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Abstract
In this perspective, we highlight recent examples and trends in metabolic
engineering and synthetic biology that demonstrate the synthetic potential of
enzyme and pathway engineering for natural product discovery. In doing so, we
introduce natural paradigms of secondary metabolism whereby simple carbon
substrates are combined into complex molecules through “scaffold
diversification”, and subsequent “derivatization” of these scaffolds is used to
synthesize distinct complex natural products. We provide examples in which
modern pathway engineering efforts including combinatorial biosynthesis and
biological retrosynthesis can be coupled to directed enzyme evolution and
rational enzyme engineering to allow access to the “privileged” chemical space
of natural products in industry-proven microbes. Finally, we forecast the
potential to produce natural product-like discovery platforms in biological
systems that are amenable to single-step discovery, validation, and synthesis
for streamlined discovery and production of biologically active agents.
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Introduction
Small molecules play an important role in enhancing our under-
standing of metabolic control in multistep reaction networks 
that underlie mechanisms of disease and orchestrate industrial 
biocatalysts. As such, small molecules account for a large fraction 
of the new drugs introduced each year, especially those emerging 
from natural products research. Metabolic probes and drug candi-
dates are born from small molecule libraries that are typically lim-
ited in structural diversity, a key constraint for the discovery of new 
bioactive small molecules1.

Organic chemists have boundless potential to create drugs with 
diverse molecular topologies from commodity chemicals using 
the immense diversity of reactions at their disposal. On the other 
hand, without selective pressures to guide the chemistry, practical 

discovery of biologically active agents is limited to the manipu-
lation of known natural compounds and the use of combinato-
rial high-throughput screens2. The de novo synthesis of complex 
natural products is a cost- and labor-intensive process, requiring 
world-class expertise. While traditional combinatorial chemistries 
employed orthogonal reactions to join small, flat, multi-functional 
building blocks, recent biology-inspired diversity-oriented 
methodologies are exploring a greater array of chemotypes with 
increased dimensionality and complexity, as one finds with natu-
ral secondary metabolites (Figure 1)1,2. Unsurprisingly, chemically 
derived, biologically active compounds tend to resemble natural 
products. The similarities inform structural signatures of bioactiv-
ity, like the number of stereogenic carbons, scaffold rigidity, and 
the carbon/heteroatom ratio of the molecules2,3. Such descriptors of 
biological activity reveal that natural products provide a pool of 

Figure 1. Schematic of natural diversity in secondary metabolism. Complex metabolites diverge from a common pool of primary building 
blocks. Secondary metabolites and their respective precursors are grouped by colored areas: green (isoprenoids), purple (polyketides), red 
(non-ribosomal peptides), and orange (glycosides). Paradigmatic structures of each metabolite class are shown with the structure cores 
highlighted in blue. Colored arrows denote simplified enzymatic transformations. Black arrows and nodes correspond to central metabolism 
in heterotrophs to denote the origin of primary metabolites from central carbon.
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“privileged” scaffolds as starting points for molecular probes 
and drugs3. Combinatorial biosynthesis alleviates many of the 
concerns with traditional combinatorial chemistry by producing only 
those compounds with properties similar to natural products. In com-
binatorial biosynthesis, cells or enzymes are programed for diverse 
compound generation by systematically switching enzymes in a 
biosynthetic pathway (e.g. polyketide pathways) or using enzymes 
with broad substrate ranges (e.g. glycosyltransferases [GTs]) to 
produce product libraries (Figure 1)4–6. Enzyme- and cell-based 
library generation emulates the natural means for creating chemical 
diversity by employing genetically encoded catalysts that co-evolve 
with their products in response to environmental pressures.

Given immense recent interest in natural product biosynthesis 
and discovery2,7–12, here we provide perspective on how synthetic 
biology and metabolic engineering are enabling compound discov-
ery and biosynthesis. We parameterize natural themes for explor-
ing chemical diversity under the guide of evolution. Finally, we 
forecast the potential for metabolic engineering to consolidate 
cell-based platforms for library generation and hit validation, as 
well as scalable synthesis in the practical discovery of biologically 
active compounds.

Engineering small molecule discovery platforms: 
derivatization vs. diversification
Advances in chemical biology and metabolic engineering are pro-
viding insights into the biological routes to create natural product 
diversity while also offering the potential to harness and manipulate 
this diversity under the guide of selective pressure. Armed with an 
arsenal of robust genetic tools and proven hosts for prokaryotic (e.g. 
Escherichia coli, Bacillus subtilis, Streptomyces sp.) and eukaryo-
tic (e.g. Saccharomyces cerevisiae) production platforms, biologi-
cal engineers have begun exploring diversity in both natural and 
unnatural contexts (Figure 2)13. Natural product diversity results 
from two themes of chemical evolution: derivatization of a shared 
molecular scaffold by variable functionalization of a common core, 
or diversification to enable the synthesis of various scaffold cores 
with distinct shapes from common building blocks (Figure 2A). 
Below we describe recent trends and specific advances that high-
light the importance of exploring chemical diversity in molecule 
discovery and underscore the role of synthetic biology and related 
fields towards this end.

Diversity through scaffold derivatization
Chemical transformations of complex molecules often suffer from 
a lack of regioselectivity and stereoselectivity, poor discrimination 
between functional groups of similar reactivity, and an incompat-
ibility with biological media. Enzymes, however, catalyze site-
specific and stereoselective chemistries in water—often within 
a microorganism. Numerous enzyme-mediated chemical func-
tionalizations of natural products are known, including scaffold 
alkylation14–16, acylation17, oxidation18,19, glycosylation4,20, and 
halogenation21. Here we focus the discussion of enzyme-tailored 
scaffold derivatization on the mature cases of natural product 
tailoring by cytochrome P450 oxidases (P450s or CYPs) and GTs. 
It is worth noting the biosynthetic potential of the lesser-utilized 
bio-acylation and bio-halogenation reactions for natural product 
derivatization, as these reactions can introduce orthogonally reac-
tive handles for late-stage library differentiation21.

A robust derivatization strategy employs naturally promiscuous 
P450s that have been engineered to harness multiple natural and 
novel chemistries in vivo22–24. For example, Keasling and co-workers 
used rational enzyme mutagenesis of a plant-mimicking bacterial 
enzyme (P450-BM3) capable of epoxidizing the plant-derived 
taxane amorpha-4,11-diene (Figure 2 [4]) to obtain a more 
thermostable and selective epoxidation catalyst. P450-BM3 
mutant G3A328L enabled the biosynthesis of the value-added 
compound artemisinic-11S,12-epoxide at 250 mg/L in E. coli, 
thereby improving the semi-synthesis of the antimalarial drug 
artemisinin (Figure 2 [10])18. Recently, McLean et al. evolved 
CYP105AS1 from Amycolatopsis orientalis to hydroxylate the 
pravastatin (Figure 2 [17]) precursor compactin (Figure 2 [16]) 
in the engineered Penicillium chrysogenum strain D550662, ulti-
mately achieving titers of 6 g/L of the blockbuster drug after 200 h 
in a 10 L fed-batch fermentation (Figure 2D)25.

P450-catalyzed metabolite derivatization is likewise offering 
avenues to explore chemical space that was previously unavailable 
in a biological setting. Frances Arnold’s lab has developed an 
impressive array of P450 catalysts including an engineered dia-
zoester-derived carbene transferase (P450

BM3
/CYP102A1) for the 

stereoselective cyclopropanation of styrenes, which have con-
comitantly become available biologically via the metabolic engi-
neering of E. coli for styrene production from L-phenylalanine at 
a titer of 260 mg/L26,27. Arnold’s team expanded the work to ena-
ble incorporation of the cyclopropane in vivo by engineering the 
electronics of the enzyme active site to accommodate NAD(P)H 
as an electron donor, and upon altering the active site architec-
ture, they further engineered the catalyst for cyclopropanation of 
N,N-diethyl-2-phenylacrylamide, a putative intermediate in the 
formal synthesis of the serotonin and norepinephrine reuptake 
inhibitor levomilnacipran—marketed by Actavis Inc. as Fetzima 
for the treatment of clinical depression28–30. On the chemical front, 
Wallace and Balskus have developed porphyrin-iron(III) chlo-
ride catalysts that function similarly to Arnold’s P450-BM3 
mutants while presenting biocompatible reactions with liv-
ing styrene-producing E. coli31. Such approaches highlight the 
potential to meld chemical and biological approaches for tailored 
molecule derivatization in engineered organisms32,33.

GTs are also attracting attention in the derivatization of natural 
products, including polyketides, non-ribosomal peptides, and ter-
penoids, for the discovery of novel antimicrobial agents with tai-
lored pharmacological properties, including augmented target 
recognition and improved bio-availability4,20,34,35. In this regard, 
dNDP-glycosides (Figure 1) represent a biosynthetically viable 
class of saccharide donors for promiscuous and engineered 
GTs that exhibit substrate tolerances for both the saccharide and 
aglycone portions of the reaction products. For instance, 
Minami et al. exploited the broad substrate tolerance of vicenisami-
nyltransferase VinC from Streptomyces halstedii HC 34 in the 
discovery of 22 novel glycosides from 50 sets of reactions for the 
glycodiversification of natural polyketide scaffolds (Figure 2D)36. 
More recently, Pandey et al. demonstrated the derivatization of 
clinically relevant resveratrol glycosides, producing ten differ-
ent derivatives of the plant-derived metabolite, all accommodated 
by YjiC, a bacterial GT from Bacillus licheniformis34,37. How-
ever, in order for GT-catalyzed glyco-derivatization to be realized 
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Figure 2. Natural paradigms for compound diversity inspire engineering efforts for compound discovery. A) schematic of isoprenoid 
diversification in which distinct terpenes (2–5) arise from common building blocks (1a–e) and are subsequently functionalized into diverse 
isoprenoids (6–13); B) engineering secondary metabolite production requires augmented flux through biosynthetic pathways to access 
compound precursors, such as the buildup of isopentenyl diphosphate building blocks for the overproduction of taxadiene (3)92 and 
amorphadiene (4)93; C) scaffold diversification is emulated through enzyme engineering as shown in mutagenesis of the plant-derived 
levopimaradiene synthase (LPS)79 and humulene synthase88; D) scaffold derivatization is performed by engineered enzymes as in the P450-
catalyzed hydroxylation of compactin (16) to produce the drug pravastatin (17), or by naturally promiscuous enzymes as with variable 
glycosylation of vicenilactam (18) with glycosyltransferase VinC25,36.

in vivo, the prerequisite biosynthesis of NDP-glycosides as glycosyl 
donors and acceptors must be engineered from bacterial monosac-
charide and nucleotide triphosphate pools. A key advance in the 
supply of glycosyl donors was the discovery of the reversibility of 
GT-catalyzed reactions whereby Thorson and co-workers were 
able to generate more than 70 analogs of the natural products 
calicheamicin and vancomycin (Figure 1) using various nucle-
otide sugars38. Using OleD as the initial model enzyme, Thorson’s 
team evolved the substrate tolerance of GTs to enable glycosyla-
tion of not only natural products but also non-natural compounds 
and proteins4,39. More recently, Gantt et al. enabled the rapid, 

colorimetric screening of engineered GTs, and subsequently 
evolved an enzyme (OleD Loki) for the combinatorial enzymatic 
synthesis of 30 distinct NDP-sugars that are putatively amenable to 
further enzymatic manipulation in common microbial hosts4,40.

Metabolic engineering strategies for in vivo combinatorial 
glyco-derivatization of secondary metabolites have also demon-
strated success by combining heterologous saccharide biosynthesis 
genes into non-natural pathways. In 1998, Madduri et al. demon-
strated the fermentation of the antitumor drug epirubicin (Figure 1) in  
Streptomyces peucetius and sparked intense interest in the role 
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of metabolic engineering and combinatorial biosynthesis for the 
discovery and production of glyco-pharmaceuticals20,41–44. These 
efforts have begun to impact glyco-engineering in more com-
mon microbial hosts, such as an in vivo small molecule “glyco- 
randomization” study in E. coli by Thorson and co-workers4 or the 
variable derivatization of erythromycin by Pfeifer and co-workers45; 
however, much success for in vivo glyco-derivatization remains in 
Streptomyces4,41,46–48.

Diversity through scaffold diversification
Scaffold derivatization enables the fine-tuning of compound activ-
ity by increasing compound resolution in a defined chemical space. 
The production of novel secondary metabolites through scaffold 
diversification, on the other hand, is a common theme of biosyn-
thesis in plants and fungi that enables the exploration of com-
pletely new areas of chemical space. In order to generate beneficial 
molecules, it has been proposed that microbes and plants gener-
ate a diverse library of small molecules. Many liken these broad 
ranges of natural products to the host’s chemical “immune system”, 
where producing compounds with no known target could allow for 
resistance to an as-yet unencountered pathogen and provide evo-
lutionary fitness of organisms with more diverse natural product 
portfolios49–51. Natural metabolite diversification has recently 
inspired diversity-oriented chemical syntheses that emulate the 
biological reaction cascades in the generation of new, drug-like 
scaffolds1,52,53. Others have attempted to simplify metabolite arche-
types to common core structures that may serve as starting points 
for discovery through derivatization; however, metabolite profil-
ing of novel compounds from marine life and fungi continues to 
produce novel scaffold core structures, suggesting that to limit 
discovery to known scaffolds would severely curb the biosyn-
thetic potential of evolutionary pressure2,54–56. Engineering whole 
cells for scaffold diversification, on the other hand, was recently 
demonstrated by Wang et al., who combined the biosynthetic 
potential of plant, fungal, and bacterial enzymes for the produc-
tion of 12 novel phenylpropanoid derivatives from L-tyrosine and 
L-phenylalanine in E. coli57. Evolva reported the discovery of novel 
antiviral scaffolds using a heterologous flavonoid biosynthesis 
platform in S. cerevisiae3,58. By consolidating biosynthesis and 
screening into a single cell, the team was able to synthesize, vali-
date, and structurally characterize 74 new compounds—28 of which 
showed activity in a secondary Brome Mosaic Virus assay—in less 
than nine months3.

Aiding the discovery of new scaffolds, non-ribosomal peptide syn-
thetases (NRPS) and polyketide synthases (PKS) comprise equally 
useful, and often interconnected, classes of “assembly line” enzymes 
for in vivo scaffold diversification. The utility of NRPS/PKS 
enzymes for complex scaffold synthesis and elaboration emerges 
from the simplicity and modularity of their catalytic domains59. 
Core NRPS/PKS genes encode for ketosynthase (KS), acyl 
transferase (AT), acyl/peptidyl carrier protein (ACP/PCP), con-
densation domain (C), and adenyltransferase (A) that catalyze the 
elongation of the polyketide/ peptide skeleton, and a terminal 
thioesterase (TE) severs the formed macrolide from the multi- 
domain synthetase. Along with auxiliary ketoreductase (KR), 
dehydratase (DH), and enoyl reductase (ER) domains, the core 
domains allow for the programmable building of variable macrolide 
and macrolactone scaffolds from divergent pools of ketoacids and 
amino acids17,59–61. Once formed, the core scaffolds are natively 

derivatized by so-called “tailoring enzymes” to introduce native 
and non-native functionality as per the discussion of engineered 
P450s and GTs (vide supra)59.

The modularity of the biosynthetic machinery of NRPS/PKS 
megasynthases allows for the rational engineering of combinato-
rial biosyntheses to access novel chemical space7,62. Combinato-
rial NRPS/PKS systems have enabled predictable changes to the 
scaffold core, derived from three programmable inputs into the 
biosynthesis. The inputs include the following: 1) variable use of 
organic building blocks such as short-chained acyl-coenzyme A 
(CoA) molecules or amino acids for the chain elongation step 
of scaffold synthesis61,63–68; 2) chain length variations originat-
ing from KS and TE engineering69–70; and 3) alterations in the 
reduction program of the scaffold as a result of DH, KR, and ER 
engineering71–72. Yan et al. exemplified the biosynthetic potential 
to diversify antimycin (ANT) scaffolds through the metabolic 
engineering of promiscuous NRPS/PKS enzymes in the ANT- 
producing Streptomyces sp. NRRL 2288 (Figure 3)17. Following 
the in vivo production of ANT scaffolds with variable fluorination 
at C5’ and alkylation at C7, the authors further derivatized the ANT 
library at C8 with a promiscuous acylating protein (AntB) and 
various acyl-CoAs in vitro, generating 380 total and 356 novel ANT 
variants. Chemler et al. recently exploited the biosynthetic prowess 
of homologous recombination—a natural paradigm of NRPS/PKS 
evolution—to create PKS libraries for the programmable biosyn-
thesis of engineered polyketide chimeras of known macrolide and 
macrolactone antibiotics pikromycin and erythromycin (Figure 1)60. 
Similarly, Sugimoto et al. demonstrated that engineering of an 
artificial PKS pathway by domain swapping in Streptomyces albus 
allowed reprogramming of the aureothin (Figure 1) system for 
production of luteoreticulin and novel derivatives thereof73. Despite 
significant challenges for NRPS/PKS engineering5,71,74, recent 
successes with homologous recombination and structure-guided 
domain swapping of NRPS/PKS’s, coupled to the increased 
efficiency of Cas9-accelerated gene editing, forecast a time when 
functional NRPS/PKS variation may be routine6,60,64,66,73,75–76.

Isoprenoids, enumerating over 55,000 compounds, comprise per-
haps the richest source of diversity among secondary metabolites77. 
The ability to emulate the natural evolution of this diversity will 
likely allow the access to known and new plant-derived isoprenoids 
(Figure 2). Isoprenoid biosynthesis is characterized by four reac-
tions of the five-carbon units isopentenyl pyrophosphate (IPP) and 
dimethylallyl pyrophosphate (DMAPP): chain elongation, branch-
ing, cyclopropanation, and cyclobutanation77. Metabolic engineers 
have manipulated microbial pathways around the chain elonga-
tion reaction to build up terpenoid precursors of different lengths 
and stereochemistries, including IPP/DMAPP (Figure 2 [1a–b]), 
geranyl diphosphate (Figure 2 [1c]), farnesyl diphosphate 
(Figure 2 [1d]), and others78–83. The strategy for introducing diver-
sity as well as directing flux to a desired metabolite then comes from 
the subsequent pathway and enzyme engineering of terpene syn-
thases that cyclize these building blocks, forming various scaffolds 
amenable to derivatization with downstream enzymes (Figure 2C). 
A natural paradigm of terpene synthases and cyclases is the com-
bination of substrate specificity with structural plasticity—a pair-
ing of characteristics that enables rapid evolution of the enzyme for 
the production of product profiles that meet the environmental 
demands of the host organism84. In support of this hypothesis, 
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multiple groups have confirmed that through evolution and rational 
engineering, diterpene synthase activities can be altered to pro-
duce multiple, non-native terpenes (Figure 2C)9,84–88. Salmon et al. 
demonstrated that a convergent point mutation from a library 
of the Artemisia annua amorpha-4,11-diene synthase (Y420L) 
enabled the production of numerous cyclized products without 
compromising catalytic activity89. Rising et al. discovered the 
serendipitous conversion of a non-natural substrate of tobacco 
5-epi-aristolochene synthase, anilinogeranyl diphosphate, to the 
novel paracyclophane terpene alkaloid 3,7-dimethyl-trans,trans-3,7-
aza[9]paracyclophane-diene, which they dubbed “geraniline”90. The 
finding demonstrates that terpene precursor diversity and bioavail-
ability, in addition to terpene synthase engineering, are key inputs 
for programmable scaffold diversification. The explicit application 
of terpene diversification to diversity-oriented molecule discovery 
is gaining interest, but to realize the full biosynthetic potential of ter-
penes will likely require more insight into the mechanism of terpene 
synthases and the directed biosynthesis of terpene precursors9,91.

Engineering systems from discovery to production
Secondary metabolites are a treasure trove for the discovery of 
biologically active compounds, but they are metabolically “expen-
sive”, leading organisms to match production to natural demands 
of the environment. To meet the demands for human need, micro-
bial cells can be engineered to over-produce complex secondary 
metabolites—typically plant or fungal in origin—at the expense of 

host resources including energy storage molecules and biomass. 
High titers of non-native metabolites are possible via rational path-
way engineering as shown in the case of taxadiene (Figure 2 [3]) 
and amorpha-4,11-diene (Figure 2 [4]) syntheses in E. coli, which 
detail that metabolite balance through modular pathways is cru-
cial to high production (Figure 2A)92,93. Bypassing regulation also 
allows increased production of native secondary metabolites, as 
shown recently by Tan et al. with validamycin (Figure 1) biosynthe-
sis in Streptomyces94. The team generated a double deletion mutant 
(S. hygroscopicus 5008 ∆shbR1/R3) to remove feedback inhibi-
tion and increase validamycin titers to 24 g/L and productivities to 
9.7 g/L/d, which are the highest capacities yet reported94.

Metabolic engineering can harvest synthetic genes from marine, 
plant, and fungal systems for the production of a diverse set of 
known compounds including terpenoids, flavonoids, and alkaloids 
in industrially useful microbial hosts70,95,96. The reconstitution of 
heterologous pathways in fast-growing microbes is akin to hijack-
ing evolution for efficient and expedient production. To this end, 
modular pathway reconstruction, or “retrobiosynthesis”, effectively 
maximizes a cell’s capacity to integrate new biological circuits and 
appropriate valuable cell resources for high secondary metabolite 
production97–99. Retrobiosynthesis allows for the systematic evalu-
ation of complex multi-step pathways by isolating key transforma-
tions of a complete pathway into a series of independent modules 
that can be engineered in parallel99. Leonard et al. demonstrated 

Figure 3. Engineered diversification and derivatization of antimycin (ANT) scaffolds by a promiscuous PKS/NRPS (adapted 
from Yan et al., 2013)17. Domain key: T = thioylation (e.g. acyl/peptidyl carrier protein ACP/PCP), C = condensation, A = adenylation, 
KR = ketoreductase, KS = ketosynthase, AT = acyl transacylase, TE = thioesterase. Green ball represents variable use of H or F-modified 
starting material. Red vs. blue star depicts unsaturated and carboxylated acyl substituent at C7, respectively. Orange triangle depicts 
variation in the alkyl chain of the C8 acyl substituent.
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modular pathway engineering for the high-level production of lev-
opimaradiene, a branch-point precursor to pharmaceutically rel-
evant plant-derived ginkgolides79. Upon increasing IPP/DMAPP 
titers through overexpression of mono-erythritol phosphate 
pathway enzymes in E. coli and separately engineering the gera-
nylgeranyl pyrophosphate synthase/levopimaradiene synthase sys-
tem for increased selectivity and productivity, the team achieved a 
700 mg/L titer in a bench-scale bioreactor. This is one of the first 
applications whereby metabolic engineering was combined with 
protein engineering to maximize production and selectivity of a 
desired compound.

Synthetic consortia offer another tool in which the metabolic bur-
den of complex molecule synthesis can be distributed over multiple 
hosts. Recently, Zhou et al. engineered a cross-kingdom co-culture 
to produce oxygenated taxane precursors to the potent, plant-
derived, anti-tumor drug paclitaxel (Figure 1), achieving titers of 
33 mg/L100. Mimicking the general engineering strategy for 
spatially controlled production of branched-chain alcohols and 
mevalonate-derived terpenes in yeast101,102, Zhou et al. combined 
the divergent advantages of efficient cytochrome P450 expression 
in S. cerevisiae and the efficient taxadiene (Figure 2 [3]) production 
in E. coli92. The system emulates the native plant platform in which 
oxygen-sensitive taxadiene production is sequestered from the 
subsequent oxidations to form paclitaxel and other oxygenated tax-
anes in the peroxyzome100,102. The synthetic consortium put forth 
by Zhou et al. could represent a natural paradigm of plant isopre-
noid production in plant-associated endophytes, further validating 
the general premise whereby metabolic engineering allows for 
the directed use of natural evolution for success in biosynthesis103.

In the post-genomic era, gene mining for compound discovery is 
adding to the engineer’s toolbox. Hwang and others purport that 
multiplexed “omics” and bioinformatics enable the simultaneous 
identification of bacterial biosynthetic gene clusters, their encoded 
enzymes, and the structures of the resultant secondary metabolites 
for streamlined discovery of molecular structure and function41,104–106. 
Systems-level analyses will further aid compound discovery by 
unveiling biosynthetic pathways of unknown secondary metabo-
lites and antibiotics in actinomycetes and other organisms107–109. Of 
spectacular interest is the growing evidence for compound discov-
ery by bioprospecting “unculturable” actinomycetes and uncharac-
terized bacteria by mapping, transforming, and editing their DNA 
heterologously in genetically tractable hosts with “out-of-the-box” 
genetic systems and clever metabolic engineering110–114.

Streamlined molecule discovery and production is likewise aided 
through the engineering of microbial systems for concomitant 
compound discovery, validation, and scale-up (e.g. the yeast dis-
covery platform from Evolva; vide supra)3. Recently, DeLoache  
et al. engineered S. cerevisiae to fluoresce orange in the presence of 
L-3,4-dihydroxyphenylalanine (L-DOPA), an early intermediate en 
route to (S)-reticuline, and purple in the presence of L-dopaquinone, 
an unwanted byproduct of L-DOPA oxidation115. PCR mutagenesis 
of a tyrosine P450 oxidase (CYP76AD1) produced a yeast library 

that could be easily screened by comparison of the orange:purple 
fluorescence of single cells with flow cytometry. The team iden-
tified P450 mutant CYP76AD1W13L F309L as a selective catalyst 
for reduced L-DOPA production and continued to engineer a 
de novo pathway for (S)-reticuline production from glucose at titers 
of 80.6 µg/L. Albeit low titer, this approach has already been recog-
nized for the ability to streamline microbial opioid production116.

Conclusions
A reinvigoration of the potential for engineered enzymes and 
microorganisms to explore foreign biochemical space and dis-
cover molecular probes and therapeutics is clear from a number 
of recent commentaries and reviews9,11,41,117. Here, we describe 
examples from enzyme and pathway engineering to illustrate the 
successes, promises, and challenges for mining the plant, fungal, 
and microbial metabolomes to produce natural product-like mol-
ecules. We outline the underlying themes whereby nature explores 
chemical diversity through the diversification and derivatization of 
secondary metabolites—a robust strategy that has inspired recent 
diversity-oriented chemical syntheses. The co-evolution of natural 
products with their biosynthetic enzymes in response to environ-
mental pressures is a theme whereby natural diversity begets evo-
lutionary fitness. Several factors highlight the burgeoning potential 
of modern metabolic engineering to explore chemical diversity: 
1) incredible investment into the genetic characterization of sec-
ondary metabolism over the last two decades has led to organiza-
tion of natural product biosyntheses into standardized data sets12,118; 
2) engineering promiscuous, biosynthetic enzymes has allowed 
for the DNA-encoded diversification of natural product libraries; 
3) successful metabolic engineering of industrially proven microbes 
has allowed complex metabolite biosyntheses with high titers 
and productivities, and 4) recent technical advances for efficient 
homologous recombination and consolidated bioprospecting are 
allowing for biosynthetic compound library creation, validation, 
and scale-up with increasing simplicity. Perhaps a most critical 
advantage is that, once an active new structure is identified, through 
either scaffold derivatization or diversification in an engineered 
microbe, an actual biochemical process is also available for the 
synthesis of the target compound in substantial amounts required 
for toxicity and clinical trials. This path is more efficient compared 
to the many steps of a new chemical synthesis approach typically 
followed when promising compounds are identified from prospect-
ing samples of natural sources. Broadly, the potential to apply meta-
bolic engineering to access chemical diversity inspired by natural 
product biosynthesis illustrates an elegant pairing of science and 
engineering for biochemical progress.
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