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Abstract

The revenue of traditional auction mechanisms is benchmarked solely against the players’
own valuations, despite the fact that they may also have valuable beliefs about each other’s
valuations.

Not much is known about generating revenue in auctions of multiple identical copies of a
same good. (In particular the celebrated Vickrey mechanism has no revenue guarantees.)

For such auctions, we (1) put forward an attractive revenue benchmark, based on the players’
possibilistic about each other, and (2) construct a mechanism that achieves such benchmark,
assuming that the players are two-level rational (where the rationality is in the sense of Aumann).

∗We thank the NSF, under award number CNS-1519135, for financial support.



1 Introduction

Generating revenue has always been a main desideratum in auctions. Guaranteeing higher revenue
is possible when the seller has significant information about the players. For instance, in auctions
of a single good, Myerson shows how to construct optimal auctions when the seller knows, for each
player i, the distribution Di from which i’s valuation has been drawn.

In single-good auctions, however, a significant revenue benchmark can be guaranteed even when
the seller has no information about the valuations of the players. Indeed, the second-price mechanism
guarantees that in (weakly) dominant strategies the revenue generated coincides with the second
highest valuation for the good for sale.

The Problem of Revenue in Multi-Unit Auctions In multi-unit auctions, m identical copies
of the same good are available for sale. Not much is known about revenue in such auctions.

In particular, the celebrated Vickrey mechanism [13] yields maximum social welfare in (weakly)
dominant strategies, but offers no guarantees about revenue. For instance, if all players value little a
second copy of the good and at most m players significantly value a first copy of the good, then the
Vickrey mechanism will not generate any significant revenue.

Our Goal We wish to investigate generating revenue, in multi-unit auctions, when the seller has
no information about the players, but the players have significant information about each other’s
valuations. Since we allow the players to have wrong information about the valuations of their
opponents, we should talk about beliefs.

Possibilistic Beliefs In our auctions, a valuation v consists of an m-tuple of non-negative reals,
(v(1), . . . , v(m)), where v(k) represents the marginal value of receiving a kth copy of the good. Fol-
lowing Vickrey, we assume decreasing marginal valuations: that is, v(1) ≥ v(2) ≥ · · · ≥ v(m).

As usual, a player i knows his own true valuation, θ∗i . In addition, he may also have some belief
about the true valuations of his opponents, −i. For instance, i’s belief may consist of a probability
distribution from which i believes that the true valuation subprofile of his opponents, θ∗−i , has been
drawn. However, i’s belief may be less structured. In particular, i may be unable to determine how
likely it is for a specific subprofile θ−i to be the true one. Furthermore, he may even be unable to
estimate the relative likelihood of two subprofiles θ−i and θ′−i. Accordingly, following [6, 7, ?], we
consider quite elementary beliefs.

Essentially, a player i’s belief is just a set consisting of all the valuation subprofiles θ−i that i
considers possible for his opponents. As we shall prove, it is possible to use even such elementary
beliefs to generate revenue.

Revenue Benchmark Our revenue target is the collective external-belief (CEB, for short). This
benchmark is defined in our technical sections. Intuitively, CEB represents the highest social welfare
one can guarantee by pooling together the beliefs of all players about their opponents.

The CEB benchmark is more easily described for the unit-demand setting, that is, when each
player i may positively value a first copy of the good, but has zero value for any extra copies: θ∗i (1) ≥
0 while θ∗i (2) = · · · = θ∗i (m) = 0.1 In this case, CEB is at least v?1 + · · · + v?m if there exists an
allocation of the m copies in which, for every player i receiving a copy, at least another player j

1For instance, if the m goods sold in the auctions are non-exclusive licenses under a given patent, then the setting
is naturally unit-demand, as no one needs two non-exclusive licence under the same patents.
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believes that i’s value for the copy received is at least v?i . Notice, therefore, that the benchmark CEB
is very demanding, as it “pools together” the beliefs of all the players about their opponents.

Solution Concept We assume that each player is rational in a minimal sense: namely, that, based
on his beliefs, he never plays a strictly dominated action, and believes that his opponents behave in
the same way. In other words, we assume that the players are two-level rational, where the notion of
rationality is in the sense of Aumann [1].

Main Results We put forward a normal-form mechanism that, when played by such two-level ratio-
nal players, yields a revenue that, as the number of copies increases, approaches the CEB benchmark.

We first exhibit, in Section 4, a mechanism for the unit-demand setting. This mechanism virtually

achieves a fraction
(

1− d
√

2me
m

)
of CEB.

Then, in Section 5, we generalize this first mechanism to the q-unit demand setting. The general-

ized mechanism virtually achieves a fraction

(
1− q(d

√
2m
q
e+1)

m

)
of CEB.

1.1 Prior Work On Possibilistic Beliefs

The traditional probabilistic approach to modeling the players’ beliefs in settings of incomplete infor-
mation was pioneered by Harsanyi [10]. An informative survey about this approach has been given
by Siniscalchi [12].

Following Aumann [1], we instead take a set-theoretic approach to model the players’ beliefs.
Actually, Kripke independently studied set-theoretic models of beliefs using modal logic[11]. (For an
alternative description of Kripke’s approach see [8].)

More recently, possibilistic beliefs have been used to generate revenue in auctions different from
ours. First-order possibilistic beliefs have been used by Chen and Micali in single-good auctions [6].
Also in single-good auctions, higher-order possibilistic beliefs have been used by Chen, Micali, and
Pass [7]. The authors of another paper, reference omitted, use possibilistic beliefs, so as to generate
revenue in combinatorial auctions under essentially the solution concept adopted in this paper.2 Since
multi-unit auctions can be considered as a special case of combinatorial ones, let us emphasize that
their mechanism, run in multi-unit auctions, achieves (within a factor of 2) a revenue benchmark,
BB, less demanding than CEB. Essentially, they define BBi, the best belief of a player i, to be the
maximum social welfare i may guarantee, based on his own beliefs about his opponents, by allocating
the copies of the goods to just his opponents. Then, they define BB to be the maximum of the BBi’s.
By contrast, CEB is the maximum social welfare one could guarantee, based only on all the players’
beliefs about their opponents, by allocating the copies of the good to the set of all players.

Finally, let us mention the work of Bergemann and Morris on robust mechanism design [3]. Their
work is related to ours in the sense that they also consider implementing social-choice correspondences
defined on more than just the players’ payoff types. However, their goals are different from ours. While
we design alternative mechanisms that use the players’ beliefs about their opponents, they use these
beliefs to strengthen the meaningfulness of implementation in dominant strategies. More recently,
Bergemann and Morris [4] have pointed out that social choice correspondences defined solely over the
player’s payoff types cannot represent revenue-maximizing allocations.

2They assume that the players will only consider strategies surviving two levels of elimination of weakly dominated
strategies (based on their beliefs). We instaed assume that the players stick to strategies surviving two levels of
elimination of strictly dominated strategies.
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2 Basic Notions

2.1 Multi-Unit Auctions

In this paper we only consider multi-unit auctions. In such auctions there are finitely many identical
copies of the same good for sale. We shall denote the actual number of such copies by m, and let
[m] = {1, . . . ,m}. The set of all valuations is Θ. A valuation v is a function mapping 0 to 0, and
every integer in {1, . . . ,m} to a non-negative real number, representing the marginal value for a jth
copy. (I.e., v(j) is the value associated to the jth copy to one who already has j−1 copies.) Following
Vickery [?], we assume “decreasing- marginal valuations”, that is, v(1) ≥ · · · ≥ v(m) ≥ 0.

The set of players is N = {1, 2, . . . , n}, and the true valuation of player i is θ∗i . An outcome ω
is a pair (A,P ), where A = (A0, . . . , An) is a vector of nonnegative integers and P is a profile of
real numbers. Vector A is referred to as the allocation of ω and must be such that

∑n
i=0Ai = m.

Component A0 represents the number of unallocated copies and, for each i > 0, Ai represents the
number of copies allocated to player i. Each Pi represents the price paid by player i.

For each player i, i’s utility function ui maps a valuation θi and an outcome ω = (A,P ) to
ui(θi, ω) ,

∑Ai

j=1 θi(j) − Pi. The true utility of player i for an outcome ω is ui(θ
∗
i , ω). When θ∗i is

clear, we may write ui(ω) instead of ui(θ
∗
i , ω).

The individual welfare of player i in an allocation A is
∑Ai

j=1 θ
∗
i (j). The set of all possible allocations

is denoted by A. The maximum social welfare is maxA∈A
∑

i

∑Ai

j=1 θ
∗
i (j).

A mechanism M specifies:

• For each player i, the set Si of pure strategies available to i.

(The set of all strategy profiles is S = S1 × · · · × Sn.)

• A function mapping each strategy profile s ∈ S to an outcome, M(s).

(Accordingly, ui(M(s)) is i’s true utility for the outcome M(s).)

If M is probabilistic, M(s) is a distribution over outcomes, and ui(M(s)) is the corresponding
expected utility of i. If the underlying mechanism M is clear, we may write ui(s) instead of ui(M(s)).

A mechanism M is individually rational (IR), if every player i has a strategy safei ∈ Si such that
for all strategy profiles s for which si = safei, ui(M(s)) ≥ 0.

2.2 Beliefs

We model a player i’s beliefs as a set, Bi, which in i’s view, consists of all possible candidates for the
true valuation profile. Since i knows his own true valuation, θ∗i , the ith component of each valuation
profile in Bi must coincide with θ∗i . That is,

Definition 1. For each player i, Bi ⊂ {θ ∈ Θ : θi = θ∗i }. B = B1 × · · · × Bn.

Note that the true valuation profile θ∗ need not belong to Bi, in which case we may say that i’s
beliefs are wrong.

Also note that Bi need not capture all beliefs of i. For instance, i may have the following vague
probabilistic belief about some opponent j: j’s true valuation is θj with some probability between
0 and 1/2. However, all “additional beliefs of i must not contradict Bi”. For example, if i had the
additional belief just mentioned, then Bi must contain at least one valuation profile t such that tj = θj.
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2.3 The CEB Benchmark

The collective external belief benchmark is more simply stated for the unit-demand case.

Definition 2. Let B be a belief profile for a multi-unit auction with unit-demand; vB
i , maxj 6=i minθ∈Bj

θi;
and P = (p1, p2, . . . , pn) a permutation of the players such that vB

p1
≥ vB

p2
≥ · · · . Then,

CEB =
m∑
i=1

vB
pi
.

Notice that vB
i is the highest value v such that at least one opponent of i is sure (according to his

belief Bi) that i values a copy of the good least v. Thus, CEB essentially aggregates, in the best
possible way, the knowledge that the players have about their opponents.

Let us know generalize CEB to the q-unit demand case, that is when the marginal value of each
player for a (q + 1)st copy of the good is 0.

Definition 3. Let B be a belief profile for a multi-unit auction and A the set of all possible allocations.
For every copy ∈ [m] define

vB
i [copy] , max

j 6=i
min
θ∈Bj

θi(copy) .

Then,

CEB = max
A∈A

n∑
i=1

Ai∑
copy=1

vB
i [copy] .

Notice that vB
i [j] is the highest value v such that at least an opponent j of i is sure (according to

his beliefs Bj) that i values a jth copy of the good at least v.
Also notice that CEB is the maximum social welfare if the true valuation of each player i were

the function mapping each integer j ∈ [m] to vB
i (j).

On the Usefulness of Possibilistic Beliefs Traditionally, revenue benchmarks (and more gen-
erally social choice functions) are defined relative to the true valuation profile. Quite differently, the
collective external belief benchmark is defined relative to the players’ beliefs, more precisely relative
to their external beliefs. The ability of defining revenue benchmarks (and more generally social choice
functions) over the players’ beliefs enlarges the set of meaningful “targets” available to a mechanism
designer.

On the Significance of CEB At times, the mechanism designer may have little or no information
about the players, while the players may know each other quite well. When the latter is the case, the
CEB benchmark is high. For instance, if the players knew each other’s valuations at least —say—
80% correctly, then the CEB benchmark would be at least 80% of the maximum social welfare.

By saying that “the players know each other valuations at least 80% correctly” we mean that,
for all players i and copies c, there is a value vi,c and an opponent j of i such that j is sure that
vi,c ≥ θ∗i (c).

3

When some player has unrealistically high beliefs about the valuations of one or more of his
opponents, it is possible that CEB is much higher than the maximum social welfare.

3Actually, there is no need that the players have at least 80% correct knowledge about each possible player and each
possible copy. It is enough that they have such knowledge about “the players and copies that count”.
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Examples Let us illustrate the benchmark CEB by means of the following two examples. In each
of them, there are 3 players and 2 copies of the good.

Example 1. In this example, each player happens to believe that only three valuation profiles are
possible.

B1 = { ((100, 80)), (85, 83), (90, 68)) , ((100, 80), (85, 80), (89, 63)) , ((100, 80), (88, 84), (92, 71)) }
B2 = { ((94, 76), (88, 84), (90, 60)) , ((102, 84), (88, 84), (86, 58)) , ((100, 80), (88, 84), (90, 64)) }
B3 = { ((105, 90), (90, 80), (90, 68)) , ((100, 84), (88, 79), (90, 68)) , ((98, 77), (86, 78), (90, 68)) }
Player 1’s set of beliefs implies that θ2(1)∗ ≥ 85, θ2(2)∗ ≥ 80, θ3(1)∗ ≥ 89, and θ3(2)∗ ≥ 63.

Player 2’s set of beliefs implies that θ1(1)∗ ≥ 94, θ1(2)∗ ≥ 76, θ3(1)∗ ≥ 86, and θ3(2)∗ ≥ 58.

Player 3’s set of beliefs implies that θ1(1)∗ ≥ 98, θ1(2)∗ ≥ 77, θ2(1)∗ ≥ 86, and θ2(2)∗ ≥ 78.

Thus in example 1, CEB = 98 + 89 = 187. (This value of CEB is actually realized because player
3 believes that player 1 values a copy at ≥ 98 and player 1 believes that player 3 values a copy at
≥ 89.)

For comparison, notice that in this example, the maximum social welfare is 100 + 90 = 190. (In
fact, θ∗1 = (100, 80), θ∗2 = (88, 84), and θ∗3 = (90, 68), and the maximum social welfare is achieved by
allocating one copy to player 1, and another copy to player 3.)

Moreover, the Vickrey mechanism generates revenue 88 + 88 = 176. 4
Example 2:

B1 = (10, 8)× ([12, 14]× [6, 8])× ([12, 15]× [10, 11])

B2 = ([9, 11]× [7, 9])× (10, 7)× ([8, 12]× [6, 7])

B3 = ([10, 13]× [9, 10])× ([8, 12]× [6, 8])× (7, 5)

Player 1’s set of beliefs implies that θ2(1)∗ ≥ 12, θ2(2)∗ ≥ 6, θ3(1)∗ ≥ 12, and θ3(2)∗ ≥ 10.

Player 2’s set of beliefs implies that θ1(1)∗ ≥ 9, θ1(2)∗ ≥ 7, θ3(1)∗ ≥ 8, θ3(2)∗ ≥ 6.

Player 3’s set of beliefs implies that θ1(1)∗ ≥ 10, θ1(2)∗ ≥ 9, θ2(1)∗ ≥ 8, θ2(2)∗ ≥ 6.

In example 2, CEB = 12 + 12 = 24. (This value of CEB is actually realized because player 1
believes that player 2 values a first copy at ≥ 12 and he also believes that player 3 values a first copy
at ≥ 12.)

The maximum social welfare is 10+10. (In fact, θ∗1 = (10, 8), θ∗2 = (10, 7), and θ∗3 = (7, 5), and the
maximum social welfare is achieved by allocating one copy to player 1, and another copy to player 2.)

Moreover, the Vickrey mechanism generates revenue 7 + 8 = 15.
Example 2 shows that the CEB benchmark can exceed the maximum social welfare when the

players have incorrect beliefs about their opponents’ valuations. In our case, player 1 believes that
player 2 values a first copy of the good at least 12 and that player 3 values a first copy of the good at
least 12. However, player 2 values a first copy of the good at 10 and and player 3 at 7. 4

3 Solution Concept

We consider implementation in strictly conservative strategies, as defined [6]. Essentially, we rely on
the players to perform two levels of deletion of strictly dominated strategies, “based on their beliefs”.

Recall that iterated elimination of strictly dominated strategies is traditionally defined in setting
of complete information, where each player i knows the true valuations (more generally payoff type)
of his opponents. It is thus necessary to generalize this notion to our incomplete-information setting.

Recall that the set of probability distributions over a set X is denoted by ∆(X).
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Definition 4 (Dominated and Undominated Strategies). Let i be a player, θi a valuation of i, and
T = Ti×T−i a subset of strategy profiles. A strategy si ∈ Ti is strictly dominated by another strategy
s′i ∈ Ti, relative to θi and T , in symbols si <

θi
T σi, if, for all strategy subprofiles s−i ∈ T−i,

ui(θi, (si, s−i)) < ui(θi, (s
′
i, s−i)).

We let Ui(θi, T ) denote the set of strategies in Ti that are not strictly dominated relative to θi and T .

Accordingly, knowing that his true valuation is θ∗i and that the initial set of strategy profiles is S,
a rational player i eliminates some of his initial strategies and will only consider strategies in

Ui , Ui(θ
∗
i , S).

Based on his belief Bi and believing that his opponents are rational, i will eliminate additional
strategies. What strategy subprofiles may i’s opponents play? First of all, i is sure that the only
possible candidates are those in the set

Bi(−i) , {θ−i : θ ∈ Bi}.
Second of all, since i believes that his opponents are rational, for each specific valuation subprofile
θ−i ∈ Bi(−i), assuming that θ−i = θ∗−i, i is sure that the strategy subprofiles that −i might consider
playing are those in

U i
−i(θ−i) ,

∏
j∈−i

Uj(θj, S).

Third and finally, since he cannot tell which subprofile in Bi(j) is the true one, i can only be sure
that the strategy subprofile that will actually be played by his rational opponents is

U i
−i ,

⋃
θ−i∈Bi(−i)

U i
−i(θ−i).

Accordingly, i will conservatively eliminate a strategy si ∈ Ui(θ∗i , S) if there exists an alternative
mixed strategy σi ∈ ∆(Ui(θ

∗
i , S)), such that, for all strategy subprofiles s−i ∈ U i

−i, si is strictly
dominated by s′i (relative to θ∗i and U).

Definition 5. The set of strictly conservative strategies of player i is

Ci , Ui(θ
∗
i , S) \ {si : ∃σi ∈ ∆(Ui(θ

∗
i , S)) such that si <

θ∗i
Ui×U i

−i
σi}.

The set of all profiles of strictly conservative strategies is C = C1 × · · · × Cn.

4 Our mechanism For the unit-demand Case

Let us present our result for the simpler, unit-demand setting.

Definition 6. A multi-unit auction is unit-demand if, for all players i, vi(2) = · · · = vi(m) = 0.

Theorem 1. There exists a mechanism Mε that (1) is individually rational, (2) never generates neg-
ative revenue, and (3) under all profiles of strictly conservative strategies, generates expected revenue

≥ (1− ε)
(

1−
⌈√

2m
⌉

m

)
CEB .
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The Interesting Case. The interesting case of Theorem 1 is m < n. Indeed, a mechanism much
simpler than Mε virtually achieves revenue at least CEB when m ≥ n. Accordingly, the reader may
assume that m < n in order to justify dealing with some of Mε’s complications and losing a factor
d√2me
m

CEB in revenue.

4.1 The Intuition Behind Mε

We first describe Mε assuming that the players consider only strategies that survive two levels of
elimination of weakly dominated strategies, relative to the players’ beliefs. (Recall that, essentially, a
strategy si is weakly dominated by another —possibly mixed— strategy σi of i, if σi provides i with
a utility that is at least as large as that provided by si, no matter what strategies i’s opponents may
use, and strictly greater than that provided by si for at least some strategies of i’s opponents.)

Mechanism Mε is of normal form. Initially, each player i, simultaneously with his opponents,
reports a profile of non-negative real values, vi = (vi(1), . . . , vi(n)), where vi(j) is i’s report about j.

The mechanism wishes to incentivize i so that vi(j) is greater than or equal to the highest value
v for which, according to his beliefs, i is sure that θ∗j ≥ v, that is, vi(j) ≥ minθ∈Bi

θj. In particular,
therefore, Mε wishes to ensure that vi(i) ≥ θ∗i .

First, let us describe a simple attempt to achieve the above desiderata that does not work, and
then present a modification that does.

The attempt is as follows. First of all, for each value vi(j) reported by player i about an opponent
j, the mechanism rewards i with an amount of money r(vi(j)), where the reward function r is strictly
increasing and such that the total reward given by Mε is upperbounded by εCEB. We stress that
Mε does not offer rewards for i’s “self report”, that is, vi(i).

Next, for each player j, the mechanism sets KMAX(j) to be the maximum value reported about j
by another player. If the players reported truthfully, then KMAX(j) represents the best “guaranteed”
knowledge that the other players have about j’s valuation. The mechanism also sets CMAX(j) to be
the (lexicographically first) player who reports KMAX(j) about j. One can think of CMAX(j) as the
opponent of j who is most confident about j’s valuation.

Next, the mechanism sorts the players, in decreasing order, according to their KMAX values.
That is, it computes a permutation of the players, p1, . . . , pn, such that KMAX(pi) ≥ KMAX(pj)
whenever i < j. Then, for the first m players, that is, for each of p1, . . . , pm, Mε does the following.
It compares KMAX(pi) with vpi

(pi). If KMAX(pi) ≤ vpi
(pi), then pi gets a copy of the good and

pays KMAX(pi) for it. Otherwise, CMAX(pi) has to pay KMAX(pi), and no copy is allocated in this
“transaction”.

So far, it should be clear that,

Under-report one’s own valuation is weakly dominated.

Indeed, for a player i, the strategy consisting of reporting a profile of values vi such that vi(i) ≤ θ∗i is
weakly dominated by reporting the profile v∗i such that

v∗i (i) = θ∗i and v∗i (j) = vi(j) for all j 6= i .

Note that, due to the rewards offered by the mechanism, it may sometimes be rational for a player
i to report a value vi(j) that he knows to be greater than maxθ∈Bi

θj. However, such “over-reporting”
is not a problem, because it is easy to see that it can only but increase the total revenue generated.

The problem with the present mechanism Mε is that

Under-reporting one’s beliefs about his opponents’ valuations need not be weakly dominated.
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This is a problem, because Mε generates revenue only based on the values the players report about
their opponents. However, it may not be weakly dominated for i to report vi(j) = 0 for each opponent
i, despite the fact that i believes that j’s guaranteed value for a copy of the good is positive, or even
very high. Let us now give an example of why this may happen.

Example Let ti, the “truthful” report of i, be so defined:

ti(i) = θ∗i and ti(j) = minθ∈Bi
θj for all j 6= i.

Let us now describe some additional beliefs that may cause reporting vi(j) = 0 for all j 6= i to be
nor weakly dominated, despite the fact that ti(j) is positive.

We wish to stress that the beliefs we are about to describe may be “far fetched”, but do not
“contradict Bi”, and thus should not interfere with the revenue performance of the mechanism.

Suppose that player i believes that his opponents will report a value subprofile v−i such that, for
a specific player j 6= i, (a) vk(j) = 0 for all k 6= i, j and (b) under the report (ti, v−i):

i = pm+1, j = p` for ` ≤ m, 0 < KMAX(i) < ti(j) << θ∗i .

These additional beliefs of i have three consequences. First, CMAX(j) = i. In fact, all other players
report 0 about j, while i reports truthfully and ti(j) is positive. Second, i believes that, by bidding
truthfully in mechanism Mε, he will not get any copy, and his only utility will come from the small
rewards he receives for the values he reports about his opponents. Third, i believes that if he reports
the valuation profile t′i that coincides with the truthful report ti except for component j, where
t′i(j) = 0, then he will get a copy of the good (at a very good price), and thus, despite that he loses
the small reward r(ti(j)), he will receive a much higher utility than that from the rewards alone.
Accordingly, i is better off reporting 0 about j instead of his true belief about j. 4

To avoid this unfortunate scenario, we modify the mechanism as follows. After receiving the
players’ reports, giving them their rewards, and computing the reordering p1, . . . , pn, the mechanism
tries to “sell” a copy of the good as before (and thus at the same price as before) to each player
pi ∈ W , where W = {p1, . . . , pm−d√2me}.

At this point, Mε also tries to sell a copy of the good, as before, to each player pi 6∈ W such that

(?) i = d√2me+k (where k ≥ 1) and there exist at least k players pj, j < i, for which CMAX(pj) =
pi.

Let us explain. Conceptually, the mechanism sets aside d√2me copies of the good. Each of the
remaining m − d√2me copies is “offered” to a player pj in W at price KMAX(pj), and the copy is
allocated if the offer is “accepted”, that is, if KMAX(pj) ≤ vpj

(pj) —i.e., if the highest report about
pj of pj’s opponents is at most pj’s self-report. Thus, while the players in W are guaranteed to been
offered a copy, those outside W are not, and thus stand to lose a possibly high utility. It is thus not
surprising that every player i would prefer to belong to W . Notice that the cardinality of W is fixed
to be m−d√2me, and recall that a player j ends up in W if the highest report about j is sufficiently
high. Thus a player i may worry that, reporting a high value for one or more opponents j may result
in “kicking himself out of W”. Accordingly, if the mechanism does not take any counter-measures, it
risks that a player i may under-report about his opponents. To prevent this, the mechanism essentially
enters the following “contract” with any player:

“Dear player i: if you are outside W , but would have been in W if you reported 0 about all of
your opponents, then I will offer you a copy of the good anyway, at price KMAX(i)”.
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Notice that this contract is technically expressed by the above condition (?). Under such condition,
it becomes intuitive that player i would prefer to report about his opponents, and collect the rewards
that otherwise would have forfeited. This informal intuition could be turned into a formal argument,

ultimately showing that mechanism Mε guarantees revenue ≥ (1− ε)(1− d
√

2me
m

)CEB, if the players
only consider strategies surviving two levels of elimination of weakly dominated strategies (according
to their beliefs).

To ensure that such revenue continue to be guaranteed under our more demanding solution con-
cepts (i.e., in strictly conservative strategies) we need to modify Mε. In our modification, no cash
rewards will be given for any reported value. However, by reporting vi(j), player i has a probability
of getting a copy of the good for free, where this probability, although strongly upperbounded, is also
strictly increasing with the reported vi(j). These “alternative rewards” are actually offered also for
self-reports, that is, for the reported values vi(i).

The details of this modification can be found in our more formal description of Mε of Section 4.2,
and an explanation of why they work can be found in Section 4.3. Here we only wish to point out
why it was not a good idea to offer cash rewards for self-reports, but it is OK to provide “alternative
rewards” for self-reports.

If the mechanism provides a positive cash reward for each positive reported value, including a
positive self-report, then the generated revenue might be negative. For instance, this happens when
some self-reported value is positive and all other reported values are 0. (Notice that this might happen
when the players have no information about their opponents.) By contrast, with our ”alternative
rewards”, the mechanism never generates negative revenue. This is because we do not pay the rewards
in cash. In particular, as we shall see, in the above scenario, a player i self-reporting a positive vi(i)
expects to receive a good for free with probability 1

n2 · 1
1+vi(i)

, and the revenue generated is 0.

4.2 The Mechanism Mε

In Mε, for each player i, Pi is a real-valued variable, initially set to 0, whose final value will be the
price of i; and, for each player i, Ai is a binary variable, initially set to 0, whose final value is 1 if and
only if i is assigned a copy of the good. All sentences between quotation marks are comments.

We find it simple to break down the mechanism into 5 conceptual steps, marked a to e.

9



Mechanism Mε

Each player i, simultaneously with his opponents, reports a profile vi of non-negative reals.
“Allegedly vi(j) = minθ∈Bi

θj for all opponents j of i.”

a: With probability ε, choose uniformly at random a pair of players (i, j) ∈ {1, . . . , n}×{1, . . . , n};
set Ai = 1 with probability 1− 1

1+vi(j)
; and HALT.

“Aj = 0 for j 6= i and Pj = 0 for all all j.”

With complementary probability, execute the following 4 Steps.

b: For each player j, set KMAX(j) = maxi 6=jvi(j) and CMAX(j) = argmaxi 6=jvi(j), with ties broken
lexicographically.

c: Compute the permutation P of the players, p1, . . . , pn, such that KMAX(p1) ≥ KMAX(p2) ≥ · · · ,
where ties are broken lexicographically.

d: Let W = {p1, . . . , pm−d√2me}.
For each pi ∈ W , “pi gets an offer for a copy at price KMAX(pi)”:
If KMAX(pi) ≤ vpi

(pi) then Api
:= 1 and Ppi

:= Ppi
+KMAX(pi). “pi gets, and pays for, a copy”

Else, PCMAX(pi) := PCMAX(pi) +KMAX(pi). “CMAX(i) is penalized for his bad report.”

e: For each pi 6∈ W , let Cpi
be the set of all players pj, with j < i, such that CMAX(pj) = pi. For

each pi 6∈ W , such that i = d√2me+ k (for k ≥ 1) and |Cpi
| ≥ k, pi gets an offer for a copy at

price KMAX(pi) as follows:
If KMAX(pi) ≤ vpi

(pi) then set Ai := 1 and Ppi
:= Ppi

+KMAX(pi).
Else set PCMAX(pi) := PCMAX(pi) +KMAX(pi).

4.3 Proof of Theorem 1

Lemma 0 Mε allocates at most m− ⌈√2m
⌉

copies in Step d and at most
⌈√

2m
⌉

copies in Step e.

Proof. It is clear that Mε allocates, in step d, at most m − d√2me copies to the players in W . It is
thus enough to prove that Mε will allocate, in step e, at most d√2me copies to the players outside
W . We will now prove this.
Let the players that receive a copy in step e be px1 , . . . , pxy , where m−d√2me < x1 < · · · < xy. Then,

for each such player pxi
, we have |Cpxi

| ≥ xi − (m− d√2me). It is clear that for i 6= j, Cpi
∩Cpj

= ∅.
Moreover, for all i ≤ y, Cpxi

⊂ {p1, p2, . . . , pxy}. Thus,
⋃

1≤i≤y Cpxi
⊂ {p1, . . . , pxy}. This implies that

y∑
i=1

∣∣Cpxi

∣∣ =

∣∣∣∣∣ ⋃
1≤i≤y

Cpxi

∣∣∣∣∣ ≤ ∣∣{p1, . . . , pxy}
∣∣ = xy.

We also have

y∑
i=1

|Cpxi
| =

y∑
i=1

(xi − (m− d
√

2me)) =

y∑
i=1

xi −
y∑
i=1

(m− d
√

2me) ≥

10



xy +

y−1∑
j=1

(m− d
√

2me+ j)−
y∑
j=1

(m− d
√

2me) = xy − (m− d
√

2me) +

y−1∑
j=1

j > xy −m+
y(y − 1)

2
.

In sum,
∑y

i=1 |Cpxi
| > xy −m+ y(y−1)

2
. Accordingly, since

∑y
i=1 |Cpxi

| ≤ xy, we have

xy −m+ y(y−1)
2

< xy ⇒ y(y − 1) < 2m⇒ y <
√

2m+ 1⇒ y < d√2me.

Lemma 1 Mε is individually rational.

Proof. It is easy to see that, if a player i reports vi(j) = 0 for all opponents j, then his utility is at
least 0 no matter what his opponents might report.

Recall that, in Mε, for each player i, Si = (R≥0)
n, and that S = S1 × · · · × Sn.

Lemma 2 ∀i Ui (θ∗i , S) ⊂ {vi ∈ (R≥0)
n : vi(i) ≥ θ∗i }.4

Proof. Let vi(i) < θ∗i . Define the strategy v∗i as follows.

v∗i (j) =

{
vi(j) if j 6= i
θ∗i otherwise.

We now prove that vi is strictly dominated by v∗i : more precisely, vi <
θ∗i
S v∗i . That is, we prove:

ui(θ
∗
i , (vi, s−i)) < ui(θ

∗
i , (v

∗
i , s−i)) for all s−i ∈ S−i.

Let s−i be an arbitrary strategy subprofile in S−i and let us compare the two utilities of i when his
opponents report s−i and he reports either vi or v∗i : that is, ui(θ

∗
i , (vi, s−i)) and ui(θ

∗
i , (v

∗
i , s−i)).

Both utilities have three components: a “reward component”, a “penalty component”, and a “copy
component”.

Player i’s reward component is the expected utility that he receives in step a. Thus, no matter
what the strategy subprofiles of i’s opponents are, i’s reward components for his strategies vi and v∗i
respectively are

r(vi) =
∑
j

ε · 1

n2
·
(

1− 1

1 + vi(j)

)
· θ∗i and r(v∗i ) =

∑
j

ε · 1

n2
·
(

1− 1

1 + v∗i (j)

)
· θ∗i .

In fact, in step a, the mechanism chooses the pair (i, j) with probability ε/n2, and then assigns a
free copy of the good to i with probability ε 1

1+vi(j)
, if i reports vi, and with probability ε 1

1+v∗i (j)
, if i

reports v∗i . Moreover, i’s utility when he receives a copy of the good for free always is θ∗i , no matter
what he reports.

Since vi(j) = v∗i (j) when j 6= i, and also 0 ≤ vi(i) < θ∗i , we have that:

r(vi)− r(v∗i ) =
ε

n2
·
(

1− 1

(1 + vi(i))

)
− ε

n2
·
(

1− 1

(1 + θ∗i )

)
=

ε

n2
·
(

vi(i)− θ∗i
(1 + vi(i))(1 + θ∗i )

)
< 0,

That is, r(vi) < r(v∗i ). In sum, v∗i strictly dominates vi with respect to i’s reward component.

4Actually, Ui (θ∗i , Si) = {vi ∈ (R≥0)n : vi(i) ≥ θ∗i }. Proving equality of the two sets is not hard, but is not ultimately
required to prove Theorem 1, which is our main interest.
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Let us now consider i’s penalty component, assuming that Mε does not halt in Step a, because
otherwise the penalty component is 0. This component solely depends on (a) i’s reports about his
opponents, and (b) i’s opponents self-reports. (In fact, these reports fully determine the values
KMAX(j) for each player j, and thus also the player permutation p1, . . . , pn, and finally also the
players CMAX(pj) for all j. Thus, i pays a penalty KMAX(pj), in Step d, for some player pj if and only
if (a) CMAX(pj) = i and (b) what pj reports about himself, sj(j), is less than what i reports about
j, KMAX(pj).) Since these reports are identical under the strategy profiles (vi, s−i) and (v∗i , s−i), i’s
penalty component must also be identical under the two profiles.

Finally, let us consider the copy component. This component consists of the utility i gets when
he is allocated a copy of the good in Step d or e.

Again assuming that Mε does not halt in Step a, let us compare the copy component of i’s utility
under the strategy profiles (vi, s−i) and (v∗i , s−i). There are three cases to consider: namely,
(1) i is not allocated any copy under (vi, s−i) and (v∗i , s−i);
(2) i is allocated a copy both under (vi, s−i) and (v∗i , s−i); and
(3) i is allocated a copy under (v∗i , s−i), but not under (vi, s−i).5

In case 1, i’s copy utility is the same under (vi, s−i) and (v∗i , s−i), because he always pays 0 for any
unallocated copy anyway. In case 2, i’s copy utility is also the same under (vi, s−i) and (v∗i , s−i),
because his valuation for the copy received always is θ∗i (independently of what he reports about
himself) and the price he pays is KMAX(i), which as argued above solely depends on i’s opponents’
reports. In case 3, i’s copy utility is 0 under profile (vi, s−i), and consists of the non-negative number
θ∗i −KMAX(i) under (v∗i , s−i).

In sum, the first component of i’s utility is strictly less under the strategy profile (vi, s−i) than
under the strategy profile (v∗i , s−i), while all the other components of i’s utility are no greater under
(vi, s−i) than under (v∗i , s−i). Thus vi is strictly dominated by v∗i .

Lemma 3 Ci ⊂ {vi ∈ Ui(θ∗i , S) : vi(j) ≥ min
θ∈Bi

θj for all j 6= i}
Proof. Fix vi ∈ Ci and j 6= i. We will argue by contradiction vi(j) ≥ minθ∈Bi

θj. Define

mi(j) , min
θ∈Bi

θj.

Assume that vi(j) < mi(j) and define the strategy v∗i as follows.

v∗i (j) =

{
vi(k) if k 6= j
mi(j) if k = j.

We reach a contradiction by proving that that

vi <
θ∗i
Ui×U i

−i
v∗i .

Recall that Ui , Ui(θ
∗, S), that U i

−i(θ−i) ,
∏

j∈−i Uj(θj, S), and that U i
−i ,

⋃
θ−i∈Bi(−i)

U i
−i(θ−i).

Thus we reach a contradiction by proving that

ui(θ
∗
i , (vi, s−i)) < ui(θ

∗
i , (v

∗
i , s−i)) for all s−i ∈ Ui .

5The case where i is allocated a copy under (vi, s−i), but not under (v∗i , s−i) cannot occur, because vi(i) < v∗i (i).
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Let s−i be an arbitrary strategy subprofile in Ui, and let us compare the two utilities of i under
the strategy profiles (θ∗i , (vi, s−i)) and (θ∗i , (v

∗
i , s−i)). Again, we break our analysis under the three

components of i’s utility: reward, penalty, and copy. The analysis of the reward component is
essentially the same as in the proof of Lemma 2, but that of the penalty and the copy component is
different.

Analysis of the Reward Component. Player i’s reward components (again, i’s expected utility
in step a) under the above two strategy profiles respectively are

r(vi) =
∑
k

ε · 1

n2
·
(

1− 1

1 + vi(k)

)
· θ∗i and r(v∗i ) =

∑
k

ε · 1

n2
·
(

1− 1

1 + v∗i (k)

)
· θ∗i .

Since vi(k) = v∗i (k) when k 6= j, and also 0 ≤ vi(j) < mi(j), we have that:

r(vi)− r(v∗i ) =
ε

n2
·
(

1− 1

(1 + vi(j))

)
− ε

n2
·
(

1− 1

(1 +mi(j))

)
=

ε

n2
·
(

vi(j)−mi(j)

(1 + vi(i))(1 + θ∗i )

)
< 0,

That is, r(vi) < r(v∗i ). In sum, v∗i strictly dominates vi with respect to i’s reward component.

Analysis of the Penalty Component. Assume that Mε does not halt in Step a, because
otherwise the penalty component is 0. Again, i’s penalty component solely depends on (a) i’s reports
about his opponents, and (b) i’s opponents self-reports.

Notice that it suffices to prove that
if i gets a penalty vi(k) under profile (θ∗i , (v

∗
i , s−i)),

then he gets the same penalty under (θ∗i , (vi, s−i)).
First of all, notice that, under (θ∗i , (v

∗
i , s−i)), i believes that he will not get penalty mi(j) = minθ∈Bi

θj
for reporting v∗i (j) = mi(j). In fact, i believes that j is rational, and thus that he will not play a
strictly dominated strategy. Thus, by Lemma 2, sj(j) ≥ mi(j).

Assume now that i gets a penalty v∗i (k) for some k 6= j. Recall that, for i to get such a penalty, it
is necessary that, in Step d or e, player k gets an offer to buy a copy of the good at price vi(k), and
that i = CMAX(k). Also recall that W = {p1, . . . , pm−d√2me}. We now distinguish 2 cases.

1. k ∈ W under profile (θ∗i , (v
∗
i , s−i)).

Let W ∗
k be the set of players that, under profile (θ∗i , (v

∗
i , s−i)), preceed k in permutation P ∗,

computed in Step 3 of the mechanism. That is, W ∗
k consists of all players ` such that KMAX(`) >

KMAX(k) and all players m that are lexicographically smaller than k and such that KMAX(m) =
KMAX(k).

Similarly define Wk for the profile (θ∗i , (vi, s−i)). Under this profile, for every ` 6= j, KMAX(`)
has the same value as under profile (θ∗i , (v

∗
i , s−i)). Moreover, the value of KMAX(j) under profile

(θi, (vi, s−i)) is at most the value of KMAX(j) under profile (θ∗i , (vi, s−i)). So, W k ⊂ W ∗
k .

In sum, k gets the same offer under both profiles, and i pays the same penalty vi(k).

2. k 6∈ W under profile (θ∗i , (v
∗
i , s−i)).

Let k’s position in permutation P be n, or equivalently pn = k. Define Wk and W ∗
k as in

case 1. Since i gets a penalty vi(k) under (θ∗i , (v
∗
i , s−i)), we have that W ∗

k contains at least
n− (m−d√2me) players whose CMAX is k. Clearly, these n− (m−d√2me) players are also in
Wk, because only the value KMAX(k) is smaller under (θi, (vi, s−i)), while the remaining KMAX

values are the same as under (θ∗i , (vi, s−i)). Moreover, by exactly the same argument as in case
1, we have that Wk ⊂ W ∗

k , which implies |Wk| ≤ |W ∗
k |.

So, i also gets the penalty vi(k) under profile (θ∗i , (v
∗
i , s−i)).
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Analysis of the Copy Component. Assume again Mε does not halt in Step a. The copy
component consists of the utility i gets when he is allocated a copy of the good in Step d or e.
Whether player i gets a copy and at what price depends only on i’s self report and on the reports of
i’s opponents. Since these are the same under both profiles (θi, (vi, s−i)) and (θ∗i , (v

∗
i , s−i)), the copy

component is the same under both profiles.
In sum, the first component of i’s utility is strictly less under the strategy profile (vi, s−i) than

under the strategy profile (v∗i , s−i), while all the other components of i’s utility are no greater under

(vi, s−i) than under (v∗i , s−i). Thus vi is strictly dominated by v∗i , more precisely vi <
θ∗i
U i
v∗i .

Finishing the Proof of Theorem 1

Mechanism Mε is individually rational by Lemma 1 and never generates negative revenue, because it
never transfers any money to a player. Finally, let us analyze its expected revenue.

Recall that, for each player j, we have KMAX(j) = max
i 6=j

si(j). Similarly, for each player j, define

MMAX(j) = max
i 6=j

mi(j).

By Lemmas 2 and 3, for all profiles s of strictly conservative strategies, si(i) ≥ θ∗i , and si(j) ≥ mi(j)
for all j 6= i. Thus, KMAX(j) ≥MMAX(j) for all players j.

Now recall that, if Q is a permutation (q1, . . . , qn) of the n players such that MMAX(q1) ≥ · · · ≥
MMAX(qn), then CEB =

∑m
i=1MMAX(qi). Thus,

∑m
i=1KMAX(qi) ≥ CEB.

Now notice that Mε actually computes a permutation of the players P = (p1, p2, . . . , pn) such that
KMAX(p1) ≥ · · · ≥ KMAX(pn). Thus

m∑
i=1

KMAX(pi) ≥
m∑
i=1

KMAX(qi) ≥ CEB

At the same time, for each i ∈ {1, . . . ,m− d√2me}, our mechanism offers to sell a copy to player
pi at price KMAX(pi). If vpi

(pi) ≥ KMAX(pi), then pi pays KMAX(pi) to Mε. Otherwise, CMAX(pi)

pays KMAX(pi) to Mε as a penalty. So Mε guarantees revenue at least
∑m−d√2me

i=1 KMAX(pi).
Let us now show the following:

Claim 1. For all decreasing sequences v1 ≥ v2 ≥ · · · and positive integers x and k, we have

(x+ k)
x∑
i=1

vi ≥ x
x+k∑
i=1

vi .

Proof of Claim 1.
(x+ k)

∑x
i=1 vi = x

∑x
i=1 vi + k

∑x
i=1 vi ≥ x

∑x
i=1 vi + k

∑x
i=1 vx = x

∑x
i=1 vi + kxvx ≥

x
∑x

i=1 vi + xkvx+1 = x
∑x

i=1 vi + x
∑x+k

i=x+1 vx+1 ≥ x
∑x

i=1 vi + x
∑x+k

i=x+1 vi = x
∑x+k

i=1 vi. �
Claim 1 can be restated as

x∑
i=1

vi ≥ x

x+ k

x+k∑
i=1

vi .

Thus letting vi = KMAX(i), x = m− d√2me, and k = d√2me, we have

m−d√2me∑
i=1

KMAX(pi) ≥ (m− d√2me)
m

m∑
i=1

KMAX(pi) ≥
(

1− d
√

2me
m

)
CEB .

This ends the proof of Theorem 1.
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5 Our mechanism for the q-unit demand case

We now present our result for the q-unit demand case.

Definition 7. A multi-unit auction is q-unit demand if, for all players i, vi(q+1) = · · · = vi(m) = 0.

Theorem 2. M q
ε is individually rational, it never generates negative revenue, and its expected revenue

is at least (1− ε)
(

1− q
(⌈√

2m
q

⌉
+1
)

m

)
CEB.

The Interesting Case: m < qn. A much simpler version of M q
ε virtually achieves revenue at least

CEB when m ≥ qn. Accordingly, one may assume that m < qn when analyzing M q
ε .

Quick summary of M q
ε

In addition to the previously used allocation variables and price variables Ai and Pi, M
q
ε also employs,

for each player i, a binary variable Bi, that, before the mechanism starts,is set to 0.
The mechanism starts with all players allegedly revealing their believes. That is, each player i

reports, for each player j and copy c, a non-negative value, vi(j)(c), which is supposedly the highest
value v such that i is sure that θ∗j (c) ≥ v.

The mechanism orders these reported n2q values in decreasing order, breaking ties appropriately.
(For simplicity, assume that there are no ties.)

Similarly to mechanism Mε, M
q
ε conceptually sets apart q

(⌈√
2m
q

⌉
+ 1
)

copies of the good. Then,

in order, it processes the first m− q
(⌈√

2m
q

⌉
+ 1
)

reported values as follows.

When it is the turn of value vi(j)(c), the mechanism simulates player i offering a copy of the
good to player i for price vi(j)(c). To evaluate whether j accepts or rejects the offer, the mechanism
uses the corresponding self-report of j, that is, vj(j)(c). If j accepts i’s offer, then the mechanism
allocates a copy of the good to j a collects from him a payment of vi(j)(c). If j rejects i’s offer,
then the mechanism imposes a penalty of vj(j)(c) to player i, for his bad report, and irrevocably sets
the variable Bj to 1. By doing so, the mechanism remembers never to allocate another copy of the
good to j, whether or not j will receive another offer. Furthermore, if j indeed receives such an offer
from some player i′, not only will the offer be rejected automatically, but i (rather than i′) will be
imposed the price offered by i′ as an additional penalty. (This behavior of M q

ε is made necessary by
a circumstance that does not arise in the unit-demand case. Assume that player j values a first copy
of the good at 100 and a second one at 10, and that he believes that he will be offered a first copy for
90 and a second copy for 9. Then, if he truthfully reports his own valuation, his total utility would be
110-99=11. However, if he could reject the first offer and accept only the second one, then he would
receive a single copy of the good and his utility would be 100-9=81. It is to avoid under-reporting
one’s true valuation that M q

ε , once a player rejects an offer, forces him to reject all future ones. At
the same time, in order to achieve its revenue target, M q

ε must be compensated for all rejected offers.
But for automatically rejected offers, it cannot penalize the players making them, because their offers
might have been conservatively chosen based on their beliefs. It thus penalize the player making the
first rejected offer to a player j for all the offers that j automatically rejects.)

After all first m − q
(⌈√

2m
q

⌉
+ 1
)

values have been processed, the mechanism M q
ε , similarly to

Mε, tries to allocate the q
(⌈√

2m
q

⌉
+ 1
)

copies of the good that have been set aside, by simulating

offers using, in order, to the yet unprocessed n2q −
(
m− q

(⌈√
2m
q

⌉
+ 1
))

reported values.
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When it is the turn of value vi(j)(c), an offer to buy a copy of the good for price vi(j)(c) is made
to player player j if and only if he was responsible for making at least k of the offers considered so
far, where k is the position in which value vi(j)(c) appears in the ordering.

Again, players who “over-report” their beliefs may be in trouble in M q
ε (and in fact they might be

penalized more than in Mε), but every one is quite safe in reporting, for every opponent j and copy
c, minθ∈Bi

θ∗j (c). The analysis is essentially the same as before. In particular, it shows that under-
reporting one’s true value for each copy of the good is strictly dominated by reporting it truthfully.
This is so because, similarly to mechanism Mε, M

q
ε with probability ε chooses at a random a player i,

a player j and a copy c, and gives for free a copy of the good to player i with probability 1− 1
1+vi(j)(c)

,
without allocating any additional copies and without any payments.

In mechanism M q
ε , at most m offers are ever considered. (This implies that at most m copies of

the good need to be allocated, and thus that there are sufficiently many copies set aside for secondary
allocations.) The same property held for mechanism Mε, and was in fact proved in Lemma 0. For
mechanism M q

ε , it is proved in (a corresponding) Lemma 0′.
While the rest of the analysis of M q

ε is a straightforward adaptation of that of Mε, the proof of
Lemma 0′ requires additional work. Accordingly, after presenting the new mechanism, we shall only
prove Lemma 0′ and omit the rest of the analysis M q

ε .

5.1 The Mechanism M q
ε

As in mechanism Mε, for each player i, Pi is a real-valued variable, initially set to 0, whose final value
will be the price of i, and Ai is an integer valued variable, initially set to 0, whose final value is k if
and only if i is assigned k copies of the good.

However, mechanism M q
ε makes use, for each player i, of an additional binary variable Bi, whose

function is described in the following.
We find it simple to break down the mechanism into 5 conceptual steps, marked a to e.

Mechanism M q
ε

Each player i, simultaneously with his opponents, reports, for each player j, a vector vi(j) ∈ Rq
≥0

such that vi(j)(1) ≥ · · · ≥ vi(j)(q) ≥ 0.

“For each j and copy c, vi(j)(c) allegedly is the highest value v such that i is sure that θ∗j (c) ≥ v.”

a: With probability ε, choose at random a triple (i, j, c) ∈ {1, . . . , n} × {1, . . . , n} × {1, . . . , q}; set
Ai = 1 with probability 1− 1

1+vi(j)(c)
; and HALT.

With complementary probability, execute the following 4 Steps.

b: For each player j and copy c, set KMAX(j)(c) = maxi 6=jvi(j)(c) and CMAX(j)(c) = argmaxi 6=jvi(j)(c),
with ties broken lexicographically.

c: Compute the permutation P of the player-copy pairs (i, c) ∈ {1, . . . , n} × {1, . . . , q},
P =

(
(p1, c1), . . . , (pqn, cqn)

)
, such that KMAX(p1)(c1) ≥ KMAX(p2)(c2) ≥ · · · and,

if KMAX(pi)(ci) = KMAX(pi+1)(ci+1), then ci ≤ ci+1.

“Ties over the players are broken lexicographically.”

d: For i = 1, . . . ,m− q
(⌈√

2m
q

⌉
+ 1
)

, if Bpi
= 0, do:

If KMAX(pi)(ci) ≤ vpi
(pi)(ci) then Api

:= 1 and Ppi
:= Ppi

+KMAX(pi)(ci).

Else, Bpi
= 1 and PCMAX(pi)(ci) := PCMAX(pi) +

∑q
c=ci

KMAX(pi)(c)
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e: Let Ci be the set of all player-copy pairs (pj, cj), with j < i, such that CMAX(pj)(cj) = pi.

For i = m− q
(⌈√

2m
q

⌉
+ 1
)

+ 1, . . . ,m, if |Ci| ≥ i−
(
m− q

(⌈√
2m
q

⌉
+ 1
))

and Bpi
= 0, do:

If KMAX(pi)(ci) ≤ vpi
(pi)(ci), then Api

:= 1 and Ppi
:= Ppi

+KMAX(pi)(ci).

Else, Bpi
= 1 and PCMAX(pi)(ci) := PCMAX(pi) +

∑q
c=ci

KMAX(pi)(c).

5.2 Analysis of M q
ε

Lemma 0 ′′′ M q
ε allocates at most m−q

(⌈√
2m
q

⌉
+ 1
)

copies in Step d and at most q
(⌈√

2m
q

⌉
+ 1
)

copies in Step e.

Proof. It is clear that M q
ε allocates, in step d, at most m− q

(⌈√
2m
q

⌉
+ 1
)

copies to the players. Let

us thus only prove that M q
ε will allocate, in step e, at most q

(⌈√
2m
q

⌉
+ 1
)

copies to the players.

Let the players pi who receive a ci-th copy of the good in step e be px1 , . . . , pxy , where m −
q
(⌈√

2m
q

⌉
+ 1
)
< x1 < · · · < xy. Consider now the vector (px1 , . . . , pxy) and let z be the number of

distinct players that appear in the vector. For each player j among these z players, let W (j) be the
greatest integer, W (j) ≤ y, such that pxW (j)

= j. Sort the z players in increasing order of W and let
the sorted list be j1, . . . , jz, with W (ji) < W (ji+1).

For each such player ji, define qi to be the number of copies that ji receives in step e. Given

these definitions, we have
∣∣∣CxW (ji)

∣∣∣ ≥ ∑i
k=1 qi for i ∈ {1, . . . , z − 1} and

∣∣∣CxW (jz)

∣∣∣ ≥ xW (jz) −(
m− q

(⌈√
2m
q

⌉
+ 1
))

. It is also clear that for i 6= `, CxW (ji)
∩ CxW (j`)

= ∅. Moreover, for all

i ≤ z, CxW (ji)
⊂ {p1, p2, . . . , pxW (jz)

}. Thus,
⋃

1≤i≤z Cxji
⊂ {p1, . . . , pxW (jz)

}. This implies that

z∑
i=1

∣∣∣CxW (ji)

∣∣∣ =

∣∣∣∣∣ ⋃
1≤i≤z

CxW (ji)

∣∣∣∣∣ ≤ ∣∣∣{p1, . . . , pxW (jz)
}
∣∣∣ = xW (jz).

We also have

z∑
i=1

∣∣∣CxW (ji)

∣∣∣ ≥ xW (jz) −
(
m− q

(⌈√
2m

q

⌉
+ 1

))
+

z−1∑
i=1

(
i∑

k=1

qi

)
> xW (jz) −m+

z−1∑
i=1

((z − i)qi)

In sum,
∑z

i=1

∣∣∣CpxW (ji)

∣∣∣ > xW (jz) −m +
∑z−1

i=1 ((z − i)qi). Accordingly, since
∑z

i=1

∣∣∣CpxW (ji)

∣∣∣ ≤ xW (jz),

we have

xW (jz) −m+
∑z−1

i=1 ((z − i)qi) < xW (jz) ⇒
∑z−1

i=1 ((z − i)qi) < m.

The number of copies allocated in step e is
∑z

i=1 qi. Thus, let us now

maximize
z∑
i=1

qi subject to

a)
z−1∑
i=1

((z − i)qi) < m
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and b) v = (q1, . . . , qz) being a vector of nonnegative integers such that qi ≤ q, forall i.

Let ei ∈ Rn be the unit vector whose ith coordinate is 1. Suppose that v = (q1, . . . , qn) satisfies
the above constraints and maximizes

∑z
i=1 qi. For such a vector v, define an update rule to be a

procedure that produces a new vector v′ as follows:
Choose one pair (k, `), such that k < ` and the inequalities qk > 0 and q` < q hold. If such a pair

(k, `) exists, set v′ = v− ek + e`, otherwise the update is terminated and produces v′ = v. The vector
v′ clearly satisfies the constraints and gives

∑z
i=1 q

′
i =

∑z
i=1 qi, so v′ also maximizes the desired sum.

Now start with a vector v0 that maximizes
∑z

i=1 qi. At each step, we update vector vi, getting
some vector vi+1, until we reach some vk such that vk = vk−1 (such a k has to exist, since otherwise
each update operation increases by at least 1 the sum in constraint (a)). Set v∗ = vk and recall that
v∗ also satisfies the constraints and maximizes

∑z
i=1 qi. Because v∗ cannot be updated, the following

must hold: v∗z = v∗z−1 = · · · = v∗z−k = q, 0 ≤ v∗z−k−1 ≤ q, and v∗z−k−2 = · · · = v∗1 = 0.

From the constraint
∑z−1

i=1 ((z − i)v∗i ) < m, we get q k(k−1)
2

< m ⇒ k <
√

2m
q

+ 1 ⇒ k ≤
⌈√

2m
q

⌉
. So∑z

i=1 v
∗
i = v∗z−k−1 +

∑z
i=z−k v

∗
i ≤ q + qk ≤ q

(⌈√
2m
q

⌉
+ 1
)
.

6 Final Remarks

The Asymptotic Nature of Our Analysis Let us emphasize that the analysis of the revenue
performance of our mechanisms Mε and M q

ε are asymptotically optimal (as m grows), but are not
optimal when m is small. In particular, when m = 2, our analysis of Mε only guarantees revenue 0.
However, a more careful analysis for that special case guarantees revenue at least CEB/2.6

Benchmarking on the Players’ Beliefs About Their Opponents We believe that including the
players’ beliefs will enable new and attractive benchmarks to be defined. To achieve such benchmarks
will require new mechanisms and solution concepts. We personally believe that adoption of new
solution concept should be welcome, as rationality has many nuances that, though exploitable in
many applications of interest, are not captured by traditional solution concepts, such as dominant
strategies.

Bringing Epistemic Game Theory to Bear Possibilistic beliefs are certainly of theoretical
interest, but also of practical interest when one can lowerbound the knowledge the players have
about each other. In addition, they usher in the sophisticated machinery of epistemic game theory in
mechanism design. We believe and hope that epistemic game theory will prove useful in more (and
more complex) applications.
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6Our general analysis has the mechanism put aside 2 copies when m = 2, while one copy is enough. (In particular,
in the proof of Lemma 0 we throw away

⌈√
2m
⌉

copies, to simplify our analysis.)
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