
Visual-Inertial Odometry on Chip: An
Algorithm-and-Hardware Co-design Approach

Zhengdong Zhang*, Amr Suleiman*, Luca Carlone, Vivienne Sze, Sertac Karaman
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Emails: {zhangzd,suleiman,lcarlone,sze,sertac}@mit.edu, Website: http://navion.mit.edu
*These authors contributed equally to this work

Abstract—Autonomous navigation of miniaturized robots (e.g.,
nano/pico aerial vehicles) is currently a grand challenge for
robotics research, due to the need for processing a large amount
of sensor data (e.g., camera frames) with limited on-board
computational resources. In this paper we focus on the design
of a visual-inertial odometry (VIO) system in which the robot
estimates its ego-motion (and a landmark-based map) from on-
board camera and IMU data. We argue that scaling down
VIO to miniaturized platforms (without sacrificing performance)
requires a paradigm shift in the design of perception algorithms,
and we advocate a co-design approach in which algorithmic and
hardware design choices are tightly coupled. Our contribution is
four-fold. First, we discuss the VIO co-design problem, in which
one tries to attain a desired resource-performance trade-off, by
making suitable design choices (in terms of hardware, algorithms,
implementation, and parameters). Second, we characterize the
design space, by discussing how a relevant set of design choices
affects the resource-performance trade-off in VIO. Third, we
provide a systematic experiment-driven way to explore the design
space, towards a design that meets the desired trade-off. Fourth,
we demonstrate the result of the co-design process by providing
a VIO implementation on specialized hardware and showing
that such implementation has the same accuracy and speed of a
desktop implementation, while requiring a fraction of the power.

I. INTRODUCTION

Autonomous unmanned aerial vehicles have had tremendous
societal and economic impact. They become one of the most
sought-after consumer electronics products, selling millions
each year. They are widely used in the industry, e.g., for
mapping, inspection, surveillance, and film-making [1–3].

In almost all industrial applications of unmanned aerial
vehicles (UAVs), it is key for the robot to have an estimate
of its own location. In outdoors applications spanning large
environments, the global positioning system (GPS) is often
able to provide the necessary precision. However, in GPS-
denied settings the robot needs to estimate its own ego-motion
using exteroceptive sensors, such as, cameras or range finders.

Localization and mapping are widely studied and well
known. However, the computing platforms that can run these
algorithms in real time can be carried only on relatively large
(e.g., one foot in size) micro UAVs [4]. Unfortunately, the
same computers do not easily fit into the smaller (e.g., palm-
size) nano UAVs [5, 6]. To the best of our knowledge, the
smallest commercially-available UAV that can estimate its own
ego-motion is the platform recently announced by Qualcomm,
based on their own processors utilized in smart phones. It is
a few hundred grams in weight and a few inches in size. It
implements a visual-inertial navigation algorithm. Recently, it
was demonstrated in agile flight in indoor environments [7].

One may be tempted to predict that, as the consumer elec-
tronics industry develops, smaller and more powerful general-
purpose processors will be available and smaller UAVs can be
powered by these processors. Unfortunately, at the pico UAV
scale, the traditional approach of scaling down larger UAVs
to smaller ones breaks down, mainly due to the challenges of
fitting general-purpose computing elements on board.

Consider, for example, a pico UAV that weighs 10g. Such
a UAV can be constructed using off-the-shelf actuators and
sensors. Its size would be similar to that of a bottle cap.1
We estimate that it would require roughly 1W of electrical
power to lift itself, roughly 1W of power to run three cameras.
However, the powerful processors that can run state-of-the-
art visual-inertial navigation algorithms require up to 10W
of electrical power. The electrical power differences between
actuation/sensing and computing are exacerbated as the scale
goes down. For example, insect-size pico aerial vehicles that
weigh only 100mg have been demonstrated recently [8, 9];
their power expenditure for stable flight is around 100mW [9].
Cameras that can run on 100mW also exist. However, running
visual navigation algorithms on existing general-purpose com-
puters requires up to two orders-of-magnitude more electrical
power, when compared to the pico-scale actuators and sensors!

Even though actuators and sensors that can enable pico
UAV platforms are available today, their computing elements
are far from even being understood. It is unlikely that the
consumer electronics industry will soon develop processors
that can deliver the necessary compute power within the given
power budget. Thus, to enable the next-generation nano/pico
UAVs, we must design their computers from the ground up,
rather than the top-down approach roboticists have enjoyed
for decades. In fact, the consumer electronics industry has
recently moved in this direction, designing low-power spe-
cialized hardware, often implemented as Field Programmable
Gate Arrays (FPGAs) [10] or Application-Specific Integrated
Circuits (ASICs) [11]. Compute intensive tasks, such as video
coding and face recognition in smart phones, are processed us-
ing new algorithms that are amenable to FPGA and ASIC [12].

Later in this paper, we review the essential design principles
that lead to specialized hardware with low power consumption.
The design is far from trivial; it requires careful evaluation of
the number of memory and compute elements as well as their
spatial allocation on the chip. In most cases, the algorithms

1To the best of our knowledge, the smallest existing consumer drone is
produced by Cheerstone. The drone weighs 7.7g, and it is 3.5cm in size.
Although this particular brand is not equipped with any exteroceptive sensors,
we estimate that it is powerful enough to lift two smartphone cameras.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/83235254?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://navion.mit.edu


and the hardware are jointly designed to achieve the orders-
of-magnitude savings in power expenditure without sacrificing
performance. Going forward, it may be critical for roboticists
to reconsider most compute-intensive tasks in robotics, and
co-design the hardware and the algorithms together to achieve
low-power (or high-throughput) implementations. In fact, the
potential utilization of ASICs was mentioned in a review
article on pico UAVs, which appeared recently in Nature [13].

To the best of our knowledge, this paper is the first to take
up this challenge, and contribute the first step towards the
design of low-power compute elements and accompanying al-
gorithms for robotics applications. The design and fabrication
of specialized computing hardware that can finally enable pico
UAVs will be a long process. We focus on one of the most
compute-intensive processes, namely the task of estimating the
ego-motion of the robot with respect to its starting point. The
main contributions of this paper are a co-design procedure for
the low-power visual-inertial odometry and an FPGA-based
evaluation with a specific design obtained via this procedure.

The visual inertial odometry (VIO) literature is vast, includ-
ing approaches based on filtering [14–19], fixed-lag smooth-
ing [20–24], full smoothing [25–32]. The algorithms consid-
ered here are related to IMU preintegration models [30–33].

There are commercial VIO implementations on embed-
ded computing hardware. Most notably, Google Tango and
the Qualcomm drone run VIO. Implementations on general-
purpose embedded hardware have been recently proposed [34],
including a simple low-power implementation mainly for
augmented reality applications [35]. However, to the best of
our knowledge, there is no specialized hardware implemen-
tation of VIO, either using FPGAs or ASICs. Visual feature
detection and tracking on FPGAs have been demonstrated only
recently [36, 37]. A full FPGA implementation of a sampling-
based motion planning algorithm was also considered [38].
All these FPGA implementations target high-throughput ap-
plications, where various tasks are parallelized to achieve
fast computation. Hence, existing FPGA implementations of
robotics-related algorithms do not include full visual inertial
odometry, and they do not consider power efficiency as a
metric in the design process. Finally, the notion of co-design
have been explored in the context of robotics [39, 40] and also
control theory [41, 42]. Our work is similar to these in spirit.
But, we focus on the co-design of hardware and algorithms.

This paper is structured as follows. Section II reviews
algorithmic aspects of VIO. Section III contains a general
statement of the VIO co-design problem, in which one is
given high-level specifications, and has to build a VIO system
that meets those specifications. Section IV translates high-level
specifications into a desired performance-resources trade-off.
Section V defines the VIO design space, and Section VI
provides a systematic way to explore the design space towards
a design that meets the specifications. Finally, Section VII
analyzes the result of the VIO co-design: an FPGA-based
low-power VIO system with performance matching a desktop
implementation while consuming less than 2W of power.

II. VIO: ALGORITHMIC OVERVIEW

The present VIO pipeline is based on [32], adopting a factor
graph model to perform inference on the robot state, and using

Fig. 1. VIO: algorithmic overview.

preintegrated IMU factors and structureless vision factors to
model the data from the inertial measurement unit and the on-
board cameras. However, contrary to [32], our approach works
with both monocular and stereo camera measurements. The ap-
proach can include data from the right camera when available,
and falls back to a monocular approach otherwise. Moreover,
we perform fixed-lag smoothing, rather than full smoothing:
as mentioned in Section VII the memory constraints for our
target applications are so tight that even storing the state or
the measurement history would be infeasible.

The overall VIO pipeline is shown in Fig. 1. The figure
shows the information flow from the sensor data (on the left-
hand side) to the VIO state estimate (on the right-hand side).
The rectangles with rounded corners perform computation.
The black rectangles instead represent memory storage. The
blocks are grouped in estimation front-end and back-end,
following standard terminology [43]. The vision front-end
processes every stereo frame and is in charge of detecting,
tracking, and validating the landmark observations across
consecutive frames. The IMU front-end is responsible for the
IMU preintegration. The back-end uses the landmark obser-
vations and the preintegrated IMU measurements to formulate
and solve a maximum a-posteriori estimation problem which
computes the best state estimate. Our approach is keyframe-
based in the sense that the back-end only estimates the states
at a subset of frames, named keyframes, while between those
the state estimate is obtained via IMU integration.

Vision front-end implements four functions: feature detec-
tion, feature tracking, stereo matching, geometric verification.

The Feature Detection extracts Nf Shi-Tomasi corners [44],
via OpenCV’s GoodFeaturesToTrack, from the left image.

The Feature Tracking finds the location of the features in the
k-th frame, given the corresponding pixels at frame k−1. We
use optical flow for tracking, following OpenCV’s pyramidal
Lucas-Kanade method, with Tlevels pyramidal levels.

Stereo Matching finds the pixels in the right image, corre-
sponding to the pixels detected and tracked in the left image.
We rectify and undistort left and right images to make the
epipolar lines horizontal. Then, for each feature in the left
frame, we consider a neighborhood of the feature of size
Srows×Scols, and we look for this template in the right image,
by sweeping the template along the epipolar line and looking
for the template location that minimizes the mismatch.

The Geometric verification (RANSAC) prunes incorrect
matches resulting from feature tracking and stereo matching.
We consider a RANSAC approach for geometric validation.
In particular, for the temporal matching (feature tracking) we
consider two algorithmic alternatives for RANSAC: Nister’s 5-



point method [45], and the 2-point method of Kneip et al. [46].
The former estimates the 3D pose (up to scale) between
consecutive frames, while the latter assumes the rotation to
be known from gyroscope integration. For the validation of
the stereo matches, we use a standard 3-point method [47].

IMU front-end is responsible for compressing the set
of IMU measurements collected between two consecutive
keyframes into a single preintegrated measurement and the
corresponding covariance. (See [32] for details.) Considering
two consecutive keyframes at time i and j, the IMU prein-
tegration performs Euler integration of the IMU acceleration
and gyroscope measurements (ak,ωk) for all sampling times
k = i, . . . , j to produce relative rotation ∆R̃ij , velocity ∆ṽij ,
and position ∆p̃ij . The integration is formulated in a local
frame, such that, changes in the state estimate at time i do not
alter the preintegrated measurements (∆R̃ij , ∆ṽij , ∆p̃ij).

VIO back-end performs fixed-lag smoothing, and computes
the maximum a posteriori (MAP) estimate of the most recent
states within a given time window using the measurements
produced by the front-end. Denote the state of the robot at
time i by xi, which includes the pose of the robot (Ri,pi), the
velocity vi expressed in the global frame, and the gyroscope
and accelerometer bias bi. The back-end then estimates the
extended state x = {xi−h , xi−h+1 , . . . , xi}, where h is
the number of states that fall within the smoothing horizon.

The MAP estimator computes the state estimate by solving a
nonlinear least squares problem, which assumes the form [32]:

minx

∑
(i,j)∈F ‖rIMU(x, ∆R̃ij , ∆ṽij , ∆p̃ij)‖2 + (1)∑

k∈L
∑

i∈Fk
‖rCAM(x, lk,ulik,urik)‖2 + (2)

‖rPRIOR(x)‖2 (3)

where (1), (2), and (3) are the negative log-likelihood of
the IMU measurements (∆R̃ij , ∆ṽij , ∆p̃ij), vision measure-
ments (ulik,urik),2 and the priors, generally referred to as
factors, since the problem can be understood as the result of
performing inference over a factor graph. In eqs. (1)-(3), F
is the set of consecutive keyframes indices, Fk is the set of
keyframes in which landmark lk has been observed, L is the
set of landmarks observed during the time horizon.

We solve the optimization problem in eq.(1) using an on-
manifold Gauss-Newton (GN) method [32]. With reference
to Fig. 1, at each iteration, the cost is approximated with a
quadratic surrogate (linearization), and the quadratic approxi-
mation is minimized by solving a linear system (linear solve).
Finally, the solution of the linear system is used to correct the
current estimate (retract). The sequence linearize-solve-retract
is then repeated until convergence or for a maximum number
of iterations Niter. The linear system is usually solved via
Cholesky factorization, followed by back-substitution [48].

After computing the optimal estimate for the state x, the
back-end is responsible for marginalizing out the subset of the
states that falls outside the smoothing window. The marginal-
ization process requires linearizing the problem, similarly to
what is done in GN, and performing a Cholesky factorization.

2The observation of landmark lk ∈ R3 in keyframe i produces a stereo
measurement (ul

ik,u
r
ik), which is the pair of pixels corresponding to the

projection of landmark lk onto the left and right camera frame at time i.

Fig. 2. Algorithm-and-Hardware co-design.

III. ALGORITHM & HARDWARE CO-DESIGN: OVERVIEW

The design process starts with the given high-level spec-
ifications (top of Fig. 2). We group the specifications in
platform, mission, and environment specs. The platform specs
are given constraints on the size, weight, and power of the
platform on which the VIO needs to be implemented.3 The
mission specs constrain the expected performance towards the
accomplishment of a given task. In most applications involving
robot navigation, mission specs involve the desired (maxi-
mum) speed of the robot, its agility (defined as the capability
of producing sudden angular accelerations), and precision in
executing a desired maneuver. Finally, the environment specs
define the type of environment in which the robot is required
to operate, in terms of appearance, geometry, and dynamics.

Given these high-level constraints, the designer is responsi-
ble for the design choices regarding on-board sensing, compu-
tation, and actuation. We assume that the sensors and actuators
are given, and we focus on the “Computation” block in Fig. 2.

The first step of the design process is to translate the
high-level specs into constraints on the available resources
for computation and on the desired level of performance for
VIO. As discussed later in Section IV-A, the most relevant
computational resources are the power and the form factor
of the computational unit. Given the overall platform power
budget, and the power consumed for sensing and actuation,
one can get a power budget for the computation. Similarly,
it is fairly immediate to translate platform size and weight
constraints into constraints on the form factor of the com-
putational unit. On the other hand, mission and environment
specifications constrain performance. For instance, speed and
agility requirements for the platform have implications on the
throughput of the computation, as we discuss in Section IV-B.
Resources and performance metrics, summarized in the large
box in Fig. 2, are coupled, such that to improve performance
one usually needs to use more computational resources.

The second step of the design process is to define a “design
space”, which is the set of choices the designer can make
towards the creation of the VIO system. Each choice in this

3Clearly, the set of specifications is application-dependent. For instance, in
certain applications, platform specs may include cost or complexity of design.



design space has implications in terms of the performance-
resource trade-off. The design space has to be sufficiently large
to ensure that there exists a feasible design (that meets the
performance requirements by using the available resources).
We discuss our choice of the VIO design space in Section V.

The third step is to explore the design space to find a
design that attains the desired performance-resources trade-
off. Section VI frames design considerations that are usually
the result of the experience and judgment of an expert into a
systematic sequence of design choices. We note that empirical
evaluation is a necessary aspect of the design. This is typically
due to the difficulty in taking reasonable assumptions on the
appearance of the environment and framing those analytically.

The last step is the validation of the system resulting from
the design process. We validate our design in Section VII.

IV. STEP 1: FROM HIGH-LEVEL SPECIFICATIONS TO THE
PERFORMANCE-RESOURCES TRADE-OFF

This section relates the high-level specifications (top of
Fig. 2) to more tangible performance and resource metrics.

A. Resources: Power and Form Factor
The two main resources that characterize a VIO system are

power consumption and form factor. They can be broken into
factors that can be more easily related to algorithmic choices.

Power. At the hardware level, the power consumption of a
computational unit is dictated by four components [49]:

Power = α · C · f · V 2 (4)

where, C is the capacitance, f is the clock frequency, V is the
voltage, and α is the switching activity. Fundamentally, power
is consumed when charging the capacitance; the frequency
and switching activity indicate how often the capacitance is
charged, and the voltage indicates how high the capacitance
needs to be charged to represent a “1” in binary format. The
voltage V is dictated by the platform and process technol-
ogy (e.g., an FPGA in 28nm operates at 1.0V [50]). The
capacitance C is determined by the number of logic gates
(e.g., AND/OR), and the memory size. Large memories that
store thousands of bytes will contain long wires with high
capacitance; thus, reading and writing from these memories
consume more power than computation [51]. If the amount of
memory exceeds what is available on-chip, off-chip memory,
such as DRAM, needs to be used; however, the capacitance
of the routing to go off-chip is orders of magnitude greater
than on-chip and thus off-chip memory access consumes
significant energy and should be avoided if possible. The clock
frequency f is determined by how much computation needs
to be performed in a given time (i.e., operations per second).
A higher clock frequency means that there are more cycles
per time period; assuming a fixed number of operations per
cycle, this means more operations per second. The switching
activity α is the probability that a capacitor is charged up to
“1” in a given clock cycle (i.e., it captures the fact that in
some cycles, certain parts of the hardware could be idle). For
instance, a memory that is accessed every cycle will consume
more power than a memory than is accessed sporadically.

Form Factor. The maximum size and weight available
for the computational unit is another important resource to

consider during the design. The form factor of the hardware is
closely related to power consumption, due to the fact that high
power consumption means that a larger battery is required to
maintain the same operation time. In addition, if the power can
be reduced to below 1W, the computational unit can operate
without a fan, which significantly reduces the form factor.

B. Performance: Accuracy and Throughput
The main performance specifications the designer faces

when building a VIO system: estimation error and throughput.
Estimation error. The precision in performing a desired

maneuver is limited by both the control and estimation error.
Therefore, the mission-level precision specification dictates an
upper bound on the VIO estimation error. In this context we
are interested in designing a VIO system where the drift is
negligible over few minutes of operation. More precisely, our
design goal is to attain an average error smaller than 25cm
accumulated over four minutes of flight time.

Throughput. The throughput measures how fast we can
process the sensor data and produce a state estimate. More
precisely, since we use a keyframe-based VIO approach, we
distinguish two throughput metrics, the front-end and the back-
end throughput. Both throughputs are by high-level mission
specifications and by sensor choice. The front-end throughput
should be high enough to cope with the frame-rate of the
on-board stereo camera. On the other hand, the back-end
throughput should be higher than the keyframe rate.

The keyframe rate, in turn, is dictated by the speed and
agility of the platform, and has to be high enough to ensure
that landmarks are tracked across consecutive keyframes.
Assuming that mission-level constraints require a maximum
(linear) speed of vmax (in meters per second), we can use
standard projective geometry to relate the speed of the robot to
the maximum displacement of the pixels between keyframes.
Assuming that a landmark is observed at pixel (0, 0) in
keyframe i, and that the robot moves at speed vmax for the
entire time interval ∆tij , then the (1D) pixel displacement at
the successive keyframe j is:

∆u = (fl · vmax ·∆tij)/r (5)

where we assume that the robot moves orthogonally to the
landmark direction (this is the worst case for the displace-
ment), vmax∆tij is the physical displacement of the landmark
over the time interval ∆tij with respect to the camera frame,
fl is the focal length, and the landmark is at a distance of
r from the robot. High-level specifications on the geometry
of the environment dictate the minimum distance r, while the
choice of the sensor fixes the focal length fl. Therefore, one
can compute the maximum intra-keyframe time ∆tij which
ensures that each feature does not move more than ∆u pixels
(or, equivalently, that most features remain in the field of view)
across keyframes. A numerical example is given at [52].

One can do similar considerations starting from the agility
requirements, evaluating worse-case pixel displacements at
maximum rotation rate and accelerations, obtaining another
upper bound on the intra-keyframe time.

Table I summarizes our desired performance-resources
trade-off, and provides examples of these bounds, assuming
that the camera frame rate is 20fps, the keyframe rate is the



Design goal High-level specs

Resources power ≤ 2W power, endurance
form factor - size, weight

Performance estimation error ≤ 25cm accuracy
front-end throughput ≥ 20 fps speed, agility
back-end throughput ≥ 5 fps speed, agility

TABLE I
PERFORMANCE-RESOURCES TRADE-OFF SPECIFICATION.

one designed in [52], the available power budget for VIO is
2W , and we do not enforce explicit form factor constraints.

V. STEP 2: DEFINING THE DESIGN SPACE D

Roboticists are faced with a set of design choices when
designing a VIO system. Some of these choices are part of
common practice in robotics, while others are less trivial and
derive from a more hardware-oriented, ground-up perspective.
The set of design choices spans the design space: each point
in the design space represents a feasible design and implies a
performance-resources trade-off. We group the design choices
in four: hardware, algorithmic, implementation, and parameter
choices. Therefore the design space is D = H × A × I ×
P , where H, A, I, P are the set of hardware, algorithmic,
parameter and implementation choices, respectively.

A. Hardware Choices (H)

When designing a VIO system, the designer has to select
a suitable computational unit. At a high level, the choice is
between general-purpose (e.g., CPU or GPU) or specialized
hardware (e.g., FPGA or ASIC). Table A1 in [52] summarizes
the features of some representative platforms.

1) General-purpose processors: General-purpose platforms
such as CPUs and GPUs have limited design flexibility as
the amount of on-chip memory, the clock frequency, and the
precision of the computation are basically fixed. The amount
of parallelism is limited by the number of cores. GPUs offer
more parallelism, but often at the cost of power consumption.

2) Specialized Hardware: FPGAs have more design flexi-
bility, with opportunities to explore parallelism and pipelining,
and control the numerical precision and the memory size (more
in Section V-C). However, arithmetic operations are either
performed using digital signal processing (DSP) hardware,
which supports multiplication and addition, or Look-Up Tables
(LUT) that emulate logic gates (e.g., AND/OR). Operation
outside of those supported by the DSP require iterative ap-
proaches which affects both throughput and power. On-chip
memory includes Block RAM (BRAM) and flip flops (FF).

Finally, ASICs provide even more design flexibility than
FPGAs, as the number of processing elements and on-chip
memory size are only constrained by the total area, which
dictates the chip cost. Partitioning of the area between memory
and compute is entirely up to the designer. In addition, logic
gates are directly implemented with transistors rather than
using LUTs; thus ASICs tend to consume less power than
FPGAs. The major drawbacks of the ASIC is that it can only
perform a specific task and the design and fabrication costs
are orders of magnitude higher than the other platforms.

Specialized hardware gives extra degrees of freedom for the
designer to reach a desired performance-resources trade-off, at
the cost of higher design complexity. The order of hardware

with increasing design flexibility, reduced power and greater
design effort from left-to-right is (e = embedded, d = desktop)

d-CPU→ e-CPU→ e-GPU→ FPGA→ ASIC (6)

VIO Hardware Choices: in our nano aerial vehicle applica-
tion, the power budget is severely limited and we restrict our
hardware choices to embedded CPU and FPGA. We excluded
the ASIC for the moment, despite its low power consumption,
due to the complexity of its design. However, the FPGA design
considerations are important steps towards ASIC design.

B. Algorithm Choices (A)
When designing a VIO system one is faced with a large

number of algorithmic choices. Multiple choices are available
for almost any block of the VIO pipeline in Fig. 1, starting
from the feature tracking (e.g., use of sparse optical flow
or descriptor matching [53]), to the RANSAC solver (e.g.,
choice of the minimal solver), and the nonlinear optimizer.
However, it may be impractical to consider a large set of
algorithmic choices: since the selection of the final design has
to often be performed through empirical evaluation of different
alternatives, a large design space implies a larger burden in
terms of implementation and testing.

VIO Algorithmic Choices: in this paper, we restrict the
algorithmic choices to the selection of the most convenient
RANSAC method in the vision front-end.

C. Implementation Choices (I)
The designer can choose many different ways to implement

a given algorithm, and, while this aspect is sometimes over-
looked in the design of VIO algorithms, it is of paramount
importance towards the design of VIO systems. In the follow-
ing we collect a number of implementation choices, which
we classify in accuracy-invariant and accuracy-dependent
choices. The former do not alter the numerical result, the latter
trade-off throughput and power for accuracy. Most of these
choices are only available on specialized hardware.

1) Accuracy-invariant choices: The following design
choices have no effect on the accuracy (estimation error).

On-the-fly Computation. Since the power demand is
largely influenced by the amount of on-chip memory, the
designer can rethink algorithm implementations to minimize
on-chip memory storage. In addition, minimizing reading from
off-chip memory is also critical to reduce system power. To
address these potentially conflicting challenges, an on-the-fly
data processing approach can be used, where sensor data (e.g.,
pixels) is read from the sensor and used immediately and to
its fullest extend, instead of storing it for later use.

Pipelined and Parallel Computation. Pipelining and paral-
lelism are two architectural approaches that can be used to in-
crease the number of operations per second, and thus increase
the throughput. Pipelining involves breaking a computation
into multiple stages such that a different piece of data can be
processed in each stage simultaneous, as shown in Fig. 3.

Parallelism involves replicating the hardware for the com-
putation, so that multiple operations can be performed at the
same time to increase the throughput. However, this increase
comes at the cost of increased capacitance since parallelism
replicates the hardware (more logic gates and memory need



to be used). Thus parallelism alone has limited impact on
reducing power, but is effective for increasing throughput.

2) Accuracy-dependent choices: The following design
choices may imply a loss in accuracy (i.e., they increase the
estimation error), since they induce numerical approximations.

Reduced Precision. The capacitance and consequently,
power consumption, scales with the numeric precision of the
computation (i.e., fixed or floating point, and number of bits).
Therefore the use of fixed-point arithmetic and reduced bit-
width, affects both power consumption and memory storage.

Low Cost Arithmetic. While any form of arithmetic (e.g.,
addition, multiplication, division, square root functions) has
similar complexity on CPU, there is a significant difference
in their complexity on FPGA and ASIC. Specifically, addition
and multiplication require less resources (e.g., logic gates and
cycles) than the other functions. In fact, FPGAs often have
dedicated digital signal processing (DSP) hardware that can
perform addition and multiplication within one clock cycle.
However, for the other functions, iterative approaches must be
used which may require multiple cycles. Therefore, an imple-
mentation choice is to limit the use of high-cost functions, and
approximate those with additions and multiplications.

1 2 1 2 1 2 1 2 Serial 

Pipeline 1 
2 
1 

2 
1 

2 
1 

2 

Parallel 1 2 
1 2 

1 2 
1 2 Time 

Clock period 

Fig. 3. Example of pipeline and parallelism, assuming that computation
requires two steps and colors indicate different sets of data.

D. Parameter Choices (P)
The VIO pipeline (Fig. 1) involves several parameters

(typically between 10 and 50). A subset of these parameters
has a large impact on the performance-resources trade-off. For
instance, the smoothing horizon used in the back-end clearly
trades-off computation for accuracy: a longer horizon usually
leads to more accurate results and higher computational cost
(due to the larger state space in the optimization). There are
also hardware-related parameter choices. For instance, one
may consider the clock-frequency on an FPGA as a tunable
parameter to trade-off throughput for power. We denote with
p = {pa, ph} the choice of algorithmic parameters pa and
hardware parameters ph.

On the other hand, a subset of the parameters has negligible
influence on the performance-resource trade-off, and there is
no reasons to select those parameters (later referred to as
thresholds) differently when designing for a high-performance
desktop computer or for a small chip. For instance, the
thresholds appearing in RANSAC have minor implications on
the use of computational resources, and can be designed on
any computational unit so to minimize estimation errors.

VIO Parameter Choices: we restrict the parameter choices
to the ones listed in Table III.

VI. STEP 3: EXPLORING THE DESIGN SPACE VIA AN
ITERATIVE SPLITTING CO-DESIGN STRATEGY

We provide a systematic way to explore the design space D
towards a design that meets given constraints on the desired

Algorithm 1: Iterative Splitting Co-design (ISC)
Input: performance constraints Ē, T, resource constraints P̄, F̄,

design space D = (H,A, I,P) (hardware, algorithms,
implementation, parameters)

Output: design d ∈ D (when feasible)
1 begin
2 Select the first hardware h ∈ H, following the ordering

in (6), whose power and form factor may be compatible
with the available resources (i.e., idle power is below P̄) ;

3 Find a minimum-resources design d = (h, a, i, p) ∈ D
which meets the given performance specs given h:

4 select algorithms a, parameters pa to minimize power
(ops and memory) while preserving the accuracy Ē ;

5 select implementation i, hardware parameter ph to
re-establish desired throughput T, minimizing power ;

6 if d satisfies power and form factor constraints P̄, F̄ then
7 return d;
8 else
9 H ← H\h;

10 repeat from 2 ;

performance and on-board resources. Unfortunately, the space
is made by a large number of (usually discrete) choices, entail-
ing a combinatorial explosion of potential designs. Moreover,
the choices are intertwined; for instance, an algorithm that on
CPU leads to fast computation, may be prohibitively slow or
demand too much memory on an FPGA.

To address these challenges, we use an iterative ap-
proach. At each iteration, we commit to a given hardware
choice, and we look for a minimum-resources design. This
minimum-resources design sub-problem is still challenging,
since throughput and estimation error may suggest antago-
nistic actions (e.g., we can reduce the error by increasing
the computation, which in turns decreases the throughput).
Therefore, we also split this search in two steps: the first
attempts to minimize resources while preserving the desired
estimation error, thought a suitable selection of algorithms a
and algorithmic parameter pa choices. The second tries to re-
establish, when possible, the desired throughput by suitable
choices of the implementation i and hardware parameters ph.

With these sequence of steps, the design is guaranteed to be
feasible in terms of estimation error, but it may be violating the
other constraints (throughput, power, form factor). Therefore,
the designer may need to iterate the algorithmic choices or
the hardware choices. If we favor design simplicity, we may
start iterating the hardware choices in order of simplicity of
design, as in eq. (6), and explore “simpler” choices first.

This strategy, that we name Iterative Splitting Co-design
(ISC), is summarized in Algorithm 1. In the following section
we discuss how to solve the minimum-resources subproblems
in lines 4 and 5 of Algorithm 1, for VIO co-design.

A. Minimum-Resources Algorithms and Parameters

Since minimizing power also reduces the form factor of the
hardware, we can safely focus on minimizing power. It may
not be trivial to understand how algorithm and algorithmic
parameter choices impact power. Fortunately, eq. (4) rewrites
power in terms of quantities that can be more easily related
to algorithms. In particular, the choice of algorithms and
parameters does not alter the voltage and clock frequency of



RANSAC type Estimation error [m] Time [s] # iters.
5-point 0.153 7.16 · 10−3 145
2-point 0.147 4.79 · 10−4 16

TABLE II
MONOCULAR RANSAC ALGORITHM CHOICE.

the hardware, hence these values can be considered constant
in this section. On the other hand, the capacitance and the
switching activity depend on the amount of memory and on
the number of operations (ops) required to execute the chosen
algorithm. Therefore, in this section we minimize power, by
choosing algorithmic and parameters that minimize ops and
memory, while preserving the desired estimation error.

The following design choices are mostly driven by empirical
evaluation, since it is hard (and unreliable) to use theoretical
estimation error estimate, due to the difficulty of accounting
for the appearance of the environment. Therefore, we assume
the availability of a given set of testing datasets to verify that
the algorithmic choices preserve the target estimation error.
Due to our aerial robotics motivation, we use the 11 EuRoC
benchmarking datasets [54] as testing datasets.

We also assume that a baseline design is available; for
instance, a desktop VIO implementation that ensures the
desired performance, but disregards resource-constraints. This
is reasonable since the designer usually starts from a desktop-
implementation and then scales down to embedded hardware.

The high-level strategy: starting from the baseline design,
we change one algorithm/parameter at a time, and we find the
minimum-resources setting that preserves the estimation error.

Algorithm Choices. The main algorithmic choice in our
design is the selection of the monocular RANSAC approach.
For minimum-resources design, we test both the 5-point and
the 2-point RANSAC and we log the corresponding estimation
errors. We report the estimation error, averaged over 3 runs
and across all the EuRoC datasets, in the second column
of Table II. The table shows that the two algorithms have
practically identical performance, hence, we can prioritize the
choice that minimizes the amount of ops and memory. It
is possible to quantify the expected complexity of the two
methods analytically. The expert reader may easily realize that
the complexity of the 5-point method is definitely larger than
the 2-point method, for two reasons: (i) the number of iteration
in RANSAC grows with the number of points (last column in
Table II, see [55]), and (ii) the complexity per iteration of
the 5-point method is remarkably larger [56], compared with
the 2-point method. This high-level evaluation is confirmed
by empirical evaluation of the execution time (third column in
Table II), which, given the hardware platform, is proportional
to the ops. Therefore, the selection of the 2-point method
minimizes resources, while preserving the desired accuracy.

Algorithmic Parameter Choices. The algorithmic param-
eter choice is still based on the idea of minimizing ops and
memory while preserving the desired accuracy. An explicative
example is given in Fig. 4(a): we consider a set of potential
alternatives for the maximum number of features detected
in the vision front-end, and we plot estimation error (solid
blue line) and the computation time (dashed red line). The
estimation error is the performance metric we want to preserve,
while the computation time is, given the hardware, a proxy
for the ops, which is the resource we want to minimize. The

Parameter Type Module Final choice
RANSAC type algorithm RANSAC 2-point
nr. of features

parameter (pa)

Feature detection 200
template size Stereo matching 41× 5px

max. tracking levels Feature tracking 3
horizon back-end 4s

intra-keyframe time back-end 0.2s
nr. GN iterations back-end 1

TABLE III
FINAL CHOICE OF ALGORITHMS AND PARAMETERS

error has a non-monotonic trend: it is large when the number
of features is too small, then it drops when increasing the
number of features, then it tends to rise again (intuitively, when
trying to extract more features, we also include more outliers).
The key observation is that the error curve has a relatively
flat region (100-300 features): this is a region in which the
error is relatively invariant to the parameter choice, hence we
can reduce resources at a minimum loss of accuracy. Since
the computation time increases with the number of features,
we should select the smallest number of features that attain
the desired accuracy. In this case, a convenient choice can be
to use 200 features, that corresponds to the minimum error
(selecting 100 features may also be an acceptable choice).

Another example is the choice of the smoothing horizon
in Fig. 4(b). We repeat the same process for each parameter in
the design space. The corresponding figures are given in [52].
Table III summarizes the minimum-resources, error-preserving
choices of algorithms and parameters.

B. Minimum-Resources Hardware Implementation
Given the algorithm choices, we can now focus on optimiz-

ing the implementation and the hardware parameters.
Hardware Implementation. We minimize resources in

the hardware implementation by following the guidelines of
Section V-C. We apply “accuracy-invariant choices” when
possible, while for the “accuracy-dependent choices”, we
still need to make sure to operate across accuracy-preserving
implementations, as done in Section VI-A.

On-the-fly Computation: To reduce the on-chip memory
size, we do not store the entire image before doing feature
detection, but we rather perform detection on-the-fly, while
the image is read pixel by pixel. Depending on the detector
“block size”, we only store a small set of consecutive rows
(i.e., line buffers), to evaluate the corner response at a pixel.

Pipelined and Parallel Computation: Various modules in the
design are pipelined for increased throughput. For instance, in
the feature detection, undistortion, and stereo matching, the
computation is per-feature and can be easily pipelined (see
Example 2 in [52]). Parallelism is also used to increase the
throughput of various computationally heavy blocks. Specif-
ically, both the feature tracking module and the linearize
module are composed of two parallel engines.

Reduced Precision: The front-end uses fixed-point precision
with limited bit-width. As this may affect the estimation error,
we evaluate the performance-resources trade-off in Fig. 4(c).
We select 16-bit, which is the minimum-resources precision in
the accuracy-invariant region, reducing the number of DSPs by
40% compared to 32-bit with only a 0.019m increase in error.

Low Cost Arithmetic: To avoid the high cost arithmetic
operations in the hardware, we use approximations or substitu-
tions. For instance, in the sparse stereo block matching, rather



20 50 100 200 300
max. detected features (Nf )

0.1

0.2

0.3

0.4
es

tim
at

io
n 

er
ro

r

0

0.05

0.1

ba
ck

-e
nd

 ti
m

e

2 4 6 8 10
horizon (h, seconds)

0.1

0.2

0.3

0.4

es
tim

at
io

n 
er

ro
r

0

0.02

0.04

0.06

0.08

ba
ck

-e
nd

 ti
m

e

32 21 16 12
bit width

0.1

0.2

0.3

0.4

es
tim

at
io

n 
er

ro
r

0.4

0.6

0.8

1

1.2

nr
. o

f D
S

P
 (

in
 th

ou
sa

nd
s)

(a) (b) (c)
Fig. 4. Algorithmic parameter choice: error-time trade-off for different parameters. Average errors are shown as solid blue lines, while time is show as a
dashed red line. The figure also shows the details of each datasets as a scatter plot: the EuRoC datasets are classified as “easy”, “medium”, and “difficult”,
and, accordingly, we show the average errors for the easy, medium, and difficult datasets as green triangles, yellow squares, and red circles.

than computing the normalized sum of squared difference and
comparing it to a threshold (e.g., s√

n
≤ t), we multiply the

threshold by the normalization and square both sides, (e.g.,
s2 ≤ nt2). This avoids expensive division and square root.

Hardware Parameters. Given the implementation, the
number of ops and memory usage is fixed. The last design
“knob” is the choice of the voltage and the clock frequency.
Here we assume the voltage to be fixed and we only tune the
clock frequency. For a fixed implementation, the throughput
and the power increase linearly with the clock frequency.
Therefore, we can simply select the minimum-power clock
frequency that allows us to meet our throughput constraints.

VII. STEP 4: FINAL VIO DESIGN AND VALIDATION

This section provides an example of execution of the
Iterative Splitting Co-design. We use the EuRoC dataset for
testing [54]. Moreover, we compare against a baseline design
implemented on a desktop Intel Xeon E5-4627 v2. The hard-
ware choices are embedded ARM Cortex-A15, and an FPGA.

Iteration 1: embedded CPU. At the first iteration, we
select the ARM as the target hardware. Then we follow the
guidelines of Section VI-A to obtain a minimum-resources
choice of algorithms a and parameters p (Table III). Since
the ARM does not offer any control on hardware parameter
and has a very limited set of implementation choices, we
move directly to the validation step (line 6 in Algorithm 1).
Table IV summarizes the performance-resources trade-off for
the embedded CPU (e-CPU), compared with the baseline
design (tested on both the e-CPU and on the Intel Xeon
d-CPU). The algorithm and parameter design increases the
throughput by 30% at the cost of a 0.014m increase in error.
VIO reaches the target throughput of 20 fps and 5 keyframes
per second (key fps) on the desktop platform. Unfortunately,
even when only a single core is used, the desktop platform
consumes 26.1W, which is an order of magnitude greater than
our design goal. On the ARM, our algorithm and parameter
design consumes 2.3W, which is closer to our target power
consumption; however, the throughput is 2-4× lower than our
design goal. Since this choice of the hardware leads to an
infeasible design, we move to the next iteration.

Iteration 2: FPGA. Profiling the code on the CPU reveals
that the following modules account for over 99% of the
total compute cycles: front-end, linear solve, linearize and
marginalize. To achieve both the necessary throughput and
power requirements, we implemented the high complexity

Algorithm Baseline Design Design
(a,p) (h,a,i,p)

Accuracy 0.1501 0.1641 0.1931
Platform d-CPU e-CPU d-CPU e-CPU FPGA

Front-end 15.38 3.91 20.83 5.19 20Throughput (fps)
Back-end 8.40 2.04 12.66 2.68 5Throughput (fps)

Power (W) 28.2 2.45 26.1 2.33 1.46

TABLE IV
SUMMARY OF RESULTS ACROSS DIFFERENT HARDWARE PLATFORMS

modules on a Xilinx Kintex-7 XC7K355T FPGA. Since we
used specialized hardware, the VIO algorithm can be further
optimized using the hardware h and implementation i design
choices, as described in Section V. These co-design choices
increase the estimation error by only 0.029m.

The rightmost column of Table IV reports the performance-
resources trade-off for our FPGA design. The front-end op-
erates at a clock frequency of 23MHz to reach the design
goal of 20fps. The back-end operates at a clock frequency of
100MHz to reach the design goal of 5 key fps. The overall
power amounts to 1.46W. This design is feasible both in terms
of resources and desired performance. In [52] we report extra
details on the resource utilization for the key modules. The
design requires around 2MB of on-chip storage, 771 DSPs,
144k flip flops and 192k six-input look up tables, which
accounts for 32 to 86% of the available resources on the
FPGA. The modules within the back-end operate serially. As a
result, the marginalize module can time-share the hardware of
the solver and the Cholesky factorization block in the linearize
block, and only requires additional memory. The front-end can
operate up to 70 MHz, increasing the frame rate to 61.2 fps
and power consumption by 0.33W.

VIII. CONCLUSION

In order to scale down perception to nano and pico robots,
we need to co-design hardware and algorithms. In this paper
we take a first step to address the co-design problem, and
propose a systematic, experiment-driven approach to define
and explore the co-design space, in the search of a design that
meets resources and performance requirements. As a result of
the co-design process, we obtain a VIO system which uses
specialized hardware (an FPGA) and has the same accuracy
and throughput of a desktop implementation, while operating
within a power budget of 2W. Acknowledgements. This work
was partially funded by the AFOSR YIP FA9550-16-1-0228
and by the NSF CAREER 1350685.



REFERENCES

[1] Francesco Nex and Fabio Remondino. UAV for 3D
mapping applications: a review. Applied Geomatics, 6
(1):1–15, 2014.

[2] F Mohammed, A Idries, N Mohamed, K Al-Jaroodi,
and I Jawhar. UAVs for smart cities: Opportunities and
challenges. In International Conference on Unmanned
Aircraft Systems (ICUAS), 2014.

[3] Kimon P Valavanis and George J Vachtsevanos. UAV
Applications: Introduction. In Handbook of Unmanned
Aerial Vehicles, pages 2639–2641. Springer Netherlands,
Dordrecht, 2015.

[4] Kimon P Valavanis. Classification of UAVs. In Kimon P
Valavanis and George J Vachtsevanos, editors, Handbook
of Unmanned Aerial Vehicles. Springer Netherlands, Dor-
drecht, 2015.

[5] Matthew Keennon, Karl Klingebiel, and Henry Won.
Development of the Nano Hummingbird: A Tailless Flap-
ping Wing Micro Air Vehicle. In 50th AIAA Aerospace
Sciences Meeting including the New Horizons Forum
and Aerospace Exposition, Reston, Virigina, June 2012.
American Institute of Aeronautics and Astronautics.

[6] Ruijie He, Sho Sato, and Mark Drela. Design of Single-
Motor Nano Aerial Vehicle with a Gearless Torque-
Canceling Mechanism. In 46th AIAA Aerospace Sciences
Meeting and Exhibit, Reston, Virigina, June 2012. Amer-
ican Institute of Aeronautics and Astronautics.

[7] Giuseppe Loianno, Chris Brunner, Gary McGrath, and
Vijay Kumar. Estimation, Control, and Planning for
Aggressive Flight With a Small Quadrotor With a Single
Camera and IMU. IEEE Robotics and Automation
Letters, 2(2):404–411, December 2016.

[8] R J Wood, B Finio, M Karpelson, K Ma, N O Pérez-
Arancibia, P S Sreetharan, H Tanaka, and J P Whitney.
Progress on ‘pico’ air vehicles. The International Jour-
nal of Robotics Research, 31(11):1292–1302, September
2012.

[9] J Bonnet, P Yin, M E Ortiz, P Subsoontorn, and D Endy.
Controlled Flight of a Biologically Inpsired, Insect-Scale
Robot. Science, 340(6132):599–603, May 2013.

[10] S D Brown, R J Francis, J Rose, and Z G Vranesic.
Field-programmable gate arrays. Springer, 2012.

[11] M J S Smith. Application-Specific Integrated Circuits.
Addison-Wesley Professional, 2008.

[12] V. Sze, M. Budagavi, and G. J. Sullivan. High efficiency
video coding (HEVC):Algorithms and Architectures. In-
tegrated Circuit and Systems, Springer, pages 1–375,
2014.

[13] Dario Floreano and Robert J Wood. Science, technology
and the future of small autonomous drones. Nature, 521
(7553):460–466, May 2015.

[14] A.I. Mourikis and S.I. Roumeliotis. A multi-state con-
straint Kalman filter for vision-aided inertial navigation.
In IEEE Intl. Conf. on Robotics and Automation (ICRA),
pages 3565–3572, April 2007.

[15] Dimitrios G. Kottas, Joel A. Hesch, Sean L. Bowman,
and Stergios I. Roumeliotis. On the consistency of vision-
aided inertial navigation. In Intl. Sym. on Experimental

Robotics (ISER), 2012.
[16] A.J. Davison, I. Reid, N. Molton, and O. Stasse.

MonoSLAM: Real-time single camera SLAM. IEEE
Trans. Pattern Anal. Machine Intell., 29(6):1052–1067,
Jun 2007.

[17] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart.
Robust visual inertial odometry using a direct EKF-based
approach. In IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS). IEEE, 2015.

[18] E.S. Jones and S. Soatto. Visual-inertial navigation,
mapping and localization: A scalable real-time causal
approach. Intl. J. of Robotics Research, 30(4), Apr 2011.

[19] J.A. Hesch, D.G. Kottas, S.L. Bowman, and S.I. Roume-
liotis. Camera-imu-based localization: Observability
analysis and consistency improvement. Intl. J. of
Robotics Research, 33(1):182–201, 2014.

[20] A.I. Mourikis and S.I. Roumeliotis. A dual-layer estima-
tor architecture for long-term localization. In Proc. of the
Workshop on Visual Localization for Mobile Platforms at
CVPR, Anchorage, Alaska, June 2008.

[21] G. Sibley, L. Matthies, and G. Sukhatme. Sliding window
filter with application to planetary landing. J. of Field
Robotics, 27(5):587–608, 2010.

[22] T-C. Dong-Si and A.I. Mourikis. Motion tracking with
fixed-lag smoothing: Algorithm consistency and analysis.
In IEEE Intl. Conf. on Robotics and Automation (ICRA),
2011.

[23] S. Leutenegger, P. Furgale, V. Rabaud, M. Chli, K. Kono-
lige, and R. Siegwart. Keyframe-based visual-inertial
slam using nonlinear optimization. In Robotics: Science
and Systems (RSS), 2013.

[24] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and
P. Furgale. Keyframe-based visual-inertial slam using
nonlinear optimization. Intl. J. of Robotics Research,
2015.

[25] M. Bryson, M. Johnson-Roberson, and S. Sukkarieh. Air-
borne smoothing and mapping using vision and inertial
sensors. In IEEE Intl. Conf. on Robotics and Automation
(ICRA), pages 3143–3148, 2009.

[26] V. Indelman, S. Wiliams, M. Kaess, and F. Dellaert.
Information fusion in navigation systems via factor graph
based incremental smoothing. Robotics and Autonomous
Systems, 61(8):721–738, August 2013.

[27] S. Shen. Autonomous Navigation in Complex Indoor and
Outdoor Environments with Micro Aerial Vehicles. PhD
Thesis, University of Pennsylvania, 2014.

[28] N. Keivan, A. Patron-Perez, and G. Sibley. Asynchronous
adaptive conditioning for visual-inertial SLAM. In Intl.
Sym. on Experimental Robotics (ISER), 2014.

[29] A. Patron-Perez, S. Lovegrove, and G. Sibley. A spline-
based trajectory representation for sensor fusion and
rolling shutter cameras. Intl. J. of Computer Vision,
February 2015.

[30] T. Lupton and S. Sukkarieh. Visual-inertial-aided nav-
igation for high-dynamic motion in built environments
without initial conditions. IEEE Trans. Robotics, 28(1):
61–76, Feb 2012.

[31] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza.



IMU preintegration on manifold for efficient visual-
inertial maximum-a-posteriori estimation. In Robotics:
Science and Systems (RSS), 2015.

[32] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza.
On-manifold preintegration theory for fast and accurate
visual-inertial navigation. IEEE Trans. Robotics, 2016.

[33] K Eckenhoff, P Geneva, and G Huang. High-Accuracy
Preintegration for Visual-Inertial Navigation. In Work-
shop on Algorithmic Foundations of Robotics, 2016.

[34] N de Palezieux, T Nageli, and O Hilliges. Duo-VIO: Fast,
Light-weight, Stereo Inertial Odometry. In IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems, July 2016.

[35] I Hong, G Kim, Y Kim, D Kim, and B G Nam. A
27 mW reconfigurable marker-less logarithmic camera
pose estimation engine for mobile augmented reality
processor. IEEE Journal of Solid-State Circuits, 50(11):
2513–2523, 2015.

[36] J Nikolic, J Rehder, M Burri, P Gohl, S Leutenegger, P T
Furgale, and R Siegwart. A Synchronized Visual-Inertial
Sensor System with FPGA Pre-Processing for Accurate
Real-Time SLAM. In IEEE International Conference on
Robotics and Automation, 2014.

[37] G Zhou, L Fang, K Tang, and H Zhang. Guidance: A
visual sensing platform for robotic applications. In IEEE
Conference on Computer Vision and Pattern Recognition
Workshops, 2015.

[38] Sean Murray, Will Floyd-Jones, Ying Qi, Daniel Sorin,
and George Konidaris. Robot motion planning on a chip.
In Robotics: Science and Systems, 2016.

[39] A Censi. Handling Uncertainty in Monotone Co-Design
Problems. arXiv, pages 1–24, September 2016.

[40] A Censi. A Mathematical Theory of Co-Design. arXiv,
pages 1–18, October 2016.

[41] N Matni. Communication delay co-design in H2 dis-
tributed control using atomic norm minimization. IEEE
Transactions on Control of Network Systems, 2015.

[42] Nikolai Matni and Venkat Chandrasekaran. Regular-
ization for Design. IEEE Transactions on Automatic
Control, 61(12):3991–4006, November 2016.

[43] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scara-
muzza, J. Neira, I.D. Reid, and J.J. Leonard. Past,
Present, and Future of Simultaneous Localization And
Mapping: Towards the Robust-Perception Age. IEEE
Transactions on Robotics, 32(6):1309–1332, Dec 2016.

[44] J. Shi and C. Tomasi. Good features to track. In
IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pages 593–600, 1994.

[45] D. Nistér. An efficient solution to the five-point relative
pose problem. In IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2003.

[46] L. Kneip, M. Chli, and R. Siegwart. Robust real-time
visual odometry with a single camera and an IMU. In
British Machine Vision Conf. (BMVC), pages 1–11, 2011.

[47] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-
squares fitting of two 3-d point sets. IEEE Trans. Pattern
Anal. Machine Intell., 9(5):698 –700, sept. 1987.

[48] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Incre-

mental smoothing and mapping. IEEE Trans. Robotics,
24(6):1365–1378, Dec 2008.

[49] AP Chandrakasan, S Sheng, and RW Brodersen. Low-
power cmos digital design. IEEE Journal of Solid-State
Circuits, 27(4):473–484, 1992.

[50] 7 Series FPGAs Data Sheet: Overview. Xilinx, December
2016. v2.2.

[51] M. Horowitz. Computing’s energy problem (and what
we can do about it). In ISSCC, 2014.

[52] Supplementary Material on Navion Project Website. http:
//navion.mit.edu.

[53] D. Scaramuzza and F. Fraundorfer. Visual Odometry:
Part I The First 30 Years and Fundamentals. Robotics
Automation Magazine, 2011.

[54] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas
Schneider, Joern Rehder, Sammy Omari, Markus W
Achtelik, and Roland Siegwart. The euroc mi-
cro aerial vehicle datasets. The International Jour-
nal of Robotics Research, 2016. doi: 10.1177/
0278364915620033. URL http://ijr.sagepub.com/content/
early/2016/01/21/0278364915620033.abstract.

[55] C. Troiani, A. Martinelli, C. Laugier, and D. Scaramuzza.
2-point-based outlier rejection for camera-IMU systems
with applications to micro aerial vehicles. In IEEE Intl.
Conf. on Robotics and Automation (ICRA), 2014.

[56] D. Nistér. An efficient solution to the five-point relative
pose problem. IEEE Trans. Pattern Anal. Machine Intell.,
26(6):756–770, 2004.

http://navion.mit.edu
http://navion.mit.edu
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.abstract
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.abstract

	Introduction
	VIO: Algorithmic Overview
	Algorithm & Hardware Co-design: Overview
	Step 1: From High-level Specifications to the Performance-Resources Trade-off
	Resources: Power and Form Factor
	Performance: Accuracy and Throughput

	Step 2: Defining the Design Space D
	Hardware Choices (H)
	General-purpose processors
	Specialized Hardware

	Algorithm Choices (A)
	Implementation Choices (I)
	Accuracy-invariant choices
	Accuracy-dependent choices

	Parameter Choices (P)

	Step 3: Exploring the Design Space via an Iterative Splitting Co-design Strategy
	Minimum-Resources Algorithms and Parameters
	Minimum-Resources Hardware Implementation

	Step 4: Final VIO Design and Validation
	Conclusion

