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Non-equilibrium molecular dynamics is used to study crystal nucleation of n-eicosane under planar
shear and, for the first time, uniaxial extension. A method of analysis based on the mean first-passage
time is applied to the simulation results in order to determine the effect of the applied flow field type
and strain rate on the steady-state nucleation rate and a characteristic growth rate, as well as the effects
on kinetic parameters associated with nucleation: the free energy barrier, critical nucleus size, and
monomer attachment pre-factor. The onset of flow-enhanced nucleation (FEN) occurs at a smaller
critical strain rate in extension as compared to shear. For strain rates larger than the critical rate, a
rapid increase in the nucleation rate is accompanied by decreases in the free energy barrier and critical
nucleus size, as well as an increase in chain extension. These observations accord with a mechanism
in which FEN is caused by an increase in the driving force for crystallization due to flow-induced
entropy reduction. At high applied strain rates, the free energy barrier, critical nucleus size, and
degree of stretching saturate, while the monomer attachment pre-factor and degree of orientational
order increase steadily. This trend is indicative of a significant diffusive contribution to the nucleation
rate under intense flows that is correlated with the degree of global orientational order in a nucleating
system. Both flow fields give similar results for all kinetic quantities with respect to the reduced strain
rate, which we define as the ratio of the applied strain rate to the critical rate. The characteristic growth
rate increases with increasing strain rate, and shows a correspondence with the nucleation rate that
does not depend on the type of flow field applied. Additionally, a structural analysis of the crystalline
clusters indicates that the flow field suppresses the compaction and crystalline ordering of clusters,
leading to the formation of large articulated clusters under strong flow fields, and compact well-ordered
clusters under weak flow fields. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4972894]

I. INTRODUCTION

During the processing of crystallizable polymers, crys-
tallization primarily occurs under conditions far from the
ideal case, where quiescent, homogeneous nucleation predom-
inates. Depending on the specifics of the crystallization condi-
tions, the polymer melt is subjected to a variety of mechanical,
thermal, and geometric factors, each of which has the capacity
to alter the crystallization kinetics and resultant morphology
of the material.1 In particular, it has been widely observed that
flow results in a dramatic increase in the rate of crystalliza-
tion. This effect is ubiquitous in melt processing since it is
difficult to conceive of a method for forming a polymer mate-
rial that does not impart a deformation history.2 Flow-induced
crystallization (FIC) has been widely researched, yet there are
still some consequential aspects of the process that are not
held in consensus. In particular, there is little concrete knowl-
edge about the earliest stage of FIC, sometimes referred to
as flow-enhanced nucleation (FEN),3 since it occurs at small
spatiotemporal scales that are beyond the detection limit for
even the most carefully constructed experiments.4

Under conditions that lead to polymer crystallization
through the sporadic nucleation of stable crystalline clusters
followed by deterministic growth, the evidence suggests that
there exists a mechanism by which flow reduces the kinetic

barrier to nucleation relative to that which is operative in the
quiescent melt.5 Numerous studies have shown that FIC is
strongly dependent on the rheological behavior of the high-
est molecular weight chains in the melt.5–8 This observation
has given rise to the concept of precursors, which form during
flow from perturbed high molecular weight chains and have an
increased capacity to induce crystallization in a polydisperse
melt upon cooling.5,8 This manuscript focuses on nucleation
from the monodisperse melt, and therefore the rheology of only
the single length of chain present is important, and precursors
are not expected to form.

The intensity of flow-enhanced effects depends on the
capacity of the flow field to perturb molecules from their
relaxed state. Meerveld et al. classified FIC behavior under
shear based on the strain rate ε̇ in terms of the reptation time
τd and Rouse time τR of the melt.7,9 They determined that there
are three important ranges: (i) when ε̇ < 1/τd , nucleation is
effectively quiescent, (ii) when 1/τd < ε̇ < 1/τR the molecular
orientation induces a modest increase in sporadic, isotropic
nucleation, and (iii) when ε̇ > 1/τR, the molecular stretching
causes a drastic increase in the nucleation of oriented, fibril-
lar structures. This analysis indicated that chain stretching has
the most dramatic effect, a result that has also been observed
in continuum and meso-scale modelling.10,11 The short chains
used in this study do not entangle, and therefore the onset of
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FEN effects is associated with τR. The Weissenberg number,
Wi = ε̇τR, is a measure of the capacity of the flow field to per-
turb chains from their equilibrium conformations. The onset
of flow-induced effects is expected to occur for Wi ≈ 1.

The aforementioned difficulties associated with observing
FEN experimentally have inspired modelling studies at a range
of length-scales. Continuum models have proven effective for
describing the later stages of FIC, including structure develop-
ment and rheological properties.7 At the mesoscale, Graham
and Olmsted developed a coarse-grained kinetic Monte Carlo
model that uses the GLaMM continuum rheological model12

to sample chain configurations and adds segments of chains
to a discretized nucleus using an acceptance criterion based
on the segment-wise free energy.5,11 Their model exhibited
good agreement with experimental data, in support of the
viewpoint that FEN can be explained by flow-induced entropy
reduction in the melt; however, it must be considered to be
a phenomenological model due to its rigid assumptions about
the nucleus shape and its reliance on unknown thermodynamic
parameters. At the molecular level, there have been simula-
tion efforts using both Monte Carlo (MC)13–15 and Molecular
Dynamics (MD)16–21 to study FIC; however, relatively few
focused specifically on the kinetics of nucleation.22 Given that
nucleation is a transient event, a MC simulation cannot accu-
rately capture its kinetics without an enormous amount of prior
knowledge regarding the dynamic processes in the melt and
their rates. For this reason, we believe that MD, which includes
all of the classical physics of interacting particles, is the more
attractive method for kinetic nucleation studies, where feasi-
ble, and directs readers to reviews that cover the application
of MC methods to study FIC.5,23

Molecular dynamics studies of FIC have focused pri-
marily on relatively short chains; long chains require both
larger systems and longer times due to the strong molecu-
lar weight dependence of relaxation times. Furthermore, to
date, these studies have been limited exclusively to alkanes,
or oligo-ethylenes. Alkanes are referred to by the number
of carbon atoms prefixed by “C.” Koyama et al.16,17 stud-
ied the crystallization of oriented C5000, prepared through
cold-drawing below Tg then subsequently crystallized above
Tg in the absence of an applied flow field. They observed
rapid nucleation of oriented crystals, but were unable to dis-
tinguish nucleation and growth regimes. In a similar study by
Ko et al.,19 oriented samples were prepared by drawing under
a constant, uniaxial load above Tm, then quenching below Tm

in order to observe crystallization in the absence of an applied
load. In these simulations, the nucleation and growth mecha-
nism was observed, and found to result in rapid crystallization.
Lavine et al.24 studied the crystallization of chains ranging
from C25 to C400 under uniaxial stress and a variety of ther-
mal conditions. They found that when crystallization occurred
under an applied uniaxial stress, nascent crystalline nuclei
formed; however, their growth was suppressed. Jabbarzadeh
and Tanner20,21 performed constant-pressure, non-equilibrium
molecular dynamics (NEMD) simulations of crystallization
under shear and observed that steady shearing increases the
crystallization rate for both C20 and C60 chains, and that
pre-shearing increases the crystallization rate for C60 and
longer C162 chains, but has no discernable effect for C20.

Anwar et al.22 performed constant-volume, NEMD studies of
C20 and C150 under shear. Based on a mean first-passage
time (MFPT) analysis, they identified a critical shear rate for
the onset of rapid nucleation of oriented crystallites that cor-
responded reasonably well to the Wi = 1 condition. That study
is the only one to date that provides quantitative information
on the kinetics of FEN.

In this work, the kinetic mechanism of nucleation is inves-
tigated under both shear and, for the first time, uniaxial exten-
sional flow, which is the relevant flow field for fiber formation.
It is a commonly held assumption that flow increases the
driving force for crystallization due to the melt entropy reduc-
tion associated with stretching and orienting chain molecules
under flow, which, in turn, reduces the kinetic barrier to nucle-
ation.11,25–27 Although this concept has proven useful, it is
difficult to demonstrate experimentally due to the inaccessi-
bility of experimental measurements of the free energy bar-
rier under flow. Using the simulation and analysis methods
described in the manuscript, the free energy barrier under
steady flow is computed, providing quantitative evidence for
the flow-induced barrier reduction mechanism. The method
makes use of NEMD simulation in order to observe nucleation
under shear and uniaxial extension with varying strain rates.
These observations are then used to parameterize a stochastic
model of nucleation that is based on kinetic nucleation theory
and valid for small nucleation barriers,28 in order to determine
the strain rate-dependencies of nucleation and growth rates and
of critical kinetic parameters. By studying both planar shear
and uniaxial extension, the effect of the type of applied flow
field, in addition to its intensity, is discerned.

II. SIMULATION DETAILS

Simulations of flow-enhanced nucleation were performed
using the non-equilibrium molecular dynamics (NEMD)
method, in which the system is subjected to a constant flow
field defined by the rate-of-deformation tensor ∇u, where u
denotes the streaming velocity. The rate-of-deformation ten-
sors for planar shear and uniaxial extensional flow fields
are

∇ushear =



0 ε̇ 0
0 0 0
0 0 0


, ∇uextension =



ε̇ 0 0
0 −ε̇/2 0
0 0 −ε̇/2


. (1)

The equations of motion under NEMD are the SLLOD equa-
tions,29 which operate on the peculiar momentum of a particle,
a quantity that is related to the lab frame velocity by pi/mi = vi

� qi · ∇u,

q̇i =
pi

mi
+ qi · ∇u,

ṗi = Fi − p · ∇u.
(2)

In addition to the equations of motion, NEMD simula-
tions of homogeneous flow fields require boundary conditions
that are compatible with the applied flow field. At each time
point, homogeneity requires periodic boundary conditions in
all 3 dimensions, and the simulation box serves as a basis for
the lattice of periodic images of a particle located at the origin.
As time evolves, the simulation box, and therefore the lat-
tice of periodic images, must deform according to the applied
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flow field. A compatible boundary condition is achieved when
the simulation box defines a lattice that preserves a minimum
spacing between periodic images of particles under the applied
strain field.

Simulations of shear flow were performed using the
Lagrangian rhomboid boundary condition,30 which has been
demonstrated to be equivalent31 to the Lees-Edwards sliding
brick boundary condition.32 In this method, the initial simula-
tion box is cubic, and upon deformation it evolves according
to the three vectors:

h1(t) = (1 0 0) ,

h2(t) = (εbox(t) 1 0) ,

h3(t) = (0 0 1) .

(3)

Since the simulation box is a basis for a lattice, for any applied
strain tε̇ there are equivalent simulation boxes corresponding
to εbox(t) = tε̇ ± k for k ∈ {0, 1, 2, . . .}. In order to avoid a
skewed simulation box, εbox(t) is restricted to the range [�1/2,
1/2] using εbox(t) = tε̇ − btε̇e, where b·e denotes the nearest
integer function. This process of finding the least skewed sim-
ulation box for a given strain is equivalent to lattice reduction,
which is the process of finding the least skewed basis for a
given lattice.

Simulations of uniaxial extensional flow were performed
using the method developed by Hunt.33 In this method, the
initial simulation box takes on a prescribed shape defined by
the Vandermonde matrix of the roots of an irreducible cubic
polynomial. Utilizing the same polynomial as Hunt, ϕ3

� 6 ϕ2

+5ϕ – 1, the initial simulation box is defined by its three roots,
ϕ1, ϕ2, and ϕ3,

h1(0) = (1 1 1) ,

h2(0) = (ϕ1 ϕ2 ϕ3) ,

h3(0) =
(
ϕ2

1 ϕ2
2 ϕ2

3

)
.

(4)

As flow is applied, the simulation box deforms along with the
flow field: hi(t) = hi(0) · exp(t∇u). Using a result from number
theory,34 Hunt demonstrated that the lattice defined by h(t) pre-
serves a minimum image distance upon any diagonal, traceless
rate-of-deformation tensor, allowing simulations of uniaxial
deformation to be performed for arbitrary duration. As is the
case in shear, the initial simulation box becomes skewed upon
applying uniaxial strain, and therefore lattice reduction should
be performed to mitigate inefficient domain decomposition
and loss of significance in arithmetical computations. The lat-
tice reduction is not easily determined analytically as was the
case in shear, requiring the application of a numerical lattice
reduction algorithm throughout the simulation. For details, the
reader is referred to the original paper by Hunt.33 Another
solution to the problem of lattice reduction for generalized,
homogeneous flows in NEMD has been reported by Dobson.35

The uniaxial boundary conditions were implemented in
the LAMMPS software package.36 The LAMMPS require-
ment that the simulation box be expressed as an upper tri-
angular matrix required a scheme in which the simulation
system is repeatedly rotated between a non-upper triangu-
lar “flow frame,” in which the positions and velocities of
particles are updated according to the SLLOD equations,
and a “LAMMPS frame,” in which the remaining molecular

dynamics routines were performed, including construction of
neighbor lists and calculation of forces. Additionally, due to the
exponential scaling of uniaxial deformation with strain, double
precision arithmetic was insufficient for performing simula-
tions at large strain. Following Hunt,33 the arbitrary precision
libraries GMP37 and MPFR38 were used for the computation of
the box shape and the LLL algorithm,39 as implemented in the
fplll package,40 was used for lattice reduction. In order to mit-
igate a known momentum instability in the SLLOD equations
of motion under extension, the center of mass was periodically
reset to zero every 100 timesteps.31,33

We have released the UEF package41 for NEMD simu-
lations of uniaxial flow in LAMMPS. This package is based
on the method from Dobson,35 which is equivalent to Hunt’s
method but possesses an implementation advantage since it
does not require arbitrary precision libraries. The method
implemented in UEF differs slightly from Dobson’s in that
it also utilizes numerical lattice reduction in order to find a
fully reduced simulation box. The lattice reduction is per-
formed using Semaev’s algorithm42 which, unlike the LLL
algorithm, determines an optimally reduced basis according
to the Minkowski criterion. It has been verified that Hunt’s
method,33 used in this paper, and Dobson’s method,35 imple-
mented in the UEF package, produce equivalent results for the
stress response for a WCA fluid test system under uniaxial and
biaxial extension. Additionally, both methods were found to
yield the same stress response for a C20 system under uniax-
ial extension as a simulation with simply deforming bound-
ary conditions, up until the point that the minimum image
convention was violated in the simply deforming system.

In order to allow for the increase in density associated
with crystallization, a constant-stress condition was imposed
on one or more dimensions of the simulation box. The dimen-
sions with constant stress were chosen to correspond to a free
surface for typical laboratory flows. For shear, the stress was
controlled in the vorticity direction, which would be exposed to
atmospheric pressure in a cone-plate or plate-plate apparatus.
For uniaxial extension, the stress was controlled in the com-
pression directions, which correspond to free surfaces in fiber
drawing. The stress condition in uniaxial extension is compli-
cated by the boundary conditions, which require a specific box
shape for a given level of strain. The desired stress conditions
were achieved using a pressure control scheme in which the
simulation box was scaled isotopically, but only the compo-
nents of the pressure tensor in the compression directions were
controlled to the target external pressure. For all simulations,
the LAMMPS implementation of the Nose-Hoover thermostat
and barostat was used, with time constants of 0.4 ps and 4 ps,
respectively.

The simulated system and force field were the same as
those used by Yi and Rutledge.43,44 The system consisted of
336 C20 molecules, with a united atom (UA) representation
in which each UA represents a CH3 or CH2 group. The force
field was initially proposed by Paul, Yoon, and Smith45 with
subsequent modifications by Waheed et al.,24,46 and includes
bond stretching, bond angle bending, torsion, and non-bonded
Lennard-Jones forces. The SLLOD equations of motion were
integrated using a rRESPA scheme47 with a time step of 2 fs for
bonded interactions and 4 fs for intermolecular interactions.
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Nucleation simulations were performed at 260 K (17%
undercooling) and 1 atm for strain rates in the range of
107-109 s�1, corresponding to Weissenberg numbers between
0.031 and 3.1 based on the 3.25 ns43 Rouse time of C20 at
260 K for the force field used. At each strain rate, a melt
was first equilibrated at 315 K under steady strain for 20 ns;
at this temperature, the Weissenberg number was less than
1.0 (based on a Rouse time of 0.60 ns) for all strain rates.
Equilibration was performed under steady straining in order
to reduce the time required for the melt to adjust to the flow field
upon quenching; nevertheless, transients in the melt structure
upon quenching were unavoidable at the highest strain rates.
From each equilibration trajectory, 40 snapshots were taken in
intervals of 6 ns and quenched to 260 K in order to observe
nucleation while maintaining the applied strain rate. The inter-
val of 6 ns was chosen because it is roughly twice the Rouse
time for C20.

III. ANALYSIS METHOD

For each nucleation run, crystalline clusters were deter-
mined using a method similar to the one proposed by Yi and
Rutledge.43 The local order parameter for each UA is defined
according to

〈P2〉i,local =
1
2

〈
3 cos2 θij − 1

〉
j∈Γi

,

Γi = {k : ‖rk − ri‖ <rP2, k , i, molk , moli} .
(5)

In this expression, θij is the angle between chord vectors
located on atoms i and j, and the average for the ith UA is
taken over all atoms within a distance rP2 that do not belong
to the same molecule as i. Pairs of UAs belonging to the
same molecule were excluded from the local order parame-
ter in order to increase sensitivity to the intermolecular order
associated with crystallization in systems under strong flow,
which contain large populations of stretched chains. UAs that
exceed a threshold value P2,th for the local order parameter
are eligible to form clusters of size greater than one. Eligi-
ble UAs are determined to be a part of the same cluster if
they are within a threshold distance rth of another eligible UA.
All clusters of size one are considered to be in the monomer
state, regardless of whether they exceeded the threshold value
of P2,th. For this study the values P2,th = 0.52, rP2 = 1.5σlj,
and rth = 1.3σlj were used, where σlj = 0.401 nm is the
van der Waals diameter of a CH3 united atom. This results in
a more local measure of orientational order as compared to
our previous study,28 which used P2,th = 0.40, rP2 = 2.5 σlj,
and rth = 1.3 σlj from Yi and Rutledge.43 The smaller value
of rP2 was chosen because it is more sensitive to fluctuations
in orientational order associated with nucleation events for
FEN simulations, which exhibit significant background ori-
entation associated with the applied flow field. The value of
P2,th was chosen to detect similar cluster sizes for quiescent
nucleation as the original choice from Yi and Rutledge.43 In
general, a large P2,th value results in poor detection of small
clusters, and a small P2,th value results in the misclassification
of slightly ordered, but non-crystalline, regions of the melt as
crystalline clusters. For simulations of quiescent nucleation,
the value used in this study yields similar MFPT curves, and

therefore similar kinetic parameters including the free energy
barrier and critical nucleus size, as our previous study.28 In
general, a small change in P2,th results in a small change in
the critical nucleus size, leaving the remaining kinetic param-
eters and steady-state rates largely unaffected. For each run,
the size of the largest cluster in the system was monitored and
the first-passage time curves T largest,sim(1→ n) were recorded
as the earliest time that a cluster of size ≥n was observed. The
MFPT curve τlargest,sim(1 → n) was found by averaging the
first-passage times at each value of n for all 40 runs. The stan-
dard deviation curve σlargest,sim(1 → n) was computed from
the sample variance of T largest,sim(1→ n) at each value of n.

The analysis of mean first-passage time data was per-
formed using our recently reported method28 for analyzing
nucleation processes that exhibit small separation between
time scales for nucleation and growth. In this method, first-
passage time data from molecular simulation are fit to a
stochastic nucleation model48 in order to extract kinetic param-
eters and rates associated with the underlying nucleation pro-
cess. Under the assumption of a constant cluster shape, the free
energy ∆G(n) of forming a crystalline cluster of size n within
the metastable melt follows the capillary approximation

∆G(n) = ∆G∗
[
3

(
n2/3 − 1

(n∗)2/3

)
− 2

(
n − 1

n∗

)]
. (6)

The parameters ∆G∗ and n∗ are the free energy barrier and
critical nucleus size, respectively. The formation of clusters
is modeled using the Becker-Döring equations49 for the time
evolution of the cluster-size distribution function C(n,t),

∂C(1, t)
∂t

= 0,

∂C(n, t)
∂t

= f (n − 1)C(n − 1, t) + g(n + 1)C(n + 1, t)

− ( f (n) + g(n))C(n, t). (7)

The attachment rate, f (n), is the rate at which a monomer is
added to a cluster of size n, and it scales as the cluster surface
area according to

f (n) = f1nα. (8)

Under the assumption that the shape of a crystalline cluster is
independent of cluster size, α = 2/3. In preliminary studies
of shear flow at 250 K, the surface area of the largest clus-
ter was calculated based on the Voronoi tessellation, and α
was found to lie in the range 0.69–0.74, which we considered
close enough to 2/3 for subsequent analyses. The parameter
f1 is the monomer attachment pre-factor, and represents the
average rate at which a labeled monomer forms a cluster of
size 2. The detachment rate is specified by a stationary, or equi-
librium, cluster distribution function that follows a Boltzmann
distribution,

f (n)e−β∆G(n) = g(n + 1)e−β∆G(n+1). (9)

For this model, the quantities ∆G∗, n∗, and f1 completely
determine the kinetics of a nucleating system. Following
Gillespie,48 it is assumed that for nucleation from a melt con-
taining N total UAs, the first-passage time of the largest cluster
is well-approximated by the first-passage time for the largest of
N clusters evolving independently according to Eqs. (6)–(9).
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This approximation leads to an expression for the MFPT of the
largest cluster, τlargest(1 → n), based on the cumulative distri-
bution function of the first-passage time for a single cluster,
FT (t; 1→ n),

τlargest (1→ n) =

∞∫
0

(1 − FT (t; 1→ n))N dt. (10)

An approximation for the first-passage time distribution
(FPTD) of a single cluster, based on its known hypoexpo-
nential structure,50 provides an efficient and accurate route
to computing FT (t; 1 → n). The method requires the com-
putation of the first i cumulants of the first-passage time,
which are then used to approximate the slowest i � 1 rates
of a hypoexponential distribution, as well as a time shift.
As the number of cumulants i is increased, the accuracy
of the FPTD increases. In this study, similar results were
obtained using i = 3 and i = 4, and therefore the value of
i = 4 was used for all fits to simulation data.

Estimates of the kinetic parameters ∆G∗, n∗, and f1 are
obtained from simulation data through a least squares fit to
τlargest(1 → n), given in Eq. (10) and σlargest(1 → n), which
follows from the variance

σ2
largest (1→ n) =

∞∫
0

2t (1−FT (t; 1→ n))N dt − τ2
largest (1→ n) .

(11)

The objective function for the fit is

Y (∆G∗, n∗, f1) =
M∑

i=1

[(
σlargest (1→ i) − σlargest,sim (1→ i)

)2

+
(
τlargest (1→ i) − τlargest,sim (1→ i)

)2
]
.

(12)

The inclusion of the standard deviation in the fit is
due to poor observed agreement between σlargest(1→ n)
and σlargest,sim(1→ n) when only τlargest(1→ n) and
τlargest,sim(1→ n) were used in the fitting procedure, in

particular for analysis of simulation results at high strain
rates. The inclusion of the standard deviation ensures that the
parameterization of the stochastic model captures both the first
and second-moment trends in first-passage times observed in
simulations.

In addition to the parameters∆G∗, n∗, and f1, the stochastic
model can also be used to determine kinetic rates. The steady-
state nucleation rate is computed from

IS = ρn,melt



M∑
k=1

eβ∆G(k)

f (k)

k∑
j=1

e−β∆G( j)



−1

. (13)

The value M is the size of a large cluster that is highly unlikely
to dissolve. Gillespie48 demonstrated that the values M = 2n∗

and M = 4n∗ produced the same value for the nucleation rate. In
this study, M = 800 was used for the computation of nucleation
rates, as well as for the number of points in fits performed using
Eq. (12), and was confirmed a posteriori to satisfy the condi-
tion: M > 4n∗. Under the assumption of a spherical nucleus,
the characteristic growth rate is

GS =
f1

(36πρn,xtal)1/3

(
1 − exp[−2β∆G∗/n∗]

)
. (14)

The quantities ρn,melt and ρn,xtal are the number density of UAs
in the melt and crystal. The values used in this study were
based on a melt density of 0.830 g cm�3 and crystal density
of 0.936 g cm�3, obtained by interpolation of the results of Yi
and Rutledge43 to 260 K.

IV. RESULTS

Fig. 1 shows the mean and standard deviation of the first-
passage time of the largest cluster for nucleation of C20 under
shear and extensional flow for a range of strain rates. The dra-
matic shift in τlargest,sim(1 → n) curves to smaller times with
increasing strain rate indicates a strong FEN effect. Addition-
ally, at low strain rates the τlargest,sim(1 → n) curves exhibit
clear inflection points, whereas the curves at higher strain
rates are comparatively featureless. This change in shape indi-
cates that the free energy surface, and therefore the critical
free energy barrier ∆G∗ and critical nucleus size n∗, is affected

FIG. 1. Curves for the ((a) and (b))
mean and ((c) and (d)) standard devi-
ation of the first-passage time of the
largest cluster for nucleation of C20
under ((a) and (c)) shear and ((b) and
(d)) extensional flow. The solid lines are
data from MD simulation and the dashed
lines are fits according to the objective
function in Eq. (12). From top to bottom,
the curves correspond to strain rates of
107 s�1, 107.25 s�1, 107.5 s�1, 107.75 s�1,
108 s�1, 108.25 s�1, 108.5 s�1, 108.75 s�1,
109.0 s�1.



244903-6 D. A. Nicholson and G. C. Rutledge J. Chem. Phys. 145, 244903 (2016)

by the intensity of the flow field, since a change in the
monomer attachment pre-factor f1 alone would not affect the
shape of the curve. The σlargest,sim(1 → n) curves, shown
in Figs. 1(c) and 1(d), increase for small n before leveling
off at large n. This trend is consistent with a nucleation and
growth process in which the increase in σlargest,sim(1 → n)
is associated with the stochastic formation of a large super-
critical cluster, and the subsequent leveling indicates that the
growth of the supercritical cluster is deterministic. Follow-
ing Shneidman,51 the plateau value of the standard deviation
σplateau, taken to be the average value of σlargest,sim(1→ n) for
400 ≤ n ≤ 800, can be used to compute an approximate steady-
state nucleation rate for small systems, under the assumption
that the FPTD is a shifted exponential,

IS =
ρn,melt

Nσplateau
. (15)

The σlargest,sim(1 → n) curves shift to smaller times with
increasing strain rate, implying a dramatic increase in the
nucleation rate according to Eq. (15).

The τlargest,sim(1→ n) and σlargest,sim(1→ n) curves were
fit to the stochastic nucleation model according to the objec-
tive function in Eq. (12). The fitted curves are shown as dashed
lines in Fig. 1, and the resulting strain rate-dependent parame-
ters are provided in Fig. 2 for both shear and extensional flow.
The free energy barrier∆G∗ and critical nucleus size n∗ exhibit
similar trends with strain rate. Below a critical strain rate of
ε̇c = 107.75 s�1 for shear and ε̇c = 107.25 s�1 for extension, both
∆G∗ and n∗ are effectively strain rate-independent. For strain
rates above ε̇c, ∆G∗ and n∗ decrease initially, then appear to
saturate at high strain rates. The trends in ∆G∗ and n∗ are qual-
itatively similar in both shear and extension at the log-scale,
with the main difference between them being the disparity in
the critical strain rate. At high strain rates, where ∆G∗ and
n∗ are relatively constant, the monomer attachment pre-factor

FIG. 2. Strain rate dependence of kinetic parameters for nucleation of C20
under shear and uniaxial extension: (a) the free energy barrier, (b) the critical
nucleus size, and (c) the monomer attachment pre-factor. The top axis is the
Weissenberg number based on the Rouse relaxation time for C20.

f1 increases dramatically. This increase indicates a significant
diffusive contribution to the nucleation kinetics for strong flow
fields.

The steady-state nucleation rate IS and characteristic
growth rate GS , computed from Eqs. (13) and (14), are the
marked solid curves in Fig. 3. The nucleation rate estimate
from Eq. (15) is the dashed curve in Fig. 3(a), and agrees well
with the values from Eq. (13), suggesting that Shneidman’s
approximation51 is in reasonable agreement with our analysis
method28 for the purposes of calculating this quantity, even
when the energy barrier is diminished by flow. The nucleation
rate exhibits a monotonic increase with strain rate above ε̇c. As
was the case for ∆G∗ and n∗, the primary difference between
the log-scale trends in nucleation rate under shear and exten-
sion is the disparity in the critical strain rate. Unlike ∆G∗ and
n∗, the nucleation rate does not saturate at high strain rates,
at least within the range tested. The characteristic growth rate
also increases with strain rates above ε̇c, but the trend is less
dramatic than the increase in IS , and shifted slightly to higher
strain rates.

In order to determine the effect of the flow field on
chain configurations during the nucleation process, the root

mean square (RMS) end-to-end distance
〈
R2

ee

〉1/2
, averaged

over all chains, and the global nematic order parameter
〈P2〉global = 〈3cos2θij – 1〉i,j/2, averaged over all pairs of UAs
in the system, were computed at each sampled time step for
all nucleation runs. These quantities depend on the extent of
crystallization, and therefore they have been computed as a
function of the largest cluster size nlargest, binned into ranges
of 20 UAs. Using this method, the effect of the flow field on
chain conformations can be compared for systems with the
same extent of crystallization.

FIG. 3. Results for (a) steady-state nucleation rate and (b) steady-state char-
acteristic growth rate for the nucleation of C20 under shear and uniaxial
extension. The solid lines denote results obtained from fits to first-passage time
data using (a) Eq. (13) and (b) Eq. (14). The dashed lines are the approximate
nucleation rates from Eq. (15). The right axis scaling shows the flow-induced
rate relative to (a) the quiescent nucleation rate IS ,q and (b) quiescent growth
rate GS ,q. The quiescent rate values can be found in our previous study.28
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FIG. 4. Characterization of chain con-
formations during flow-enhanced nucle-
ation, including the dependence of ((a)
and (b)) the RMS end-to-end distance,
and ((c) and (d)) the global nematic order
parameter on size of the largest cluster
for ((a) and (c)) shear and ((b) and (d))
uniaxial extensional flow.

At strain rates below the critical strain rate ε̇c, the RMS
end-to-end distance curves, shown in Fig. 4(a) for shear and
Fig. 4(b) for extension, exhibit similar trends with nlargest,
indicating that the flow-field was not inducing extension of
chains. As the strain rate was increased above ε̇c, the RMS end-
to-end distance exhibited higher values, showing that chains
were being extended by flow. While there is a clear differ-
ence between the curves at strain rates below and above ε̇c,
it does not appear that the amount of extension caused by
increasing the strain rate further above ε̇c was very large, sug-
gesting that other factors like orientational ordering may be
more relevant. The global nematic order parameter is shown in
Fig. 4(c) for shear and Fig. 4(d) for extension. As was the case
for the RMS end-to-end distance, this nematic order parameter
did not change drastically with strain rate below ε̇c. Above ε̇c,
however, the nematic order parameter increased steadily with
strain rate. It appears that increasing the strain rate above ε̇c

induces initially both orientation and extension of the chains in
a nucleating system; however, increasing the strain rate further
influences nucleation predominantly through a higher degree
of orientation.

Characterization of the crystalline order of clusters formed
during FEN was performed by measuring the nematic order

parameter of the largest cluster 〈P2〉largest, which was computed
in a similar manner as 〈P2〉global, but with the average taken
only over pairs of atoms that belonged to the largest cluster.
The dependence of 〈P2〉largest on the size of the largest cluster
is shown for shear in Fig. 5(a) and extension in Fig. 5(b). The
fractal dimension Df was also computed using a box counting
algorithm52 that treats each UA as a sphere with diameter σlj.
In this algorithm, a cubic volume containing the largest clus-
ter was first identified with side length L, then subsequently
divided into voxels with edge length δ = L/2, L/3, etc. For
each δ, the number of voxels that intersect with the spheri-
cal volume of any UA in the largest cluster were counted as
Q(δ). The usual definition of the fractal dimension Df derives
from the scaling Q(δ) ∼ δ−Df as δ → 0. This definition is not
suitable for analyzing the structure of clusters, however, since
in the limit δ → 0, the value of Q(δ) exhibits the scaling of
the compact spheres used to represent each UA. In this study,
the fractal dimension Df is defined as the slope of the curve
�log Q(δ) vs. log δ for 1 nm > δ > σlj. A perfectly compact
object corresponds to Df = 3, while smaller values correspond
to less compact objects. The dependence of the fractal dimen-
sion on the size of the largest cluster is shown for shear in
Fig. 5(c) and extension in Fig. 5(d).

FIG. 5. Characterization of the struc-
ture of the critical nucleus, including the
dependence of ((a) and (b)) the nematic
order parameter of the largest cluster and
((c) and (d)) the fractal dimension of the
largest cluster on the size of the largest
cluster for ((a) and (c)) shear and ((b)
and (d)) uniaxial extensional flow.
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FIG. 6. Representative snapshots of small and large clusters under shear at
107 s�1 and 109 s�1. The snapshots were selected based on their correspon-
dence to the mean values of Df and 〈P2〉largest associated with their size, shown
in Fig. 5.

Based on Fig. 5, the structure of the largest cluster has
a significant size dependence, even for low strain rates. For
strain rates below ε̇c, small clusters have large orientational
order; however, as the cluster size approaches the critical size
n∗, the orientational order goes through a minimum and then
subsequently increases with size for post-critical clusters. The
fractal dimension exhibits a similar behavior, including a min-
imum near the critical cluster size, and a post-critical increase.
These trends suggest that the critical nucleus is non-compact,
and of intermediate orientational order, and that it is only with
subsequent growth that a compact and well-ordered crystalline
cluster is obtained. For strain rates above ε̇c, the orientational
order and fractal dimension also decrease with the size of the
largest cluster upon approaching the critical nucleus size. How-
ever, the post-critical ordering and compaction are inhibited
by the applied flow field, resulting in the continued growth of
large, articulated clusters. Representative snapshots of clusters
at low and high shear rates are provided in Fig. 6 in order to
provide insight into the effect of flow on the cluster structure.
The snapshots were chosen based on their correspondence to
the mean values of Df and 〈P2〉largest associated with their size,
based on the results shown in Figs. 5(a) and 5(c). These snap-
shots illustrate that for small clusters, both high and low shear
rates lead to similar structures, however for large clusters, a
low strain rate leads to more compact structures as compared
to clusters formed under high shear rate.

V. DISCUSSION

The onset of flow-enhanced nucleation occurs at Wi < 1,
and at different critical strain rates depending on the type of
flow field. The values of the critical strain rate ε̇c correspond
to Wi = 0.18 in shear and Wi = 0.056 in extension based on
the Rouse relaxation time of C20. These values are smaller
than the critical strain rate expected for Wi = 1; however, some

relevant rheological phenomena are already known to occur
for Wi < 1. For example, dilute solution theory predicts a coil-
stretch transition under extensional flow at Wi = 0.5 based on
the Zimm relaxation time.53 The shear value is in reasonable
agreement with Anwar et al.22 who observed the onset of FEN
at Wi = 0.6 based on the center of mass diffusion time of a C20
molecule, rather than the Rouse relaxation time. The smaller
critical strain rate ε̇c observed under extension as compared to
shear is likely due to the greater capacity for extensional flow
to orient and stretch molecules, a phenomenon that has been
observed in dilute solutions,54 and can be observed in Fig. 4,
in particular for strain rates near ε̇c.

The trends toward decreasing free energy barrier ∆G∗ and
critical nucleus size n∗ as functions of increasing strain rate,
shown in Fig. 2, are consistent with a mechanism in which the
entropy-driven increase in free energy associated with stretch-
ing and orientation of the melt under flow results in a higher
driving force ∆Gb for nucleation, since the free energy barrier
and critical nucleus size depend inversely on the driving force
under the assumption of constant surface tension,

∆G∗ ∝ ∆G−2
b n∗ ∝ ∆G−3

b . (16)

The decrease in the critical nucleus size n∗ with increasing
strain rate observed here conflicts with the results of Anwar
et al.22 for start-up shear, who observed no significant trend in
the critical nucleus size with strain rate for C20 nucleation at
250 K. This discrepancy may be due to a different depen-
dence of the critical nucleus size on strain rate in start-up
flow, as compared to steady-state flow. However, flow-induced
stretching and orientation of chain molecules should occur in
both start-up and steady-state flow, and the associated entropy
reduction should lead to a decrease in the critical nucleus size
for both flow conditions. More likely, this discrepancy is due to
their choice of method for the analysis of MFPT data. In their
study, the method from Wedekind et al.57 was used, which is
only valid in the limit of large free energy barrier and small sys-
tem size. In our recent study,28 the assumptions of Wedekind
et al. were examined and found not to hold at short times for
quiescent nucleation of C20, even using a system that was
smaller, and at shallower undercooling, than that of Anwar
et al.22 Under flow, we expect that the further reduction in
free energy barrier would result in conditions that make these
assumptions increasingly inappropriate.

Another possible source of discrepancy is finite-size
effects, which cannot be completely discounted. However, the
simulation box used is large enough to accommodate 2 fully
extended C20 molecules in each dimension, and only clus-
ters of size ≤800 UAs were included in the MFPT analysis,
corresponding to <12% of the system; the computed critical
nucleus sizes correspond to <3% of the system. In an umbrella
sampling study of n-octane nucleation at 20% undercooling,
there was no difference in the computed free energy curves for
a small system for which the critical nucleus corresponded to
4.2% of the total system and a large system for which the crit-
ical nucleus comprised 2.1%.55 Given that the critical nucleus
falls within the same range of this study, it seems unlikely that
finite-size effects are significant herein. In any case, finite-size
effects due to small system size would lead to an overesti-
mate of the nucleation rate, and underestimates of the free
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energy barrier and critical nucleus size. As the driving force
for crystallization increases, the magnitude of the bias associ-
ated with finite-size effects decreases.56 Taken together, these
trends suggest that any bias due to finite size effects in the
estimation of IS , ∆G∗, and n∗ shown in Figs. 3 and 4 would
only serve to underestimate the true magnitude of changes with
increasing strain rate.

At high strain rates,∆G∗ saturates to values in the range of
10-11 kT, and n∗ to values in the range 40-80. A similar trend is

present in the RMS end-to-end distance
〈
R2

ee

〉1/2
, which shows

an initial increase upon exceeding the critical strain rate, but
does not show a strong strain rate dependence at large strain
rate. This is an indication that the decrease in the free energy
barrier is primarily associated with flow-induced extension,
as opposed to the global orientational order, which increases
steadily with strain rate. The monomer attachment pre-factor,
on the other hand, continues to increase with strain rate above
ε̇c, which is an indication that there is a significant diffusive
contribution to the nucleation kinetics under steady-state flow.
This diffusive contribution is correlated with the increase in the
global orientational order, and appears to reflect an increase
in the likelihood of collisions leading to cluster formation in a
system with a greater degree of orientational order.

Based on Figs. 2 and 3, the trends in both kinetic param-
eters and steady-state nucleation and growth rates exhibit
similar logarithmic trends above the critical strain rate. To
investigate this observation further, the data in Figs. 2 and
3 are replotted versus the reduced strain rate ε̇/ε̇c in Figs. 7
and 8, where the critical strain rate in shear is about 3.2 times
that in uniaxial extension. Upon this transformation, the trends
in ∆G∗, n∗, f1, IS , and GS collapse reasonably well to master
curves.

The acceleration in the nucleation rate under shear, shown
in Fig. 3, is more dramatic than that observed by Anwar
et al.22 at deeper undercooling. Over the strain rate range of
107-109 s�1, we see an increase in the nucleation rate by a factor

FIG. 7. Simulation data from Fig. 2, plotted as functions of the reduced strain
rate, instead of the absolute strain rate.

FIG. 8. Simulation data from Fig. 3, plotted as functions of the reduced strain
rate, instead of absolute strain rate.

of 80, whereas they observed an increase by a factor of roughly
10. We speculate that this discrepancy may be attributable to
a weaker FEN effect at deep undercooling, but differences in
simulation conditions and analysis method may also be respon-
sible. In particular, their study was for start-up shear, whereas
steady-state shear was used in this study. Compared to the
nucleation rate, the effect of flow on the growth rate is less well-
studied in the literature; however, studies of shear-induced
crystallization of iPP58 have shown an increase in the growth
rate of spherulites with increasing shear rate, in agreement with
our results. These studies also found that the measured nucle-
ation rate exhibited a power law correlation with the growth
rate over a range of different crystallization temperatures and
applied strain rates (cf. Fig. 12 of Pantani et al.58). In Fig. 9 the
steady-state nucleation rate is plotted against the growth rate,
under both shear and extension. Collapse of these relations
onto the same curve indicates that accelerations in the nucle-
ation rate and the growth rate are correlated similarly under
different applied flow fields. At high nucleation and growth

FIG. 9. Correlation of the steady-state nucleation rate and characteristic
growth rate for flow-induced crystallization of C20. Each point corresponds
to a different applied shear or extension rate. The dashed line is a linear fit for
strain rates with ε̇/ε̇c > 5, corresponding to saturation of ∆G∗ and n*.
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rates, IS and GS are linearly proportional to one another. The
onset of linear proportionality coincides with the saturation
in ∆G∗ and n∗ at high strain rate. This behavior is due to the
linear dependence of both the nucleation rate and the growth
rate on f 1. As a result of this dependence, when ∆G∗ and n∗

are constant, IS and GS are linearly proportional.
In addition to the effects of flow on the kinetic parameters

and steady-state rates associated with nucleation and growth,
the applied flow field was also found to affect the structure of
the clusters formed. Irrespective of the applied flow field, the
nucleation process was characterized by the initial formation
of a non-compact critical cluster with intermediate orienta-
tional order. For strain rates below ε̇c, the growth of the critical
cluster to large size was accompanied by the compaction and
ordering of the cluster. For strain rates above ε̇c, however,
the post-critical compaction and ordering of the cluster were
inhibited, resulting in the growth of large, articulated clusters.
This effect is likely caused by the requirement that the cluster
accommodate the stress due to the flow field. Under an affine
deformation field, adjacent chains slide past one another. When
a cluster is formed under flow, chains resist this affine sliding
and, as a result, are subject to a stress. This stress increases as
the thickness of the cluster increases in directions correspond-
ing to large velocity gradients. Due to the anisotropy of the
applied flow field, the cluster tends to maintain small dimen-
sions in these directions to avoid large stresses, resulting in
articulated, rather than compact, structures.

VI. CONCLUSIONS

Flow enhanced nucleation studies were carried out under
steady-state shear and uniaxial extension using NEMD. As a
result of these studies, the effect of flow on the kinetic param-
eters associated with nucleation was established, as well as
the steady-state rates of nucleation and growth. Across the
different flow conditions, a universal behavior emerged, char-
acterized by the reduced strain rate ε̇/ε̇c, where ε̇c is the critical
strain rate for the onset of FEN for a given flow field. At small
reduced strain rates (ε̇/ε̇c < 1), the nucleation kinetics were
effectively the same as for quiescent nucleation. For inter-
mediate reduced strain rates (1 < ε̇/ε̇c < 5), the nucleation
kinetics accelerated in a manner consistent with an entropy-
driven increase in the flow-induced driving force for crystal-
lization. At large reduced strain rates (ε̇/ε̇c > 5), the additional
increase in the nucleation kinetics was attributed to a diffusive
contribution.

Both the steady-state nucleation rate and the character-
istic growth rate were found to increase dramatically due to
the applied flow field. Furthermore, a correlation between the
nucleation rate and growth rate was observed across both shear
and extensional nucleation studies. This correlation suggests
that existing experimental results that exhibit a similar cor-
relation across varying thermal and shear conditions may be
extended to include crystallization under extensional flow as
well.

Connections were established between the molecular
conformations in the nucleating melt, and related effects
on the nucleation kinetics. The degree of stretching was
found to correlate with kinetic parameters associated with the

flow-induced driving force for crystallization, indicating that
it is primarily stretching rather than orientation that is char-
acteristic of the flow-induced reduction of melt entropy. The
degree of orientation was found to correlate with kinetic
parameters associated with the diffusive contribution to flow-
enhanced nucleation, indicating that a well-oriented melt leads
to greater frequencies of monomer-monomer collisions that
form clusters.

In addition to kinetic effects, flow was found to have a
strong influence on the structural development of clusters.
Independent of strain rate, sub-critical clusters were found to
grow at the expense of orientational order and compactness.
For small strain rates, ordering and compaction were observed
upon growth of the critical cluster to large size. Under large
strain rates, however, the post-critical ordering and compaction
was suppressed, resulting in the growth of large articulated
clusters.
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