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Anisotropy-driven transition from the Moore-Read state to quantum Hall stripes
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We investigate the nature of the quantum Hall liquid in a half-filled second Landau level (n = 1) as a function of
band mass anisotropy using numerical exact diagonalization and density matrix renormalization group methods.
We find increasing the mass anisotropy induces a quantum phase transition from the Moore-Read state to a
charge density wave state. By analyzing the energy spectrum, guiding center structure factors, and by adding
weak pinning potentials, we show that this charge density wave is a unidirectional quantum Hall stripe, which
has a periodicity of a few magnetic lengths and survives in the thermodynamic limit. We find smooth profiles
for the guiding center occupation function that reveal the strong coupling nature of the array of chiral Luttinger
liquids residing at the stripe edges.
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Introduction. Fractional quantum Hall (FQH) systems [1,2]
have proved to be an inexhaustible platform for exotic phases
of matter for more than three decades. In particular, half-filled
Landau levels display a rich set of correlated phases depending
on the Landau level index. In the lowest Landau level (n = 0)
of Galilean electrons, the composite Fermi liquid (CFL) state
is realized at half filling [3,4]. In the second Landau level
(n = 1), it is believed that the Moore-Read (MR) Pfaffian
state [5], or its particle-hole conjugate [6,7], is realized. In
higher Landau levels (n � 2) the ground state is believed to
be unidirectional charge density waves, also known as stripe
phases [8–19].

Most studies of FQH states are concerned with two-
dimensional electron systems with spatial rotational symmetry.
In recent years, there is a growing interest in exploring FQH
states in the absence of full rotational symmetry [20–37]. In
materials with anisotropic band mass tensors, such as AlAs
quantum wells [35,38], rotational symmetry can be reduced
down to its smallest subgroup consisting of the π rotation only.
An important question is to determine the stability of various
FQH states against mass anisotropy. External perturbations
such as in-plane fields [11,28] or uniaxial strain [36,39]
also break rotational symmetry and have qualitatively similar
effects as mass anisotropy.

The impact of mass anisotropy depends crucially on the
nature of the ground state and on the Landau level. In the lowest
Landau level, previous numerical studies have demonstrated
that incompressible FQH states are remarkably robust against
mass anisotropy [23,24]. The impact of mass anisotropy is
expected to be more pronounced in the second Landau level,
where numerical studies have indicated that the MR state
is close to a charge density wave instability that can be
induced by tuning a few Haldane pseudopotentials [13,14,40].
A previous numerical study provided evidence that an explicit
mass anisotropy destabilizes the MR state [24], but the nature
of the resulting phase was not determined. A subsequent
study [26] demonstrated a phase transition from the MR
state into a charged ordered phase driven by an in-plane
field and argued that the resulting phase would have stripe
character.

In addition to these theoretical studies, there is good
experimental evidence that a modest in-plane field drives the

isotropic incompressible state observed in GaAs at ν = 5/2
into a phase with highly anisotropic transport [41–45], and a
recent experiment has even induced a phase transition into an
anisotropic phase by tuning isotropic pressure [46]. However,
the nature of the resulting anisotropic phase and its connection
to the MR state is not fully understood. Earlier experiments
suggested a transition from an incompressible state, like
the MR, into a compressible state, like the stripe phase,
but a more recent experiment has argued for the possibility
of transitioning into a highly anisotropic incompressible
state [45].

Motivated by these previous studies, in this Rapid Com-
munication we perform numerical exact diagonalization (ED)
and density matrix renormalization group (DMRG) studies
on the half-filled n = 1 Landau level (LL) in the presence
of mass anisotropy. The mass anisotropy has a qualitatively
similar effect as the in-plane field [24,26,47,48], but it is
much simpler to model theoretically. By calculating energy
spectra and the static structure factors, we demonstrate that
the incompressible MR state transitions into a compressible
state with increasing the mass anisotropy. We will provide
ample numerical evidence that the resulting compressible
state is a unidirectional quantum Hall stripe. In particular,
DMRG simulations have allowed us to reach unprecedented
system sizes for the stripe state containing as many as N = 36
electrons, thus providing strong evidence that it remains the
true ground state in the thermodynamic limit.

Model and method. We consider N spinless electrons
moving on a torus subject to a perpendicular magnetic field.
The electrons are confined to a Landau level with index n

(n LL). We choose Landau gauge A = (0,Bx,0) and square
geometry in most cases, i.e., Lx = Ly ≡ L, satisfying LxLy =
2πNφ , Nφ ∈ Z. Here, Nφ is the number of flux quanta through
the surface. Throughout this Rapid Communication, we set the
magnetic length lB ≡ √

h̄c/eB ≡ 1 as the units of length and
e2/εlB as the units of energy. Then the bare kinetic energy
can be written as H0 = 1

2m
gab

m �a�b with �a = pa − e
c
Aa

representing the dynamical momentum along the a (a,b =
x,y) direction. Here, gm is given by gm = diag[α,1/α] in the
case of diagonal mass tensor, where α ≡ √

my/mx denotes
the mass anisotropy, and it determines the shape of the LL
orbital. Since the kinetic energy of the electrons is quenched
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FIG. 1. The energy spectrum of the N = 16 system obtained by ED for mass anisotropy my/mx = 0.24 with momentum Ky (a) and Kx

(b). (c) The MR state evolves into stripe state with increasing the mass anisotropy, which is characterized by the splitting of the threefold
degeneracy of the MR state in momentum sectors (Kx,Ky) = (N/2,N/2),(0,N/2),(N/2,0).

due to the magnetic field, the Hamiltonian only includes the
projected Coulomb interaction, which reads as

HnLL = 1

Nφ

∑

i<j

∑

q,q �=0

V (qε)e−q2
m/2L2

n

(
q2

m

/
2
)
eiq·(Ri−Rj ). (1)

Here, Ln(x) is the Laguerre polynomial and Ri denotes the
guiding center coordinate of the ith electron. V (qε) = 1/qε

is the Fourier transform of the Coulomb interaction with
q2

ε = gab
ε qaqb, where gab

ε is the metric derived from the
dielectric tensor which defines the shape of the equipotential
contours. On the other hand, q2

m = gab
m qaqb includes the

metric gab
m derived from the band mass tensor. Rotational

invariance corresponds to congruent metrics, but the physical
properties are relevant to their relative difference. Here, we
fix gab

ε to unity and study mass anisotropy. The impact of an
anisotropic dielectric tensor on the Laughlin state has been
studied before [23].

We use ED and DMRG methods. For ED calculation, we
take advantage of magnetic translations in two directions in the
torus; the states are labeled by the momentum K = (Kx,Ky)
in units of 2π/L, and we study systems with up to 16
electrons. For DMRG simulations we impose the conservation
of momentum Ky on the torus and keep up to 24 000 states,
which ensures the truncation error of the order of less than
10−6, and perform enough numbers of sweeps (10–20) to
ensure convergence of results.

Energy spectrum. We begin by studying the effect of mass
anisotropy on the energy spectrum of the half-filled n = 1 LL.
In the isotropic limit, the MR state can be identified as the
ground state in our ED calculation, as shown in Fig. 1(c). The
MR state has three topologically degenerate states with mo-
menta (Kx,Ky) = (N/2,N/2),(0,N/2),(N/2,0) in addition to
the twofold center-of-mass degeneracy [49,50] (because of
the particle-hole symmetry, the numerical observed ground
states are symmetrized MR states). Upon introducing mass
anisotropy the threefold degeneracy characteristic of the MR
state is split beyond a critical value, as shown in Fig. 1(c),
signaling an instability of the MR state into a different
phase. The MR state realized with mass anisotropy can
presumably be approximated as the ground state of a three-
body pseudopotential model suitably modified to include the
nematic distortion of guiding center correlations that can be
variationally well approximated by the metric that accounts for

these distortions introduced by Haldane [20,25]. Figure 1(a)
shows the low energy spectrum of such resulting phase. It is
evident that, unlike the MR state, in this phase there is not a
recognizable gap separating the ground state manifold from
the excited states. This indicates that the resulting phase with
larger mass anisotropy is compressible. This phase displays
a conspicuous set of quasidegenerate states that differ by a
momentum q∗. The line that connects the lowest energy states
in every momentum sector has a clear zigzag structure as seen
in Fig. 1(a). Interestingly, such zigzag structure only appears in
the energy spectrum in one direction, which coincides with the
direction of the smaller effective mass. In contrast, Fig. 1(b)
illustrates the absence of this zigzag structure along the other
direction.

The energy spectra provide strong evidence that the
resulting state introduced by mass anisotropy is a compressible
unidirectional charge density wave. In the next sections we will
further study the guiding center form factors and introduce
explicit pinning potentials that allow one to visualize directly
the charge density modulations. This will make clear, beyond
any reasonable doubt, that this state is indeed a stripe phase.

Structure factor. To reveal the charge density correlations
present in this compressible phase that distinguish it from the
MR state and the CFL state in the lowest LL, we calculate the
static structure factor S0(q) of the density-density correlation,
which is defined as

S0(q) = 1

N
〈ρqρ−q〉 = 1

N

∑

i,j

〈eiq·Ri e−iq·Rj 〉, (2)

where ρq = ∑N
i=1 eiq·Ri is the Fourier transform of the guiding

center density.
As shown in Fig. 2(b), two sharp peaks arise in structure

factor S0(q) when introducing mass anisotropy which are
located at (qx,qy) = (0, ± q∗) for my < mx . This is in sharp
contrast with the MR state realized in the isotropic limit
[Fig. 2(a)]. The existence of peaks in S0(q) can be regarded
as the hallmark of charge ordering. The position of the peaks
in S0(q) represents the wave vector of such charge order, and
display stripe features. Here, q∗ is exactly the same as the
period for the zigzag structure found for the quasidegenerate
states in the energy spectrum [see Fig. 1(a)], implying the
strong density-density correlation in the ground state at this
ordering vector. The direction of the charge modulation is the
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FIG. 2. The static structure factor of the N = 16 system with the
mass ratio (a) my/mx = 1 and (b) my/mx = 0.24. One can find the
well-defined sharp peak in the anisotropic case, indicating the charge
ordering states arising with mass anisotropy.

direction with smaller mass, as found in the zigzag structure
of energy spectrum.

Periodicity of charge modulations. From the above anal-
ysis, we have identified a stripe phase that is induced
by mass anisotropy and which displays instability toward
charge modulation along the direction with smaller effective
mass. Because the Hamiltonian has translational invariance
the ground state cannot break this symmetry explicitly to
display the charge modulations. Essentially, the ground state
of the translationally invariant system is in a Schrödinger
cat superposition of charge density wave states that are
translated in space relative to each other, and hence its average
density is uniform. In order to circumvent this limitation
and visualize the charge modulations directly we need to
introduce a weak pinning potential. We achieve this task
within both the ED and DMRG numerical simulations which
are performed by mapping the single-particle orbitals in the
Landau gauge into a one-dimensional lattice with each site in
the y direction representing an orbital labeled by momentum
in the x direction. We add a small on-site potential V0 = 0.05

on one orbital, then we study the charge occupation in each
orbital.

As shown in Fig. 3(a), the charge density distribution
modulates along different orbitals with amplitude close to
1. Furthermore, one can find the period of stripe width first
increases with Ly as only two periods can fit in. Then it
jumps to a smaller value at N = 24, where we find three
periods. This is consistent with the indication from the energy
spectrum, where we find that the value of q∗ remains locked
at q∗ = 2 (in the unit of 2π/L) for systems for N = 12–16
electrons, which is the largest sizes within our computational
accessibility by ED. However, for a charge density wave state
one expects that q∗ converges to a nonzero value in the
thermodynamic limit (L → ∞). The observed locking to a
specific value in ED can be attributed to the discrete nature
of q∗ = 2 which is quantized in units of 2π/L. To verify
this we have performed DMRG simulations on a system with
N = 24. Since L2 = 2πNφ = 4πN (at ν = 1/2), the system
length L is grown by a factor of

√
24/12 = √

2 compared
to a N = 12 system. Thus we expect that the q∗ obtained at
N = 24 is the closest integer to 2

√
2(2π/LN=24). In fact, as

illustrated in Fig. 3(c), we find that q∗ = 3(2π/LN=24) for
N = 24 electrons, in agreement with the expectation that q∗
converges to a constant value in the thermodynamic limit.

We find the period of the stripe order in the half-filled
second LL with anisotropy is about 5–6 magnetic lengths.
We have been able to reach an unprecedented system size
in the numerical study of stripe phases of N = 36 electrons
shown in Fig. 3(b), which lend strong support to the stability
of the stripe phase in the thermodynamic limit. As shown
in Fig. 3(b) three periods of the stripe fit within the system
with an aspect ratio r ≡ Ly/Lx = 1. By increasing the aspect
ratio of the torus, more periods can fit into the system, and
Fig. 3(b) shows an example in which the number of periods has
been increased to four in this fashion. For these large system
simulations, the density modulation appears in the ground state
even without the pinning force as the DMRG automatically
selects a minimum entangled state instead of the cat state due
to the finite truncation error of the order of 10−6.

Discussion. We begin our discussion by explaining the
orientation of the stripes relative to the mass tensor. In the
presence of mass anisotropy, the single-particle wave functions
become more localized along the direction of larger mass
and more extended along the direction of smaller mass. The
orientation of stripes results from a competition between
Hartree and exchange energies. The Hartree energy cost,
which results from the electrostatic energy associated with
charge density modulations, is reduced when the amplitude of
charge modulations is reduced. Since the amplitude of charge
density modulations is smaller with more delocalized wave
functions, the Hartree energy cost is reduced when the charge
density modulations occur along the direction with smaller
mass. On the other hand, the exchange energy gain tends to
increase when the amplitude of the charge density modulations
increases, because in this way the electrons tend to be closer to
each other in the high density regions of the stripe and therefore
gain more energy from the Pauli exclusion principle. Therefore
the exchange energy gain is enhanced when the direction of
charge modulations coincides with the direction of the larger
mass. According to these ideas, our results indicate that it is
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FIG. 3. The charge density distribution on different orbitals (labeled by k = 1, . . . ,Nφ) with adding an on-site potential at one orbital
(a) and with different aspect ratios of torus (b). Here, the mass anisotropy ratio is my/mx = 0.24. (c) The energy spectrum of the N = 24
system obtained by DMRG with mass anisotropy my/mx = 0.24. For the anisotropic limit, one can find the quasidegenerate states with
momentum difference q∗ (in the units of 2π/L) exist only in one direction and q∗ increases with L.

the electrostatic Hartree energy which is dominant in dictating
the orientation of the stripes, which is reasonable given that
we are using the bare Coulomb interaction. We comment in
passing that Hartree-Fock studies have explored the impact of
in-plane fields in quantum wells with finite width [51,52], but
recent experiments have found intriguing reorientations of the
stripes as a function of the strength of the in-plane field [53,54]
which do not completely fit within the expectations of these
earlier theories.

We would like to note, however, that the stripes we observe
possibly have a substantial contribution to their energy from
correlations beyond those of the Hartree-Fock separation
into Hartree and exchange terms. This is evident from the
occupation of the guiding center orbitals that is illustrated
in Fig. 3, which is in stark contrast with the Hartree-Fock
expectation of this being a piecewise periodic function that
alternates between 0 (completely empty) and 1 (completely
occupied). The fact that the occupation changes smoothly as
opposed to jumping discontinuously between 0 and 1 can be
viewed as a collapse of the electron quasiparticle residue of
the chiral mode that resides at the interface between adjacent
electron and hole strips. This behavior is naturally expected
within the picture of stripes as an array of coupled Luttinger
liquids [18,19].

Since our Hamiltonian explicitly breaks rotational symme-
try, the stripe phase we realize only breaks spontaneously the
translational symmetry. This feature stabilizes the stripe phase
against thermal fluctuations and, we expect that, in the absence
of disorder, there should be power-law quasi-long-range
order for temperatures below a Kosterlitz-Thouless phase
transition [55]. However, the disorder potential is expected
to couple in analogous fashion as a random field to an XY
model and, following the Imry-Ma argument, one expects it to
destroy the long-range translational order [56,57].

We have found a critical mass anisotropy of mx/my ≈ 1.5
for the transition from MR into stripes. We wish to emphasize
that this value is small compared to the one realized in AlAs
quantum wells [35], for which mx/my ≈ 5. Therefore, we
expect that when a single valley is occupied in the n = 1 LL
of AlAs the ground state of the system is in the stripe phase.
Valley polarization in AlAs can be enforced by applying a
modest amount of strain [35].

In summary we have identified how the MR state, realized
in isotropic half-filled n = 1 LL, undergoes a phase transition
into a unidirectional charge density wave state with increasing
mass anisotropy. This is shown by the splitting of the
topological degeneracy of the MR state in Fig. 1(c) beyond
a critical mass anisotropy. We have performed various tests
that demonstrate that the resulting phase has unidirectional
translational broken symmetry, including the analysis of the
spectrum, guiding center structure factors, and by adding
explicit weak pinning potentials that one allow to visualize
directly the modulations of the occupation of the guiding
center orbitals. The charge density modulations of the stripes
are found to take place along the direction with smaller mass.
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[24] B. Yang, Z. Papić, E. H. Rezayi, R. N. Bhatt, and F. D. M.

Haldane, Phys. Rev. B 85, 165318 (2012).
[25] R. Z. Qiu, F. D. M. Haldane, X. Wan, K. Yang, and S. Yi, Phys.

Rev. B 85, 115308 (2012).
[26] Z. Papić, Phys. Rev. B 87, 245315 (2013).
[27] K. Yang, Phys. Rev. B 88, 241105(R) (2013).
[28] D. Kamburov, Y. Liu, M. Shayegan, L. N. Pfeiffer, K. W. West,

and K. W. Baldwin, Phys. Rev. Lett. 110, 206801 (2013); D.
Kamburov, M. A. Mueed, M. Shayegan, L. N. Pfeiffer, K. W.
West, K. W. Baldwin, J. J. D. Lee, and R. Winkler, Phys. Rev.
B 89, 085304 (2014); M. A. Mueed, D. Kamburov, Y. Liu, M.
Shayegan, L. N. Pfeiffer, K. W. West, K. W. Baldwin, and R.
Winkler, Phys. Rev. Lett. 114, 176805 (2015); M. A. Mueed,
D. Kamburov, S. Hasdemir, L. N. Pfeiffer, K. W. West, K. W.
Baldwin, and M. Shayegan, Phys. Rev. B 93, 195436 (2016).

[29] F. D. M. Haldane and Y. Shen, arXiv:1512.04502.
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