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Deletion of ribosomal protein genes is a common
vulnerability in human cancer, especially in concert
with TP53 mutations
Ram Ajore1,†, David Raiser2,†, Marie McConkey2, Magnus Jöud1, Bernd Boidol2, Brenton Mar2,

Gordon Saksena3, David M Weinstock4, Scott Armstrong5, Steven R Ellis6, Benjamin L Ebert2,3,*,‡ &

Björn Nilsson1,3,‡,**

Abstract

Heterozygous inactivating mutations in ribosomal protein genes
(RPGs) are associated with hematopoietic and developmental
abnormalities, activation of p53, and altered risk of cancer in
humans and model organisms. Here we performed a large-scale
analysis of cancer genome data to examine the frequency and
selective pressure of RPG lesions across human cancers. We found
that hemizygous RPG deletions are common, occurring in about
43% of 10,744 cancer specimens and cell lines. Consistent with
p53-dependent negative selection, such lesions are underrepre-
sented in TP53-intact tumors (P � 10�10), and shRNA-mediated
knockdown of RPGs activated p53 in TP53-wild-type cells. In
contrast, we did not see negative selection of RPG deletions in
TP53-mutant tumors. RPGs are conserved with respect to homozy-
gous deletions, and shRNA screening data from 174 cell lines
demonstrate that further suppression of hemizygously
deleted RPGs inhibits cell growth. Our results establish RPG
haploinsufficiency as a strikingly common vulnerability of human
cancers that associates with TP53 mutations and could be
targetable therapeutically.
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Introduction

The human ribosome consists of an rRNA scaffold and about 80

proteins, divided into two subunits. Ribosomal protein genes (RPGs)

are denoted RPS1, RPS2, etc. for the small (40S) subunit; RPL1,

RPL2, etc. for the large (60S) subunit.

Several recent lines of evidence hold that mutation of RPGs leads

to specific clinical and cellular phenotypes. Germline heterozygous

inactivating mutations or deletions in RPS19 and at least eight other

RPGs cause Diamond-Blackfan anemia (DBA), a disorder character-

ized by macrocytic anemia and cancer predisposition, and the

founding member of a class of disorders known as ribosomopathies

(Draptchinskaia et al, 1999; Gazda et al, 2006, 2008, 2012; Farrar

et al, 2008; Narla & Ebert, 2010; Vlachos et al, 2012; Raiser et al,

2014). Acquired somatic mutations in specific RPGs associate with

certain malignancies, including the 5q- subtype of myelodysplastic

syndrome (hemizygous deletions of RPS14; Ebert et al, 2008), T-cell

acute lymphoblastic leukemia (mutations in RPL5, RPL10, and

RPL22; Rao et al, 2012; De Keersmaecker et al, 2013), and

microsatellite-unstable endometrial and gastric cancer (mutations in

RPL22; Nagarajan et al, 2012; Novetsky et al, 2013). Eleven RPGs

are tumor suppressor genes in zebrafish, where hemizygous inacti-

vation of these genes causes malignant peripheral nerve sheath

tumors with high penetrance (Amsterdam et al, 2004; MacInnes

et al, 2008; Lai et al, 2009). In mouse models, RPG haploinsuffi-

ciency alters stem cell quiescence (Signer et al, 2014), homeobox

gene translation, and tissue patterning (Kondrashov et al, 2011; Xue

et al, 2015).

Despite these observations, the occurrence of RPG lesions in

human cancers has not been investigated systematically. We there-

fore carried out a large-scale analysis of cancer genome data to
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determine the frequency and selective pressure of RPG lesions

across human cancers. We first looked for chromosomal deletions

and amplifications and point mutations in RPGs using pre-existing

DNA copy number microarray and whole-exome sequencing data

from a total of 10,744 cancer specimens and cell lines. Because

recent studies have shown that RPG haploinsufficiency activates

p53 in ribosomopathies (Narla & Ebert, 2010; Raiser et al, 2014)

and the pathobiology of ribosomopathies can be alleviated by p53

inhibition (Volarevic et al, 2000; Sulic et al, 2005; Fumagalli et al,

2009; Barlow et al, 2010; Dutt et al, 2011; Jaako et al, 2011), we

hypothesized that inactivation of RPGs could lead to negative selec-

tion unless the cells have mutated TP53, and, accordingly, looked

for associations between inactivating RPG lesions and TP53 muta-

tion. While we observed few point mutations and homozygous dele-

tions in RPGs, we detected hemizygous RPG deletions in a large

proportion (43%) of samples. Consistent with negative selection,

further analyses revealed an underrepresentation of RPG deletions

in TP53-intact tumors, whereas we did not see any signs of negative

selection in TP53-mutant tumors. Furthermore, functional experi-

ments showed that deficiency of frequently deleted RPGs increases

p53 activity in TP53-intact cell lines and perturbs rRNA maturation

both in cell lines cultured ex vivo and in primary acute leukemia

cells with specific RPG deletions and expanded in vivo in xenograft

models. Finally, consistent with the low frequency of homozygous

deletion, analysis of genomewide shRNA screening data showed

that further suppression of hemizygously deleted RPGs inhibits the

growth of RPG-haploinsufficient cancer cells. We conclude that RPG

haploinsufficiency as a common feature of human cancers that asso-

ciates with TP53 mutations and could be targetable therapeutically.

Results

Haploinsufficiency for RPGs on the basis of hemizygous regional
deletions is a common feature of cancer genomes

We first analyzed DNA copy number profiles of 7,225 cancer speci-

mens belonging to 24 tumor types using data from The Cancer

Genome Atlas, TCGA (Cancer Genome Atlas Research Network

et al, 2013). Using log2 copy number ratio thresholds between �0.3

and �0.7 (median �0.5), we detected deletions affecting RPGs in

67–22% of specimens (median 43%), and in all tumor types

analyzed (Fig 1A and Table 1). In 58–12% (median 32%) of

tumors, we detected multiple RPG deletions (Fig 1C). Consistent

with negative selection, we observed lower deletion frequencies for

RPG than for other genes (Fig 1C and D). Validation in two indepen-

dent sets of copy number profiles of 2,476 specimens belonging to

13 tumor types from Tumorscape (Beroukhim et al, 2010) and

1,043 cancer cell lines from the Cancer Cell Line Encyclopedia

(CCLE; Barretina et al, 2012) identified the same RPGs as frequently

deleted (Figs 1B and EV1, and Table 1). In all three data sets, almost

all (97–100%) of RPG deletions had copy numbers consistent with

hemizygous loss (Fig 2A), and few RPGs showed recurrent homozy-

gous deletions (Table EV1). Throughout, RPGs were hit by regional

deletions covering multiple genes, and all frequently deleted RPGs

were co-deleted with well-known tumor suppressor genes, including

RPL26 on chromosome 17p, which is always co-deleted with TP53,

and RPS6 on chromosome 9p, which is always co-deleted with

CDKN2A. In addition to copy number changes, we examined the

spectrum of point mutations in RPGs using whole-exome sequenc-

ing data from 4,655 TCGA samples. In contrast to the high

frequency of hemizygous deletions, we found a low frequency of

point mutations in RPGs, although we noted recurrent mutations in

RPL5, RPL10, and RPL22 in several tumor types as reported previ-

ously (Nagarajan et al, 2012; Rao et al, 2012; De Keersmaecker

et al, 2013; Novetsky et al, 2013; Table EV2). In summary, these

data show that RPG haploinsufficiency on the basis of regional dele-

tions occurs in a large proportion of human cancers.

Deletion of RPGs in cancer cells is restricted by p53-dependent
negative selection

Recently, studies aimed at understanding the molecular mechanisms

of ribosomopathies have identified p53 as a central mediator of the

clinical features of these diseases (Narla & Ebert, 2010; Raiser et al,

2014). In both DBA and the 5q- syndrome, the hematopoietic pheno-

type is at least partly linked to p53 activation, and animal models

have confirmed p53 as a sensor of ribosome dysfunction (Volarevic

et al, 2000; Sulic et al, 2005; Fumagalli et al, 2009; Barlow et al,

2010; Dutt et al, 2011; Jaako et al, 2011). In normal cells, the

expression of RPGs is tightly coordinated. In DBA and the 5q-

syndrome, however, the RPG haploinsufficiency is thought to

perturb the stoichiometry of ribosomal proteins, leading to ineffi-

cient ribosome assembly and increased concentrations of free ribo-

somal proteins, some of which (RPL5 and RPL11) regulate key

components of the 5S ribonucleoprotein particle (Macias et al, 2010;

Donati et al, 2013; Sloan et al, 2013; Goudarzi & Lindstrom, 2016).

When ribosome biogenesis is blocked, the 5S SNP pre-ribosomal

complex is re-directed from assembly into 60S ribosomes to MDM2

E3 ubiquitin ligase inhibition, thereby inhibiting the ability of

MDM2 to target p53 for proteasomal degradation (Fumagalli et al,

2009; Zhang & Lu, 2009; Deisenroth & Zhang, 2010; Miliani de

Marval & Zhang, 2011; Zhou et al, 2013; Goudarzi & Lindstrom,

2016). Moreover, in vitro and in vivo studies support that the pheno-

typic effects of RPG haploinsufficiency can be alleviated by genetic

or pharmacological inhibition of p53 (Volarevic et al, 2000; Sulic

et al, 2005; Fumagalli et al, 2009; Barlow et al, 2010; Dutt et al,

2011; Jaako et al, 2011).

Because of these reports, we hypothesized that acquisition of

RPG deletions in cancer cells could lead to p53 activation and

thereby negative selection, unless the p53 pathway has been inacti-

vated. To test this hypothesis, we compared the copy number distri-

butions for RPGs versus other genes across 4,675 TCGA samples

having both copy number microarray and whole-exome sequence

data, enabling the detection of RPG deletions as well as deletions

and point mutations in TP53. We found an underrepresentation of

hemizygous RPG deletions in TP53-wild-type tumors (Wilcoxon

rank-sum P � 10�10), whereas RPGs and other genes showed iden-

tical copy number distributions in TP53-mutant tumors (Fig 2A).

Similarly, among TP53-wild-type tumors, but not among TP53-

mutant tumors, we found fewer cases with hemizygous deletions

affecting RPGs than with hemizygous deletions affecting random

gene sets of the same size (permutation testing P = 0.04 with 1,000

random sets of genes located on other autosomes than chromosome

17), whereas no difference was detected in TP53-mutant tumors.

Additionally, TP53-mutant tumors showed higher numbers of
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RPG deletions in total (Fig 2B), RPG deletions that could be detected

in TP53-wild-type tumors were enriched in tumors harboring

alternative p53 pathway-inactivating lesions, including MDM2

amplifications and CDKN2A deletions (Fig EV2). Taken together,

these results indicate that the p53 pathway restricts the acquisition

of RPG deletions in cancer cells.
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Figure 1. Hemizygous deletion of RPGs is a common feature of cancer genomes.
Given the evidence that RPG haploinsufficiency can alter cellular phenotypes and modulate oncogenesis, we performed a systematic examination of somatic alterations of
RPGs in cancer broadly.

A Deletion frequencies for different RPGs estimated from DNA copy number profiles of 7,275 primary cancer specimens belonging to 24 different tumor types (red).
B Analysis of DNA copy number profiles of 2,476 primary cancer specimens belonging to 13 tumor types (including four not represented in the TCGA) identified the

same RPGs as frequently deleted. Similar results were also calculated with DNA copy number profiles of 1,043 cancer cell lines (Fig EV1). The results shown were
obtained using log2 ratio �0.5 as threshold. Similar results were obtained with other reasonable thresholds.

C Histogram of number of deletions per tumor for RPGs and for 1,000 equally sized random gene sets in the TCGA samples. Tumors with multiple RPG deletions were
common. Consistent with negative selection, we also detected fewer deletions in RPGs than in 1,000 random gene sets of the same size. This plot was obtained with
a log2 threshold of �0.5, detecting both hemizygous and homozygous deletions.

D Corresponding plot obtained with the more conservative log2 threshold �2.0, primarily detecting homozygous deletions.
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Deletion of RPGs leads to loss of coordinated RPG expression and
p53 activation

Previous studies aimed at understanding the molecular mechanisms

of DBA and the 5q- syndrome have shown that decreased expres-

sion of specific RPGs (RPS6, RPS14, and RPS19) leads to p53 activa-

tion (Narla & Ebert, 2010; Raiser et al, 2014). However, the RPGs

we found to be deleted in human cancers have not been studied

functionally in this regard. To examine whether p53 senses

decreased expression of the frequently deleted RPGs, we used

shRNA-mediated knockdown in the TP53-wild-type lung adenocarci-

noma cell line A549 (Fumagalli et al, 2009; Dutt et al, 2011). For all

eight RPGs tested, multiple shRNAs caused elevated p53 protein

levels and increased P21 transcript levels (Figs 2C and D, and EV3,

and Table EV3). Similarly, knockdown of three of the most

frequently deleted RPGs in TP53-wild-type MOLM13 leukemia cells

caused elevated expression of p53 and four p53 target genes P21,

BAX, PUMA, and NOXA (Figs EV4 and EV5). Taken together, these

data indicate that p53 activation results not only from decreased

expression of the RPGs that are mutated in ribosomopathies, but

also from decreased expression of the RPGs that are frequently

deleted in cancer cells.

Since RPG haploinsufficiency is thought to activate p53 by

altering ribosomal protein stoichiometry (Fumagalli et al, 2009),

we tested for associations between RPG copy number anomalies

(RPG-CNAs) and altered RPG expression patterns using 4,919

TCGA samples having both DNA copy number microarray data

and global mRNA-sequencing data. We found a correlation

between copy number and expression for most individual RPGs

(Fig EV6A). Quantifying RPG co-expression by calculating correla-

tion coefficients for all pairs of RPGs, we detected less correlated

RPG expression in tumors with a high RPG-CNA burden

(Fig EV6B and C), whereas tumors with few RPG-CNAs showed

RPG co-expression patterns comparable to those observed in non-

cancerous tissues (Fig EV6D). These data indicate that RPG-CNAs

lead to uncoordinated RPG expression, which, together with the

shRNA knockdown data, provides a possible explanation for the

negative selection of RPG deletion observed in TP53-wild-type

tumors (Fig 2).

Deletion of RPGs in cancer cells with intact p53 function

We asked which RPG deletions are permissible in cancer cells with

intact p53 function. To this end, we specifically analyzed the 30 cell

lines from CCLE that are both TP53-wild-type and sensitive to the

p53-activating compound Nutlin-3 (IC50 < 8 lmol; Barretina et al,

2012; Sonkin et al, 2013), where the latter supports that p53 has not

been inactivated by alternative mutations in other genes. Interest-

ingly, the most recurrently deleted RPG in these cell lines was

RPL22 (Table EV4). Firstly, Rpl22�/� knockout mice have only

subtle phenotypes with no significant translation defects, probably

because these mice show increased expression of the paralog Rpl22-

like1 (Rpl22 l1) which is incorporated in the ribosome instead of

Rps22 (O’Leary et al, 2013). Secondly, RPL22 has been identified as

a potential tumor suppressor gene that is mutated or deleted in

T-ALL and several epithelial tumor types (Rao et al, 2012; Novetsky

et al, 2013; Goudarzi & Lindstrom, 2016). Another interesting obser-

vation was recurrent deletion of RPS6, which (like in the primary

tumors) was always associated with co-deletion of CDKN2A. These

data indicate that some RPG deletions are less likely to cause nega-

tive selection, either because of gene redundancy, because they do

not activate p53, or because they are associated with a pro-prolifera-

tive effect that allows the cells to escape the negative effect of p53

activation.

Further suppression of deleted RPGs inhibits the proliferation of
cancer cells

The almost complete lack of homozygous RPG deletions in the three

copy number data sets supports that such lesions are not tolerated.

These observations are consistent with the notion that ribosomal

proteins are essential for generation of functional ribosomes and cell

survival. To investigate whether RPG haploinsufficiency renders

cancer cells vulnerable to further suppression of ribosome function,

we analyzed two sets of shRNA screening data from 102 and 72

genomically annotated cancer cell lines (Cheung et al, 2011;

Marcotte et al, 2012). These pooled screens targeted 11,194 and

16,056 genes, including 26 and 55 RPGs, respectively. For each

targeted gene, the effect of knockdown on proliferation in cell lines

Table 1. Ten most frequently deleted RPGs.

Gene Chr Start (bp) End (bp)

TCGA CCLE Tumorscape

n % n % n %

RPL26 17 8,280,833 8,286,565 1,752 24.2 340 32.6 310 12.5

RPL13 16 89,627,064 89,633,237 1,430 19.8 204 19.6 222 9.0

RPS6 9 19,376,253 19,380,235 1,411 19.5 373 35.8 269 10.9

RPL17 18 47,014,850 47,018,935 1,335 18.5 393 37.7 173 7.0

RPL29 3 52,027,643 52,029,958 1,283 17.8 340 32.6 229 9.2

RPL3 22 39,708,886 39,715,670 1,205 16.7 263 25.2 152 6.1

RPL14 3 40,498,782 40,503,863 1,133 15.7 292 28.0 209 8.4

RPSA 3 39,448,203 39,454,032 1,129 15.6 284 27.2 202 8.2

RPL21 13 27,825,691 27,830,702 1,121 15.5 328 31.4 224 9.0

RPS15 19 1,438,362 1,440,492 1,108 15.3 264 25.3 170 6.9
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carrying one gene copy, relative to the effect in cell lines carrying at

least two gene copies, was scored (Marcotte et al, 2012; Shao et al,

2013). In both data sets, we observed strongly significant enrich-

ments of negative gene scores among RPGs (P = 1.0 × 10�8 and

P = 1.7 × 10�4, respectively; Fig 3A and B), indicating that further

suppression of RPGs preferentially inhibits the growth of RPG-

haploinsufficient cells.

Deletion of RPGs influences rRNA maturation in cancer cells

Previously, in vitro studies have shown that knockdown of RPS6

and other 40S RPGs impairs the processing of pre-ribosomal RNA

species into mature rRNA in ribosomopathies(Narla & Ebert, 2010;

O’Donohue et al, 2010; Raiser et al, 2014). To explore whether RPG

haploinsufficiency leads to rRNA maturation defects also in cancer

cells, we decided to analyze rRNA maturation across pediatric acute

lymphoblastic leukemia (ALL) samples harboring CDKN2A (9p)

deletions with and without concurrent deletion of RPS6. Deletions

targeting CDKN2A are present in 20–30% of B-cell ALL and 95% of

T-cell ALL. We first genotyped 47 previously banked pediatric ALL

samples using copy number microarrays. For two samples (one with

homozygous deletion of CDKN2A but intact RPS6 and one with

homozygous deletion of CDKN2A and hemizygous deletion of

RPS6), we were able to obtain viable cells, which were xenografted

into NOD scid gamma immunodeficient mice and expanded in vivo.

RNA from sorted tumor cells was assessed by Northern blot to

analyze pre-ribosomal RNA processing. Interestingly, the RPS6-

haploinsufficient case exhibited rRNA maturation defects similar to
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Figure 2. RPG haploinsufficiency associates with TP53 mutation status and p53 activation.

A RPG deletions are underrepresented in TP53-intact tumors, but not in TP53-mutant tumors. Plots show cumulative copy number distributions for RPGs (blue)
versus all genes (dashed black) for 4,675 TCGA samples having both copy number microarray and whole-exome sequence data. However, cases without TP53
mutation/deletion show fewer copy numbers consistent with heterozygous loss of RPGs compared to other genes (brackets), whereas cases harboring TP53
mutations/deletions show no corresponding difference. These plots also show that, regardless of TP53 mutation status, homozygous loss of RPGs is extremely rare.

B Number of hemizygous RPG deletions in TP53-mutant and -wild-type tumors. Boxes indicate medians and the first and third quartiles. Whiskers indicate first and
third quartiles �1.5 times the interquartile range. Notches indicate confidence intervals around the median. P-values indicate significance by Wilcoxon rank-sum
test.

C, D To obtain further support for p53-negative selection, we used shRNA-mediated knockdown of RPGs in A549 cells, which are TP53-wild type. Panels show p53
protein levels as analyzed by Western blot (b-actin loading control), and P21 transcript levels as analyzed by qPCR (ACTB normalization control) after 4–6 days of
expression of two shRNAs per tested RPG. Error bars indicate standard deviation between triplicates. Throughout, we observed increased p53 levels and P21
expression. These data support that RPG deletions lead to p53 activation and negative selection in cancer cells.
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those seen previously in shRNA-targeted RPG-deficient cells (cf.

Narla & Ebert, 2010; Raiser et al, 2014 and references therein),

namely a reduction in 41S species (18S-E, 21S, and 41S) and an

accumulation of 30S species (30S and 45S), indicating that heterozy-

gous deletion of RPS6 impacts on ribosomal RNA biogenesis in ALL

cells (Fig 3C and D). The difference in rRNA pattern observed in

ALL cells with and without deletion of RPS6 was comparable to the

difference in rRNA pattern observed in TP53-wild-type MOLM13

leukemia cells with and without shRNA knockdown of RPS6

(Fig EV7). Collectively, these observations provide the first evidence

that the rRNA maturation defect that is observed in ribosomopathies

on the basis of heterozygous inactivating mutations in other RPGs

(Narla & Ebert, 2010; Raiser et al, 2014) may also be present in

cancer cells with hemizygous RPG deletions.

Discussion

Here we report the novel finding that ribosomal protein genes are

routinely deleted across human cancers, particularly in concert with

TP53 mutation. Such a finding could lead to new possibilities for

cancer therapy in TP53-mutant patients. Previously, mutation of

RPGs (without concurrent TP53 mutation) has primarily been asso-

ciated with rare ribosomopathies, specific tumor subtypes, and

cancer development in zebrafish models.

The analyses in this study are based on a large number of samples

from primary samples, belonging to a broad range of different cancer

types. The results indicate that RPG deletions are enriched among

the samples that have concurrent TP53 mutation. This finding is in

accordance with previous studies on ribosomopathies (particularly
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Figure 3. Consequences of hemizygous RPG deletions.

A, B To investigate whether RPG haploinsufficiency renders cancer cells susceptible to further suppression of ribosome function, we analyzed genomewide pooled
shRNA screening data from the (A) shARP and (B) Achilles studies (data for 72 and 102 genomically annotated cancer cell lines, respectively). For each targeted
gene, the effect of knockdown on proliferation in cell lines carrying one gene copy, relative to those carrying at least two gene copies, was scored. We observed
strongly significant enrichments of negative gene scores for RPGs (solid blue; P = 1.0 × 10�8 and P = 1.7 × 10�4, respectively) compared to other genes (gray),
demonstrating that further suppression of hemizygously deleted RPGs inhibits cell growth.

C, D (C) To explore whether RPG haploinsufficiency causes rRNA maturation defects in cancer cells, we focused on pediatric ALL with 9p deletions targeting CDKN2A.
From two previously banked samples (one with homozygous CDKN2A deletion but intact RPS6 and one with homozygous deletion of CDKN2A and hemizygous
deletion of RPS6), we obtained viable cells, which were xenografted into NOD scid gamma immunodeficient mice and expanded in vivo. RNA from sorted tumor
cells was assessed by Northern blot to analyze pre-ribosomal RNA processing. The RPS6-haploinsufficient case exhibited rRNA maturation defects similar to those
seen previously in shRNA-targeted RPS6-deficient cells, namely (D) a reduction in 41S species (18S-E, 21S and 41S) and an accumulation of 30S species (30S and
45S). These observations provide the first evidence indicating that the rRNA maturation defect that is observed in ribosomopathies may also be present in RPG-
haploinsufficient cancer cells.
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DBA and the 5q-syndrome) showing that RPG haploinsufficiency

leads to activation of the p53 pathway, most likely through the 5S

RNP-MDM2 pathway. One of the current main hypotheses is that the

ribosomal assembly intermediate 5S ribonucleoprotein particle,

containing RPL5, RPL11, and the 5S rRNA, accumulates when ribo-

some biogenesis is blocked; the excess 5S RNP binds to murine

double minute 2 (MDM2), the main p53-suppressor in the cell,

inhibiting its function and leading to p53 activation. Our data indi-

cate that targeted degradation of the mRNAs for RPGs that are

frequently deleted in cancer leads to p53 activation in A549 and

MOLM13 cells, implicating p53 activation and (secondary to that)

negative selection as a probable cause of the lower frequencies of

RPG deletions seen among TP53-wild-type tumors. Moving forward,

follow-up studies will be needed to examine whether this activation

is mediated through the 5S RNP-MDM2 pathway. Additionally, anal-

yses of clonal heterogeneity (e.g., using single-cell experiments or

mathematical modeling of allele ratios) could illuminate whether

p53 mutation precedes RPG deletion during oncogenesis.

Further, a central question about the biochemical consequences

of RPG haploinsufficiency will be to determine precisely how these

alterations affect rRNA maturation in cancer cells. Our data, though

limited in sample size, indicate that rRNA patterns in acute

lymphoblastic leukemia cells harboring RPS6 deletion are perturbed

in the same way as in cell lines with shRPS6 knockdown. These

observations motivate further studies with larger numbers of

samples to determine how variation in rRNA patterns associates

with genetics lesions in RPGs.

Finally, genes that are hemizygously deleted are not necessarily

drivers but can confer susceptibility for therapies (Muller et al,

2012; Nijhawan et al, 2012; Liu et al, 2015). Our study represents

the first detailed examination of vulnerabilities in a specific cellular

component. Our data show that RPG haploinsufficiency is a strik-

ingly common vulnerability that is enriched among p53-deficient

tumors, which are often hard to treat. Our results raise the question

whether it could be possible to exploit RPG haploinsufficiency to

selectively kill cancer cells. A number of drugs that modulate riboso-

mal function exist, including rapamycin and other inhibitors (“rapa-

logs”) of the mammalian target of rapamycin (mTOR; Easton &

Houghton, 2006), and compounds that inhibit ribosome biogenesis

by inhibiting rRNA synthesis (Drygin et al, 2011; Bywater et al,

2012; Peltonen et al, 2014; Colis et al, 2014). These drugs are active

against subsets of human tumors, but their therapeutic scope is

unknown and could depend on the presence of ribosome defects.

Future studies will inform how RPG deletions can be used for the

treatment of a large subset of human cancer.

Materials and Methods

Cancer genome data sets

Firstly, we obtained normalized, segmented Affymetrix and Agilent

DNA copy number data (downloadable.seg files) representing 7,225

primary tumor samples belonging to 24 tumor types from TCGA and

with matched whole-exome sequencing data (somatic mutations;

4,675 samples) and RNA-sequencing data (4,919 samples; Cancer

Genome Atlas Research Network et al, 2013; http://cancergenome.

nih.gov/). Gene-wise copy numbers by averaging the copy number

signal across genes (from annotated gene start to gene end) in each

sample. Secondly, we obtained corresponding data Affymetrix DNA

copy number data representing 2,476 primary tumor samples belong-

ing to 13 tumor types from Tumorscape (Beroukhim et al, 2010;

http://www.broadinstitute.org/tumorscape), and for 1,043 cancer

cell lines from the CCLE (Barretina et al, 2012; http://www.broad

institute.org/ccle). To determine whether a gene was deleted, we

applied log2 copy number thresholds between �0.3 and �0.7, corre-

sponding to linear scale copy numbers 1.6 and 1.2, respectively. A

log2 ratio of �0.7 corresponds to the theoretical copy number ampli-

tude for a hemizygous deletion that present in all tumor cells in a

sample with 80% tumor cell fraction (a TCGA inclusion criterion).

This threshold is conservative as it does not leave any room for

clonal heterogeneity, technical underestimation, or noise. The log2
ratio �0.3 corresponds to the midpoint between the theoretical copy

number and the euploid, and is less conservative. To call homo-

zygous deletions, we used a log2 ratio threshold of �2.0, correspond-

ing to copy number 0.5 in linear scale. For completeness, we

repeated our analyses with other reasonable thresholds, yielding

results in broad agreement with those shown. The file processing

and statistical analyses were done with Matlab (http://www.math

works.com), R (http://www.r-project.org), Ultrasome (Nilsson et al,

2009), RenderCat (Nilsson et al, 2007), and various scripts. The set

of RPGs was defined by the 78 annotated genes encoding the known

proteins of the small and large ribosomal subunits (Fig 1).

Lentiviral shRNA vectors and infection

Lentiviral shRNAs targeting frequently RPGs in the pLKO.1 or

pLKO_TRC005 vector were obtained from the The RNAi Consortium

(TRC) at the Broad Institute (Table EV3). Lentivirus was produced

in 293TL cells. A549 cells were infected with 1 day after plating in

the presence of 8 lg/ml polybrene (Sigma-Aldrich) and selected

24 h later with 2 lg/ml puromycin (Sigma-Aldrich) for at least 48 h

before collection and processing for protein lysates or mRNA. A549

cells were maintained at 37°C and 5% CO2 in F-12K medium

(ATCC) supplemented with 10% fetal bovine serum and 1% pen/

strep/glutamine (Gibco). MOLM13 cells were transduced by spinfec-

tion with 8 lg/ml polybrene (Sigma-Aldrich). The cells were

selected at 24 h after transduction with 0.3 lg/ml puromycin for

48 h. Puromycin-selected cells were harvested and divided as per

experimental need for processing RNA or protein lysate. MOLM13

cells were maintained in RPMI 1640 supplemented with 10% fetal

bovine serum and 1% PEST (Gibco).

Western blot

Cells for protein analysis were lysed with Pierce� IP Lysis Buffer

(Thermo Scientific). Western blots were performed using 25–50 lg
of protein and primary antibodies against p53 (DO-1; Santa Cruz

Biotechnology) at 1:500 dilution and b-actin (C4; Santa Cruz

Biotechnology) at 1:3,000 dilution. HRP-conjugated anti-mouse

secondary antibody (GE Healthcare) was used at 1:10,000 dilution.

Immunoreactive proteins were visualized using SuperSignal� West

Pico Chemiluminescence Substrate (Thermo Scientific). MOLM13

cells were lysed with Biorupter Pico (Diagenode) using 30/30 s on/

off for 10-min program in Laemmli sample buffer (Bio-Rad). Blots

were probed with primary antibody against p53 (Sc-126, DO-1,
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Santa Cruz Biotechnology) at 1:1,000 dilution and b-actin (Sc-8432,

C-1; Santa Cruz Biotechnology) at 1:3,000 dilution.

Quantitative real-time PCR

RNA was purified from A549 and MOLM13 cells using TRIzol (Invit-

rogen) and RNeasy mini kit (cat no 74104), respectively. First-strand

cDNA was generated using 100–200 ng of total RNA and oligo(dT)

primers with the Superscript III reverse transcription kit (Invitro-

gen), and Omniscript RT kit (cat no 205113) was used for cDNA

synthesis from MOLM13 cells. Quantitative RT–PCR was performed

using TaqMan� Gene Expression Master Mix (Applied Biosystems)

or SYBR� Green PCR Master Mix (Applied Biosystems) on an ABI

Prism 7900HT system and StepOnePlus Real-Time PCR system

(Applied Biosystems). We used TaqMan� assays to assess the

knockdown effect for RPS6 (Hs01058685_g1), RPL26 (Hs0086

4008_m1), RPL13 (Hs00744303_s1), RPL21 (Hs03003806_g1),

RPL29 (Hs00426490_g1), RPL14 (Hs03004339_g1), RPSA (Hs0034

7791_s1), and RPS12 (Hs04184906_g1) using ACTB (ABI #401846)

as control, and P21 (Hs00355782_m1), NOXA (Hs00560402_m1),

PUMA (Hs00248075_m1), BAX (Hs00180269_m1) were assessed

using GAPDH (Hs02758991_g1) as endogenous control for MOLM13

cells. Quantitative PCR for P21 and ACTB was performed using

SYBR� Green PCR Master Mix (Applied Biosystems) and the follow-

ing primers: P21 forward 50-GCTCTGCTGCAGGGGACAGC-30; P21

reverse 50-GCCGCCGTTTTCGACCCTGA-30; ACTB forward: 50-
AGCGAGCATCCCCCAAAGTT-30; and ACTB forward: 50-GGGCAC-
GAAGGCTCATCATT-30 for A549 cells.

Analysis of leukemia samples

We obtained DNA extracted from 47 blood and bone marrow

samples taken at diagnosis from patients with pediatric ALL. The

samples were collected and banked at the Dane Farber Cancer Insti-

tute subject to informed consent (Dana Farber Cancer Institute,

institutional review board protocol no. 05-001). The experiments

conformed to the principles set out in the WMA Declaration of

Helsinki [http://www.wma.net/en/30publications/10policies/b3/]

and the NIH Belmont Report [https://www.hhs.gov/ohrp/regula

tions-and-policy/belmont-report/]. The samples were analyzed on

Affymetrix 6.0 arrays (Affymetrix Inc.; data available for download

from the ArrayExpress repository accession no. E-MTAB-5450).

Copy number changes were delineated using the program Ultrasome

(Nilsson et al, 2009). We obtained banked tumor cells and

expanded them in vivo in NOD scid gamma immunodeficient mice

for about 6 months. When the mice appeared moribund, they were

sacrificed. Cells harvested from the spleens and bone marrow were

stained with anti-human CD45 (Miltenyi Biotec) and sorted by fluo-

rescence-activated cell sorting to purify tumor cells, from which

RNA was isolated for rRNA maturation analysis by Northern blot

(Qiagen kits). For Northern blot analysis, gel-fractionated RNA was

transferred to zeta-probe membranes (Bio-Rad). An oligonucleotide

probe 50-CCTCGCCCTCCGGGCTCCGTTAATGATC-30 (complemen-

tary to sequences 5520–5547 spanning the boundary between 18S

rRNA and ITS1) was labeled with 32P using T4 polynucleotide

kinase and hybridized overnight with membrane-bound RNA at

37°C in ULTRAHyb-Oligonucleotide hybridization buffer (Ambion).

Membranes were washed at 37°C with 6× SSC and subjected to

phosphorimager analysis. MOLM13 RPS6 knockdown RNA

samples were electrophoretically fractioned in MOPS-gel running

buffer (cat no AM8671, Ambion) and transferred to Biodyne nylon

membrane (cat no 77016, Thermo Scientific) using semi-dry blot

method. Hybridization and washing steps were followed as recom-

mended in Northern Max kit (AM1940, Thermo Scientific). The

biotinylated cDNA probe hybridization was visualized following

Chemiluminescent Nucleic Acid Detection Module (cat no 89880,

Thermo Scientific).

The paper explained

Problem
The human ribosome consists of an rRNA scaffold and about 80
proteins, divided into two subunits. Ribosomal protein genes (RPGs)
are denoted RPS1, RPS2, etc. for the small (40S) subunit; RPL1, RPL2,
etc. for the large (60S) subunit. Increasing evidence holds that muta-
tion of RPGs leads to specific clinical and cellular phenotypes, includ-
ing Diamond-Blackfan anemia, the 5q- subtype of myelodysplastic
syndrome, and specific tumor types. Furthermore, many RPGs are
tumor suppressor genes in animal models_ENREF_13. Despite these
observations, which support a link between RPG lesions and cancer,
the occurrence of RPG lesions in human cancers has not been investi-
gated systematically.

Results
We carried out a large-scale analysis of cancer genome data to deter-
mine the frequency and selective pressure of RPG lesions across
human cancers. We first looked for chromosomal deletions and ampli-
fications and point mutations in RPGs using pre-existing DNA copy
number microarray and whole-exome sequencing data from a total of
10,744 cancer specimens and cell lines. Because recent studies have
shown that RPG haploinsufficiency activates p53 in ribosomopathies,
and the pathobiology of ribosomopathies can be alleviated by p53
inhibition, we hypothesized inactivation of RPGs could lead to nega-
tive selection unless the cells have mutated TP53, and, accordingly,
looked for associations between inactivating RPG lesions and TP53
mutation. While we observed few point mutations and homozygous
deletions in RPGs, we detected hemizygous RPG deletions in about
43% of samples. Consistent with negative selection, further analyses
revealed an underrepresentation of RPG deletions in TP53-intact
tumors, whereas we did not see any signs of negative selection in
TP53-mutant tumors. Furthermore, functional experiments showed
that deficiency of frequently deleted RPGs increases p53 activity in
TP53-intact cell lines and perturbs rRNA maturation both in cell lines
cultured ex vivo and in primary acute leukemia cells with specific RPG
deletions and expanded in vivo in xenograft models. Finally, consistent
with the low frequency of homozygous deletion, analysis of genome-
wide shRNA screening data showed that further suppression of
hemizygously deleted RPGs inhibits the growth of RPG-haploinsuffi-
cient cancer cells.

Impact
Genes that are hemizygously deleted are not necessarily drivers but
can confer susceptibility for therapies. Our data show that RPG
haploinsufficiency is a strikingly common vulnerability that is enriched
among p53-deficient tumors, which are often hard to treat. Our
results raise the question whether it could be possible to exploit RPG
haploinsufficiency to selectively kill cancer cells. A number of drugs
that modulate ribosomal function exist. These drugs are active against
subsets of human tumors, but their therapeutic scope is unknown
and could depend on the presence of ribosome defects. Future studies
will inform how RPG deletions can be used for the treatment of a
large subset of human cancer.
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Analysis of shRNA screening data

To test whether further suppression of hemizygously deleted RPGs

inhibits cell growth, we used genomewide, pooled shRNA screening

data from the Achilles and shARP studies (Cheung et al, 2011;

Marcotte et al, 2012). The Achilles study provided data on 102 cell

lines infected with a pool of lentivirally delivered shRNAs,

composed of 54,020 shRNAs targeting 11,194 genes. The shARP

study provided data on 72 cancer cell lines infected with a pool of

78,432 shRNAs targeting 16,056 genes. Gene scores reflecting the

effect on knockdown on cell growth in cell lines carrying one copy

versus at least two copies were provided with the original publica-

tions (Cheung et al, 2011; Marcotte et al, 2012; Shao et al, 2013).

To test for enrichment of negative scores (indicating depletion)

among RPGs compared to other genes, we used RenderCat (Nilsson

et al, 2007).

Expanded View for this article is available online.
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