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Abstract  

This work demonstrates how the geometric and topological characteristics of substructures within 
heterogeneous materials can be employed to tailor the mechanical responses of soft crystals under large 
strains. The large deformation mechanical behaviors of elastomeric composites possessing long-range 
crystalline order are examined using both experiments on 3D printed prototype materials and precisely 
matched numerical simulations. The deformation mechanisms at small and large strains were elucidated 
for six sets of morphologies: dispersed-particles on each of the simple cubic, body-centered cubic or face-
centered cubic lattices, and their bi-continuous counterparts. Comparison of results for the six types of 
morphologies revealed that the topological connectivity of dissimilar domains is of critical importance for 
tailoring the macroscopic mechanical properties and the mechanical anisotropy. 

 

1. Introduction 

          Polymer composites have long been of central importance in a wide range of engineering contexts, 

by virtue of the synergies in the mechanical[1], chemical[2] and optical[3] properties of their constituent 

materials. Moreover, polymer composites have advantages over other engineering materials that include 

scalability, durability, functionality, light weight and relatively low cost.[4] In addition to the intrinsic 

material properties, the geometric and topological features of their constituents have been shown to 

influence significantly the structure-property-function relationships in many heterogeneous materials.[5] In 

particular, a wide variety of microstructural morphologies have been extensively reported in synthetic and 

natural polymeric systems, including lamellae, spheres or cylinders dispersed within matrices and co-

continuous networks.[6] In the copolymeric materials, the morphological features of constituents are 

strongly dependent on the thermodynamic nature of the constituent polymers via their volume fraction, 

interaction and miscibility. In particular, the interpenetrating co-continuous networks, in which each 

component spans the macroscopic materials without any isolated domains, were found to be promising 
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for tailoring the macroscopic physical responses of ordered and disordered copolymeric materials.[7] The 

co-continuous structures also broaden the range of mechanical and other physical properties over those of 

the classical dispersed-particle morphologies or lamellar copolymeric morphologies.[8] Moreover, the 

mechanical features made possible by varying the microstructural morphologies of constituents are 

critical to achieve tunable acoustical and optical properties especially in photonic and phononic crystals 

for energy and soft electronics applications.[9] Moreover, composites with various morphologies have 

been used in the design of soft meta-materials having unconventional functionalities.[10] Such soft 

materials have been recently used in a wealth of new applications particularly to soft robotics and 

actuation[11], acoustic manipulation[12], super-hydrophobic surfaces[13] and smart soft structures via 

instability.[14] In all of these applications, a sound understanding of the large strain deformation 

mechanisms of soft composites possessing complex geometry and nonlinear constituent behavior is 

essential. In this work, we address the large strain mechanics of soft crystalline composites whose 

structural features were inspired by phase-separated block copolymers and crystalline metals. The 

macroscopic mechanical behavior is elucidated in terms of the morphology, topological connectivity and 

constitutive properties of the constituent substructures. Soft composites possessing long-range crystalline 

order were designed and fabricated with a multi-material 3D printer using photo-curable pre-polymers. 

The nonlinear mechanical responses of these composites under large deformation were then evaluated 

through both experiments and numerical simulations. The stress-strain behaviors revealed that the 

topological connectivity within each of the two dissimilar domains plays a critical role in determining the 

mechanical performance and the anisotropy. Of particular interest is the opportunity to engineer the 

structure-property relationships of these heterogeneous soft materials by altering the morphology, 

connectivity and mechanical properties of their constituents.  

 

2. Results and Discussion 

2.1.  3D Printed Soft Crystalline Composites  

          The soft crystalline composites were designed and fabricated to have various mechanical stiffness 

ratios and volume fractions of their hard and soft components on three Bravais cubic lattices: simple-

cubic (SC), body-centered-cubic (BCC) and face-centered-cubic (FCC) systems. In addition to the 

dispersed-particle composites, their bi-continuous counterparts (denoted SC-Bi, BCC-Bi and FCC-Bi) 

were also designed. The bi-continuous composites were constructed by simply connecting the first nearest 

neighbor sites of SC, BCC and FCC lattices with rod-like sections while maintaining the specified 

volume fractions of hard and soft domains. High-precision geometric information was prepared using a 
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three-dimensional (3D) CAD (computer aided design) program and then sent to a 3D printer (Connex 500, 

Stratasys Inc.) to build the prototypes. During 3D-printing, multiple photo-curable prepolymers are used 

to form the hard and soft components. In this work, two miscible base rubbery/glassy materials 

(TangoPlusTM and VeroWhiteTM)[15] and their mixtures were used to provide constituents with the desired 

mechanical properties in the printed prototypes. Pure TangoPlus, which is highly rubbery, was used for 

the soft domains (labeled “s”) in all prototypes. Mixtures of TangoPlus and VeroWhite with a wide range 

of initial stiffnesses relative to the soft component, formed via a digital material mode in the printer, were 

used for the hard component (labeled “h1”, “h2”, “h3” and “h4”). The initial stiffness ratios of the hard to 

the soft component were ~3.5, ~5.2, ~9.5 and ~15 for the composition pairs h1/s, h2/s, h3/s and h4/s, 

respectively; in addition, the composition pair h5/s having a stiffness ratio of ~100 was used for 

simulation only. Detailed characterization of the stress-strain behaviors of the hard and soft materials is 

provided in the Appendix along with the material constitutive models used in the numerical simulations. 

The volume fractions of hard components were 50% or 25% for each of the six morphologies examined 

in experiments: SC, SC-Bi, BCC, BCC-Bi, FCC and FCC-Bi. For each morphology, both “hard-in-soft” 

(soft component used as matrix) and “soft-in-hard” (hard component used as matrix) composites were 

fabricated and tested in both experiments and simulations. Each printed prototype comprised 5 unit cells 

in each dimension. The unit cell dimension was 5 mm, resulting in prototype dimensions of 25 mm by 25 

mm by 25 mm. The minimum geometric size of inner structures in the crystalline composites was ~ 0.78 

mm, which is at least one order of magnitude greater than the minimum resolution (< ~0.025 mm) 

provided by the 3D printer. Figure 1 shows schematics of the soft crystalline composites in BCC (Figure 

1a), SC (Figure 1b) and FCC (Figure 1c) lattices, along with optical images of the printed prototypes. In 

the images of printed prototypes, the bright regions represent the hard domains while the dark regions 

represent the soft domains. The bi-continuous variants denoted SC-Bi, BCC-Bi and FCC-Bi were also 

fabricated with the same base materials and volume fractions for hard and soft domains as the dispersed-

particle SC, BCC and FCC composites. 
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Figure 1 Schematic representations of soft crystalline composites. (a) BCC, (b) SC, (c) FCC; First row: 
unit cells for dispersed-particle and bi-continuous composites (solid lines: 1st nearest neighbor pairs for 
rod-connection); Second row: optical images (insets: front views of central 2 by 2 unit cells) of the 3D-
printed composite prototypes; here, the volume fraction of hard (bright domains)/soft domains (dark 
domains) is 25%/75% and the number of unit cells is 5 by 5 by 5).  

 

2.2.  Large Deformation Behavior of Soft Crystalline Composites 

          Mechanical behavior of the soft crystalline composites was examined under finite uniaxial 

compression in both experiments and numerical simulations. The 3D printed prototypes were compressed 

between two well-lubricated steel plates using a mechanical testing machine (Z010, loadcell: 2.5 kN, 

Zwick-Loewel). Under compression, force-displacement data were recorded and deformation of the 

prototypes was carefully monitored photographically to confirm macroscopic homogeneity of 

deformation throughout the periodic unit cells in the finite-sized prototypes. Numerical simulations were 

also performed on each of morphologies, using finite element computations. A Neo-Hookean hyperelastic 

representation was used for constitutive behaviors of the constituent materials. The macroscopic 

composite behaviors were analyzed using representative volume elements (RVE) subjected to a 

generalized three-dimensional periodic boundary condition, which is appropriate for finite deformation 

analysis. Moreover, the interfaces between the hard and soft domains were assumed to be perfectly 

bonded under deformation in either experiments or numerical simulations. Detailed information on the 

finite strain RVE analysis, boundary conditions and constitutive models is provided in the Appendix.  

          The stress-strain behaviors of the BCC composites are presented in Figure 2a, and the stress 

amplification (i.e. the composite stress normalized by the soft component response) are presented in 

Figure 2b along with representative optical images of the composite prototypes under deformation 

(dispersed-particle in Figure 2c and bi-continuous in Figure 2d). The stress amplification measure 

(normalized stress) is used throughout this work since it shows more clearly the relative changes in the 

macroscopic composite behaviors, especially for finite deformation, in both experiments and numerical 

a.	BCC	and	BCC-Bi b.	SC	and	SC-Bi c.	FCC	and	FCC-Bi
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simulations. Here, the volume fraction of hard components was 50% and the stiffness ratios were ~3.5 

(h1/s), ~5.2 (h2/s), ~9.5 (h3/s), ~15 (h4/s) and ~100 (h5/s) for the "hard-in-soft” composites. The 

numerically predicted stress-strain curves match well the experimental data, for a range of different 

constitutive properties of hard components with the same soft component. The macroscopic stresses were 

greater in the bi-continuous composites at small to large strains, compared to those in the corresponding 

dispersed-particle composites, in both experiments and simulations; furthermore, the difference between 

macroscopic stresses in the bi-continuous and dispersed-particle morphologies increased with an 

increasing stiffness ratio. In particular, there was a substantially enhanced stiffening effect (factors of 

~4.5 and ~1.3 at macroscopic strains of 0.05 and 0.4) due to the change in connectivity from BCC to 

BCC-Bi at the highest stiffness ratio of ~100 (h5/s, inset of Figure 2a). Figure 2c and Figure 2d show 

selected optical images of two illustrative cases, the BCC and BCC-Bi composites with h3/s ~ 9.5 under 

deformation. As shown in the optical images, macroscopically homogeneous deformation was observed 

during experiments on these finite-sized periodic prototypes.  

 

Figure 2 Large deformation mechanical behavior of soft crystalline composites in the BCC lattice with 
equal volume fractions of hard/soft domains. (a) Representative stress-strain curves of BCC (squares, 
solid lines) and BCC-Bi (circles, dashed lines) composites (symbols: experiment, lines: simulation) at 
increased stiffness ratios (h1/s~3.5, h2/s~5.2 and h3/2 ~ 9.5) together with the soft component response 
(green symbols and lines); inset: simulated stress-strain curves at higher stiffness ratios of ~15 (h4/s) and 
~100 (h5/s); (b) Stress amplification (composite stress normalized by soft component response) in 
experiments and simulations in the dispersed-particle and bi-continuous morphologies with increased 
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stiffness ratios; Representative experimental images of (c) BCC (vhard=50%) and (d) BCC-Bi (vhard=50%) 
morphologies under compression; here, only the central 3 by 3 unit-cells are shown; the dashed rectangle 
highlights the central unit cell in the composites; the far left figures illustrate the hard inclusions (green) 
and the soft matrices (grey) in the unit cell. 

 

 

Figure 3 Schematics of deformation mechanisms in BCC and SC lattice. (a) BCC; (b) BCC-Bi; (c) SC 
(the dashed particles at a higher hard volume fraction which is comparable to the corresponding SC-Bi 
composite); (d) SC-Bi; here only the hard domains are illustrated on the 110 and 100 planes, for BCC and 
SC lattices, respectively; the solid/dashed black arrows represent major deformation modes at small strain 
while the red arrows represent those at large strain 

 

          The deformation mechanisms of these composites are schematically illustrated in Figure 3a. At 

small strains in the dispersed-particle BCC composite, an off-axis shearing between the nearest neighbor 

particles (on 110 planes) carries the applied deformation predominantly. As the off-axis shearing 

decreases, a co-axial and center-to-center interaction between the second nearest neighbor hard particles 

becomes more significant, resulting in a stress upturn at large strains. However, in the bi-continuous BCC 

composite, deformation is carried by bending and stretching of the relatively stiff ligament network with 

the rotation necessitating compression and tension in the soft matrix as illustrated in Figure 3b. This 

interpretation of the deformation mechanisms in these two morphologies is also supported by the local 

stress and strain contours from the numerical simulations. Figure 4 shows the contours of local 

equivalent stress (von Mises stress) and axial strain in the dispersed-particle and bi-continuous BCC 

composites with two different stiffness ratios of ~9.5 (h3/s) and ~100 (h5/s). As presented in Figure 4a, 

large strains were initially localized within the soft matrix since deformation was predominantly carried 

by the soft matrix in the dispersed-particle composite. Additionally the off-axis interactions between the 

first nearest neighbor particles initially resulted in a relatively small deformation of the hard particles. 

Direct and co-axial interactions between the second nearest neighbor particles then resulted in very large 

stresses localized within the hard particles at large strains (Figure 4c). However the presence of a 

ligament network in the bi-continuous composite resulted in development of the substantially large 

stresses and strains localized in the hard domains as shown in Figure 4b and Figure 4d. The localized 
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large deformation in the ligament network led to the greater macroscopic stress responses at both small 

and large strains. The contours of local stress and strain fields are further presented for the composites 

with a lower stiffness ratio in Figure 4e and Figure 4f. The local deformations in the hard domains with 

the lower stiffness ratio (h3/s ~ 9.5) were found to be much greater than those with the higher stiffness 

ratio (h5/s ~ 100, Figure 4c and Figure 4d) for both morphologies. The larger deformations in the hard 

domains, more comparable to the extreme deformations in the soft domains, substantially diminished the 

morphological effects in the composites with the lower stiffness ratios, as evidenced by the macroscopic 

stress-strain curves in Figure 2. 

 

Figure 4 Contours of local stress and strain fields in BCC and BCC-Bi composites with stiffness ratios of 
9.5 (h3/s) and 100 (h5/s). Equivalent stress (von Mises stress) and axial true strain (the Hencky’s 
logarithmic strain) in both hard and soft domains with h5/s ~ 100 (a) BCC at a strain of 0.1; (b) BCC-Bi 
at a strain of 0.1; (c) BCC at a strain of 0.4; (d) BCC-Bi at a strain of 0.4 and in the composites with h3/s 
~ 9.5 (e) BCC at a strain of 0.4; (f) BCC-Bi at a strain of 0.4; here the cutting plane for the contours is 
110 on the center of unit cell and the volume fraction of hard component is 50%. 

 

          The morphological effects are next examined in composites on the FCC lattice, for both 

experiments and simulations. Figure 5 shows the stress-strain behavior of the FCC composites in 
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experiments and simulations. Here, the volume fractions of hard and soft components were 50%/50% and 

25%/75%, and the stiffness ratio was ~9.5 (h3/s). The numerically predicted stress-strain curves show a 

good agreement with the experimental data using the same constitutive laws as those used in the BCC 

composites. The stress responses of the bi-continuous composites were greater, by a factor of ~1.35, 

relative to those of the dispersed-particle composites. The deformation mechanisms in these FCC 

composites were very similar to those in the BCC composites especially for the dispersed-particle 

morphology. However, the stiffening effect due to the change in connectivity was greater than that found 

in the BCC lattice (a factor of ~1.17 with h3/s ~ 9.5), as evidenced from comparison of the normalized 

stress-strain curves in Figure 2b (BCC) and Figure 5b (FCC). The greater stiffening effect is mainly 

attributed to a higher packing density in the FCC lattice. In the dispersed-particle FCC composite, off-axis 

shearing interactions between the close-packed particles on the 100 planes were responsible for a lower 

stress response and remained significant over all strains. Meanwhile, deformation in the bi-continuous 

FCC composite was consistently dominated by bending and rotation throughout the denser ligament 

network, as was the case for the bi-continuous BCC composite, and there was no significant change in the 

major local deformation modes at increasing strains. The stiffening effect due to the change in 

connectivity from dispersed-particle to bi-continuous is relatively insensitive to the imposed strains in the 

FCC lattice as shown in Figure 5b, in contrast to the BCC. 
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Figure 5 Large deformation mechanical behavior of soft crystalline composites in the FCC and SC 
lattices at two different volume fractions of hard component (25% and 50%). (a) Representative stress-
strain curves (symbols: experiment, lines: simulation); (b) Stress amplification (composite stress 
normalized by soft component response) in FCC and FCC-Bi; here the stiffness ratio of hard/soft 
component is ~9.5 (h3/s); (c) Stress-strain curves; (d) Stress amplification (vhard = 25%) in SC and SC-Bi 
at increasing stiffness ratios of ~9.5 (h3/s) and ~100 (h5/s). 

          The large deformation mechanical behaviors for the dispersed and bi-continuous composites were 

then examined for the SC lattices, as shown in Figure 5c and d. The stress-strain behaviors in these two 

composites were much stiffer than those in either BCC or FCC composites. Nevertheless, the bi-

continuous morphology still exhibited a greater stress response than the dispersed-particle morphology 

over all strains. Interestingly, this stiffening effect was lessened at the higher volume fraction of hard 

component (50%), which is contrary to that found in the FCC composites (Figure 5b). The hard particles 

are very close to each other at this high volume fraction. Therefore, direct, coaxial interactions between 

the particles led to a very hard lattice resistance in the dispersed-particle morphology as schematically 

illustrated in Figure 3c, such that the stress response was comparable to that of the bi-continuous 

morphology. At the lower volume fraction of hard component (25%), the stiffening effect was greater, 

which resulted from substantial stretching throughout the orthogonal truss-like ligament network as 
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illustrated in Figure 3d. The stiffening effect was again found to increase with a higher stiffness ratio of 

hard to soft component as shown in the normalized stress responses in Figure 5d.  

          The mechanical behaviors of the composites are summarized for the six morphologies with the two 

stiffness ratios of hard/soft component (h3/s ~ 9.5 and h5/s ~ 100). Figure 6a shows the initial elastic 

moduli (i.e. at small strains) of the composites in experiments and simulations. In all lattices, the initial 

elastic modulus was greater in the bi-continuous morphologies than in the dispersed-particle 

morphologies due to the stretching localized within the relatively stiff ligament network. The initial 

stiffening effects due to change in morphology from dispersed-particle to bi-continuous in the FCC and 

BCC composites were much greater than those in the SC composites in both experiments and simulations 

at this high volume fraction of hard component (50%). The stiffening effect increased substantially in all 

lattices with increasing stiffness ratio of hard/soft component as shown in Figure 6b. At the highest 

stiffness ratio (h5/s ~ 100), the maximum achievable elastic modulus (in the bi-continuous SC composite) 

was greater by a factor of ~ 10 than the smallest elastic modulus (in the dispersed-particle BCC or FCC 

composites). The large strain behaviors of the composites are then presented especially for the bi-

continuous morphology in Figure 6c. The macroscopic stress was found to increase from FCC-Bi and 

BCC-Bi to SC-Bi composites, as evidenced by both experiments and simulations. As the stiffness ratio of 

hard to soft domains increases (inset of Figure 6c), the stress-strain behavior was most affected in the SC 

composite. Figure 7a shows the local stress and strain contours at a macroscopic strain of 0.4; a very 

large compressive strain was localized within the vertical ligaments, resulting in a highly stiffened 

response in the SC-Bi composite. By contrast, in the BCC-Bi (Figure 7b) and FCC-Bi (Figure 7c) 

composites, the applied deformation was more evenly distributed throughout the ligament network, 

resulting in much smaller axial stresses and strains in these composites, compared to those of the SC-Bi 

composite. In particular, the ligament network throughout the close-packed FCC lattice carried the 

macroscopic axial deformation most uniformly by substantial rotation and bending, observed at both 

small and large strains. Such bending and rotation-dominated deformation modes enabled the most 

efficient and consistent load transfer mechanism without any significant change in the major deformation 

modes increasing strain in the FCC-Bi composite. However, there was a major mode change from the 

bending- and rotation-dominated to the stretching-dominated deformation in the BCC-Bi composite, 

resulting in a stress upturn at large strain. Such a mode change was found to be significant especially at 

the highest stiffness ratio (h5/s ~ 100). Though the initial elastic modulus was slightly smaller in the 

BCC-Bi composite (Figure 6b), the macroscopic stress in the BCC-Bi composite became much greater 

than that of the FCC-Bi composite due to the deformation mode change around a macroscopic strain of 

0.2 (the inset of Figure 6).  



11 
 

 

Figure 6 Mechanical behaviors of the composites (vhard = 50%) at small to large strains at two stiffness 
ratios of hard/soft component (h3/s and h5/s). Young’s modulus with (a) h3/s ~ 9.5 (experiment and 
simulation); (b) h5/s ~ 100 (simulation only); (c) Representative stress-strain behaviors of the bi-
continuous composites (experiment: open symbols; simulation: solid lines); here the volume fraction of 
hard component is 50% and the stiffness ratio is h3/s ~ 9.5 (inset: simulated stress-strain curves with h5/s 
~ 100) 

 

 

Figure 7 Contours of local stress and strain fields (von Mises equivalent stress, axial true strain and axial 
true stress). (a) SC-Bi; (b) BCC-Bi; and (c) FCC-Bi at a macroscopic strain of 0.4; here the volume 
fraction of hard component is 50%, the stiffness ratio of hard/soft component is ~9.5 (h3/s) and the 
contours of hard domains are shown in the dashed box. 

 

          Next, the volume fraction-dependence of stiffness is illustrated for all lattices using a specified 

stiffness ratio of hard/soft component (h4/s ~ 15). Figure 8 shows the simulated stress-strain curves of the 
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composite stresses were normalized by the soft component response for both the dispersed-particle and 

bi-continuous morphologies. Comparison of the normalized stresses shows the stiffer mechanical 

behavior of the bi-continuous morphologies for all lattices and volume fractions. In the dispersed-particle 

composites, a substantial stress upturn was found due to the onset of significant interactions between the 

hard particles at large strains. In such cases, the stiffening effect due to the connectivity change was less 

pronounced at large strains. Interestingly, the major deformation mode was found to vary in the bi-

continuous composites over a range of imposed strains. The major mode was predominantly stretching in 

the SC-Bi composite, resulting in much greater stress responses. In contrast, the major deformation modes 

were predominantly bending and rotation in the FCC-Bi composite, leading to substantially lower stress 

responses. The normalized stresses in these SC-Bi and FCC-Bi composites were relatively uniform at all 

strains. However, there was a clear transition from the bending- and rotation-dominated to the stretching-

dominated mode in the BCC-Bi composites, which resulted in a remarkable stress upturn at large strains. 

The simulated results were further shown for the stiffness increase as a function of hard component 

volume fraction (the far right column in Figure 8). The stiffening effect decreased as the volume fraction 

of hard component increased in the SC lattice, which was experimentally evidenced in Figure 5. In 

contrast, the stiffening effect increased monotonically in the BCC lattice, and saturated around 50 ~ 60% 

hard component. The increased stiffening effect was also observed on the FCC lattice up to the equal 

fractions of hard and soft components. However, at the highest volume fractions (60 ~ 70% hard 

component), the stiffening effect began to diminish. Very strong co-axial interactions between the second 

nearest neighbor particles (on each corner of the unit cell) are responsible for the lessened stiffening at 

these higher volume fractions of hard component.  
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Figure 8 Stiffening effect as a function of volume fractions of hard/soft component obtained by 
numerical simulations: (a) SC and SC-Bi; (b) BCC and BCC-Bi; (c) FCC and FCC-Bi; (1 and 2: 
composite stresses normalized by the soft component stress, 3: stiffening factor, here the stiffness ratio of 
hard to soft component is h4/s ~ 15) 

 

2.3.  Mechanical Anisotropy 

          Long-range order in synthetic and natural materials often leads to anisotropy of the mechanical 

behavior. In particular, single crystals with SC, BCC and FCC lattices exhibit substantial anisotropic 

elasticity due to their symmetry features. Here, anisotropy maps are presented especially for small strains 

using micromechanical models of representative volume elements (RVE) of the six different 

morphologies (SC, SC-Bi, BCC, BCC-Bi, FCC and FCC-Bi) with a broad range of volume fractions of 

constituents. In a single crystal having the cubic symmetry, the anisotropy ratio is a non-dimensional 
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parameter, ( )44 11 122a C C C≡ − , that is strongly dependent on the magnitude of stiffness in the [111] 

direction relative to that in the [100] direction.[16] The anisotropy ratio hence provides a quantitative 

measure of how the directional mechanical stiffness varies with the crystallographic orientation. We 

computed the three independent elastic moduli of unit cells for all composites that are cubic-symmetric, 

using several different deformation conditions in simulations. Moreover, we examined the anisotropy 

change due to a change in a composite “type” from hard-in-soft to soft-in-hard at equal volume fractions 

especially for the bi-continuous morphology. Figure 9a illustrates the representative volume elements 

(only hard domains shown here) for the three different bi-continuous morphologies (SC-Bi, BCC-Bi and 

FCC-Bi highlighted in the blue, red and yellow boxes, respectively) with the two different composite 

types (hard-in-soft and soft-in-hard). When constructing the soft-in-hard composites with the bi-

continuous morphologies, the hard domain in the soft-in-hard composites was replaced by a network of 

rods and connections that reproduces the topological connectivity of the surrounding matrix; it should be 

noted that the soft-in-hard composites were not constructed by simply reversing the composition for the 

inner ligaments and the surrounding matrices. Therefore, the connectivity of ligaments in the bi-

continuous, soft-in-hard composites is topologically equivalent to that of the surrounding matrices in the 

dispersed-particle composites.   

          The anisotropy maps for these composites are presented for two different volume fractions of hard 

component (20% and 50%) in Figure 9b and Figure 9c. Here the magnitude of the vector on each 

crystallographic orientation represents the “relative” stiffness, or stiffness normalized by that in the [100] 

direction. If the material is isotropic ( 1a = ), the three dimensional shape is a unit sphere, resulting in 

further reduction in the number of independent elastic moduli (namely ( )44 11 12 2C C C= − ). The three-

dimensional maps of relative stiffness were constructed using Equation (7) and (8) provided in the 

Appendix. At the lower volume fraction of hard component (20%), the bi-continuous morphology 

exhibited greater anisotropy than the dispersed-particle morphology in all of SC, BCC and FCC lattices as 

shown in Figure 9b. Rod-connecting throughout the nearest neighbors resulted in a substantially 

increased stiffness in the [111] direction in the BCC and FCC lattice, while it led to a remarkably 

decreased [111] stiffness in the SC lattice at this particular volume fraction. However, rod-connecting for 

the bi-continuous morphologies diminished the anisotropy for all lattices in the hard-in-soft composites at 

the equal fractions of hard and soft components (Figure 9c). The anisotropy in these composites is, 

therefore, strongly dependent on the volume fraction of hard/soft component as well as the change in 

connectivity. Moreover, the change of composite type from hard-in-soft to soft-in-hard composites also 

suppressed the anisotropy at the equal volume fractions, except for the BCC-Bi. Interestingly, the change 

from hard-in-soft to soft-in-hard influenced the anisotropy significantly in the BCC-Bi. In the hard-in-
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soft composition, deformation was dominated by bending and rotation modes in the [100] direction, 

which led to much more compliant behavior in that direction. However, in the soft-in-hard composite, 

deformation was dominated by bending and rotation modes in the [111] direction (or by stretching mode 

in the [100] direction). Moreover, in the FCC-Bi, deformation of the soft-in-hard composite was still 

dominated by the bending and rotation modes in the [100] direction throughout the relatively stiff 

ligament networks.  

 

Figure 9 Three-dimensional maps of stiffness as a function of loading direction in the SC, BCC and FCC 
lattice. (a) Unit cells depicting hard domains in bi-continuous SC, BCC and FCC morphologies in two 
different composite types: “hard-in-soft” and “soft-in-hard”; Anisotropy maps of (a) composites with 
volume fraction: 25%/75% for hard-in-soft composites; (b) composites with volume fraction: 50%/50% 
for hard-in-soft and soft-in-hard composites; here the stiffness ratio is h4/s ~ 15; a is the anisotropy ratio; 
and the magnitude of each vector on the surface represents the directional stiffness relative to that in the 
[100] direction 
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          The effect of change in the composite type from hard-in-soft to soft-in-hard in the bi-continuous 

morphology is addressed for the mechanical behaviors of the BCC and FCC composites in Figure 10. 

The corresponding RVEs for the hard domains are presented in Figure 9a (BCC highlighted by the red 

dashed box and FCC highlighted by the yellow dashed box). In the BCC lattices (Figure 10a), the soft-in-

hard composites exhibited much stiffer behavior, compared to the hard-in-soft composites. This behavior 

resulted from a change in the major deformation mode to stretching in the [100] direction. The change in 

deformation mode became more significant with increasing stiffness ratio. In the bi-continuous FCC 

morphology, the stress-strain behavior was again stiffened, in particular, at large strains in the two 

material pairs of h3/s ~ 9.5 and h4/s ~ 15, as shown in Figure 10b. The overall stiffening effect due to the 

change in composite type was much smaller for the FCC-Bi composites than that observed in the BCC-Bi 

composites. The ligament network was geometrically similar to the surrounding matrix in the close-

packed FCC lattice, so that deformation was still dominated by bending and rotation modes in the [100] 

direction, which is comparable to that in the hard-in-soft composites.  

 

Figure 10 Effect of change of composite type (hard-in-soft and soft-in-hard) in bi-continuous BCC and 
FCC composites at two different stiffness ratios of hard to soft components (h3/s ~ 9.5 and h4/s ~ 15). (a) 
Stress-strain curves in BCC-Bi (b) Stress-strain curves in FCC-Bi  
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Figure 11 Anisotropy as a function of hard component volume fraction. (a) Anisotropy ratio in the 
dispersed-particle composites; (b) Anisotropy ratio in the bi-continuous composites (with h4/s ~ 15) 

  

          Figure 11 shows the anisotropy of dispersed-particle and bi-continuous composites as a function of 

an increasing volume fraction of hard component up to the maximum hard component volume fractions 

achievable in each lattice (SC: ~ 52%, BCC: ~ 67%, and FCC: ~ 74%). Over a broad range of volume 

fractions, the rod-like ligaments in the bi-continuous morphologies influenced substantially the anisotropy 

in these crystalline composites, especially in the SC and BCC lattices. However, the anisotropy was less 

influenced by topological connectivity in the FCC lattice; this was attributed to the fact this lattice has the 

densest network of hard ligaments. In the dispersed-particle morphologies, anisotropy increased 

monotonically as the volume fraction of hard components increased, especially in the SC and BCC 

lattices. Interestingly, while the maximum anisotropy was located near the maximum achievable hard 

component volume fractions in the dispersed-particle composites, it was observed at the particular 

fractions of ~20%, ~30% and ~40% for the bi-continuous BCC, SC and FCC composites, respectively. 

The anisotropy ratio was close to ~1, indicative of nearly isotropic behavior, in the very dilute dispersed-

particle composites (vhard = 10%), while significant anisotropy was observed at this low volume fraction of 

hard component in the bi-continuous composites. The hard network in these dilute bi-continuous 

composites was responsible for significant increases in the anisotropy in each of the crystal lattices. 

Furthermore, the dispersed-particle morphologies became more anisotropic than the bi-continuous 

morphologies for SC, BCC and FCC at volume fractions of ~35%, ~50% and ~50%, respectively. That is, 

the bi-continuous morphologies were more isotropic at the higher volume fractions of hard components 

than the dispersed-particle morphologies.  
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3. Conclusion 

          In this work, we examined the large strain mechanics of heterogeneous soft crystals through direct 

mechanical testing on 3D-printed prototypes and through numerical simulations. Multi-material 3D 

printing was used to design and fabricate precisely a set of representative composite prototypes with not 

only a wide range of constituent properties and volume fractions, but also a variety of morphologies. The 

heterogeneous soft crystals were prepared on SC, BCC or FCC lattices with either dispersed-particle or 

bi-continuous morphologies and with either hard-in-soft or soft-in-hard composite types. The results from 

these studies demonstrated that the topological connectivity of these heterogeneous soft crystals were 

critically influential in tailoring their large deformation mechanical features in tandem with the intrinsic 

material properties of the constituents and their volume fractions. The experimentally observed large 

strain mechanical responses were described quantitatively using numerical models with nonlinear elastic 

constitutive properties for the individual components; analysis of local stress and strain distributions 

within the numerical models then allowed a detailed examination of the dominant deformation 

mechanisms in each case. The bi-continuous composites, where the two domains are interpenetrating 

without any isolated regions, exhibited mechanical performance superior to the classical dispersed-

particle composites for the same lattice symmetries, by a combination of various deformation modes 

operative throughout the interpenetrating ligament networks. The mechanical anisotropy and its variations 

were also quantified using the micromechanical models over the same wide range of morphologies and 

volume fractions of components. The mechanical stiffnesses of these composites were strongly dependent 

on crystallographic orientation, thereby revealing another means for tailoring the mechanical responses. 

By extension, this work offers a first step towards designing the structure-property relationships of 

morphologically more complex phase-separated block copolymeric materials, such as thermoplastic 

copolymers, in which the large strain features are significantly influenced by the topological connectivity, 

volume fractions and nonlinear constitutive properties of the hard and soft components. Moreover, the 

new representative volume elements especially for the bi-continuous morphologies can be directly 

employed for tailoring large strain mechanical responses of cellular materials. 

 

Appendix 

• Micromechanical models under 3D periodic boundary conditions 

          Boundary value problems were solved using finite element computations to evaluate the stress-

strain behavior of soft crystalline composites. Periodic boundary conditions were imposed in all 
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directions to model the bulk behavior; we employed the method of fictitious nodes for implementing the 

generalized periodic boundary conditions as detailed in Sheng[17] and Danielsson.[18] The three-

dimensional periodic boundary condition for a pair of material points (A and B at the periodic pair 

surfaces) can be applied as follows, 

( ) ( )A B A B− = − ⋅ −u u F I X X ,         (1) 

where u  is the local displacement, F  is the prescribed macroscopic deformation gradient for a periodic 

unit cell, X  is the coordinate vector for the undeformed reference body, and I is the 2nd order identity 

tensor. Equation (1) provides kinematic constraints for the material points subject to the periodic 

boundary conditions. The macroscopic stress-strain behavior of the soft composites was then computed 

using the principle of virtual work for the unit cell under the prescribed deformation condition such that 

an internal virtual work due to admissible variations is balanced with an external virtual work, as follows, 

int extδ δ=W W .           (2) 

The internal virtual work can be expressed in terms of the Piola (engineering) stress and the deformation 

gradient (or displacement gradient), as follows, 

( ) ( )
0

int 0 0 0: : :
V

W dV V Vδ δ δ δ= = =∫ P X F X P F P H ,      (3) 

where P  is the local first Piola stress and 0V  is the volume at the reference configuration, ∂
≡
∂
xF
X

 is the 

local deformation gradient that maps the material points (X ) at the reference to the spatial points (x ) at 

the deformed configuration, ≡ −H F I  is the macroscopic displacement gradient, and (:) denotes the 

inner product of tensors. The external virtual work may be written as, 

( ) ( ) ( ) ( )
0 0

ext 0 0 0 0S S
W dS dSδ δ δ= ⋅ = ⋅∫ ∫P X n u X t X u X ,     (4) 

where P  is the local Piola stress, 0 0≡t Pn  is the surface traction, δu  is the virtual displacement in the 

reference configuration, and 0n  is the outward unit vector normal to the surface. For the periodic unit cell, 

the external virtual work may be computed, as follows, 

ext :Wδ δ=Ξ ξ ,          (5) 
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where ijξ  are the generalized degrees of freedom or displacement components of the fictitious nodes (j = 

1, 2, 3) and ijΞ  are the work conjugate generalized forces for the generalized degrees of freedom, ijξ . 

Here, the admissible variation of the generalized coordinates is identical to the variation of macroscopic 

displacement gradient, i.e. δ δ=ξ H . By using Equation (3), (4) and (5), the macroscopically “averaged” 

stress response in the periodic unit cell can be simply computed as follows, 

( )
0

0
0 0

1 1
V

dV
V V

= =∫P P X Ξ .         (6) 

The fully three-dimensional periodic boundary conditions were implemented and applied for all of the 

numerical simulations of the composites in this work. 

 

• Single crystal elasticity  

          A generalized three-dimensional anisotropic linear elasticity is expressed by stress (σ)-strain (ε) 

relationships of the form σ = Cε or ε = Sσ, where C and S are the fourth order stiffness and compliance 

tensors, respectively. The stiffness or compliance tensor has 21 independent components of elastic moduli 

in a fully anisotropic elastic material, which are commonly expressed as a symmetric 6 by 6 matrix using 

the Voigt notation. The independent elastic moduli are then reduced to three components in a cubic single 

crystal material through its major symmetries. The three independent elastic moduli of the fourth order 

elastic modulus tensor can be given by { }11 12 44, ,C C C  or { }11 12 44, ,S S S  in the Voigt notation. To 

compute the stiffness or compliance tensors, the periodic unit cells were subjected to simple deformation 

conditions including uniaxial compression, simple shear and uniform compaction. Once the three 

independent elastic moduli are found in a given cubic crystal, the directional Young’s modulus in an 

arbitrary crystal orientation of [ ]x y zl l l  can be computed by, 

11

1[ ]
[ ]x y z
x y z

E l l l
S l l l

= ,         (7) 

( )2 2 2 2 2 2
11 11 11 12 44

1[ ] 2
2x y z x y y z z xS l l l S S S S l l l l l l⎛ ⎞= − − − + +⎜ ⎟

⎝ ⎠
,     (8) 

where { }11 12 44, ,S S S  is the compliance in the original crystallographic axes.   
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• Constitutive behavior of base materials  

          A Neo-Hookean hyperelastic representation was chosen to describe the constitutive behaviors of 

the pure hard and soft components used in the composites. The Cauchy (true) stress can be expressed 

by[19], 

( ) ( )* * 1T K J
J
µ ʹ= + −T F F I ,         (12) 

where * 1 3J −=F F  is the isochoric part of the deformation gradient, 
( )2 1
E

µ
ν

=
+

 is the elastic shear 

modulus, 
( )3 1 2
EK
ν

=
−

is the bulk modulus, ν  is the Poisson’s ratio, and ( )ʹg  denotes the deviatoric 

part of a given tensor, i.e. ( ) ( ) ( )1
3
trʹ = − Ig g g . The elastic moduli we used for the models were: E = 

0.56, 1.92, 2.87, 5.27, 8.22, and 56.0 MPa, ν  = 0.49, 0.48, 0.47, 0.46, 0.45 and 0.45 for s, h1, h2, h3, h4 

and h5, respectively. Additionally, to reduce the inelastic effect in the materials, the rate of straining was 

chosen to be very low (under 0.001 /s), which was also used in the compression tests of the composites. 

Figure 12 shows the stress-strain behaviors of the hard and soft materials under compression in 

experiments and models. The predicted stress-strain curves nicely matched those in experiments. 
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Figure 12  Representative stress-strain behavior of the hard (“h1” ~ “h4”) and soft material (“s”) used in 
the composites under compression (symbols: experiment; lines: model) 
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