst-case belief assigns positive probability to the event that strict gains from trade
fail to exist, and efficient trade may be implementable even if the intervals of types that
assign positive probability to the event that strict gains from trade do exist overlap.

The characterization result is the following.

Theorem 2. Assume that δ0�c ∈ �s for all c ∈ [c∗�1] and δv�1 ∈ �b for all v ∈ [0� v∗].20

Then efficient trade is implementable if and only if

c∗

1 − c∗ log
(

1 + 1 − c∗

c∗

)
+ 1 − v∗

v∗ log
(

1 + v∗

1 − v∗

)
≥ 1� (∗)

Theorem 2 shows that, under mild restrictions, efficient bilateral trade between
maxmin agents is possible if and only if condition (∗) holds. In other words, the
Myerson–Satterthwaite impossibility result holds with maxmin agents if and only if con-
dition (∗) fails.

As will become clear, condition (∗) says precisely that, in the αi(θi) double auction
defined below, αs(c)+αb(v) ≤ 1 for all c� v ∈ [0�1]. To understand the economic content
of condition (∗), I discuss three aspects of the condition. First, what does condition (∗)
imply for comparative statics and other economic results? Second, where does condi-
tion (∗) come from? And, third, why is condition (∗) a necessary and sufficient condition
for implementation, while Theorem 1 only gives a necessary condition?

To see the implications of condition (∗), first note that each term in the sum takes the
form (1/x) log(1 + x), which is decreasing in x. In particular, decreasing c∗ or increasing
v∗ makes condition (∗) harder to satisfy. A rough intuition for this comparative static is
that improving agent i’s average value makes agent j more confident that he will trade,
which makes shading his report to get a better transfer more tempting. For example, as
c∗ → 1 or v∗ → 0, the bound on how bad agents’ beliefs can be vanishes, and efficient
trade is always implementable as in De Castro and Yannelis (2010); conversely, as c∗ → 0
or v∗ → 1, agents become certain that they will trade, and the temptation to shade their
reports becomes irresistible.

Another observation is that condition (∗) always holds when c∗ ≥ v∗; that is, when
the average types of each agent do not have strict gains from trade with each other (e.g.,
this is why the curve in Figure 1 lies above the 45° line). This follows because, using
the inequality log 1 + x ≥ x/(1 + x), the left-hand side of condition (∗) is at least 1 +
c∗ − v∗. This is consistent with Proposition 1 below, which shows that efficient trade
is implementable with reference rules when c∗ ≥ v∗. In particular, the parameters for
which efficient trade is implementable with general mechanisms but not with reference
rules are precisely those that satisfy condition (∗) but would violate condition (∗) if the
log 1+x terms were approximated by x/(1+x). This gives one measure of how restrictive
reference rules are.

20Note that δ0�c∗ = δc∗ , so we have δc∗ ∈ �s , and similarly for the buyer.
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To see (heuristically) where condition (∗) comes from, suppose that the worst-case
belief of a type v buyer who reports type v̂ ≥ c∗ is δs0�v̂, which is easily seen to be the belief
that minimizes the probability that strict gains from trade exist (i.e., that c < v̂) among
beliefs φs with Eφs [c] = c∗. Suppose also that the mechanism is ex post individually
rational. Then

Ub(v̂� δ
s
0�v̂;θi) = v̂ − c∗

v̂
(v + tb(v̂�0))+ c∗

v̂
(0)�

where (v̂ − c∗)/v̂ is the probability of trade (i.e., the probability that c = 0 under δs0�v̂),

and v + tb(0� v̂) is type v’s payoff in the event that trade occurs. Assuming that tb is dif-
ferentiable, the first-order condition for truthtelling to be optimal is

∂

∂v
tb(v�0) = − c∗

v(v − c∗)
(v + tb(v�0))�

This first-order condition captures the trade-off discussed in the Introduction: shading
down one’s report yields a first-order loss in the probability of trade (i.e., in the proba-
bility that c = 0), which must be offset by a first-order improvement in the transfer (i.e.,
in tb(v�0)).21

Solving this differential equation for tb(v�0) yields

tb(v�0) = v

v− c∗ (k− c∗ logv)�

where k is a constant of integration. The constant that keeps transfers bounded as v →
c∗ is k= c∗ log c∗, which gives

tb(v�0)= vc∗

v − c∗ log
c∗

v
�

This may be rewritten as

tb(v�0)= αb(v)(v− 0)− v�

where

αb(v)= 1 − c∗

v − c∗ log
v

c∗ �

The symmetric argument for the seller gives

ts(c�1) = αs(c)(1 − c)+ c�

where

αs(c) = 1 − 1 − v∗

v∗ − c
log

1 − c

1 − v∗ �

21In contrast, for Bayesian agents, shading one’s report in a double auction leads to only a second-order
loss in foregone gains from trade. This is why double auctions are not incentive compatible for Bayesians.
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Now, letting

tb(v� c) = αb(v)(v − c)− v

ts(c� v) = αs(c)(v − c)+ c

for all c < v, so that the resulting mechanism is an αi(θi) double auction as described
in the Introduction, it may be verified that weak budget balance holds for all (c� v) if
and only if it holds for (c = 0� v = 1) (and it also may be verified that δs0�v̂ is indeed a
worst-case belief). Therefore, efficient trade is implementable if and only if tb(1�0) +
ts(0�1) ≤ 0 or, equivalently, αb(1) + αs(0) ≤ 1. This is precisely condition (∗). In other
words, condition (∗) says that the shares of the social surplus that must be left to the
highest types in the αi(θi) double auction sum to less than 1.

Finally, why does the sufficient condition for implementability that αb(1)+αs(0) ≤ 1
match the necessary condition from Theorem 1? Recall that the necessary condition is
that expected social surplus exceeds (a lower bound on) expected information rents (i.e.,
(3) holds) for any distribution φs ×φb ∈ �s ×�b. A first observation is that it suffices to
compare the social surplus and information rents under the critical distribution δs0�1 ×
δb0�1, as this distribution may be shown to minimize the difference between the left- and

right-hand sides of (3). Note that the expected social surplus under δs0�1 × δb0�1 equals

(1 − c∗)v∗(1), as under δs0�1 × δb0�1 there are strict gains from trade only if c = 0 and v = 1,
which occurs with probability (1 − c∗)v∗. On the other hand, the expectation of (the
lower bound on) the buyer’s information rent under δb0�1 equals

v∗
∫ 1

0
ỹb(v)dv+ (1 − v∗)

∫ 0

0
ỹb(v)dv︸ ︷︷ ︸

=0

�

which may be shown to equal (1 − c∗)v∗αb(1). The explanation for the appearance of
the αb(1) term here is that this is the fraction of the social surplus that must be left to a
type v = 1 buyer in an MMIC mechanism when a type v buyer’s subjective expected allo-
cation is ỹb(v) (in particular, the bound on an agent’s subjective information rent given
by integrating ỹi(θi) is tight in the current setting). Symmetrically, the expectation of the
seller’s information rent under δs0�1 equals (1 − c∗)v∗αs(0), and therefore the necessary
condition from Theorem 1 reduces to

(1 − c∗)v∗ ≥ (1 − c∗)v∗(αb(1)+ αs(0))

or αb(1)+ αs(0) ≤ 1.
The approach taken to constructing the αi(θi) double auction is quite different from

standard approaches in Bayesian mechanism design. In particular, the approach here
is to posit a type v buyer’s worst-case belief to be δs0�v (the belief that minimizes the
probability that strict gains from trade exist), to solve a differential equation coming
from incentive compatibility for tb(v�0), which gives the formula for αb(v), and then
to verify that δs0�v is indeed a type v buyer’s worst-case belief in the resulting double
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auction. In contrast, a standard approach might be to use an “off-the-shelf” mechanism,
like an AGV mechanism (Arrow 1979, d’Aspremont and Gérard-Varet 1979). However, as
argued above, standard arguments for why using such mechanisms is without loss of
generality do not apply with maxmin agents; moreover it is not even clear how to define
AGV mechanisms in such environments.

A related point is that efficient trade may be implementable even though every in-
dividually rational VCG mechanism runs an expected deficit for some measure φ ∈ �∗,
in contrast to the results of Makowski and Mezzetti (1994), Williams (1999), and Krishna
and Perry (2000) for Bayesian mechanism design with smoothly path-connected type
spaces. For example, this is the case whenever c∗ < v∗ and condition (∗) and the as-
sumptions of Theorem 2 hold. To see this, recall that a VCG mechanism is a mechanism
where, for all c� v ∈ [0�1],

tb(v� c) = −cy(c� v)+ hb(c)

for some expected transfer function hb that depends only on c (and symmetrically
for the seller). Note that efficiency and individual rationality of type v = 0 imply that
hb(c

∗) ≥ 0 (and symmetrically hs(v
∗)≥ 0), as otherwise one would have

Ub(0) ≤Ub(0� δc∗;0) = 0 + hb(c
∗) < 0�

Hence, the expected deficit of such a mechanism under the measure δc∗ × δv∗ ∈ �∗
equals

tb(v
∗� c∗)+ ts(c

∗� v∗)= (v∗ − c∗)(1)+ hb(c
∗)+ hs(v

∗) > 0�

5. Further results on bilateral trade

This sections presents additional results on bilateral trading with maxmin agents. Sec-
tion 5.1 characterizes when efficient trade is possible with reference rules, a particularly
simple class of mechanisms. Section 5.2 describes how the assumption that agents know
each other’s expected valuation may be interpreted in terms of information acquisition.
Section 5.3 discusses the role of Dirac measures in these results, and proposes slight
modifications to the definition of the αi(θi) double auction and reference rule that en-
sure that these mechanisms are robust to eliminating weakly dominated strategies.

5.1 Efficient trade with reference rules

A common justification for introducing concerns about robustness into mechanism de-
sign is that these considerations may argue for the use of simpler or otherwise more
intuitively appealing mechanisms. The αi(θi) double auction introduced in the previ-
ous section is simple in some ways, but it does involve a carefully chosen transfer rule.
In this section, I point out that efficient trade can also be implemented in an extremely
simple class of mechanisms—which I call reference rules—in the case where the average
types of the two agents do not have gains from trade with each other (i.e., when c∗ ≥ v∗).
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Reference rules also have the advantage of satisfying strong rather than weak budget
balance.22

I define a reference rule as follows.

Definition 1. In the bilateral trade setting, a mechanism (y� t) is a reference rule if

y(c� v) =
{

1 if c ≤ v

0 if c > v

and there exists a price p∗ ∈ [0�1] such that

ts(c� v) = −tb(v� c) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
p∗ if c ≤ p∗ ≤ v

c if p∗ < c ≤ v

v if c ≤ v < p∗
0 if c > v�

With a reference rule, the agents trade at a reference price p∗ if they are both willing
to do so; otherwise they trade at the reservation price of the agent who is unwilling to
trade at the reference price.23

Reference rules clearly satisfy EF, (ex post) IR, and SBB, so an MMIC reference rule
implements efficient trade. The following result characterizes when MMIC reference
rules exist; that is, when efficient trade is implementable with reference rules.

Proposition 1. Assume that δθ∗
i
∈ �i for i = 1�2. Then efficient trade is implementable

with reference rules if and only if c∗ ≥ v∗.

The intuition for why reference rules are incentive compatible when c∗ ≥ v∗ and p∗ ∈
[v∗� c∗] is captured in Figure 2. Observe that every buyer with value v ≤ c∗ may be certain
that no gains from trade exist, as he may believe that the distribution of seller values is
the Dirac distribution on c∗. Hence, certainty of no-trade is a worst-case belief for these
buyers, and they are therefore willing to reveal their information. In contrast, buyers
with value v > c∗ do believe that gains from trade exist with positive probability. But it
is optimal for these buyers to reveal their values truthfully as well: misreporting some
v̂ > c∗ does not affect the price regardless of the seller’s cost (as the price equals c if
c > p∗ and equals p∗ if c ≤ p∗), and misreporting some v̂ ≤ c∗ again gives payoff 0 in

22Another advantage of reference rules is that when c∗ ≥ v∗, they are maxmin incentive compatible in a
stronger sense than that of Section 2. First, they remain incentive compatible if agents can hedge ambiguity
by randomizing. In addition, they also remain incentive compatible if the order of the maximizing and
minimizing operators in (1) is reversed, so that agents are pessimistic Bayesians rather than worst-case
optimizers.

23The term “reference rule” is taken from Erdil and Klemperer (2010), who recommend the use of such
mechanisms in multi-unit auctions. They highlight that reference rules perform well in terms of agents’
“local incentives to deviate,” a different criterion from what I consider here. Reference rules also bear some
resemblance to the “downward flexible price mechanism” of Börgers and Smith (2012). Their mechanism
starts with a fixed price p∗ which the seller may then lower to any p′ < p∗, whereupon the parties decide
whether to trade at price p′.
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Figure 2. Reference rules with p∗ ∈ [v∗� c∗] are incentive compatible.

Figure 3. When c∗ < v∗, no reference rule is incentive compatible.

the worst case (as certainty that the seller’s value equals c∗ would again be a worst-case

belief). Therefore, truthtelling is optimal for every buyer type. The argument for sellers

is symmetric.

Conversely, Figure 3 indicates why reference rules are not incentive compatible

when c∗ < v∗. Suppose the reference price p∗ is greater than c∗. Consider a buyer with

value v ∈ (c∗�p∗). If he reports his value truthfully, then whenever he trades under the

reference rule he does so at price v, which gives him payoff 0. Suppose he instead shades

his report down to some v̂ ∈ (c∗� v). Then whenever he trades the price is v̂—which gives

him a positive payoff—and, in addition, he expects to trade with positive probability

(since v̂ > c∗). Hence, he will shade down. The same argument shows that in any refer-

ence rule a seller with c ∈ (p∗� v∗) shades up. Figure 3 shows that a consequence of this

argument is that a reference rule cannot be MMIC for both agents at once when c∗ < v∗,

regardless of where the reference price p∗ is set.
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5.2 Information acquisition interpretation

The assumption that agents know the mean and bounds on the support of the distribu-
tion of each other’s value emerges naturally when agents share a unique common prior
at an ex ante stage but are uncertain about the information acquisition technology that
the other can access prior to entering the mechanism. This section provides the details
of this argument.

Consider the following extension of the model. Each agent i’s ex post utility is θ̃iy+ ti,
where θ̃i ∈ R is her realized ex post value. (In the bilateral trade application, the buyer’s
ex post value is ṽ = θ̃b and the seller’s ex post cost is c̃ = −θ̃s .) There is an ex ante stage at
which the agents’ beliefs about the ex post values (θ̃1� θ̃2) are given by a (unique) com-
mon product measure φ̃ on [¯θ1� θ̄1] × [¯θ2� θ̄2] with mean (θ∗

1� θ
∗
2) (the common prior).

For each agent i, there is a set of possible signaling functions (“experiments”) Si, where
a signaling function i ∈ Si is a map from �i to an arbitrary message set Mi, and is thus
informative of agent i’s own ex post value only. Each agent i knows her own signal-
ing function i, but is completely uncertain about her opponent’s, knowing only that
it lies in the set Sj . Agent i’s interim value, θi—which corresponds to her type in the
main model—is her posterior expectation of θ̃i after observing the outcome of her ex-
periment. That is, after observing outcome mi, agent i’s valuation for the good is given
by

θi ≡ Eφ̃i [θ̃i|i(θ̃i)= mi]� (7)

Note that the issue of updating “ambiguous beliefs” does not arise in this model. In
particular, the updating in (7) is completely standard. However, the following observa-
tion shows that the main model can be interpreted as resulting from each agent’s being
maxmin about the identity of her opponent’s signaling function j ∈ Sj at the interim
stage (i.e., after she observes her own signal).

Remark 1. If a measure φi is the distribution of θi = Eφ̃i [θ̃i|i(θ̃i) = mi] under φ̃i for
some experiment i, then Eφi [θi] = θ∗

i and suppφi ⊆ �i (where suppφi denotes the
support of φi).

The fact thatEφi [θi] = θ∗
i is the law of iterated expectation. The fact that suppφi ⊆�i

follows because θ̃i ∈ [¯θi� θ̄i] with probability 1 under φ̃i. Thus, assuming that agent j

finds possible a particular set of measures φi satisfying Eφi [θi] = θ∗
i and suppφi ⊆ �i

amounts to assuming that Si is a particular subset of the set of all functions �i → Mi.24

With this interpretation, the assumption that δθ∗
i
∈ �i means that agent j finds it possi-

ble that agent i acquires no information about her value before entering the mechanism
(beyond the common prior), while the assumption that δi

θli�θ
h
i

∈ �i means that agent j

finds it possible that agent i observes a binary signal of her value, where the bad realiza-
tion lowers her expectation of θ̃i to θli and the good realization raises her expectation of
θ̃i to θhi .

24More precisely, the set of possible interim measures φi is jointly determined by Si and the prior φ̃.
For example, every measure φi such that Eφi [θi] = θ∗

i and suppφi ⊆ �i is the distribution of θi for some
experiment if and only if the prior puts probability 1 on agent i’s ex post value being either ¯θi or θ̄i (see, for
example, Theorem 1 of Shmaya and Yariv 2009 or Proposition 1 of Kamenica and Gentzkow 2011).
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5.3 The role of Dirac measures

In both the αi(θi) double auction and the reference rule, an agent’s worst-case belief is a
Dirac (or “two-point”) measure. Thus, in these mechanisms, a maxmin agent effectively
ignores the outcome that results when her opponent’s type takes on all but one or two
values. This section argues that this feature is not essential for the results.

A first observation is that excluding Dirac measures per se has no effect on the results
if the agents’ sets of possible beliefs are sufficiently rich. In particular, if the Dirac mea-
sures referenced in the statements of Theorem 2 and Proposition 1 are not contained in
�i itself but are contained in its closure, then these results go through as written. For
instance, this would be the case if �i consists of all measures on �i with mean θ∗

i that
are absolutely continuous with respect to Lebesgue measure. The proof is simply that,
with the max inf formulation of (1), excluding accumulation points of �i does not affect
agents’ utility from any report under any mechanism where Uj(θ̂j� θi;θj) is everywhere
left or right continuous in θi, and both the αi(θi) double auction and the reference rule
satisfy this property.

Nonetheless, one might object that if Dirac measures are viewed as a limiting case
in this way, an agent should still not completely discount the possibility that her op-
ponent’s type could take on other values. A natural way to formalize this concern is
to strengthen the definition of (1) to require that truthtelling is not only maxmin opti-
mal, but also not weakly dominated. I now show that Theorem 2 and Proposition 1 are
both robust to this modification, although the mechanisms involved need to be changed
slightly.

In the construction in the proof of Theorem 2, αb(v) = 0 if v < c∗, so a buyer with
value v < c∗ gets payoff 0 against every seller type from truthtelling, but gets a posi-
tive payoff against some types (and payoff 0 against the others) from shading her report
down (and similarly for sellers with c > v∗). However, the specification of αb(v) for types
v < c∗ can be altered without affecting the desirable properties of the αi(θi) double auc-
tion, as the following result shows. The intuition is that the αi(θi) double auction runs a
strict ex post surplus whenever v < c∗ (recall that the surplus is smallest when v = 1 and
c = 0), so some of this surplus can be returned to the buyer without violating budget
balance.

Proposition 2. Theorem 2 continues to hold when the definition of MMIC is strength-
ened to require that truthtelling is not weakly dominated for any type.

A similar modification of the reference rule ensures the truthtelling is not weakly
dominated: when v < c∗, change tb(v� c) from −v to −((1 − ε)v + εc). However, since
reference rules are strongly budget balanced, this modification violates budget balance
unless ts(c� v) is also changed from v to (1 − ε)v + εc. This change can in turn lead to a
violation of MMIC for the seller. Nonetheless, it turns out that MMIC is preserved if ε is
not too large and � satisfies the assumptions of Theorem 2.
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Proposition 3. Assume that c∗ > v∗ and that δ0�c ∈ �s for all c ∈ [c∗�1] and δv�1 ∈ �b

for all v ∈ [0� v∗]. Then, for every p∗ ∈ (v∗� c∗), the ε-modified reference rule given by

ts(c� v) = −tb(v� c)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
p∗ if c ≤ p∗ ≤ v

(1 − ε)c + εv if p∗ < c ≤ v

(1 − ε)v + εc if c ≤ v < p∗
0 if c > v

satisfies EF, IR, and SBB, and satisfies MMIC for all ε ∈ (0�p∗). In addition, under such a
mechanism truthtelling is not weakly dominated for any type.

6. Conclusion

This paper contributes to the study of mechanism design where agents follow robust de-
cision rules, in particular where agents are maxmin expected utility maximizers. I estab-
lish two main results. First, I give a general necessary condition for a social choice rule
to be implementable, which generalizes the well known condition from Bayesian mech-
anism design that expected social surplus must exceed expected information rents. This
condition involves both a modification of the usual envelope characterization of payoffs
and a connection between agents’ maxmin expected utilities and the objective expected
social surplus under a common prior. Second, I apply this result to give a complete
characterization of when efficient bilateral trade is possible, when agents know little
beyond each other’s expected valuation of the good (which is the information struc-
ture that results when agents are maxmin about how one’s opponent may acquire infor-
mation before participating in the mechanism). Somewhat surprisingly, the Myerson–
Satterthwaite impossible result sometimes continues to hold with maxmin agents, de-
spite the lack of a unique common prior or independent types. When instead efficient
trade is possible, it is implementable with a relatively simple double auction format,
the αi(θi) double auction. Sometimes, it is also implementable with extremely simple
reference rules.

A clear direction for future work is investigating positive implementation results be-
yond the bilateral trade context of two agents and two social alternatives. I have argued
that standard mechanisms may fail to have desirable properties with maxmin agents,
and in general it is not immediately clear how to generalize the mechanisms I construct
in this paper (the αi(θi) double auction and the reference rule) beyond the bilateral trade
case. However, one important setting where a relatively straightforward generalization
does exist is the multilateral public good provision problem, where n agents must decide
whether to provide a public good at cost C (Mailath and Postlewaite 1990). In this case,
the (correlated) belief of a type θi agent that minimizes the probability that the good is
provided is a two-point distribution, under which either all of her opponents’ valuations
take on their highest possible values or these valuations sum to C − θi (so strict gains
from trade barely fail to exist). This characterization of worst-case beliefs can then be
exploited to develop a maxmin incentive compatible trading mechanism, generalizing
the αi(θi) double auction. However, note that these worst-case beliefs involve correla-
tion, while my necessary condition for implementation involves independent beliefs.



992 Alexander Wolitzky Theoretical Economics 11 (2016)

This suggests that developing an exact characterization of when efficient public good
provision is possible with more than two agents would require a significant extension of
the analysis of the bilateral case.

More broadly, it also seems important to consider models of robust agent behav-
ior beyond the maxmin expected utility model. Mechanism design with ambiguity-
averse but non-MMEU agents is left for future research, as is mechanism design un-
der other models of robust agent behavior such as minmax regret (Linhart and Radner
1989, Bergemann and Schlag 2008, 2011). The integration of models of robust agent
behavior in mechanisms and models of robustness concerns on the part of the mecha-
nism designer (Bergemann and Morris 2005, Chung and Ely 2007) must also await future
research.

Appendix: Omitted proofs

Proof of Theorem 2

For the proof of Theorem 2, it is convenient to return to the notation of Section 2, which
treats the buyer and seller symmetrically. We also allow for arbitrary type spaces �1 and
�2, assuming only that the most favorable type of each agent has gains from trade with
the average type of the other agent, while the least favorable type of each agent does not:
that is, θ̄i + θ∗

j > 0 ≥ ¯θi + θ∗
j for i = 1�2.25 This assumption is clearly satisfied in the case

in the text, where θ̄b + ¯θs = ¯θb + θ̄s = 0. Noting that condition (∗∗) below generalizes
condition (∗), the following result generalizes Theorem 2.

Theorem 3. Assume that θ̄i + θ∗
j > 0 ≥ ¯θi + θ∗

j and that δθi�θ̄i ∈ �i for all θi ∈ [¯θi� θ
∗
i ], for

i = 1�2. Then efficient trade is implementable if and only if

(
θ̄1 + min{θ̄2�−¯θ1}

θ̄1 + θ̄2

)(
θ̄1 − θ∗

1

θ∗
1 + min{θ̄2�−¯θ1}

)
log

(
1 + θ∗

1 + min{θ̄2�−¯θ1}
θ̄1 − θ∗

1

)
(∗∗)

+
(
θ̄2 + min{θ̄1�−¯θ2}

θ̄1 + θ̄2

)(
θ̄2 − θ∗

2

θ∗
2 + min{θ̄1�−¯θ2}

)
log

(
1 + θ∗

2 + min{θ̄1�−¯θ2}
θ̄2 − θ∗

2

)
≥ 1�

Proof. Necessity. By Theorem 1, efficient trade is implementable only if, for all φ ∈
�1 ×�2, ∑

i

(∫
θ∈�

θiyi(θ)dφ

)
−

∑
i

(∫
θi∈�i

(1 − Fi(θi))ỹi(θi)dθi

)
≥ 0 (8)

for some allocation rule yi satisfying

yi(θ)=
{

1 if θi + θj > 0
0 if θi + θj < 0�

25An earlier version of the paper shows that if θ̄i + θ∗
j ≤ 0 and δθ∗

j
∈ �j for some i ∈ {1�2}, then efficient

trade is always implementable (with strong budget balance).
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Note that, for any such allocation rule yi,

ỹi(θi)=

⎧⎪⎪⎨
⎪⎪⎩

0 if θi ≤ −θ∗
j

θ∗
j +θi

θ̄j+θi
if θi ∈ (−θ∗

j �−¯θj)
1 if θi >−¯θj�

This is immediate for the θi ≤ −θ∗
j and θi > −¯θj cases, and follows by Chebyshev’s in-

equality in the θi ∈ (−θ∗
j �−¯θj) case.26,27

Let φi = δmax{¯θi�−θ̄j}�θ̄i (which is assumed to be an element of �i, as −θ̄j < θ∗
i ) for

i = 1�2, and let φ =φ1 ×φ2. Let βi = (θ∗
i +min{θ̄j�−¯θi})/(θ̄i +min{θ̄j�−¯θi}), which is the

probability that θi = θ̄i under δmax{¯θi�−θ̄j}�θ̄i . Observe that

∑
i

(∫
θ∈�

θiyi(θ)dφ

)
= (θ̄i + θ̄j)βiβj + max{θ̄i + ¯θj�0}βi(1 −βj)

+ max{θ̄j + ¯θi�0}βj(1 −βi)

and, using the assumption that ¯θi + θ∗
j ≤ 0,

∫
θi∈�i

(1 − Fi(θ))ỹi(θi)dθi =
∫ min{θ̄i�−¯θj}

max{¯θi�−θ∗
j }

βi

(θ∗
j + θi

θ̄j + θi

)
dθi +

∫ θ̄i

min{θ̄i�−¯θj}
βi dθi

= (θ̄i + θ∗
j )βi − (θ̄j − θ∗

j )βi log
(

1 +
θ∗
j + min{θ̄i�−¯θj}

θ̄j − θ∗
j

)
�

Combining these observations and collecting terms, the left-hand side of (8) equals

ζ

[
− 1 +

(
θ̄1 + min{θ̄2�−¯θ1}

θ̄1 + θ̄2

)(
θ̄1 − θ∗

1

θ∗
1 + min{θ̄2�−¯θ1}

)
log

(
1 + θ∗

1 + min{θ̄2�−¯θ1}
θ̄1 − θ∗

1

)
(9)

+
(
θ̄2 + min{θ̄1�−¯θ2}

θ̄1 + θ̄2

)(
θ̄2 − θ∗

2

θ∗
2 + min{θ̄1�−¯θ2}

)
log

(
1 + θ∗

2 + min{θ̄1�−¯θ2}
θ̄2 − θ∗

2

)]
�

where ζ = β1β2(θ̄1 + θ̄2) > 0. The bracketed term in (9) nonnegative if and only if con-
dition (∗∗) holds. Hence, condition (∗∗) is necessary.

Sufficiency. The αi(θi) double auction is defined by

y(θi� θj) =
{

1 if θi + θj > 0
0 if θi + θj ≤ 0

ti(θi� θj) =
{
αi(θi)θj − (1 − αi(θi))min{θi�−¯θj} if θi + θj > 0
0 if θi + θj ≤ 0

26The form of Chebyshev’s inequality I use throughout the paper is, for random variable X with mean x∗
and upper bound x̄, Pr(X ≥ x) ≥ (x∗ − x)/(x̄− x). This follows because x∗ ≤ Pr(X ≥ x)x̄+ Pr(X < x)x. See,
for example, p. 319 of Grimmett and Stirzaker (2001).

27As will become clear, the value of ỹi(−¯θj) does not matter for the proof.
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for i = 1�2, where

αi(θi) =
⎧⎨
⎩1 − θ̄j−θ∗

j

θ∗
j +min{θi�−¯θj}

log(1 + θ∗
j +min{θi�−¯θj}

θ̄j−θ∗
j

) if θi > −θ∗
j

0 if θi ≤ −θ∗
j �

This mechanism is clearly efficient. I show that it satisfies IR and MMIC, and that it
satisfies WBB if and only if condition (∗∗) holds.

Claim 1. The αi(θi) double auction satisfies (ex post) IR.

Proof. If θi + θj ≤ 0, then Ui(θi� θj;θi) = 0. If θi + θj > 0, then

Ui(θi� θj;θi) = θi + αi(θi)θj − (1 − αi(θi))min{θi�−¯θj}
≥ αi(θi)(θi + θj)�

Now αi(θi) is of the form 1 − (1/x) log(1 + x) for x > 0 and (1/x) log(1 + x) ∈ (0�1) for
x > 0, so αi(θi) ∈ (0�1) for all θi. This yields (ex post) IR. �

Claim 2. The αi(θi) double auction satisfies WBB if and only if condition (∗∗) holds.

Proof. WBB is trivially satisfied when θ1 + θ2 ≤ 0, so suppose that θ1 + θ2 > 0.
If θ1 <−¯θ2 and θ2 < −¯θ1,

t1(θ1� θ2)+ t2(θ1� θ2) = (θ1 + θ2)(α1(θ1)+ α2(θ2)− 1)�

Since αi(θi) is nondecreasing in θi (as (1/x) log(1 +x) is decreasing in x), this expression
is nonpositive for all θ1, θ2 with θ1 + θ2 > 0 if and only if α1(θ̄1)+ α2(θ̄2) ≤ 1. Condition
(∗∗) implies α1(θ̄1) + α2(θ̄2) ≤ 1 and is equivalent to this inequality when θ̄i ≤ −¯θj for
i = 1�2.

If θ1 ≥ −¯θ2 and θ2 ≥ −¯θ1, then

t1(θ1� θ2)+ t2(θ1� θ2) = α1(θ1)θ2 + α2(θ2)θ1 + (1 − α1(θ1))¯θ2 + (1 − α2(θ2))¯θ1

= θ1 + θ2 − (1 − α1(θ1))(θ2 − ¯θ2)− (1 − α2(θ2))(θ1 − ¯θ1)�

This expression is nondecreasing in θ1 and θ2 (as αi(θi) ∈ (0�1) is nondecreasing and
θi ≥ ¯θi), so it is nonpositive for all θ1, θ2 with θ1 + θ2 > 0 if and only if

θ̄1 + θ̄2 − (1 − α1(θ̄1))(θ̄2 − ¯θ2)− (1 − α2(θ̄2))(θ̄1 − ¯θ1)≤ 0�

Moving the product terms to the right-hand side and dividing by θ̄1 + θ̄2 (which is posi-
tive) shows that this inequality is equivalent to condition (∗∗) when θ̄i ≥ −¯θj for i = 1�2
(which is the case under consideration).

Finally, if θ1 <−¯θ2 and θ2 ≥ −¯θ1 (which is the hardest case),

t1(θ1� θ2)+ t2(θ1� θ2) = (α1(θ1)+ α2(θ2)− 1)θ1 + α1(θ1)θ2 + (1 − α2(θ2))¯θ1

= (θ1 + θ2)

[
α1(θ1)− θ1 − ¯θ1

θ1 + θ2
(1 − α2(θ2))

]
�



Theoretical Economics 11 (2016) Mechanism design with maxmin agents 995

This expression is nonpositive for all θ1, θ2 with θ1 + θ2 > 0 if and only if the bracketed
term is nonpositive for all such θ1, θ2. This term is increasing in θ2, so it is nonpositive
for all θ1, θ2 with θ1 + θ2 > 0 if and only if

α1(θ1)− θ1 − ¯θ1

θ1 + θ̄2
(1 − α2(θ̄2)) ≤ 0 (10)

for all θ1.28 If θ1 ≤ −θ∗
2, then α1(θ1) = 0 so (10) holds. Suppose toward a contradic-

tion that (10) fails for some θ1 ∈ [−θ∗
2�min{θ̄1�−¯θ2}]. Observe first that (10) holds at

θ1 = min{θ̄1�−¯θ2}: this has already been shown if θ̄1 ≥ −¯θ2, and if θ̄1 < −¯θ2, it follows by
noting that at θ1 = θ̄1 (10) is equivalent to condition (∗∗) when θ̄1 < −¯θ2 and θ̄2 ≥ −¯θ1.
Since the left-hand side of (10) is continuous in θ1 and (10) holds for θ1 = θ̄1 and for all
θ1 ≥ −¯θ2, (10) fails somewhere on the interval [−θ∗

2�min{θ̄1�−¯θ2}] if and only if it fails
at a local minimum in (−θ∗

2�−¯θ2). Hence, the argument may be completed by showing
that no local minimum in (−θ∗

2�−¯θ2) exists. To see this, note that for θ1 ∈ (−θ∗
2�−¯θ2),

α′
1(θ1)= 1

θ∗
2 + θ1

(
θ∗

2 + θ1

θ̄2 + θ1
− α1(θ1)

)
�

and therefore the first-order condition for an extremum is

1
θ∗

2 + θ1

(
θ∗

2 + θ1

θ̄2 + θ1
− α1(θ1)

)
= θ̄2 + ¯θ1

(θ̄2 + θ1)2
(1 − α2(θ̄2))�

In addition, the second derivative of the left-hand side of (10) equals

−(θ̄2 − θ∗
2)(2(θ̄2 + θ1)+ θ∗

2 + θ1)

(θ∗
2 + θ1)2(θ̄2 + θ1)2

+ 2
1 − α1(θ1)

(θ∗
2 + θ1)2 − 2

θ̄2 + ¯θ1

(θ̄2 + θ1)3
(1 − α2(θ̄2))�

At an extremum, using the first-order condition implies that this equals

−(θ̄2 − θ∗
2)(2(θ̄2 + θ1)+ θ∗

2 + θ1)

(θ∗
2 + θ1)2(θ̄2 + θ1)2

+ 2
1 − α1(θ1)

(θ∗
2 + θ1)2

− 2
1

(θ̄2 + θ1)(θ
∗
2 + θ1)

(
θ∗

2 + θ1

θ̄2 + θ1
− α1(θ1)

)

= θ̄2 − θ∗
2

(θ∗
2 + θ1)2(θ̄2 + θ1)

[
−α1(θ1)+

(
θ∗

2 + θ1

θ̄2 + θ1
− α1(θ1)

)]

= θ̄2 − θ∗
2

(θ∗
2 + θ1)2(θ̄2 + θ1)

[
−α1(θ1)+ (θ∗

2 + θ1)(θ̄2 + ¯θ1)

(θ̄2 + θ1)2
(1 − α2(θ̄2))

]
�

Next, observe that

θ1 − ¯θ1

θ1 + θ̄2
≥ (θ∗

2 + θ1)(θ̄2 + ¯θ1)

(θ̄2 + θ1)2
�

28The “only if” part of this statement follows because the hypothesis that θ2 ≥ −¯θ1 implies that θ̄2 ≥ −¯θ1,
which in turn implies that θ1 + θ̄2 ≥ 0 for all θ1.
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which may be seen by cross-multiplying by (θ̄2 + θ1)
2 and noting that θ1 − ¯θ1 ≥ θ∗

2 + θ1

(as ¯θ1 + θ∗
2 ≤ 0) and θ̄2 + θ1 ≥ θ̄2 + ¯θ1. Therefore,

−α1(θ1)+ θ1 − ¯θ1

θ1 + θ̄2
(1 − α2(θ̄2)) ≥ −α1(θ1)+ (θ̄2 + ¯θ1)(θ

∗
2 + θ1)

(θ1 + θ̄2)2
(1 − α2(θ̄2))�

so if (10) fails, then the second derivative is nonpositive at any local extremum. That
is, any local extremum in (−θ∗

2�−¯θ2) must be a local maximum, so no local minimum
in (−θ∗

2�−¯θ2) exists, completing the proof. The argument for θ1 ≥ −¯θ2 and θ2 < −¯θ1 is
symmetric. �

Claim 3. The αi(θi) double auction satisfies MMIC.

Proof. Suppose θi ≤ −θ∗
j . By IR, Ui(θi)≥ 0. By ex post IR and WBB, ti(θ̂i� θj) ≤ θj for all

θ̂i, θj , and therefore Ui(θ̂i� θ
∗
j ;θi) ≤ max{θi + θ∗

j �0} ≤ 0 for all θ̂i. Hence, δθ∗
j
∈ �j implies

that Ui(θi) ≥Ui(θ̂i� θ
∗
j ;θi)≥ infφj∈�j

Ui(θ̂i�φj;θi), which yields MMIC.

For the remainder of the proof, suppose θi > −θ∗
j . I show that no misreport θ̂i can

be profitable in each of the four cases (i) θ̂i > θi, (ii) θ̂i ≤ −θ∗
j , (iii) θ̂i ∈ [−¯θj�θi) (this case

is vacuous if θi ≤ −¯θj), and (iv) θ̂i ∈ (−θ∗
j �min{θi�−¯θj}). These cases cover all possible

misreports, so the αi(θi) double auction satisfies MMIC.
Case (i): θ̂i > θi. In this case, I claim that Ui(θi� θj;θi) ≥ Ui(θ̂i� θj;θi) for all θj . The

key step is the following observation (proven below).

Lemma 2. In the αi(θi) double auction, ti(θi� θj) is nonincreasing in θi in the region where
θi + θj > 0.

Now, if θi + θj ≤ 0, then Ui(θi� θj;θi) = 0, while ex post IR and WBB imply that
Ui(θ̂i� θj;θi) ≤ max{θi + θj�0} ≤ 0. If instead θi + θj > 0, then EF and Lemma 2
imply that Ui(θi� θj;θi) ≥ Ui(θ̂i� θj;θi). The claim follows, and therefore Ui(θi) ≥
infφj∈�j

Ui(θ̂i�φj;θi).

Case (ii): θ̂i ≤ −θ∗
j . Here, Ui(θ̂i� θ

∗
j ;θi) = 0. Hence, δθ∗

j
∈�j and IR imply that Ui(θi)≥

infφj∈�j
Ui(θ̂i�φj;θi).

Case (iii): θ̂i ∈ [−¯θj�θi). Note that αi(θ̂i) = αi(−¯θj), so Ui(θ̂i� θj;θi) = θi+αi(−¯θj)θj −
(1 − αi(−¯θj))¯θj for all θj . Therefore, Ui(θ̂i�φj;θi) = θi + αi(−¯θj)θ

∗
j − (1 − αi(−¯θj))¯θjfor all φj ∈ �j . Similarly, Ui(θi�φj;θi) = θi + αi(−¯θj)θ

∗
j − (1 − αi(−¯θj))¯θj , so Ui(θi) =

infφj∈�j
Ui(θ̂i�φj;θi).

Case (iv): θ̂i ∈ (−θ∗
j �min{θi�−¯θj}). In this case, I claim that

inf
φj∈�j

Ui(θ̂i�φj;θi)=
θ∗
j + θ̂i

θ̄j + θ̂i
(θi + ti(θ̂i� θ̄j))� (11)

(Intuitively, the claim is that δmax{−θ̂i�¯θj}�θ̄j
is a worst-case belief for an agent of type θi

who misreports as type θ̂i ∈ (−θ∗
j � θi].)
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To see that (11) is an upper bound on infφj∈�j
Ui(θ̂i�φj;θi), observe that δ−θ̂i�θ̄j

∈
�j and that Ui(θ̂i� δ−θ̂i�θ̄j

;θi) equals (11). To see that (11) is a lower bound on

infφj∈�j
Ui(θ̂i�φj;θi), first note that

Ui(θ̂i�φj;θi) = Prφj (θj > −θ̂i)E
φj [θi + ti(θ̂i� θj)|θj > −θ̂i] + Prφj (θj ≤ −θ̂i)(0)

= Prφj (θj > −θ̂i)E
φj [θi + αi(θ̂i)θj − (1 − αi(θ̂i))θ̂i|θj >−θ̂i] (12)

= Prφj (θj > −θ̂i)(θi − θ̂i)+ Prφj (θj > −θ̂i)αi(θ̂i)(E
φj [θj|θj >−θ̂i] + θ̂i)�

I show that (11) is a lower bound on (12) for all φj with expectation θ∗
j , and hence for all

φj ∈ �j . To see this, consider the problem of minimizing (12) over φj with expectation
θ∗
j in two steps: first minimize over φj with a given value of Prφj (θj > −θ̂i), and then

minimize over Prφj (θj > −θ̂i). For a given value of Prφj (θj > −θ̂i), (12) is minimized by
minimizing Eφj [θj|θj > −θ̂i] over φj with expectation θ∗

j . Observe that

(1 − Prφj (θj >−θ̂i))E
φj [θj|θj ≤ −θ̂i] + Prφj (θj >−θ̂i)E

φj [θj|θj > −θ̂i] = θ∗
j

for all φj with expectation θ∗
j . Noting that Eφj [θj|θj ≤ −θ̂i] ≤ −θ̂i and rearranging yields

Eφj [θj|θj >−θ̂i] ≥ 1

Prφj (θj >−θ̂i)

(
θ∗
j + (1 − Prφj (θj >−θ̂i))θ̂i

)
�

Hence, the minimum of (12) over φj with expectation θ∗
j and a given value of

Prφj (θj >−θ̂i) equals

Prφj (θj >−θ̂i)(θi − θ̂i)

+ Prφj (θj >−θ̂i)αi(θ̂i)

(
1

Prφj (θj >−θ̂i)

(
θ∗
j + (1 − Prφj (θj >−θ̂i))θ̂i

) + θ̂i

)

= Prφj (θj >−θ̂i)(θi − θ̂i)+ αi(θ̂i)(θ
∗
j + θ̂i)�

As θ̂i ≤ θi, (12) is minimized over φj with expectation θ∗
j by minimizing Prφj (θj > −θ̂i),

which by Chebyshev’s inequality yields

θ∗
j + θ̂i

θ̄j + θ̂i
(θi − θ̂i)+ αi(θ̂i)(θ

∗
j + θ̂i) =

θ∗
j + θ̂i

θ̄j + θ̂i
(θi − θ̂i + αi(θ̂i)(θ̄j + θ̂i))

=
θ∗
j + θ̂i

θ̄j + θ̂i
(θi + ti(θ̂i� θ̄j))�

This gives (11), proving the claim. �

Therefore,

sup
θ̂i∈(−θ∗

j �min{θi�−¯θj})
inf

φj∈�j

Ui(θ̂i�φj;θi) = sup
θ̂i∈(−θ∗

j �min{θi�−¯θj})

θ∗
j + θ̂i

θ̄j + θ̂i
(θi + ti(θ̂i� θ̄j))�
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To complete the proof, it suffices to show that ((θ∗
j + θ̂i)/(θ̄j + θ̂i))(θi + ti(θ̂i� θ̄j)) is non-

decreasing in θ̂i over (−θ∗
j �min{θi�−¯θj}), as Ui(θ̂i� θj;θi) is left-continuous in θ̂i and the

possibility that −¯θj could be a profitable misreport has already been ruled out. This
follows, since a straightforward calculation yields

∂

∂θ̂i

[θ∗
j + θ̂i

θ̄j + θ̂i
(θi + ti(θ̂i� θ̄j))

]
=

(θ̄j − θ∗
j )(θi − θ̂i)

(θ̄j + θ̂i)2
�

and this expression is nonnegative because θi ≥ θ̂i ≥ −θ∗
j ≥ −θ̄j . �

Proof of Lemma 2. The result is immediate when θi ≤ −θ∗
j or θi ≥ −¯θj , as in both cases

α′
i(θi) = 0, which immediately implies that ti(θi� θj) is nonincreasing in θi.

If θi ∈ (−θ∗
j �−¯θj), then ti(θi� θj) = αi(θi)θj − (1 − αi(θi))θi, and therefore

∂

∂θi
ti(θi� θj)= −(1 − αi(θi))+ α′

i(θi)(θj + θi)�

In addition,

α′
i(θi) = 1

θ̄j + θi
− 1

θ∗
j + θi

αi(θi)�

and therefore

∂

∂θi
ti(θi� θj) =

θj − θ∗
j

θ∗
j + θi

(1 − αi(θi))−
θ̄j − θ∗

j

θ∗
j + θi

θj + θi

θ̄j + θi

=
θ̄j − θ∗

j

θ∗
j + θi

[θj − θ∗
j

θ∗
j + θi

log
(

1 +
θ∗
j + θi

θ̄j − θ∗
j

)
− θj + θi

θ̄j + θi

]
�

Since θi > −θ∗
j , the sign of ∂ti(θi� θj)/∂θi equals the sign of the term in brackets. Using

the fact that (1/x) log(1 + x) < 1 for all x > 0, this term is less than

θj − θ∗
j

θ̄j − θ∗
j

− θj + θi

θ̄j + θi
= −

(θ̄j − θj)(θ
∗
j + θi)

(θ̄j − θ∗
j )(θ̄j + θi)

≤ 0�

where the last inequality again uses θi >−θ∗
j . Hence, ti(θi� θj) is nonincreasing in θi. �

Proof of Proposition 1

Sufficiency. When c∗ ≥ v∗, I show that any reference rule with p∗ ∈ [v∗� c∗] satisfies
MMIC. I establish MMIC for the buyer; the argument for the seller is symmetric.

First, suppose that v < c∗. Observe that Ub(v̂� c
∗;v) ≤ 0 for all v̂: this follows because

if v̂ < c∗, then Ub(v̂� c
∗;v) = 0, while if v̂ ≥ c∗, then Ub(v̂� c

∗;v) = v− c∗ < 0. Hence, for all
v̂, IR and δc∗ ∈�s imply that Ub(v) ≥ 0 ≥ infφs∈�s Ub(v̂�φs;v), which yields MMIC.

Next, suppose that v ≥ c∗. First, note that misreports of v̂ ≤ c∗ cannot be prof-
itable, because Ub(v)≥ 0 =Ub(v̂� c

∗;v) and δc∗ ∈�s. Next, consider misreports of v̂ > c∗.
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If y(c� v) = y(c� v̂), then tb(v� c) = tb(v̂� c) (as v� v̂ ≥ c∗ ≥ p∗), and hence Ub(v� c;v) =
Ub(v̂� c;v). In addition, if y(c� v) = 1 and y(c� v̂) = 0, then Ub(v� c;v) ≥ 0 = U(v̂� c;v).
Finally, if y(c� v) = 0 and y(c� v̂) = 1, then Ub(v� c;v) = 0 > v − c ≥ Ub(v̂� c;v). Hence,
Ub(v� c;v)≥Ub(v̂� c;v) for all v̂, so misreports of v̂ > c∗ cannot be profitable, either. This
yields MMIC.

Necessity. When c∗ < v∗, every reference rule satisfies either p∗ > c∗ or p∗ < v∗.
Suppose p∗ > c∗; the argument for the alternative case is symmetric. Fix a value
v ∈ [c∗�p∗] ∩ [0�1]. Then tb(v� c) = −v whenever c ≤ v. Hence, a buyer with value v gets
payoff 0 from truthtelling, and gets a strictly positive payoff from reporting any v ∈ (c∗� v)
(as every belief in �s puts positive probability on seller types with c ≤ c∗), so MMIC fails.

Proof of Proposition 2

We show that the slightly more general Theorem 3 goes through with this more restric-
tive definition of MMIC. The notation in what follows is as in the proof of Theorem 3.

The proof of necessity is unchanged. For sufficiency, modify the αi(θi) double
auction constructed in the proof of Theorem 3 by letting αi(θi) = min{ 1

2 �

(θi−¯θi)/(θ̄j−θ∗
j )}(1−αj(θ̄j)) for all θi ≤ −θ∗

j , i = 1�2 (rather than αi(θi)= 0 for θi ≤ −θ∗
j ).

The modified mechanism satisfies EF and (ex post) IR as in the proof of Theorem 3. In
addition, ti(θi� θj) is unchanged for all θi > −θ∗

j , and reporting θ̂i ≤ −θ∗
j continues to

give payoff 0 in the worst case, so MMIC also follows as in the proof of Theorem 3.
Next, as αi(θi) > 0 for all θi > ¯θi in the modified mechanism, truthtelling is not

weakly dominated for any type. In particular, truthtelling was weakly dominated only for
types θi ≤ −θ∗

j in the unmodified αi(θi) double auction, and in the modified mechanism

such a type does strictly better from truthtelling than from misreporting as type θ̂i < θi
against any opposing type θj ∈ (−θi�−θ̂i) (and ti(θi� θj) is unchanged for all θi > −θ∗

j , so
truthtelling does not become weakly dominated for any of these types).

Finally, the argument for WBB is also similar to the proof of Theorem 3. More specif-
ically, as in that proof, consider three cases:

If θ1 < −¯θ2 and θ2 < −¯θ1, then as in the proof of Theorem 3, WBB holds if and only
if α1(θ1) + α2(θ2) ≤ 1. If θi > −θ∗

j for i = 1�2, this holds because α1(θ̄1) + α2(θ̄2) ≤ 1
(recalling that αi(θi) is nondecreasing in the unmodified αi(θi) double auction). If θ1 >

−θ∗
2 and θ2 ≤ −θ∗

1 , it holds because

α1(θ1)+ α2(θ2) ≤ 1
2(1 − α2(θ̄2))+ α2(θ2) ≤ 1

2 + 1
2α2(θ̄2) < 1�

and if θi ≤ −θ∗
j for i = 1�2, it holds because

α1(θ1)+ α2(θ2) ≤ 1
2(1 − α2(θ̄2))+ 1

2(1 − α1(θ̄1)) < 1�

If θ1 ≥ −¯θ2 and θ2 > −¯θ1, then a fortiori θ1 > −θ∗
2 and θ2 > −θ∗

1 , so the argument is
exactly as in the proof of Theorem 3.

Last, if θ1 < −¯θ2 and θ2 ≥ −¯θ1, then, as in the proof of Theorem 3, WBB reduces to
(10). If θ1 > −θ∗

2 , then the argument is exactly as in the proof of Theorem 3. If instead
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θ1 ≤ −θ∗
2, then (10) becomes

[
min

{
1
2
�
θ1 − ¯θ1

θ̄2 − θ∗
2

}
− θ1 − ¯θ1

θ̄2 + θ1

]
(1 − α2(θ̄2)) ≤ 0�

which holds as the term in brackets is nonpositive.

Proof of Proposition 3

It is clear that the mechanism satisfies EF, (ex post) IR, and SBB. I now verify MMIC for
an arbitrary buyer type v. (The argument for the seller is symmetric.)

If v̂ ≤ c∗, then Ub(v̂� c
∗;v) = 0, so IR and δc∗ ∈ �s yield Ub(v) ≥ 0 ≥

infφs∈�s Ub(v̂�φs;v).
If v̂ > v, then the observation that tb(v� c) is nonincreasing in v in the region where

v ≥ c implies that Ub(v� c;v) ≥ Ub(v̂� c;v) for all c, by the same argument as in the proof
of Theorem 3 (Claim 3, Case (i)). Hence, Ub(v) ≥ infφs∈�s Ub(v̂�φs;v). This completes
the proof for MMIC for v ≤ c∗, so assume henceforth that v > c∗.

If v̂ ∈ (c∗� v), then v̂ > p∗. Hence, Ub(v̂� c;v) ≤ Ũb(v̂� c;v) for all c, where Ũb de-
notes utility under a standard reference rule (with ε = 0). Recalling that Ũb(v) ≥
infφs∈�s Ũb(v̂�φs;v) by Proposition 1, I complete the proof of MMIC by showing that
Ub(v)= Ũb(v).

I claim that

inf
φs∈�s

Ub(v̂�φs;v) = v − c∗

v
(v −p∗)

for all v > c∗, whenever ε < p∗. In particular, I show that the infimum of Ub(v̂�φs;v) over
all φs with expectation c∗ (and hence over �s) is attained at φs = δs0�v (which is indeed
an element of �s).

To see this, first note that any φs with expectation c∗ must put positive mass on the
interval [0� v). Now a type v buyer gets positive payoff against all seller types c < v and
gets payoff zero against all types c ≥ v, so if φs puts positive mass on types c > v, then
there exists another distribution φ′

s with the same mean that shifts this mass to −θi and
reduces the mass on [0� v), thus reducing buyer type v’s payoff. Next, if φs puts posi-
tive mass on (0�p∗], then shifting this mass to c = 0 and correspondingly increasing the
mass on (p∗�1] weakly decreases the probability of trade and strictly decreases θi’s ex-
pected transfer when trade occurs, so this modification also strictly reduces buyer type
v’s payoff.

Finally, if φs puts positive mass on (p∗� v), with Eφs [c|θ ∈ (p∗� v)] = c, then it is
worse for buyer type v to split this mass between 0 and v in the proportions that
preserve the mean. To see this, note that buyer type v’s payoff against c ∈ (p∗� v) is
(1 − ε)(v − c), while the type’s payoff from facing a cost 0 seller with probability
(v − c)/v is ((v − c)/v)(v − p∗). Now ((v − c)/v)(v − p∗) is less than (1 − ε)(v − c) if
and only ε < (1 − v + p∗)/v, and a sufficient condition for this inequality to hold is
ε < p∗. Thus, any measure φs that puts positive mass on the intervals (0�p∗], (p∗� v),
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or (v�1] can be improved upon, so it follows that the infimum of Ub(v̂�φs;v) over mea-
sures φs with expectation c∗ is attained at the measure that puts mass only on {0� v},
namely δ0�v.

The above claim gives Ub(v) = ((v − c∗)/v)(v − p∗). Since a standard reference rule
corresponds to ε = 0, the same argument gives Ũb(v) = ((v − c∗)/v)(v − p∗). Hence,
Ub(v)= Ũb(v), completing the proof of MMIC.

Finally, to see that truthtelling is not weakly dominated for any type when ε > 0,
note that reporting v̂ < v cannot dominate truthtelling because Ub(v� (v + v̂)/2;v) > 0 =
Ub(v̂� (v + v̂)/2;v). Moreover, reporting v̂ > v cannot dominate truthtelling because in
this case Ub(v̂� c;v)≤Ub(v� c;v) for all c, as noted above.
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