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Abstract We present in outline a theory of sensorimotor
control based on dynamic primitives, which we define as
attractors. To account for the broad class of human interac-
tive behaviors—especially tool use—we propose three dis-
tinct primitives: submovements, oscillations, and mechanical
impedances, the latter necessary for interaction with objects.
Owing to the fundamental features of the neuromuscular sys-
tem—most notably, its slow response—we argue that encod-
ing in terms of parameterized primitives may be an essential
simplification required for learning, performance, and reten-
tion of complex skills. Primitives may simultaneously and
sequentially be combined to produce observable forces and
motions. This may be achieved by defining a virtual trajec-
tory composed of submovements and/or oscillations inter-
acting with impedances. Identifying primitives requires care:
in principle, overlapping submovements would be sufficient
to compose all observed movements but biological evidence
shows that oscillations are a distinct primitive. Conversely,
we suggest that kinematic synergies, frequently discussed as
primitives of complex actions, may be an emergent conse-
quence of neuromuscular impedance. To illustrate how these
dynamic primitives may account for complex actions, we
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1 Introduction

Over the past decades, research on sensorimotor control has
gained momentum as is evident in new journals, conferences,
and more highly visible publications. This growth in both fun-
damental and applied motor neuroscience is partly spurred
by applications to rehabilitation, robotics, and brain-machine
interfaces. Though welcome, the sheer number of studies,
experimental and computational, has reached a point where
cohesive understanding seems beyond any single person’s
ability. A fundamental mathematical theory would be advan-
tageous to organize and structure this data. We believe that
with advances in computational and theoretical work over the
past decades, a theory has come within reach. The goal of this
paper is to integratesomerecurringfundamentalconcepts into
an outline of a comprehensive theoretical framework.

To establish a foundation for a theory of human sensori-
motor control that is reliable and incrementally revisable, it
is necessary to go beyond the usual practice of developing
a model for a narrowly specified sensorimotor task. Many
such models have described mechanisms and control struc-
tures that may underlie a specific behavior. These models
have employed different mathematical tools, ranging from
Bayesian statistics to nonlinear dynamics and optimal feed-
back control, to name just a few. While useful, insights gained
thereby have proven difficult to integrate with other models
(which are often seen as competing theories) and more or less
impossible to generalize. In our view, the best way to develop
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a fundamental mathematical theory of human sensorimotor
control is to start with broader strokes.

Rather than choosing a suitable exemplary task, our
approach is to address a fundamental and broad class of
actions: tool use, a hallmark of human behavior. While some
animals have been shown capable of making and using tools,
this ability remains the distinctive signature that has given
humans an evolutionary advantage (Boesch and Boesch
1990; Hunt 1996; Johnson-Frey 2004; Kenward et al. 2005).
Hence, we propose a framework for how humans physically
interact with and manipulate objects. This class of behavior
intentionally goes beyond the typical study of isolated con-
trolled experimental movements, such as walking on level
ground without challenges like obstacles or uneven terrain,
or reaching and pointing without interacting with objects.
Examples of interactive tasks range from opening a door to
carrying a cup of coffee, or more exotic skills such as fly
casting or cracking a whip.

Where to begin? Any competent theory must address the
prominent limitations of the human neuromuscular system.
One of the most critical features of the neuromuscular system
is that neurons and muscles are slow. The fastest neural trans-
mission speed in humans is no more than 120 m/s (animals’
conduction speed is slower and less economical), which still
compares very poorly with information transmission in elec-
tro-mechanical systems such as robots, which can conserva-
tively be estimated at 108 m/s, about a million times faster
(Kandel et al. 2000). Furthermore, muscles are slow. The typ-
ical twitch contraction time1 for the human biceps brachii is
about 50 ms (Kandel et al. 2000). Assuming a linearized
model to approximate this behavior implies a bandwidth of
about 3 Hz. In comparison, electromechanical technology
routinely achieves bandwidths in excess of hundreds of Hz
(electro-magnetics) to thousands of Hz (electro-hydraulics).

Despite slow muscles and neural delays, humans achieve
astonishing dexterity manipulating objects—and especially
using tools—far superior to anything yet achieved in robotic
systems. Slow neuromechanical response implies that pre-
diction using some form of internal representation is a key
aspect of human motor control, yet the nature of that rep-
resentation remains unclear (Crevecoeur et al. 2010). Con-
sider fly casting or cracking a whip: These objects comprise
flexible materials that interact with complex fluid dynam-
ics. Physics-based models of their behavior tax even mod-
ern supercomputers. The likelihood that anything resembling
a physics-based model underlies real-time control of these
objects seems slim, yet some humans can manipulate them
with astonishing skill. Even the mundane task of carrying
a cup of coffee without spilling is surprisingly challenging
because complex nonlinear dynamics relate motions of the

1 Twitch contraction time is the time from an impulsive stimulus
(e.g., electrical) to peak isometric tension.

cup to motions of the coffee. How are these complex objects
managed?

2 Dynamic primitives

How does the human system perform so well despite its limi-
tations? We believe that the answer lies in the distinctive char-
acter of human motor control. Mounting evidence indicates
that sensorimotor control relies on a composition of prim-
itive dynamic actions (Sternad et al. 2000a; Thoroughman
and Shadmehr 2000; Flash and Hochner 2005; Kargo and
Giszter 2008; Sternad 2008; Sing et al 2009; Degallier and
Ijspeert 2010; Dominici et al. 2011). We propose that human
motor control is encoded solely in terms of these primitive
dynamic actions.

Encoding control using primitives could dramatically
simplify the control of physical interaction with complex
dynamic objects. Returning to the example of cracking a
whip: it is sufficient to generate a large sweeping arm move-
ment (to put energy into the whip) and superimpose on it
a precisely timed wrist “flick” (to propagate a wave along
the whip). Each of these primitive actions may be specified
by a small number of parameters. The acquisition and reten-
tion of such a skill would consist of finding and retaining
suitable parameters of the primitive actions and how to com-
bine them. That, of course, may require extensive practice
but, once learned, only that small set of parameters need be
retained and retrieved.

The idea that motor control is accomplished by com-
bining primitive elements is not at all new, but the full
extent of its ramifications for motor control may not yet
have been fully articulated. The search for primitive ele-
ments that generate actions dates back at least a century.
Sherrington proposed stereotyped neuromuscular responses
to sensory events—the reflex—as building blocks of more
complex actions (Sherrington 1906; Gallistel 1980; Elliott et
al. 2001). The subsequent wave of behaviorist psychology
explored how stimulus-response relations (S-R units) could
become an “alphabet” for complex behavior. Learning a new
action would comprise “chaining” such S-R units or reflexes
such that each reflexive action resulted in sensory events that
“triggered” the next (Bässler 1986).

More recently, the concept of a synergy has gained pop-
ularity, although this concept also has a long history and
has been given many alternative meanings. The term often
refers to stereotyped patterns of simultaneous motion of
multiple joints or simultaneous activation of multiple mus-
cles that may simplify control (Bernstein 1967; Tuller et al.
1982; Cheung et al. 2005; Flash and Hochner 2005; Latash
2008; Soechting and Flanders 2008). A common theme is
that a synergy provides dimensionality reduction. For exam-
ple, in geometric terms, if the set of all joint angles defines
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a configuration space, a pattern of simultaneous motion of
multiple joints defines a curve or subspace within this config-
uration space. If joint motions are confined to that subspace,
yet account for most of the observed variance, this implies
that the central nervous system (CNS) may simplify control
of the high-dimensional musculo-skeletal system by select-
ing commands in the lower-dimensional subspace defined by
synergies. Importantly, this common account of synergies
constitutes an algebraic constraint, not a dynamic object.
Even time-varying synergies are not dynamic objects, but
constitute a kinematic constraint with time included as one
of the variables related by the constraint (d’Avella et al. 2003;
d’Avella et al. 2006). Reducing the dimension of commands
alone is not sufficient to account for how humans control
complex dynamic objects. For that, the primitives of control
should themselves be dynamic objects.

Discrete and rhythmic movements have been proposed
to indicate two classes of primitive actions (Schaal et al.
2000; Sternad et al. 2000a). They have been termed dynamic
primitives as they refer to patterns of behavior that may
robustly emerge from dynamic systems. To explain, two of
the prominent behaviors exhibited by nonlinear dynamic sys-
tems are point attractors and limit cycles; a point attractor
may describe a discrete movement to a stable posture; a limit
cycle may describe a rhythmic movement. Even some of the
simplest dynamic systems can exhibit these behaviors as may
be seen by considering the class of negative-resistance oscil-
lators from engineering (Strauss 1970). Those second-order
dynamic systems can exhibit robustly sustained oscillation
(limit cycle behavior) or stable convergence to a single state
(point attractor behavior) and changing the value of a single
parameter is sufficient to select or induce a transition between
these two alternatives. More biologically plausible models of
neural oscillators exhibit similar properties, thereby lending
support for these mechanisms generating observable behav-
ior (Fitzhugh 1961; Nagumo and Arimoto 1962; Matsuoka
1985; Ronsse et al 2009).

We define dynamic primitives as patterns of behavior that
robustly emerge from dynamic systems, that is, as attractors.
For example, a general representation of a dynamic system
describes the evolution of behavior in a finite-dimensional
state space, ẋ = f (x) where x ∈ Rn for finite n. An attractor
is a subset of state-space with at least two properties. First,
it is an invariant set: if the system begins in an invariant
set, it never leaves it. Second, that invariant set is attrac-
tive: if the system starts sufficiently close to it, the system
will ultimately converge to the attractor. Attractor sets may
have many forms. A point attractor is a single point in state-
space. An attractor set that is a closed path (or orbit) defines a
limit cycle. There are alternatives: Any path in state-space—
any trajectory—may be an attractor set; this may describe
discrete reaching movements, which exhibit trajectory sta-
bility (Lackner and Dizio 1994; Shadmehr and Mussa-Ivaldi

1994; Won and Hogan 1995; Burdet et al. 2001). Other sub-
sets of state-space (e.g., manifolds) may also be attractors;
these may describe synergies. Even the prodigiously complex
objects known as strange attractors with fractal geometry
may be attractor sets of chaotic dynamic systems which may
arise in more complex actions (Strogatz 1994).

One important consequence of this definition of dynamic
primitives is that an attractor exhibits a degree of robust-
ness that might be termed “temporary permanence” (perma-
nence due to robustness to perturbation; temporary because
dynamic primitives, like the phonemes of verbal communi-
cation, may have limited duration). The pattern of behavior
described by the invariant set (e.g., limit cycle oscillation,
trajectory, etc.) will re-emerge after perturbation, at least for
sufficiently small perturbations.

Another important consequence of this definition of
dynamic primitives as attractors is that it points to experi-
ments that might test their objective reality (at least in prin-
ciple). Owing to the robustness of the attractor, a dynamic
primitive should manifest as a common pattern of behavior
observable in different contexts and despite the presence of
noise or perturbations. This feature may lend itself to exper-
imental testing.

2.1 Submovements

An important requirement for a theory based on primitives is
that it should be possible to combine the elements to gen-
erate a repertoire of behavior. Are discrete and rhythmic
movements suitable primitives? In short, no. In our previous
work, we proposed precise quantitative definitions of dis-
crete and rhythmic movements (Hogan and Sternad 2007).
Our definitions were deliberately confined to the behavioral
or observational level, remaining silent about possible gen-
erative processes that might give rise to these observations.
For a movement to be discrete (i.e., distinct from other move-
ments), we reasoned that any consistent definition requires
that it should begin and end with a period of no move-
ment. With that definition, discrete movements can only be
sequenced and cannot overlap in time. This would severely
restrict the repertoire that could be generated.

To overcome this limitation, we propose that submove-
ments are primitive dynamic elements of motor behavior. In
essence, submovements are like discrete movements, but they
may overlap in time. A submovement is conceived as a coor-
dinative atom: just as atoms are primitive units of chemical
reactions, submovements are elements of dynamic coordina-
tion used to compose motor behavior. Just as atoms have com-
plex internal structure, submovements may require complex
patterns of neuromuscular activity to instantiate the dynamic
process from which a submovement emerges as an attractor.
Those patterns are like “subroutines” that can be called to
compose behavior.
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The possibility that observable movements are composed
of submovements is by no means a new idea. As early as
1899, Woodworth noted that voluntary movements appear
to be accomplished as a series of corrective submovements
Woodworth (1899); comprehensive and highly-cited reviews
are in Meyer et al (1988) and Elliott et al. (2001). More
recent work showed that the earliest movements made by
patients recovering after a paralyzing stroke were composed
of submovements with remarkably stereotyped speed pro-
files, even for different patients with different lesions (Krebs
et al. 1999). This degree of robustness or “temporary per-
manence” makes a compelling case that submovements are
indeed a primitive dynamic element of human motor behav-
ior. Further support is found in the analysis of infant reach-
ing movements, which initially exhibit submovements but
become essentially continuous at around 6 months of age
(von Hofsten 1991; Berthier 1996).

Motor behavior composed of submovements would sim-
plify prediction of the sensory consequences of motor actions
and facilitate detection of errors based on sensory informa-
tion (Burdet and Milner 1998). A study of submovement
changes during recovery after stroke showed that the time
between adjacent submovements decreased for patients in
the subacute phase (less than 1 month post-stroke), but not
for patients in the chronic phase (greater than 12 months
post-stroke). Submovements became more overlapped for all
patients, but more markedly for those in the subacute phase
(Rohrer et al. 2004; Dipietro 2012). This is consistent with
performance optimization by first “tuning” a forward model
to improve predictability and subsequently an inverse model,
as suggested by Bhushan and Shadmehr (1999).

We define a submovement as an attractor that describes a
smooth sigmoidal transition of a variable from one value to
another with a stereotyped time profile. For limb position, the
variable is a vector in some coordinate frame, e.g., hand posi-
tion in visually-relevant coordinates, X = [x1, x2 . . . xn]t .
Each coordinate’s speed profile has the same shape which is
non-zero for a finite duration d = e − b, where b is the time
when the submovement begins and e is the time it ends, i.e.,
it has finite support:

ẋ j (t) = v̂ jσ(t), j = 1 . . . n

where v̂ j is the peak speed of element j; σ(t) > 0 iff b <

t < e and σ(t) = 0 if t ≤ b or e ≤ t . The speed profile has
only one peak: there is only one point tp ∈ (b, e) at which
σ̇ (tp) = 0, and at that point σ(tp) = 1.

Note that this definition is deliberately confined to the
behavioral or observational level, remaining silent about pos-
sible generative dynamic processes that might give rise to
these observations. However, some constraints on those pro-
cesses can be identified. Given the available physiological
evidence, a dynamic process with a point attractor is not
sufficient; trajectory, rather than final position, is controlled

(Bizzi et al. 1984; Won and Hogan 1995). Because of its ste-
reotyped time-profile, this dynamic primitive may be termed
a “trajectory attractor.”

Submovements may be considered as basis functions and
combined with overlap in time to produce a wide range
of motion profiles. Though several combination operators
are possible, linear vector superposition of discrete point-
to-point reaching movements has been shown to provide an
accurate description of movement trajectories in which a tar-
get shifts abruptly (Flash and Henis 1991). Combining m
submovements yields

ẋ j (t) =
∑m

k=1
v̂ jkσ(t |bk, dk), j = 1 . . . n

where each submovement k has the same shape but may have
different peak speed v̂ jk , start time bk and duration dk . If sub-
movements are dynamic primitives and exhibit the stability
of discrete movements, the appropriate attractor set may be
a trajectory in state space.

2.2 Oscillations—composites or primitives?

From a strictly mathematical perspective, rhythmic move-
ments might not be primitive. They could be described
parsimoniously as a composite of elementary back-to-back
discrete submovements—i.e. overlapping submovements in
opposite directions. However, our goal is not just a mathe-
matical formalism but an account of biological sensorimotor
behavior. Rhythmic movement is very old phylogenetically
and available evidence indicates that oscillatory behavior is
a distinct dynamic primitive of biological motor control (and
not a composite of submovements) (Brown 1911; Brown
1914; Grillner and Wallen 1985; Schaal et al. 2004).

The term “rhythmic” is a loosely-defined umbrella term
with numerous variations and degrees of periodicity as dis-
cussed in Hogan and Sternad (2007). To render precision,
we denote the corresponding dynamic primitive as an oscil-
lation. Describing limb position as a vector quantity, x =
[x1, x2 . . . xn]t , we define the primitive as an attractor that
describes almost-periodic motion:
∣∣x j (t) − x j (t + �t + lT )

∣∣

< ε j∀t, l = ±0, 1, 2, . . . , j = 1 . . . n,

where T is a constant (its smallest value is the period), |�t | <

δ, and ε j and δ are small constants. This definition allows for
the ubiquitous fluctuations exhibited in biological behavior,
whether due to stochastic processes (noise) or deterministic
chaos (Raftery et al 2008). The main point of this definition is
that the average time course of an almost-periodic behavior
is strictly periodic. The amplitude and phase of each vector
component may differ, but all components exhibit an aver-
age time-variation with the same smoothly-varying shape and
period, T .
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As with submovements, this definition is deliberately con-
fined to the behavioral or observational level, remaining silent
about possible generative processes that might give rise to
these observations. However, it seems reasonable to conjec-
ture that oscillations emerge from a generative dynamic pro-
cess with a limit cycle attractor (Rabinovich et al 2006).

2.3 Mechanical impedance

Submovements and oscillations may provide a basis for
unconstrained movements, but contact and physical inter-
action are essential for that quintessentially human ability,
object manipulation and the use of tools. To account for
contact and physical interaction with objects, a third class
of dynamic primitives is required, mechanical impedance.
Loosely speaking, mechanical impedance is a generaliza-
tion of stiffness to encompass nonlinear dynamic behavior
(Hogan 1985). Mathematically, it is a dynamic operator that
determines the force (time-history) evoked by an imposed
displacement (time-history). The force and displacement
must be energetically conjugate; that is, they must refer to
the same point(s) so that incremental mechanical work dW
may be defined, i.e.,

dW = f t dx =
n∑

j=1

f j dx j

where x = [x1, x2 . . . xn]t is a vector of positions and f =
[ f1, f2 . . . fn]t is a vector of forces, both defined with respect
to any suitable coordinate frame. A mechanical impedance
operator Z maps displacement onto the conjugate force.

Z : �x(t) → f(t)

The form of this mapping may be nonlinear and time vary-
ing. For convenience, we usually assume a state-determined
representation

ż = Zs(z,�x, t)

f = Zo(z,�x, t)

where z = [z1, z2 . . .]t is a vector of state variables and Zs

and Zo are algebraic functions. For brevity, we often omit
the “mechanical” prefix. A time-invariant linearized form of
a state-determined impedance model may be represented as
a square matrix of transfer functions of arbitrary order that
relate input displacements to output forces.

The displacement inputs need not be at the same physical
location in space, provided they can be paired with energeti-
cally conjugate forces. For example, the several joints of the
upper extremity (shoulder, elbow, wrist, etc.) are in different
physical locations. The limb configuration may be described
using joint angles, θ = [θ1, θ2 . . . θn]t , a special case of
generalized coordinates (Goldstein 1980). The correspond-
ing generalized forces (joint torques) τ = [τ1, τ2 . . . τn]t

are defined such that incremental mechanical work may be
defined.

dW = τ t dθ =
∑n

j=1
τ j dθ j

Joint mechanical impedance maps joint angular displace-
ments onto the evoked joint torques.

Zjoint : �θ(t) → τ (t)

Like submovements and oscillations, humans can voluntar-
ily control mechanical impedance. The most obvious way
is by co-contraction of antagonist muscle groups. Oppos-
ing muscle groups may be activated simultaneously without
changing the net muscle-generated torque about a joint. If so,
because mammalian muscle impedance increases with mus-
cle force, the net mechanical impedance about the joint may
increase and it usually does2. This is because the net mechan-
ical impedance at a point is always the unsigned (positive)
sum of the component mechanical impedances acting at that
point. Mechanical impedance is also influenced by feedback
loops, especially those involving muscle spindles and Golgi
tendon organs at the spinal level or higher (Nichols and Houk
1976; Hoffer and Andreassen 1984). It is known that the gains
of these feedback pathways are highly modifiable, either via
gamma motoneuron activity or via descending drive to spinal
interneuron pools (Prochazka et al. 2000).

Is mechanical impedance a dynamic primitive in the sense
we have proposed above? An important fact is that mechani-
cal impedance is extremely robust to contact and interaction.
The force and motion of the hand are exquisitely sensitive to
contact with objects and to the mechanical dynamics of the
contacted objects. By coupling the object dynamics to those
of the hand and arm, contact, and physical interaction may
change the structure of the dynamics that give rise to behav-
ior. For example, if the hand dynamics were described by a
second-order model (e.g., to describe limit-cycle oscillation)
and the object dynamics were described by a second-order
model (e.g., a mass restrained by a damped spring), the cou-
pled system may exhibit fourth-order dynamics. This is why
stability may, in general, be compromised by contact. For a
detailed discussion, see (Hogan 1990). In contrast, mechan-
ical impedance at the hand is a property that emerges solely
from the dynamics of the neuromechanical system support-
ing the hand. It is completely independent of the behavior
of any object contacted, or even of any contact at all, and
exhibits the robustness we require for a dynamic primitive.

Another remarkable feature of mechanical impedance is
that, when coupled to skeletal inertia, nonlinear impedances
may be combined by linear superposition (Hogan 1985). That

2 A nonlinear relation between joint angle and muscle length may
introduce a “kinematic stiffness” which acts to reduce the joint stiff-
ness as muscle force increases (Hogan 1990). The increase of muscle
impedance with force usually predominates.
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is, given a set of different impedances {Z1, Z2, . . . Zk} appro-
priate for different aspects of a task, the total impedance is

Ztotal =
m∑

k=1

Zk

even if any or all of the component impedances Zk are non-
linear. These are among the reasons why modulating mechan-
ical impedance is a particularly efficacious way to control
interaction tasks (Toffin et al. 2003; Hogan and Buerger 2004;
Franklin et al. 2007). They are also the reasons we believe
that mechanical impedance is an essential dynamic primitive
for contact tasks.

3 Combining dynamic primitives

A theory based on dynamic primitives requires specifica-
tion of how those primitives may be combined. Mechanical
impedance describes how displacement of points of con-
tact affects the forces exerted at those points. Of course,
input from the CNS also influences forces exerted (if there
is an object to withstand it) or motion (if no object impedes
motion) and both CNS commands and contact events may
occur sequentially or simultaneously. For example, carrying
a cup of coffee requires movement to contact the cup, then
exertion of force on the cup to pick it up, and both simulta-
neously to transport the cup. It is therefore essential to spec-
ify how the different dynamic primitives interact to produce
observable forces and/or motions.

To do so, we use the concept of a virtual trajectory,
denoted by x0. It summarizes the net motion due to com-
mands from the CNS when the force exerted is identically
zero. One advantage of this construct is that the virtual tra-
jectory summarizes CNS motion commands in terms directly
comparable to the actual motion. We make the mild assump-
tion that the mechanical impedance is such that if the force
is identically zero, the corresponding displacement is also
identically zero, f ≡ 0 ⇒ �x ≡ 0. In words: if force and
all of its time derivatives and integrals are identically zero,
then the corresponding displacement and all of its time deriv-
atives and integrals are also identically zero. This allows us
to define the displacement input to the impedance operator,
�x, to be the difference between virtual and actual trajecto-
ries �x = x0 −x (in joint coordinates, �θ = θ0 −θ) (Hogan
1985).

An advantage of this construction is that the combination
of dynamic primitives—submovements, oscillations, and
impedances—defines a nonlinear extension of the equivalent
networks, widely used in engineering to describe physical
interaction between dynamic systems, e.g., an audio ampli-
fier and the speakers it drives (Hogan 1985; Johnson 2003;
Johnson 2003). According to our view of dynamic primitives,

the virtual trajectory x0(t) specified by the CNS may be com-
posed of submovements and/or oscillations. Based on the dif-
ference between virtual and actual trajectories, impedances
(also specified by the CNS) determine the forces evoked by
contact. With this representation, much of the prior engi-
neering insight about dynamic interaction in machines may
be extended to help understand physical interaction between
humans and their tools.

A virtual trajectory, x0(t), can be measured experimen-
tally, at least in principle (Latash 1992; Latash and Gottlieb
1992). It may be inferred from a measurement of mechanical
impedance, Z, force, f(t), and actual motion, x(t). Impedance
maps displacement onto the conjugate force.

Z : �x(t) → f(t)

Its inverse, in a region where it exists, maps force onto the
conjugate displacement.

Z−1 : f(t) → �x(t)

Thus, the virtual trajectory may be inferred from

x0(t) = x(t) + Z−1 {f(t)}
To illustrate with a simple scalar example, a linear spring of
stiffness, k, may be characterized by

f = k(x0 − x)

where f and x are conjugate in the sense that incremen-
tal mechanical work done by the spring is defined by dW =
f dx . The virtual trajectory x0 is the “other end” of the spring.
Knowing x , f and k, it can be inferred from

x0 = x + f/k

provided k �= 0. In the more general case, estimating a vir-
tual trajectory may be challenging. The central problem is
that estimates are exquisitely sensitive to the assumed order
of the neuromuscular impedance model used to infer a vir-
tual trajectory—see (Gomi and Kawato 1996), but compare
with (Gribble et al. 1998). However, there is no fundamen-
tal reason it cannot be determined and model-independent
experimental methods have been demonstrated (Hodgson
and Hogan 2000).

The virtual trajectory is closely related to the equilibrium-
point hypothesis, but is also distinct from it in important ways
(Feldman 1966; Feldman 1986; Feldman and Latash 2005).
A common theme running through the several variants of the
equilibrium-point hypothesis is the proposal that the CNS
encodes motor commands as time-varying equilibrium pos-
tures. However, if neuromuscular mechanics is such as to
define an equilibrium configuration for the limbs (specifi-
cally, if mechanical impedance is locally invertible, such that
Z−1 exists) then an instantaneous equilibrium point (virtual
trajectory) may always be defined, no matter what the CNS
may command. Thus, the mere existence of an equilibrium
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point, though not guaranteed (Z−1 might not exist), is not
by itself very surprising and does not provide compelling
evidence about how the CNS encodes motor commands.

We propose that what is learned, encoded, and retrieved
are the parameters of dynamic primitives, rather than any
details of behavior. The essence of our perspective is that
dynamic primitives are attractors, which emerge from under-
lying dynamic processes. A virtual trajectory composed
of submovements or oscillations (or both), as well as the
mechanical impedance required to manage contact and phys-
ical interaction with objects, may emerge from generative
processes that underlie a combination of submovements,
oscillations, and impedances.

3.1 Kinematic synergies may emerge from muscle
mechanical impedance

The idea that the CNS simplifies control of its many degrees
of freedom by imposing (and taking advantage of) patterns
of coordination has considerable appeal, and synergies are
often considered to be primitive elements of motor behavior
(Tuller et al. 1982). However, it is important to distinguish
between primitives and composites. As we next show, at least
some types of synergies may in fact be composites, a conse-
quence of muscle mechanical impedance.

Synergistic patterns of joint motion (which we have
termed kinematic synergies) have been reported in the lower
limb motions of cats and humans (Lacquaniti and Maioli
1994; Ivanenko et al. 2007; Dominici et al. 2011). Here,
we show how, if muscle impedance is taken into account,
these kinematic synergies may be an emergent consequence
of muscle tone. The term “muscle tone” generally refers to
patterns of sustained or tonic muscle activation that simul-
taneously engage agonists and antagonists, and upon which
time-varying or phasic muscle activation is superimposed
(Adams et al. 1997). Abnormal tone, common after neuro-
logical injury, occurs when some muscle or group of muscles
is hyperactive or hypoactive (Sanger et al. 2003). Follow-
ing from the robust observations about mammalian muscle
that stiffness increases with force, the simultaneous activa-
tion of all muscles in a limb—uni-articular or poly-articular
or both—will impose a non-zero stiffness about each of the
joints (Smith 1981; 1984; Kandel et al. 2000). Thereby, the
joint stiffness matrix Kθ becomes non-singular.

To see how a kinematic synergy may emerge, consider
joint angles θ = [θ1, θ2 . . . θn]t as coordinates of a configu-
ration space. A synergy defines a curve in that space. Denot-
ing distance along that curve by s1, the curve is defined by
a set of algebraic relations, θ j = S j1(s1), j = 1 . . . n or, in
compact notation, θ = S1(s1). A set of p synergies defines
an array of equations θ j = S ji (si ), j = 1 . . . n, i = 1 . . . p

or θ = S(s) where s = [
s1, s2 . . . sp

]t . The parameters s =

[
s1, s2 . . . sp

]t define the coordinates of a subspace of con-
figuration space (if p < n) or the entire configuration space
(if p = n). The equations θ = S(s) define a transforma-
tion between the new coordinates s and old coordinates θ .
A locally linear relation between displacements in the old
and new coordinates is obtained by differentiation

dθ = [∂θ/∂s] ds = ψ(θ)ds

where ψ(θ) is the Jacobian matrix associated with the trans-
formation.

Consider the set of kinematic relations between joint
angles and the coordinates of some point on the limb, e.g.,
the hand, x = L(θ). The relations between displacements
and forces are

dx = [∂L/∂θ] dθ = J(θ)dθ , and τ = J(θ)t f

where J is the Jacobian matrix associated with the change
from joint to hand coordinates. Joint coordinate compliance,
the inverse of stiffness, is defined by dθ = Cθ dτ where
Cθ = K−1

θ . Differentiating the relation between torques and
forces yields

dτ = J(θ)t df + �(θ)dθ where �(θ) = [
∂J(θ)t/∂θ

]
f

A little algebra yields

dθ =
[
(Kθ − �)−1Jt (J(Kθ − �)−1Jt )−1

]
dx

assuming the required inverses exist Mussa-Ivaldi and Hogan
(1991). The term in brackets defines a locally linear relation
between displacements in hand coordinates and joint coordi-
nates. Displacement of the hand by dx results in a displace-
ment of the joints by dθ , similar to what is achieved by a
displacement ds in the subspace defined by synergies. Thus,
(Kθ − �)−1Jt (J(Kθ − �)−1Jt )−1 is a particular instantia-
tion of ψ(θ).

Moreover, that locally linear relation may be integrated
to yield θ = ϒ(x) which is a particular instantiation of
θ = S(s). Note that the inverse Jacobian is not required,
thus there may be many more joint angles than hand coor-
dinates. It therefore follows that, given a suitable joint stiff-
ness, hand displacements determine a set of joint motion
synergies (Mussa-Ivaldi and Hogan 1991). A controller that
implements the hand displacement x and the joint stiffness
Kθ implements a kinematic synergy corresponding to that
joint stiffness. Furthermore, different joint stiffnesses yield
different kinematic synergies (Fig. 1).

Simultaneous tonic activation of all the muscles in a limb
will impose a joint stiffness that will, in turn, impose a syn-
ergy. Abnormal tonic muscle activation will impose a differ-
ent joint stiffness and, as a result, a different synergy. Such
abnormal synergies have been considered a sign of persistent
neuromotor deficits. In fact, they may be a consequence of
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Fig. 1 Simulation of a planar
arm with three joints. Zero
displacement of the hand from
the equilibrium posture is shown
black. The hand (tip) positions
of the three final postures are in
the same locations in both
panels. Different joint synergies
result from different joint
stiffnesses (k11: shoulder; k22:
elbow; k33: wrist). Left: A
stiffer shoulder resists deflection
and promotes collinearity of
hand, wrist and elbow. Right:
A stiffer elbow resists
deflection. Modified from a
figure in (Mussa-Ivaldi and
Hogan 1991) where details of
the simulation may be found.

y

x

k11=-10; k22=-1; k33=-1

y

x
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abnormal muscle tone, common in persons with neuromo-
tor deficits. “Re-tuning” of abnormal synergies as measured
by the clinical Fugl-Meyer scale accounts for a significant
portion of recovery (Dipietro et al. 2007). This may be due
to an underlying “re-tuning” of muscle tone, which may also
accompany recovery.

For clarity, the above analysis considered only steady-
state conditions, but it may readily be extended to include
dynamics and yields a similar result. A controller that
implements hand motion and joint mechanical impedance
also implements a kinematic synergy. Different mechani-
cal impedances yield different synergies and time-varying
mechanical impedance may yield time-varying kinematic
synergies. Of course, this analysis describes a mechanism
for generating only one form of synergy, at the level of
joint motions; other synergies may be generated in different
ways. Nevertheless, the analysis shows that muscle mechan-
ical impedance may provide a simple solution to Bernstein’s
“degrees-of-freedom problem” (Bernstein 1967). Whether
this solution is employed in the neuro-mechanical system
remains to be established by future research.

4 Example applications of dynamic primitives

4.1 Kinematically constrained motions

While much of the motor neuroscience literature has stud-
ied simple reaching movements, kinematically constrained
motions, such as opening a door or a drawer, are equally
ubiquitous in everyday life and, in fact, may be especially
informative. Consider the task of negotiating a circular con-
straint, e.g., opening a door or turning a crank. With negligi-
ble friction, minimal mechanical work is required to comply
with a constraint, and forces tangential to the constraint are
close to zero. Normal forces, however, may be substantial

and their pattern may reveal coordinative strategies used in
this context. For example, one strategy for negotiating con-
tact with an object is to learn the exact shape of the constraint
imposed by the object in sufficient detail to generate a motion
to follow it. Imperfect knowledge of the constraint or imper-
fect execution of the planned motion might evoke forces nor-
mal to the constraint. These, however, should be small and
decline with practice. In contrast, a strategy based on taking
advantage of low mechanical impedance may succeed with
a minimal representation of the constraint. With low hand
impedance, it is possible to negotiate the constraint with a
virtual trajectory comprising a small number of primitive
submovements that are not confined to follow the constraint.

Figure 2 shows exemplary data from a simple experiment
in which unimpaired human subjects rotated a circular crank
in the vertical plane using shoulder and elbow movements
(Russell 1990). The circular constraint is shown as the dot-
ted line. Using measured forces exerted on the crank and an
estimate of the two-degree-of-freedom mechanical stiffness
of the shoulder and elbow, the underlying virtual trajecto-
ries were estimated as outlined above. The continuous lines
in Fig. 2 show the estimated virtual trajectories (dark line:
upward motion; light line: downward motion). In both cases,
the virtual trajectories show a clear segmentation into two
nearly linear segments or submovements. While these obser-
vations should be interpreted with caution due to the very
approximate nature of the estimates, they are highly sugges-
tive that this task is learned and parsimoniously represented
in terms of dynamic primitives.

4.2 Impact tasks

Object manipulation frequently involves abrupt transitions
between free and interactive motion, which can evoke
impacts many times briefer than the fastest neuromechanical
response times. Consider striking a tennis ball with a racket
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Fig. 2 Negotiating a circular constraint (dotted line) with its center at
the coordinate origin. Estimated virtual trajectories for up (thick blue
line) and down (thin red line) suggest two submovements.

where the actual contact duration is on the order of 5 to 30 ms.
Pre-tuning impedance enables a controlled reaction to con-
tact that can overcome the limitations of neuromotor delays.
Impedance due to spinal reflex feedback enables reactions
faster than those mediated by supra-spinal feedback; intrinsic
muscle impedance enables even faster reactions, the so-called
“preflexes” (Loeb 1995). Each of these different contribu-
tions to overall impedance operates at a different time-scale
and therefore may be a distinct dynamic primitive. Whether
they are independent impedance primitives is (to the best of
our knowledge) a topic for future research.

Sternad and colleagues have studied how humans learn
to control impacts in a simple ball-and-racket task (Sternad
et al. 2001; Katsumata et al. 2003; Dijkstra et al. 2004; Wei
et al. 2008). In a virtual environment, a simulated ball was
dropped from a known height and struck to return to that
height with the ball and racket motion confined to the verti-
cal direction (Fig. 3). Remarkably, subjects learnt to exploit
task dynamics with practice, probably to simplify perfor-
mance (Sternad et al. 2000b, 2001). Owing to the brevity of
the impact, mechanical impedance plays a central role. Pilot
data showed increasing co-contraction of antagonist forearm
muscles before impact, which elevates mechanical imped-
ance (Fig. 3).

In contrast to rhythmically bouncing a ball, success on a
single bounce requires anticipatory action based on a stored
representation of the task dynamics. That representation may
be quite simple—for example, it may be sufficient to learn
and retrieve no more than the onset and amplitude of an
appropriate submovement—but, some internal representa-

Fig. 3 Rhythmic ball-bouncing. Top ball and racket kinematics. Mid-
dle wrist and elbow kinematics. Bottom EMG of antagonist forearm
muscles. Flexor and extensor exhibit similar modulation.

tion is required. Conversely, rhythmically bouncing the ball
may not require anticipation or any internal representation
of the task. In principle, it may be accomplished by a cycle-
to-cycle feedback process, e.g., using ball height on the previ-
ous bounce to correct the parameters of a primitive oscillation
(e.g., amplitude and frequency) with no stored or recalled rep-
resentation of task dynamics (de Rugy et al. 2003; Siegler et
al 2010). Furthermore, if the task dynamics are sufficiently
oscillatory, i.e., nearly lossless collisions, rhythmic bounc-
ing may capitalize on synchronization due to entrainment (a
characteristic exhibited by nonlinear dynamic oscillators) to
reduce performance variability even without visual feedback
of bounce height. In fact, experimental studies show that var-
iability of ball height is greater in discrete performance than
in rhythmic performance, consistent with this speculation
(Fig. 4).

4.3 Continuous dynamic interaction

Continuous interaction with dynamic objects is even more
difficult than impact tasks, yet humans frequently wield
objects with prodigiously complex dynamic behavior (that
was why we mentioned fly-casting or cracking a whip). Even
carrying a cup of coffee might be a challenge though most
of us manage it with ease. Physical contact with the cup
couples the dynamics of the liquid to the controller dynam-
ics. Though it may not be obvious, coupling may compro-
mise stability (Hogan 1990). From robotics, we know that
one effective (though perhaps conservative) solution is to

123



736 Biol Cybern (2012) 106:727–739

Rhythmic Bouncing with Target
Rhythmic Bouncing without Target

Discrete Bouncing

Racket Acceleration at Impact (m/s2)

16

14

12

10

8

6

4

2

0
-14 -12 -10 -8 -6 -4 -2 0 2

S
ta

n
d

ar
d

D
ev

o
f

B
al

lH
ei

g
h

t
(c

m
)

Fig. 4 Variability of discrete vs. rhythmic bouncing. Rhythmic bounc-
ing exhibits similar variability with and without a visual target. Discrete
bouncing exhibits significantly greater variability.

adjust mechanical impedance at the point of contact so that
it exhibits the dynamic behavior of a passive object, which
is sufficient to yield robust stability while interacting with a
wide class of objects (Colgate and Hogan 1988; Hogan 1988).
Some of the evident human skill at manipulating objects with
complicated dynamics may arise from the fact that intrin-
sic muscular and skeletal impedance is dynamically passive.
Whether this is a general principle of human motor behavior
remains to be established.

Even aside from maintaining stability, achieving accept-
able performance may be challenging. Some initial forays
into this area suggest that our formulation based on dynamic
primitives may account for observable behavior. However,
extensive further investigation is required (Hasson et al.
2012a,b).

5 Levels of analysis

To understand how dynamic primitives might account for
human sensorimotor control and use of tools, we distinguish
between (at least) three levels of analysis: an observational
level of overt, measurable behavior; a combinatorial level at
which the dynamic primitives may be combined; and a phys-
iological level from which the dynamic primitives may actu-
ally arise—e.g., through a combination of muscular and/or
neural dynamics giving rise to submovements, oscillations,
and impedances. These levels are loosely analogous to Marr’s
three levels of analysis—computational, algorithmic, and
implementational (Marr 1982). However, Marr’s levels refer
to computation or information-processing, e.g., for vision.
Sensorimotor control and the use of tools may also require

computation or information processing but, in addition,
requires dynamics and control of physical interaction, which
are not adequately subsumed under information processing.

The distinction between these levels is important. Dis-
crete movements at the observational level may result from a
sequence of overlapping submovements, which are dynamic
primitives at the combinatorial level. Studies at the physi-
ological level are essential to identify primitives unambig-
uously. To emphasize this point, note that from a purely
mathematical perspective, oscillatory dynamic primitives are
superfluous. Rhythmic movements at the observational level
might be composed of a sequence of back-to-back submov-
ements. However, studies of human neurophysiology have
clearly shown that the brain regions involved in rhythmic
movements are distinct from those involved in discrete move-
ments. In animals, specialized neural circuitry for generating
rhythms—central pattern generators—have been identified
in spinal and supra-spinal regions. Hence, this physiologi-
cal evidence indicates that oscillation is not a composite of
submovements but a primitive element in its own right.

Conversely, synergies at the observational level of kine-
matics (joint motion) might appear to be primitive elements
of motor coordination. However, they may in fact be compos-
ites which emerge as consequences of the interaction among
dynamic primitives at the combinatorial level of muscle tone.
Further work is needed to explore this possibility.

A failure to distinguish between these levels—observa-
tional, combinatorial, and physiological—all too frequently
confounds sensorimotor neuroscience. The definitions of
dynamic primitives we propose here describe product rather
than process. That is, in an attempt to establish a founda-
tion, we focused on the phenomenology of motor behavior,
not on hypothesized mechanisms that may give rise to that
observable behavior. For clarity, we defined dynamic primi-
tives in the mechanical domain of motions and forces at the
interface between the neuromechanical system and an object
being manipulated. If the available observational variables
are at a different level of the neuromechanical system—e.g.,
muscle activations (EMG), neural firing rates, etc.—a similar
approach may, in principle, be applicable, though care may
be required.

Dynamic primitives analogous to submovements and
oscillations may be definable at any level (though the for-
mer may need to be re-labeled). The case for impedances
is more subtle. The definition and properties of mechani-
cal impedance which we have invoked here (including lin-
ear superposition of nonlinear primitives) may be applied
at different locations—the muscle-tendon interface, the
foot-ground interface, the finger-tool interface, etc.—pro-
vided significant energetic interaction is involved such that
mechanical impedance may be defined. However, an impor-
tant consideration is that operations on signals which carry
information (e.g. neural firing rates) are not subject to the
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constraints imposed on energetic interaction (e.g. conserva-
tion of energy and production of entropy). Whether plausible
dynamic primitives with properties analogous to mechanical
impedance may be defined for levels involving information
processing alone remains to be determined.

6 Prospect

The elements of a theory based on dynamic primitives which
we have outlined here are necessarily crude. Much needs to be
done to formulate a reliable, i.e., falsifiable theory (Ajemian
and Hogan 2010). To begin, experiments should critically
test—attempt to falsify—hypotheses derived from the theory,
but, in addition, a practical theory should be incrementally
revisable. History has taught that any sufficiently ambitious
theory will inevitably be contradicted by some experimental
observations. However, this does not mean that it should be
discarded outright. Valuable theories should not be discarded,
but, if possible, revised to accommodate new knowledge.
Sometimes, those revisions are small incremental changes;
sometimes they are profound re-formulations that make the
consequences more accessible3. Theory building is an itera-
tive, ongoing process.

Important aspects of any theory need to be tested and
established experimentally. One prominent example in the
theoretical framework we propose is the composition oper-
ator. In the above, we assumed that linear composition was
sufficient. This is well justified: linear superposition may be
applied to submovements, oscillations, and impedances, even
if the latter are highly nonlinear dynamic objects. However,
available studies indicate that linear superposition does not
adequately describe the combination of submovements and
oscillations. There appears to be a phase constraint which
cannot be accounted for by linear superposition (de Rugy
and Sternad 2003). Further work is required to identify which
composition operator may best describe human behavior.

Another open question is how many different primitives
of each class (submovements, oscillations, and impedances)
are required. Here, a clear understanding of the three lev-
els—observational, combinatorial, and physiological—may
be especially useful. For example, it is a fact of mathematics4

that any sufficiently smooth function may be approximated
to any degree of precision by a finite set of finite-support
basis functions. This means that it is impossible to disprove
a theory that movements are composed of submovements
based on kinematic observations alone. However, physiolog-
ical observations may resolve this fundamental ambiguity.

3 Consider Oliver Heaviside’s reformulation of Clerk Maxwell’s
twenty equations of electrodynamics into the much simpler formula-
tion we teach today (Ajemian and Hogan 2010).
4 A generalization of Fourier’s Theorem.

As mentioned above, for oscillations, it is the physiologi-
cal evidence which leads us to postulate them as a distinct
dynamic primitive.

In the above, we assumed that a single submovement
shape, σ(t), determines the speed profile of each element
of a limb position vector. Though there is experimental evi-
dence to support this assumption in simple reaching and con-
strained-motion tasks, its generality has not been established
(Atkeson and Hollerbach 1985; Russell 1990; Flash and
Henis 1991; Krebs et al. 1999). Similarly, mechanical imped-
ance may result from intrinsic muscle properties and/or from
the action of spinal (or higher) reflex feedback. Both may be
controlled by the CNS. Are they distinct primitives? Or are
intrinsic and feedback-generated contributions to impedance
fundamentally linked? Probing further, is this set of three
classes complete? Are further distinct classes of primitives
required? For example, are muscle synergies a distinct type
of dynamic primitive? Or are they a completely different kind
of coordinative object? Clearly, further research is needed.

Here, we encounter one of the delightful paradoxes of
research: while one of the stronger motivations for develop-
ing a theory is to organize and codify the burgeoning vol-
ume of experimental data, to articulate that theory and make
it convincing, we need still more experimental data. New
experiments are needed at all levels. Behavioral studies can
reveal patterns and invariances that are obscured at the level
of neurons; neurophysiological studies can reveal biological
constraints that are masked at the behavioral level; analysis
and simulation can reveal the consequences of hypothesized
generative dynamic processes. Success will require a contin-
uing dialog between theory and experiment at all levels: the-
ory to suggest revealing experiments; experiments to indicate
required revisions of a theory. There is plenty yet to be done.
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