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Abstract

Metabolic engineering strategies have enabled improvements in yield and titer for a variety of 

valuable small molecules produced naturally in microorganisms, as well as those produced via 

heterologous pathways. Typically, the approaches have been focused on up- and downregulation 

of genes to redistribute steady-state pathway fluxes, but more recently a number of groups have 

developed strategies for dynamic regulation, which allows rebalancing of fluxes according to 

changing conditions in the cell or the fermentation medium. This review highlights some of the 

recently published work related to dynamic metabolic engineering strategies and explores how 

advances in high-throughput screening and synthetic biology can support development of new 

dynamic systems. Dynamic gene expression profiles allow trade-offs between growth and 

production to be better managed and can help avoid build-up of undesired intermediates. The 

implementation is more complex relative to static control, but advances in screening techniques 

and DNA synthesis will continue to drive innovation in this field.
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1. Introduction

Metabolic engineering focuses on the manipulation of cellular metabolism in order to 

maximize production of valuable products such as biofuels, biochemicals, and proteins. 

Much of the work in this field has focused on gaining an in-depth understanding of flux 

distributions in core metabolic pathways and how these distributions can be altered to direct 

metabolite fluxes toward a particular product of interest. The desired flux distributions are 

typically in conflict with natural regulatory patterns in the cell, meaning the outcome cannot 

be achieved by process changes alone, but requires genetic manipulation of the host 

organism. Aided by both computational and experimental tools, metabolic engineers have 

been very successful in altering steady-state flux distributions in the cell through the use of 

gene knockouts, promoter replacements, and introduction of heterologous genes. High-
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throughput screening of combinatorial promoter and gene libraries has allowed the 

production space to be more fully explored and aided in optimization of steady state flux 

distributions. [1, 2].

As interest has grown in production of a wider variety of products, especially ones involving 

more complex pathways, interest has also grown in dynamic approaches to cellular 

engineering [3]. Metabolic engineering exists in interplay with the complex regulatory 

networks of the cell and the native physiology. Native pathway fluxes may differ depending 

on nutrient availability and growth rate, resulting in changes in the ideal metabolic 

engineering strategy throughout the course of the fermentation. Additionally, exploiting the 

capacity of the cell to sense and respond to changing conditions could provide an advantage 

at large scale, where significant heterogeneity exists within fermenters with respect to 

nutrient availability, dissolved oxygen, and pH [4].

There is substantial added complexity associated with implementation of dynamic metabolic 

control. The strategy requires an understanding of time course behavior of the system, 

identification of appropriate sensor systems, and appropriate tuning for “high” and “low” 

states, representing maximum and minimum required levels, respectively, of target enzyme 

expression. Often the high and low baselines are unclear, and much like the static case, 

require combinatorial tuning to identify. However, with the availability of better and more 

inexpensive methods for high-throughput screening, the ability to develop systems for 

dynamic metabolic engineering will continue to increase.

2. Static manipulation of metabolic pathways

As previously noted, significant success has been achieved with static manipulation of 

metabolic pathways. Rational deletions and up- and downregulation of native genes have 

been used to enhance production of compounds naturally occurring in the cell, such as lysine 

in Cornyebacterium glutamicum [5]. These strategies have also been used to truncate and 

repurpose natural pathways in concert with expression of novel enzymes, allowing 

production of completely new products. One such example is metabolic engineering for 

biodiesel production in Escherichia coli, where after the natural production of fatty acids 

was enhanced via selected knockouts, a heterologous pathway was added to utilize fatty 

acids for production of fatty acid ethyl esters [6]. To facilitate screening across a range of 

physiological conditions, a variety of promoter libraries have been developed for different 

organisms, allowing rapid selection of relevant expression levels [7–9].

Computational tools in this area are also well-developed. As the focus is on altering steady-

state flux distributions, flux balance analysis (FBA) combined with a genome-scale 

stoichiometric model can be used to predict changes in flux distribution as a result of gene 

knockouts. Metabolic optimization algorithms, such as OptKnock [10], seek to maximize 

flux toward product while maintaining the maximum possible biomass formation rate, which 

is a function of the fluxes of a variety of key metabolites. This strategy has been successful 

for predicting knockout strategies to increase yields of products such as succinic acid in E. 

coli [11] and ethanol in yeast [12]. Extending this, additional algorithms have been 

developed, allowing predictions of required fine-tuning of fluxes through up- and 
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downregulation of target genes [13] and incorporating experimental data from metabolic 

flux analysis to better estimate the true flux variability in the wild-type strain [14]. Genetic 

manipulations predicted by these algorithms to improve product yields have been shown to 

be consistent with experimentally successful strain designs for production of fatty acids and 

malonyl CoA-derived products in E. coli [15, 16].

3. Metabolic models to support dynamic control

Although there are many examples of the successful implementation of static changes to 

metabolism in order to increase product yields, it is clear that reducing expression of key 

metabolic enzymes often results in decreased cellular growth rate. While the capacity exists 

in such knockout strains to produce high levels of product, the productivity is limited by 

lack of biomass formation. Computational models that integrate an ability to switch flux 

distributions in the cell between biomass formation and product formation have been used to 

explore the potential benefits of dynamic control.

In case studies on glycerol and ethanol production, Gadkar et. al. demonstrated the 

theoretical improvements in productivity that could be achieved via dynamic control of 

enzyme levels in contrast to static knockout or upregulation [17]. By allowing a phase of 

biomass production before diverting flux through glycerol kinase, their model predicted that 

production of glycerol could be improved by over 30% in a fixed 6 hour batch time. 

Similarly, it was shown that dynamically manipulating ackA expression in the case of 

ethanol production could be expected to improve productivity. Subsequent studies have 

examined how a similar model framework based on dynamic flux balance analysis (dFBA) 

could be used to predict optimal switching strategies for improved production of succinic 

acid and serine [18, 19].

In addition to managing trade-offs between growth and production, dynamic control of 

enzymes in heterologous pathways might offer a way to balance fluxes and minimize protein 

expression burden. A number of studies have examined how temporal control of enzyme 

expression within a production pathway could be used to achieve maximum formation of 

product with the minimal cost of enzyme production [20–22]. For a simple, two-step 

pathway converting substrate to product, Klipp et. al. showed that the fastest conversion of 

substrate into product was expected to occur when all available protein was first allotted to 

the initial pathway enzyme, with later switching to more balanced expression of both 

enzymes [21]. Not surprisingly, similar dynamic controls also appear to have developed in 

natural systems. Zaslaver et. al. examined amino acid biosynthesis pathways in E. coli and 

found that promoters for enzymes closer to the beginning of the amino acid synthesis 

pathways showed both a shorter response time and higher maximal promoter activity in 

response to amino acid starvation, in agreement with a mathematical model for maximizing 

product formation while minimizing enzyme production [20]. Oscillatory patterns of 

enzyme expression are another potential route to minimize protein expression burden or to 

match expression with systems showing a natural oscillatory cycle, such as the 

cyanobacterial Kai proteins [23]. A kinetic model incorporating oscillatory expression of 

sets of glycolytic proteins showed that this strategy could be used to increase 

phosphoenolpyruvate pools by 1.86-fold [24]. Aside from protein expression burden, a 
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number of pathway-specific constraints also make temporal control of enzyme expression 

favorable, including instability of downstream enzymes, toxic pathway intermediates, and 

product inhibition of upstream enzymes.

4. Experimental demonstration of dynamic control in metabolic engineering

Farmer and Liao [25] demonstrated an early example of engineering dynamic controls into 

central metabolism for improvement of pathway productivity. In lycopene production, 

phosphoenolpyruvate synthase (pps), controls the balance between the precursors 

glyceraldehyde-3-phosphate and pyruvate, but overexpression of this enzyme causes growth 

inhibition during glycolytic growth. Recognizing that acetyl-phosphate (AcP) buildup was a 

signal of excess metabolic capacity, a strain was constructed capable of sensing acetyl-

phosphate levels via a transcriptional regulator from the native Ntr regulon in E. coli. By 

controlling expression of pps and isopentenyl diphosphate isomerase (idi) from the AcP 

responsive promoter, those enzymes were expressed only when excess glycolytic flux 

toward acetate occurred. In the strain utilizing this system, yields of lycopene were 

improved 18-fold over a strain with constitutive expression of all pathway genes. In addition 

to showing improved lycopene yields, the strain utilizing the AcP responsive promoter 

instead of the Tac promoter for pps expression also showed a growth profile more 

comparable to the host control, which could help contribute to the final improvement in 

observed lycopene titers.

More recently, several successful examples of dynamic control have appeared, focusing both 

on knockdown of native enzymes and balancing of heterologous pathways. An overview of 

the typical implementations of these types of dynamic control is shown in Figure 1. The 

studies focusing on control of native enzyme levels have generally been concerned with 

pathway redirection, splitting carbon flux between pathways critical to cellular growth and 

heterologous pathways for production of valuable small molecules. This focus on essential 

genes makes sense, as these pathways offer the most direct ability to benefit from a 

controlled tradeoff between biomass formation and product. Areas recently investigated in 

E. coli include both direct transcriptional control of the metabolic enzyme of interest, and 

controlled degradation of the enzyme. In the area of direct transcriptional control, Solomon 

et. al. modulated glucokinase (Glk) levels via a genetic inverter in order to redirect glucose 

into gluconate production, improving titers by 30% [26]. Another recent study focused on 

control of citrate synthase (gltA) to redirect acetyl CoA into isopropanol production [27]. As 

with glk, deletion of gltA results in no growth on glucose minimal medium [28], making it a 

poor target for knockout. Using a genetic toggle switch from Gardner et. al. [29], a strain 

was developed capable of shutting off citrate synthase expression in response to IPTG. 

Leaky expression of gltA still allowed growth and isopropanol production even in the “off” 

state, but dynamically shutting off expression at 9 hours still resulted in a 10% increase in 

yields and titers of isopropanol relative to downregulation from the start of the fermentation 

and more than a two-fold improvement over expression of gltA from the native promoter.

Similar results have been achieved via controlled degradation of essential enzymes, relying 

on addition of a modified SsrA degradation tag to the coding sequence of the gene and 

expression of an additional adaptor protein, SspB, to increase the rate of proteolysis [30]. 
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For example, induced degradation of FabB was used to stop elongation of fatty acids and 

improve production of octanoate [31]. Controlled degradation of phosphofructokinase (Pfk) 

was also applied to increase yields and titers of myo-inositol produced from glucose-6-

phosphate [32]. A reduction in Pfk levels could be used to switch cells growing in glucose 

minimal medium between a “growth mode” with low pools of glucose-6-phosphate and 

fructose-6-phosphate and a “production mode”, with increased pools of those sugar 

phosphates. Dynamic control of Pfk activity resulted in more than a two-fold improvement 

in titers of myo-inositol when compared to the static case. While the ssrA/SspB system is 

designed to function in E. coli, it was recently shown that the Lon protease from 

Mesoplasma florum can function as a host-independent system, with expression of the 

protease resulting in degradation of proteins containing the cognate ssrA tag in Lactococcus 

lactis as well as in E. coli [33]. Protein degradation strategies still require control at the 

transcriptional level to induce expression of the protease or adaptor protein required for 

degradation of the target to occur. However, compared to transcriptional switching, they 

offer the advantage of very rapid depletion of the protein of interest even under conditions of 

slow growth, when removal via dilution is slow, and the possibility to add degradation tags 

to genes in their native context, without requiring adjustment of transcription from an 

inducible promoter to native levels.

The development of such dynamic systems for pathway redirection has not been limited to 

applications in E. coli. In yeast, the native promoters such as the repressible MET3 promoter 

have been used to conditionally repress expression of essential native genes [34–36]. Recent 

work has also focused on developing dynamic control in yeast where knockdown is 

decoupled from outside inducer addition and instead tied to natural changes in culture 

conditions. For example, Scalcinati et. al. have used the HXT1 promoter to couple the 

expression level of squalene synthase (ERG9) to glucose concentration in the culture 

medium, with lower expression during glucose limitation [37]. ERG9 is essential for 

production of ergosterol during growth [38], but diverts farnesyl diphosphate (FPP) flux 

away from production of the desired sesquiterpene, α-santalene. This system was tested 

under fed-batch conditions, with the expectation that ERG9 expression levels would 

decrease at the start of glucose-limited feed, effectively redirecting FPP consumption. The 

strain utilizing the HXT1 promoter in place of the native ERG9 promoter showed more than 

a three-fold increase in α-santalene production rate in fed-batch and a decreased ergosterol 

production rate.

These recent studies have focused on dynamic knockdown of essential genes, which 

represent the clearest benefit of this strategy, because the corresponding gene knockouts are 

lethal. As the ability to design dynamic systems increases, exploration will likely also 

expand to genes that are not essential, but could still benefit from time-dependent control of 

expression. For example, global regulatory proteins could be placed under defined dynamic 

control, allowing native regulatory pathways to be rewired to generate a response to a 

metabolite of interest in lieu of their natural control.

There is also significant interest in controlling the interplay of multiple genes and managing 

multiple pathway fluxes. In a “genetic switchboard” developed in E. coli, Callura et. al. [39] 

demonstrated control of multiple native metabolic enzymes. Addition of different inducer 
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combinations allowed switching of flux between glycolysis, the pentose phosphate pathway, 

and the Entner-Doudoroff pathway, resulting in changes in relative metabolite pools. While 

not directly connected to a heterologous pathway, the altered intracellular metabolite pools 

demonstrate the potential of more complex approaches for dynamically rerouting carbon 

fluxes.

The concept of multi-gene control can be expanded to heterologous pathway balancing. Two 

recent examples from the Keasling lab focused on dynamic control of multi-gene expression 

modules. In the first case, the transcriptional regulator FadR was used to control expression 

of genetic modules involved in the synthesis of fatty acid ethyl esters (FAEE) [40]. Because 

the native E. coli promoters interacting with FadR have limited dynamic range, more 

responsive synthetic promoters were designed by placing FadR and LacI binding sequences 

in the phage lambda and T7 promoters, resulting in up to a 60-fold change in fluorescence 

when tested for RFP expression in the presence and absence of oleic acid. These promoters 

were placed upstream of the modules involved in ethanol production, so that biosynthesis 

was only induced in the presence of fatty acids, avoiding wasting carbon for excess ethanol 

production and resulting in improved titers of FAEE. Importantly, a series of constitutive 

promoters was also tested for driving expression of the modules, to see whether a static 

balancing of expression could have achieved the same result; in this case, it was found the 

dynamic system was still superior with 2-fold higher FAEE titers than any of the thirty 

constitutive promoter combinations tested.

A modular approach was also employed to avoid buildup of the toxic intermediate FPP in 

the production of amorphadiene [41]. With no known FPP responsive transcription factors, 

whole-genome transcriptional analysis was used to identify candidate FPP responsive 

promoters. Promoters were identified that showed both up and downregulation in response 

to FPP, allowing a system to be developed with approximately a three-fold decrease in 

expression of the upstream FPP production module and four-fold increase in expression of 

the downstream consumption module upon FPP buildup. A similar strategy was recently 

used by Xu et. al. to balance malonyl-CoA pools for fatty acid production [42]. Malonyl-

CoA responsive promoters were designed based on FapR, a malonyl-CoA responsive 

transcription factor from Bacillus subtilis, allowing both upregulation and downregulation of 

gene expression in response to increasing malonyl-CoA levels [43]. These promoters were 

used to decrease expression of the upstream malonyl-CoA production operon (accADBC) 

and increase expression of the downstream consumption operon (fabADGI tesA′) upon 

buildup of malonyl-CoA, resulting in oscillatory levels of intracellular malonyl-CoA and a 

2.1 fold improvement in fatty acid titers over the unregulated pathway. With an appropriate 

choice of metabolic modules, for instance splitting modules at a metabolic branch point or at 

points where intermediate buildup has already been observed, a dynamic approach can prove 

very valuable. The optimal balance for a set of static promoters will represent some balance 

over the average of all cellular conditions in a fermentation, which may not be the best 

balance at any given time point.

Timed expression of recombinant proteins is also an area of interest in engineering 

mammalian cells. In cases where transgene expression has a negative effect on the host cell 

such as growth inhibition, proper timing of expression is important to maximize 
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productivity. Small molecule inducers can be added exogenously, but to reduce costs and 

simplify processing, intracellular signals and expression patterns of natural promoters can be 

exploited. Sensors for intracellular redox state have been explored in CHO cells [44], as well 

as cell-cell communication systems for protein induction at specified cell density [45]. Le et. 

al. recently demonstrated that by using a native CHO promoter with a natural upswing 

expression pattern that resulted in higher stationary phase expression, transgene expression 

could be enhanced 4- to 16-fold in stationary phase relative to exponential phase [46]. This 

promoter was then utilized to drive expression of the mGLUT5 fructose transporter, 

allowing differential consumption of glucose and fructose during the course of the culture.

5. Strategies for development of new dynamic systems

A number of examples of dynamic control have been successfully implemented. However, 

to date, many of these required time-consuming screening for appropriate biosensors and 

balancing of gene expression through promoter engineering. The rapid development of new 

tools in synthetic and systems biology will help expand the field of dynamic metabolic 

engineering and streamline the processes needed for implementation.

A key factor in developing a system for dynamic pathway regulation is often finding an 

appropriate sensor system. Applications based on quorum sensing signals offer the ability to 

control response based on cell density, an important parameter for many metabolic 

engineering applications. Quorum sensing promoters have been used to drive protein 

expression and effect changes in cell physiology for a variety of applications, from delaying 

recombinant protein synthesis [47, 48] to sensing pathogens [49]. Through protein 

engineering, the affinity of the regulator protein for its cognate autoinducer can be 

attenuated, allowing the system to be tuned for control of induction time [50, 51]. Stationary 

phase promoters [52] and autoinduction medium [53] have also been successfully used as 

indirect methods of sensing cell density for applications like delayed recombinant protein 

expression. When sensing of a specific small molecule product or intermediate is desired, it 

may be possible to utilize one of many previously characterized transcription factors. 

Several recent reviews have addressed the current state-of-the-art in biosensors and their 

potential applications for both high-throughput screening and metabolic engineering [54–

56]. Protein engineering techniques can be used to alter the specificity of known 

transcription factors or increase their affinity for molecules of interest [57].

In cases where no responsive promoter/regulator system has been identified for the 

metabolite or product of interest, decreases in the cost of RNAseq have expanded the 

opportunities for screening promoter response to larger libraries of small molecules. 

Additionally, a library is available with GFP expression driven by nearly 2,000 E. coli 

promoters, which can be used in fluorescence-based screening for small molecule 

responsive promoters [58]. In these screens, it may not be possible to identify the 

mechanism of promoter regulation, making it more difficult to apply in new systems, and 

generally limiting the applicability to a single organism. Additionally, even once identified, 

responsive promoters may not have the desired basal transcription level or dynamic range to 

be used in the desired metabolic engineering application. However, in this area, utilizing 

tools from synthetic biology will be very valuable. Rather than directly controlling the 
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protein of interest from a responsive promoter, the promoter can be integrated into a larger 

genetic control system, allowing the output response to be modulated. A number of 

strategies have already been demonstrated for amplifying [59] and inverting [60] a signal 

from a biosensor or maintaining output even after the initial small molecular inducer 

disappears [29]. Multiple biosensors can also be integrated into cellular logic gates, allowing 

the response to be fined tuned against different combinations of signals [61]. The robustness 

of these logic gates is also being explored in the context of industrial strains and 

fermentation conditions, which are relevant for eventual application in pathways for large 

scale production of chemicals [62].

Dynamic control of metabolic enzyme levels and activities can be exerted not only at the 

transcriptional level, but also at the post-transcriptional and post-translational level. Figure 2 

illustrates how implementation of dynamic control might be envisioned at each level. Some 

of the initial applications of RNA-based control for metabolic engineering purposes have 

included the use of anti-sense and small RNA constructs [63, 64]. Small RNAs can be 

designed for a wide variety of targets, providing a useful system for screening the effect of 

changing expression of multiple proteins, although these still require a responsive 

transcriptional element to drive expression of the regulatory RNA at the appropriate time. In 

addition to using anti-sense strategies, there are a variety of other routes for implementing 

RNA-based control, which could offer the opportunity to utilize RNA in a sensing capacity, 

through the use of aptamers that bind to small molecules. RNA-based control of gene 

expression via riboswitches has been demonstrated, both when the regulatory element is 

included on the mRNA of the gene of interest [65] and in the case of trans acting RNAs 

[66]. In both cases, binding of a small molecule effector to the RNA resulted in changes in 

the folded structure, which can be exploited to block or unblock the ribosome binding site, 

resulting in a change in translation of the protein of interest. Other mechanisms of 

riboswitch action exist, including ligand-dependent self cleavage and transcriptional 

attenuation due to ligand-dependent formation of a hairpin acting as a transcriptional 

terminator. Riboswitches have been discovered that bind naturally to purines and their 

derivatives, amino acids, protein coenzymes, and metal ions [67], but by replacing the 

sensing domain with RNA aptamers, synthetic riboswitches and ribozymes have been 

developed which respond to theophylline [68, 69]. A tetracycline aptamer has also been used 

to control gene expression in yeast by insertion in the 5′ UTR without use of a natural 

riboswitch scaffold [70]. To expand the library of possible ligands, SELEX techniques can 

be used to screen for novel aptamers [71], although the integration of the binding domain 

with the existing mRNA structure requires careful development. Overall, RNA-based 

strategies offer significant flexibility to easily target multiple genes for control of 

expression, as well as to develop RNA expression cascades, which could be used for more 

complex genetic controls [72].

Post-translational control becomes more complicated, as this relies on changing the structure 

of the target enzyme. Many natural enzymes that exert significant flux control within a 

pathway are allosterically regulated by cofactors or pathway products, and a number of 

attempts have been made to engineer new allosteric sites into existing enzymes. One 

strategy that has been successfully implemented is that of domain insertion, where a protein 
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domain that undergoes a conformational change upon exposure to a stimulus, such as a 

small molecule, is inserted within the sequence of an existing protein [73]. Ideally, the 

catalytic activity of the original protein is then coupled to the presence of the stimulus. This 

approach has been successfully implemented in order to couple the activity of β-lactamase to 

the presence of heme and to couple the activity of E. coli dihydrofolate reductase to light 

exposure [74, 75]. While this approach could potentially offer targeted control of enzyme 

activity, allowable insertion sites are hard to predict and extensive screening is required to 

identify protein variants that retain both high activity and significant allosteric response. An 

alternative strategy for post-translational control is inducible protein degradation, through 

selective exposure of degradation tags by cleavage [76] or use of tags requiring an additional 

adaptor protein to facilitate proteolysis [30]. However, as in the case of antisense RNA, 

transcriptional control is still required to drive expression of the second component required 

for cleavage or proteolysis.

As an alternative to feedback loops based on intracellular sensors like RNA or proteins, 

responsive strains can also be combined with computational control systems, allowing 

feedback loops to be developed based on external process variables such as dissolved 

oxygen or off gas composition. Inexpensive inducers such as heat, or even pulses of light 

could then be used to affect the desired changes in cellular state. By fusing the Gal4 DNA-

binding and activation domains to the light-responsive PhyB/PIF module, Milias-Argentis 

et. al. were able to demonstrate a feedback control system for YFP expression in yeast based 

on pulses of light [77]. Light-based control of gene expression has also been demonstrated in 

mammalian cells, where a signaling cascade initiated by a conformational change in 

melanopsin due to photo-isomerization of 11-cis retinal was used to trigger transgene 

expression in human embryonic kidney cells. Control of transgene expression was 

successfully demonstrated both in bioreactors and in implants in mice [78]. Future 

applications will need to address the limited penetration of light in tissues and in high-

density bacterial cultures. In the case of mammalian tissues, use of near infrared 

wavelengths can improve penetration depths from millimeters to a few centimeters [79]; 

however, application of light-controlled gene expression in fermentation vessels at the meter 

scale would still present a number of design challenges.

As with static systems, fine-tuning of expression in dynamic systems will still be required. 

This becomes especially important when considering control of enzymes in central 

metabolism, where baseline expression levels determine cell physiology. Degenerate oligos 

generated using tools such as the RBS Library Calculator [80] provide a basis for rationally 

screening across a range of expression levels. Combining this with high throughput, scarless 

recombineering techniques such as MAGE [81] can provide a platform for screening 

libraries of strains.

6. Conclusions

Dynamic strategies for metabolic engineering have shown promise for conditional 

knockdown of essential genes and for balancing pathway fluxes in response to fermentation 

conditions. Natural cellular systems exhibit a wide variety of dynamic controls, such as 

allosteric inhibition or transcriptional repression via feedback from downstream metabolites. 
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Many of these can be harnessed for metabolic engineering and integrated into novel 

applications.

While dynamic systems have shown potential for improvements in yield and titer, gains 

relative to static control are in many cases limited by the increased difficulty of fully 

exploring the production space in these systems. Rapid screening using previously 

developed constitutive promoter libraries facilitates optimization of steady state expression 

levels. Current dynamic systems often rely on discovery of specific small-molecule 

responsive promoters, which may not result in ideal expression ranges for system 

performance, especially when considering modulation of native enzyme expression.

However, methods for rapidly altering expression levels and balancing pathways, which 

have been already successfully applied for static control, will also facilitate development of 

dynamic control. Dynamic systems offer a much larger number of “control knobs”, and 

recent modelling efforts have shown that careful choice of system architecture and 

expression levels is required for optimal outcomes can be achieved [82]. Moving forward, 

both experimental and computational tools will be needed to fully exploit the potential of 

these systems. New technologies for screening biosensors and evolving their specificity will 

certainly push forward this area as well. Next generation gene synthesis technologies can 

reduce the cost of screening multiple system architectures. Combinatorial assembly 

techniques for combining short synthesized pieces of DNA into large expression cassettes 

have been used in applications like refactoring of complex pathways [83], and provide a 

platform for screening any type of multipart cellular system.

As lab scale applications are improved, a future challenge will be implementation of 

dynamic control strategies in industrial strains and fermentation systems [62, 84]. The 

concept could be quite valuable, as it would allow the cell to adapt in a pre-defined manner 

to changing conditions within the fermentation. In the laboratory, balancing of growth and 

production or balancing of pathway intermediate levels typically occurs under well-mixed 

conditions, where substrate concentrations vary slowly and continuously in one direction. 

However, at large scale, microorganisms are expected to move quickly through substrate 

and oxygen gradients. Scale-down studies have shown that for E. coli, short cycles of 

residence between an anoxic zone (1 minute) and a well-mixed zone (9 minutes), resulted in 

decreases in biomass yield and increases in formic acid production similar to those observed 

in large-scale fermenters [85]. In design of industrially robust systems, fast response time, 

reversible response, and genetic stability of components will play a role in future success. 

Drawing from both natural and engineered systems, we can develop “smarter” cells, in 

which native metabolism is consistently balanced with heterologous pathways, even under 

changing conditions.
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Abbreviations

AcP acetyl phosphate

dFBA dynamic flux balance analysis

FAEE fatty acid ethyl ester

FBA flux balance analysis

FPP farnesyl diphosphate

IPTG Isopropyl β-D-1-thiogalactopyranoside
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Figure 1. 
Typical implementations of dynamic control in metabolic engineering. For “pathway 

balancing”, buildup of an undesired intermediate is used to trigger repression of upstream 

enzymes and activation of downstream enzymes. The sensing of intermediate buildup may 

be direct (binding of the target small molecule) or indirect (sensing of cofactor imbalance, 

growth inhibition). “Pathway redirection” is typically associated with splitting intermediate 

flux between cellular growth and energy production and a pathway for a desired product. In 

this case, some information about cellular state, such as biomass concentration, is used to 

trigger knockdown of enzyme(s) in the cell’s native metabolism and/or upregulation of the 

pathway toward the desired product.
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Figure 2. 
Strategies for dynamically modulating enzyme activity. After sensing of a relevant condition 

or small molecule, control of enzyme activity can be exerted at the transcriptional, post-

transcriptional, and post-translational level. At the transcriptional level, interactions between 

transcription factors and relevant small molecules can be exploited to activate or repress 

gene expression. At the post-transcriptional level, use of RNA aptamers can provide a 

method for controlling translation of the relevant mRNA. Control at the post-translational 

level is possible in some cases using strategies such as engineered allostery.
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