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Internet of Things and Supply Chains: A Framework for Identifying 

Opportunities for Improvement and Its Application  

Abstract 

Management and technology experts believe that the internet of things (IoT) has the 

potential to radically transform today’s supply chains. Several practice-focused 

publications describe various ways in which IoT capabilities can affect the supply chains 

in positive and negative ways. However, no generic framework describing the peculiar 

effects of IoT on supply chains has yet emerged. This study presents a theoretical 

framework to articulate the distinct ways in which the IoT can influence the management 

of supply chains. The use of this framework is illustrated by applying it to identify 

opportunities for improving two supply chains: the supply chain described in the famed 

“Beer Distribution Game” and a revised version of that supply chain. This framework, 

grounded in the foundation of organizational information processing theory, can be of 

practical use in guiding organizations envision novel ways to improve the performance of 

their supply chains by deploying the IoT capabilities. 

Keywords: Internet of things, Supply chain management, Information ecosystem 

1 Introduction 

Internet of Things (henceforth, “IoT”) is defined as “a network of physical objects that contain 

embedded technology to communicate and sense or interact with their internal states or the 

external environment” (World Economic Forum, 2015). It is considered a key technological 

development that will contribute to the emergence of the Fourth Industrial Revolution (i.e., 

Industry 4.0), and is counted among the nine component technologies in the Industry 4.0 
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platform (Rose, Lukic, Milon, & Cappuzzo, 2016). Despite its argued revolutionary potential, the 

implications of IoT remain unclear to a vast majority of firms (The MPI Group, 2016). The 

World Economic Forum (2015) equates this state of ambiguousness with the state of 

understanding of the potential applications of the Internet in 1990s; it predicts that the IoT will 

dramatically transform the world just as the Internet did.  

 The juxtaposition of IoT’s revolutionary potential and the lack of understanding of its 

implications is troublesome for the firms seeking to harness the technology’s capabilities to seek 

competitive advantage. Given the technology’s newness, few cases of success or failures of firms 

using IoT have been documented. Therefore, it remains unclear what a firm needs to do to 

improve the performance of its supply chain using the IoT capabilities. This paper seeks to shed 

some light on this matter by making three contributions. One, the paper highlights the salient 

features of the IoT that distinguish it from the present-day solutions commonly used for 

managing the supply chains. This distills the unique features of IoT as a technology that provides 

an information ecosystem for managing supply chains. Two, this paper presents a framework 

that can be used to envision the applications of IoT to improve performance of supply chains. 

Finally, three, the paper illustrate this framework by applying it to explore the ways in which IoT 

capabilities can be used to improve the supply chain in the “Beer Distribution Game”—one of 

the most widely played management simulation games in the world (Sterman, 1989)—and a 

related version of that supply chain. 

 The rest of this paper is organized as follows. Section 2 provides a brief review of the 

pertinent literature. I summarize a few fundamental publications of internet of things (IoT), and 

highlight that IoT is an information technology revolution. Following this, I review a few 

seminal works in the management literature that explore the role of information on the 
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operational performance of supply chains. Building on this foundation, I propose a generic 

framework to explore novel opportunities for improving the performance of supply chains using 

IoT capabilities (Section 3). I illustrate the application of this framework to use the IoT 

capabilities to improve the supply chain in the “Beer Distribution Game” (Sterman, 1989) and a 

variation of the supply chain. The reason for choosing this supply chain is threefold: the “Beer 

Distribution Game” is one of the best-known management simulation games and has been played 

by thousands of people worldwide, the supply chain in this game is simple and representative of 

real-world supply chains, and the game is designed to demonstrate the effect of information 

availability (local vs. global) on the performance of supply chains (Section 4). Finally, I 

conclude the paper by commenting on the efficacy of IoT for improving supply chain 

performance.  

2 Literature 

The internet of things has been called “a global infrastructure for the Information Society, 

enabling advanced services by interconnecting (physical and virtual) things based on existing 

and evolving interoperable information and communication technologies” (Rose, Eldridge, & 

Chapin, 2015). It has also been described as “the point in time when more ‘things or objects’ 

were connected to the internet than people” (Evans, 2011), which is estimated to have been 

reached between 2008 and 2009. The same report predicts that by year 2020, 50 billion devices 

will be connected to the Internet; another report predicts the number to reach 100 billion by 2025 

(Rose, Eldridge, & Chapin, 2015). The explosive growth of connected devices is no longer 

limited to smartphones and tablet computers, which provided the impetus for the trend. A recent 

definition of IoT by Rose, et al. (2015) highlights the increasing variety of “things” being 

connected to the Internet: “consumer products, durable goods, cars and trucks, industrial and 
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utility components, sensors, and other everyday objects are being combined with Internet 

connectivity and powerful data analytic capabilities that promise to transform the way we work, 

live, and play”. Rose, et al. (ibid) identify five technological advances as the enablers of the IoT 

revolution: ubiquitous connectivity, widespread adoption of the IP-based networking, cloud 

computing, miniaturization of computing devices, and advances in data analytics. 

 The different definitions of the IoT have one thing in common: they all project the IoT as 

a revolution of the information and communications technology. It is important to recognize this 

aspect when exploring the implications of IoT for supply chains. The important role of 

information in the management of supply chains has been examined in the scholarly and 

practitioner-focused literature. Deficient information sharing is one of the primary causes of 

emergence of the “Bullwhip effect,” a term used to describe the phenomenon in which a 

manufacturer of a product experiences high variability in the orders for that product compared to 

the retailer selling it, even when the market demand for the product had no variation (Sterman, 

1989). Lee, et al. (1997) attribute this effect to the distortion of information about the market 

demand as the information travels from the retailer to the manufacturer through the parties 

involved in the supply chain. Because of the negative effect of variability on the efficient 

functioning of a supply chain, the bullwhip effect and the potential remedies to eliminate it have 

been extensively studied. Some of today’s widely-used industry practices, such as sharing point-

of-sales data with the manufacturer, vendor managed inventory (VMI), etc. are intended to 

alleviate the deleterious consequences of the bullwhip effect. 

Various types of information transverse and influence the functioning of supply chains. 

Lee and Whang (2000) describe five types of information shared in a supply chain: inventory 

levels, sales, demand forecasts, order status, and production schedule. The information transfer 
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takes place via different modes such as direct information transfer (e.g., through electronic data 

interchange, vendor manager inventory, etc.), transfer through a third party, or through an 

information hub. The information shared influences behaviors of the parties using it. As a result, 

any distortion of the information can cause unintended disturbances in the supply chain. Lee, et 

al. (1997) suggest four potential causes of information distortion that create the bullwhip effect: 

demand signal processing, in which the retailer’s orders to the wholesaler (who would then order 

from a distributor or the manufacturer) are based on the updated demand forecast, instead of the 

actual demand; rationing game, in which the retailer orders more than what is needed if she 

anticipates that the wholesaler would allocate less than what was ordered; order batching, in 

which the retailer orders periodically from the wholesaler and, as a result, the finite demand 

information is lumped into one order; and price variations, in which retailer orders different 

order quantities in response to the actual and anticipated changes in price. The net result of each 

of these four is that the orders placed by the retailer to the wholesaler exhibit a pattern different 

from that of the market demand. 

Human biases also influence the information shared in the supply chain. Croson and 

Donohue’s (2006) examination of the behavioral causes of bullwhip effect showed that the 

decision makers’ underweighing of the supply line—i.e., not considering fully the amount of 

goods ordered but not received yet—was partly responsible for the phenomenon. Furthermore, 

their study showed that the tendency to underweigh the supply line persisted even when 

information on inventory levels was shared with the decision makers. Thus, it is not just the 

distortion of information shared in the supply chain that leads to the bullwhip effect; natural 

biases present in human decision making are also partly responsible. Adverse effects of human 

involvement in making of operational decisions are also observed in other decisions made in 
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supply chains. For instance, Schweitzer and Cachon (2000) showed through experiments that 

human decision makers order suboptimal quantities when making one-time purchase decisions, 

such as ordering goods to fulfill a season’s demand. These deviations from the optimal quantity 

are systematic, and can result in potential loss of revenue, especially more for high-margin 

products (Ho, Lim, & Cui, 2010). Some fundamental human biases, such as overconfidence, are 

shown to be the root causes of this effect (Ren & Croson, 2013). 

Such supply chain maladies related to information exchange and human decision-making 

biases may be cured by using a different information and decision-making ecosystem such as the 

internet of things. Some of the emerging research on implications of IoT for supply chain 

management suggests that the IoT capabilities can help companies improve the efficiency of 

their supply chain operations and facilitate innovation (Rong, Hu, Lin, Shi, & Guo, 2015). In 

addition, IoT capabilities can also be used to track goods geographically and over time (as well 

as people; however, ethical ramifications of tracking people need to be considered), provide 

improved situational awareness, facilitate sensor-driven decision making, automate production 

processes, optimize resource use, and allow real-time sensing of unpredictable conditions (Chui, 

Löffler, & Roberts, 2010).  

A study of the internet of things in logistics (Macaulay, Buckalew, & Chung, 2015), 

jointly published by the leaders in the domains of IoT (CISCO) and logistics (DHL), notes that 

IoT can enhance an organizations capabilities for measuring, controlling, automatizing, 

optimizing, learning, and monitoring various activities in the supply chain. The paper provides 

examples to illustrate how IoT could improve the outcomes of logistics processes. These 

examples include improvement of operational efficiency (fleet and traffic management, resource 

and energy monitoring, and connected production floor), improvement of safety and security 
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(equipment and employee monitoring, health monitoring, physical security), enhance customer 

experience (connected retail, context-aware offers to customers), and engender new business 

models (firms become service providers, usage-based insurance). The report concludes by 

providing three use-cases of IoT in logistics: warehouse operations, freight transportation, and 

last-mile delivery. 

A few studies explore the effects of IoT in specific industries. A graduate thesis and a 

subsequent article by researchers at the Malaysia Institute for Supply Chain Innovation explored 

the implications of IoT on the chemical industry (Phadnis, 2015; Ravi & Wu, 2015). The 

researchers mapped the existing flows of goods and information at a construction chemicals 

business, documented the state-of-the-art of the IoT capabilities available, and then conjectured 

various ways in which IoT capabilities could realistically be employed to enhance various 

activities in the supply chain (such as, process control, production planning, procurement, order 

fulfilment, etc.). They noted several potential benefits from the application of IoT: lower 

variability in ordered and shipped quantities, higher revenue with the same or lower finished 

goods inventory levels, lower work-in-progress and raw material inventories, fewer lost sales, 

automated procurement and production planning, improved process quality and safety, and so on.  

Another study explores the impact and the applications of IoT on the high-tech industry 

(Biswas, Ramamurthy, Edward, & Dixit, 2015). This whitepaper describes how IoT can increase 

sales and improve operations for four types of firms in the high-tech industry: semiconductor 

firms, contract manufacturers, distributors, and original equipment manufacturers (OEMs). The 

potential improvements in supply chain operations resulting from the application of IoT cited in 

the study include increase in the yield of semiconductor fabrication facilities, improvement of 

asset utilization, predictive maintenance, facilitation of anti-counterfeiting measures, 
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improvement of product quality through more effective collaboration between the OEM and its 

supplier for product design and development, and so on. 

The extant studies exploring the potential effects of using IoT to manage supply chains 

typically identify specific benefits (and threats). Some of these studies list the implications of 

IoT in more generic terms (e.g., Chui, et al., 2015; Macaulay, et al. 2015; Phadnis, 2015; Rong, 

et al., 2015; etc.), while others discuss them in the context of particular industries (e.g., Biswas, 

et al., 2015; Macaulay, et al. 2015; Ravi & Wu, 2015). However, no comprehensive framework 

for exploring the implications of IoT for the management of supply chains has yes emerged in 

the literature. The present study seeks to fill this gap by providing a generic framework that can 

be used to explore novel opportunities for enhancing the performance of supply chains in a 

chosen industry.  

3 Framework for Envisioning Effects of IoT on Supply Chains 

Given that internet of things (IoT) provides a new way of gathering and sharing information to 

make operational decisions for managing the supply chain, the proposed framework is based on 

the theoretical foundation of information processing and decision making in management. In the 

theoretical discourse on the association between information processing and decision making in 

organizations, Tushman and Nadler (1978, p. 614) note that “information processing refers to the 

gathering, interpreting, and synthesis of information in the context of organizational decision 

making.” They elaborate the distinction between data and information by noting that information 

refers to the data that are “relevant, accurate, timely and concise [… that can] effect a change in 

knowledge.” In another influential early work on information processing in organizations, 

Kiesler and Sproull (1982) call “managerial problem sensing” a precondition for managerial 

decision making and action, and suggest that problem sensing consists of three processes: 
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noticing (i.e., gathering data), interpreting the data to assign it actionable meaning, and 

incorporating the information with other information. These three processes parallel the three 

steps in organizational information processing identified by Tushman and Nadler (1978). The 

gathering data, interpreting it into information, and the change in knowledge effected by 

incorporation of new information, also called sensemaking, is central to the functioning of 

organizations because “it is the primary site where meanings materialize” and “inform and 

constrain [organizational] identity and action” (Weick, Sutcliffe, & Obstfeld, 2005). Thus, data 

gathering, data sharing, data interpretation and decision making are the fundamental processes in 

the information processing model of organizations.   

Building on this theoretical foundation, I propose a framework for exploring the effects 

of IoT capabilities on the performance of supply chains. The framework consists of three 

components: data gathering, data sharing, and interpretation and decision making. For each 

component, the framework describes the salient ways in which IoT differs from the information 

technology solutions used for managing supply chains at present. The framework is presented in 

Figure 1 and described below. 

INSERT FIGURE 1 ABOUT HERE 

3.1 Data Gathering 

One of the fundamental drivers of the growth of IoT is the increasing variety of objects 

connected to the internet. As Macaulay, et al. (2015) point out, “with the advent of IoT, Internet 

connections now extend to physical objects that are not computers in the classic sense and, in 

fact, serve a multiplicity of other purposes.” Such objects may include “consumer products, 

durable goods, cars and trucks, industrial and utility components, sensors, and other everyday 
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objects” (Rose, et al., 2015). Different objects will collect and share different types of data, such 

as heartrate from a fitness tracker, driving speed of a car, or level of ink remaining in a printer 

cartridge. Thus, a natural consequence of the variety of objects connected to the interest is that an 

IoT information ecosystem will gather more types of data. 

 The number of objects connected to the internet is projected to reach 50 billion by 2020 

(Evans, 2011) and 100 billion by 2025 (Rose, et al., 2015). This equates to an average of more 

than six connected objected per living human being by 2020 and over twelve by 2025. Thus, the 

same kind of data may be available from multiple sources. One example of this is the driving 

speed data from multiple connected cars in one geographic area. This information can be used to 

computer the average and variance of driving speed at a particular location at a given time. Thus, 

the IoT information ecosystem will also have more sources contributing the data of a given kind. 

More data points enable computation of reliable statistics. 

 Finally, due to their automated nature, data collection and transmission can both be 

performed more frequently than what may be plausible with the human involvement in either 

collection and/or transmission of data. Therefore, the third distinguishing feature of the IoT 

information ecosystem is that it allows more frequent data collection.  

3.2 Data Sharing 

A second fundamental driver of the growth of IoT is the widespread ability to connect 

computational devices to the internet (Rose, et al., 2015). In IoT, communication among devices 

is enabled not only by the commonly-used information technologies such as wired connections, 

local wireless networks (e.g., Bluetooth, Wi-Fi, RFID), and wide-area telecommunication 

networks (e.g., EDGE, 3G, LTE), but also by “operational technologies” such as the “more 

specialized, and historically proprietary, industrial network protocols and applications that are 
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common in settings such as plant floors, energy grids, and the like” (Macaulay, et al., 2015, p. 4). 

The “always-on” connectivity allows the devices to share the collected data instantaneously. 

 The automated nature of data sharing also obviates the need for human operators to 

collect, process, or analyze the data before it is shared. Sharing data in the raw form is 

advantageous because the data get shared without getting subjected to human biases that are 

known to influence selective collection and processing of data (Ditto & Lopez, 1992; Edwards & 

Smith, 1996; Kunda, 1987). One of the robust findings in psychology informs that people “are 

likely to examine relevant empirical evidence in a biased manner” when they hold strong 

opinions about the issue (Lord, Ross, & Lepper, 1979). Automated data sharing can circumvent 

this problem. Therefore, the second key feature of an IoT information ecosystem is that data is 

shared without distortion. 

Finally, connectivity over the internet allows the connected devices to exchange data with 

each other or a common cloud-based platform directly (with the appropriate communications 

protocol), regardless of their place in the supply chain. Thus, a firm can exchange relevant data 

with another firm in its supply chain even if the firms are not direct suppliers or customers of 

each other. For example, the point-of-sales data at a retail store does not have to reach the 

product’s manufacturer from the retailer, through a distributor and a wholesaler; the point-of-

sales data at a store can be sent either directly to the manufacturer or uploaded to a cloud-based 

platform where the manufacturer can access it. Thus, the third distinguishing feature of the IoT 

information ecosystem is that it allows data to be shared in a non-serial fashion with the supply 

chain partners. 

3.3 Interpretation and Decision Making 

Another fundamental driver of the growth of the IoT is the advances in data analytics (Rose, et 
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al., 2015). Macaulay, et al. (2015, p. 6) note that “the use of analytics and complementary 

business applications (e.g., data visualization) is crucial if organizations are to capture and make 

sense of the data generated from connected devices.” The automated processing of data ensures 

that the analysis is not influenced by human biases (e.g., Kunda, 1987; Lord, et al., 1979). It also 

ensures that data are analyzed consistently using the predefined algorithms. Of course, the use of 

algorithms is not a panacea: the design and selection of algorithms themselves are not immune to 

human biases and can arguably have monumental consequences, such as the 2008 Global 

Financial Crisis (O'Neil, 2016). Firms need to be aware of these dangers. However, well-

designed algorithms can make data processing consistent and free it from the vagaries of biased 

human decision making. Thus, one salient feature of the IoT information ecosystem is its 

algorithmic decision making. 

 The second important feature of IoT-based decision making is the ability to get quick and 

frequent feedback. Due to the automated collection and instantaneous sharing of data, an IoT-

controlled system can take several small actions, measure outcomes, obtain feedback, and make 

corrections based on the feedback. This rapid action-correction loop could be prohibitively 

expensive with human involvement in data collection, sharing, or decision making. Management 

research has long established that “if the action-outcome-feedback links are short and frequent, 

the individual [or, firm] is in a good position to learn about, and thus comprehend, the probable 

effects of actions on outcomes: short links enhance the ability to improve decision making by 

taking corrective actions” (Hogarth & Makridakis, 1981, p. 120). Thus, the second key feature of 

the IoT information ecosystem is the feedback-based nature of decision making. 

 Finally, the vast amount of data collected through IoT devices can enable predictive 

decision making. More accurate forecasts, enabled by larger volume of relevant data, can help 
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optimize a particular system with fewer resources. For example, more data about sales or online 

searches can help predict demand with smaller variance, and as a result, a supply chain can 

provide the same level of product availability with smaller inventory. Thus, the third 

distinguishing feature of the IoT information ecosystem is the predictive decision making. 

4 Application of the Framework 

In this section, I demonstrate the use of the above framework by applying it to envision 

opportunities for improving the performance of an existing supply chain using IoT capabilities. I 

use the supply chain depicted in the “Beer Distribution Game” (Sterman, 1989) and one variation 

of it for the demonstration. I choose this supply chain because of its simple structure and its 

familiarity to a large number of management scholars and practitioners. I begin with a brief 

description of the supply chain in the Beer Distribution Game and follow it up with a depiction 

of the modified supply chain designed by deploying IoT capabilities. 

4.1 The “Beer Distribution Game” 

The "Beer Distribution Game" is a “role-playing simulation of an industrial production and 

distribution system” (Sterman, 1989, p. 326). It was developed in the 1960s at the Massachusetts 

Institute of Technology to demonstrate some key dynamics in the supply chains. It has been 

played all over the world by thousands of people “ranging from high school students to chief 

executive officers and government officials” (ibid). The supply chain in the game delivers one 

product (i.e., cases of beer) through four stages or echelons—retailer, wholesaler, distributor, and 

factory—with only one firm at each echelon. The retailer orders the product from the wholesaler 

to meet the market demand; the wholesaler fulfills the demand from its inventory, and orders the 

product from the distributor, who in term, fulfills the demand from its inventory and orders the 
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product from the factory, which produces (i.e., brews) the necessary quantity to meet the demand. 

There is a lag of two weeks between the placement of an order and receipt of the goods between 

each pair of consecutive stages. The game is played over several “periods,” with each period 

equivalent to one week. The objective of the game is to minimize the total cost for the supply 

chain over the duration of the play. Each case of beer carried in the inventory costs $0.50 per 

week, and each lost sale due to not having any inventory at the retailer costs $1 per week. 

 Each firm, manned in the game by a player, has to make only one decision in each period: 

determine the quantity to order in the next period. The only exception is the factory, which 

decides the quantity of to produce (i.e., place an order on itself). The key feature of this game is 

that each player (i.e., firm) “has good local information but severely limited global information” 

(Sterman, 1989, p. 328). The players are told not to communicate with each other; thus, no 

player except the retailer has any knowledge of the consumer demand in the market. Furthermore, 

the market demand is not known in advance; the retailer discovers the market demand as the 

game progresses. The players are told of the two types of costs incurred in the game and the 

game’s objective of minimizing the total cost. However, they are not given specific guidelines 

for determining their order quantities. Thus, each player may decide the quantity to order based 

on the quantity of the product ordered by her customer, her interpreted pattern of customer’s 

orders, her anticipated future orders, and any other metrics she considers relevant for 

determining the order quantity. 

 The customer demand is set at four cases per week for each of the first four weeks of the 

game. The demand experiences one unannounced one-time increase to eight cases per week in 

week five; after that, the demand remains stable at eight units per week for the rest of the game. 

This one small change creates major fluctuations in the supply chain. Sterman (1989) notes that 
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almost all runs of the Beer Distribution Game exhibit the same three qualities: oscillation, 

amplification, and phase lag. Order quantities and inventory levels of all four firms oscillate over 

time. The inventory levels of the retailer decline first, followed by the decline in inventory levels 

of wholesaler, distributor, and the factory in that order. The declines generally cause severe 

shortages throughout the supply chain. To compensate for this, the players increase their order 

quantities. This swings the inventory levels in the opposite direction, and the “inventory in many 

cases substantially overshoots its initial levels” (ibid, p. 330). The magnitude and variable of 

orders is amplified from the retailer to the factory; the peak order rate at the factory can be about 

twice as high as that at the retailer. Finally, because of the time lags between the stages, the order 

quantities exhibit a phase lag, such that the peak orders at the factory occur, on average, about 

four weeks after the peak orders at the retailer. 

 These phenomena are also observed in the real world. Sterman (1989, p. 336) notes that 

the “production-distribution networks in the real economy exhibit the three aggregate behaviors 

generated in the experiment, i.e. oscillation, amplification from retail sales to primary production, 

and phase lag.” The oscillations are caused by the failure to account for the goods in the pipeline 

(i.e., the products ordered but not received yet) when placing orders as well as incorrect 

assumption about market demand. The amplifications are the result of lack of visibility to the 

true demand for the parties upstream in the supply chain and their over-adjustments to the 

disturbances observed in their own demand. Another result of the lack of visibility is that the 

players representing the firms upstream in the supply chain have incorrect assumptions about the 

true demand. Sterman (1989, p. 335) shows that “the majority of subjects [playing the wholesaler, 

distributor, or factory roles in the game] judge that customer demand was oscillatory,” when it 

reality it is stable throughout the game barring one fluctuation in week five. Finally, the phase 
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lag is a natural result of the time lags in the placement of orders by the parties in the supply chain.  

 Overall, three aspects of this supply chain engender this phenomenon: lack of visibility of 

market demand to all parties except the retailer, the time lag between placing and receiving the 

orders, and the failure to keep track of the inventory in transit. The decision makers in the game 

use an anchoring-and-adjustment heuristic (Tversky & Kahneman, 1974) to determine the order 

quantity: they anchor on the expected demand from their customers and then adjust the order 

quantity to “reduce the discrepancy between the desired and actual stock” and “maintain an 

adequate supply line of unfilled orders” (Sterman, 1989, p. 324).  

4.2 “Beer Distribution Game” with IoT Ecosystem 

In this section, I describe how the framework presented earlier in the paper can be used to think 

of ways in which the potential causes of the undesirable dynamics in the Beer Distribution 

Game’s supply chain can be mitigated by deploying IoT capabilities. To do this, I present a list 

of initiatives, envisioned with the help of the framework, to improve the supply chain 

performance using IoT capabilities. The initiatives are presented in Table 1. I first present three 

initiatives targeted to improve performance of the supply chain described in the “Beer 

Distribution Game” (Section I of Table 1), which is a rather simplified version of a real-world 

supply chain. Following this, I present four initiatives to improve the performance of a modified 

version of the supply chain based on the game (Section II of Table 1).  

INSERT TABLE 1 ABOUT HERE 

4.2.1 Initiatives for Supply Chain in “Beer Distribution Game” 

The first initiative is to share point-of-sales data from the retailer with the wholesaler, distributor, 

and the factory. This involves collecting a new type of data (i.e., retail sales) in addition to that 
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mentioned in the game, and sharing it without distortion (i.e., sharing raw sales data, instead of 

orders data from retailer and other firms) and in a non-serial manner (i.e., the sales data is sent 

directly from the retailer to the wholesaler, distributor, and factory, instead of having to traverse 

serially through the supply chain). This provides complete visibility to all the players about the 

nature of market demand, and can help make correct assumptions about market demand by three 

firms that do not see the market demand directly. This can result in lowering the total cost by 

reducing the overall inventory carried in the supply chain, while simultaneously increasing 

product availability by reducing the stock-out situations. 

 The second initiative is to forecast customer demand based on point-of-sales data and 

share it with all firms in the supply chain. This initiative is enabled by the first one. Besides the 

features of the framework used to enable the first initiative, this initiative involves the use of 

algorithmic and predictive decision making (i.e., a forecasting heuristic to predict demand, 

although a very simple forecasting algorithm can suffice in the Beer Distribution Game) instead 

of relying on manual judgment to determine order quantities, as done in the game. It also 

involves the use of more types of data than in the game: the firms can develop one forecast of the 

market demand and is share it among all four parties in the supply chain. The benefit of this 

initiative is that it allows all parties in the supply chain to work to meet one common goal. The 

outcome of this initiative is same as the first: it can lower cost by reducing inventory in the 

supply chain and, simultaneously, increase product availability.  

 The third initiative is to provide real-time visibility of inventory in the supply chain and 

use multi-echelon inventory optimization. Inventory visibility in the supply chain described in 

the Beer Distribution Game can be enabled by attaching RFID tags or similar sensors to the cases 

of product shipped, which can be scanned and geotagged as they move from one facility to 
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another. This initiative involves the use of more types of data (i.e., location data collected from 

product moving through the supply chain) collected from more sources (i.e., the location data is 

collected from several cases, even from a single batch) and shared instantaneously, without 

distortion (i.e., raw location data, instead of a summary report stating the amount of product at a 

location) and in a non-serial manner (i.e., shared with all parties in the supply chain through a 

common cloud-based platform) so that the inventory in the supply chain could be optimized 

using sophisticated algorithms (i.e., using multi-echelon inventory management algorithms, 

instead of manually determining the optimal inventory levels at each echelon). The benefit of 

this initiative is likely to be particularly evident when the consumer demand experience a small 

change—which disturbs the equilibrium in the game and causes severe oscillations of inventory 

levels and order quantities in the supply chain—as the adjustments to the inventory levels are 

based on a multi-echelon inventory optimization algorithm, instead of the overcorrection of a 

human decision maker typically observed in the game. Thus, the result is a more cost-effective 

response to unexpected changes in demand. 

4.2.2 Initiative for Revised “Beer Distribution Game” Supply Chain 

Below I describe a more realistic version of the supply chain based on the game, without 

deviating too far from the original design, to demonstrate the benefit of the proposed framework 

for identifying opportunities for improving performance of the supply chain. Assume that the 

supply chain consists of one factory, one or more distributors and wholesalers, and multiple 

retailers each with one or more stores. We still assume that the supply chain delivers the same 

category of product, but now assume that there are multiple product variants made by the factory 

and delivered through the supply chain. We assume that consumers have preferences amongst 

the different variants of the product. Section II in Table 1 presents four initiatives for improving 
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this supply chain. 

 The first initiative is to predict sales of different products at different stores (i.e., different 

geographic regions). This initiative uses more types of data (such as, profiles of consumers based 

on their web activity and social media posts; consumer shopping regions based on their credit 

card usage, geotracking records from mobile phones or fitness trackers; listing of events that 

influence product consumption in region; regional weather; etc.) collected from more sources 

(i.e., more consumers for whom such data is available), shared in a non-serial manner (i.e., 

shared over a cloud platform with all parties in the supply chain) and processed to identify 

patterns using predictive machine learning algorithms. The benefit of this initiative is that it 

enables the use of causal forecasting models to predict demand. This can forecast demand more 

accurately based on the demand drivers, instead of using simple time-series extrapolations of 

historical patterns. This can improve product availability as well as reduce product spoilage due 

to inventory aging and obsolescence. 

 The second initiative is to offer unscheduled expedited deliveries from a centralized 

warehouse, based on real-time product availability at retail stores. This initiative uses data about 

stock levels in retail stores collected frequently (i.e., using real-time updates of inventory levels 

based on point-of-sales transactions) and transmitted instantaneously, without distortions (i.e., 

sharing raw inventory data, as opposed to order data) and in a non-serial manner (i.e., shared 

with all firms involved in the supply chain over a cloud-based platform) for algorithmic 

predictive analysis to determine if any unscheduled expedited deliveries need to be made to any 

stores to avoid lost sales due to product stock-outs at the store. The benefit of this initiative is 

that it allows a retailer to augment periodic store replenishments with expedited deliveries to 

minimize stock-outs and lost sales. Thus, the supply chain becomes more agile in responding to 
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unexpected changes in the market demand. 

 The third initiative is to allow products to be customized for individuals and/or for special 

occasions, such as birthdays, anniversaries, and other special events. This initiative relies on the 

use of more data (i.e., biographic details and product preferences of consumers shared via social 

media, product and/or packaging designed by consumers themselves for the special event and 

shared with the factory over its social media interface), more sources of data (i.e., data from 

more consumers) shared in without distortion in a non-serial manner (i.e., shared by consumer 

directly with the producer, instead of going through the retailer). The benefit of this initiative is 

that consumers can customize products for their own events, and the producer’s factory can ship 

the product directly to the consumer instead of sending the customized product through the four-

tiered supply chain. 

 The fourth initiative is to create product promotions customized for individual consumers, 

for specific time of the day, and offered at convenient retail stores. This initiative relies on usage 

of more types of data (i.e., consume profile based on social media, shopping habits and product 

preferences, present location of the consumer, etc.) collected from more sources of data (i.e., 

data collected for a large number of consumers) at high frequency, as well as algorithmic and 

predictive decision making (i.e., the use of algorithms to identify the optimal offers for each 

consumers for the a specific time of the day and offered at a particular retail location). 

Furthermore, the algorithms can be feedback-based so they can learn by measuring the “hit rate” 

(i.e., the proportion of time a consumer bought the marketed product) and updating the algorithm 

itself to improve the hit rate. This can increase sales due to better matching of product offering 

with the customer need (i.e., higher value). 

 In conclusion, this section portrays the use of the framework to identify opportunities for 
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improving the performance of a supply chain. In this case, the illustration is made by identifying 

the opportunities for the supply chain in the “Beer Distribution Game,” and then for a more 

realistic version of the same supply chain. The examples presented for this context are meant to 

be illustrative, not exhaustive. The opportunities for improving the supply chains described 

above are practically unlimited; the few initiatives mentioned in this paper are a small tip of the 

iceberg.  

5 Discussion 

It is widely believed that the internet of things (IoT) will radically transform today’s supply 

chains. Several publications describe the potential benefits and threats of IoT (e.g., Biswas, et al., 

2015; Chui, et al., 2010; Evans, 2011; Macaulay, et al., 2015; Phadnis, 2015; Rose, et al., 2015; 

The MPI Group, 2016). However, no generic framework has yet emerged that can describe IoT’s 

implications for supply chains. This study takes a step to fill this gap in the literature. It presents 

a framework, based on the theoretical foundation of information processing in organizations, to 

explore the implications of internet of things for the management of supply chains.  

One of the basic tenets of the information processing model of organizations states that 

“the greater the task uncertainty, the greater the amount of information that must be processed 

among decision makers during task execution in order to achieve a given level of performance” 

(Galbraith, 1974, p. 28). Given that the a fundamental task of supply chain managers is to make 

operational decisions that seek to achieve an optimum level of performance in uncertain 

conditions, the proposed framework can help one explore the opportunities for deploying the IoT 

capabilities to elevate the performance of supply chains from their present levels. 

 The proposed framework is illustrated by applying it to identify opportunities for 

improving the performance of two supply chains: supply chain in the “Beer Distribution Game” 
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(Sterman, 1989) and a version of that supply chain modified to include more real-world features. 

The opportunities presented here are certainly not exhaustive, but are chosen to illustrate the 

framework in a concise manner.  

 Although this paper focuses on identifying opportunities for improving supply chain 

performance using the IoT, several issues need to be addresses before these implementation can 

be realized. Firms in a supply chain collaborating through a cloud-based IoT solution need to 

ensure that the devices used for collecting and sharing information are secure to prevent 

malicious hacking of the network or snooping attempts for industrial espionage. Firms will also 

need to use devices and cloud platforms with compatible information-exchange protocols to 

enable inter-device communication. Uninterrupted power supply and network connectivity will 

be necessary for optimum performance of a supply chain’s IoT implementation. Furthermore, 

ethical issues related to individual privacy need to be addressed before information about 

individual consumers can be collected and used for commercial purposes. Data ownership issues 

will also need to be addressed to for the data collected from consumers as well as individual 

firms. 

Assuming the implementation hurdles can be overcome, the opportunities for improving 

performance of supply chains by leveraging IoT capabilities are practically limitless. They are 

bounded only by our creativity. A framework based on a strong theoretical foundation, such as 

the one presented in this study, can help practitioners identify such opportunities. After all, we 

strongly believe that “nothing is as practical as a good theory” (Lewin, 1945)! 

6 Bibliography 

Biswas, D., Ramamurthy, R., Edward, S. P., & Dixit, A. (2015). The internet of things: Impact 

and applications in the high-tech industry. Teaneck, NJ (USA): Cognizant. 



	

MIT	Global	Scale	Network	 25	

Chui, M., Löffler, M., & Roberts, R. (2010). The internet of things. McKinsey Quarterly(2), 70-

79. 

Croson, R., & Donohue, K. (2006). Behavioral causes of the bullwhip effect and the observed 

value of inventory information. Management Science, 52(3), 323-336. 

Ditto, P. H., & Lopez, D. F. (1992). Motivated skepticism: Use of differential decision criteria 

for preferred and nonpreferred conclusions. Journal of Personality and Social 

Psychology, 63(4), 568-584. 

Edwards, K., & Smith, E. E. (1996). A disconfirmation bias in the evaluation of arguments. 

Journal of Personality and Social Psychology, 71(1), 5-24. 

Evans, D. (2011). The internet of things: How the next evolution of the Internet is changing 

everything. San Jose, CA: Cisco Internet Business Solutions Group. 

Galbraith, J. R. (1974). Organization design: An information processing view. Interfaces, 4(3), 

28-36. 

Ho, T.-H., Lim, N., & Cui, T. H. (2010). Reference dependence in multilocation newsvendor 

models: A structural analysis. Management Science, 56(11), 1891-1910. 

Hogarth, R. M., & Makridakis, S. (1981). Forecasting and planning: An evaluation. Management 

Science, 27(2), 115-138. 

Kiesler, S., & Sproull, L. (1982). Managerial response to changing environments: Perspectives 

on problem sensing from social cognition. Administrative Science Quarterly, 27(4), 548-

570. 

Kunda, Z. (1987). Motivated inference: Self-serving generation and evaluation of causal 

theories. Journal of Personality and Social Psychology, 53(4), 636-647. 



	

MIT	Global	Scale	Network	 26	

Lee, H. L., & Whang, S. (2000). Information sharing in a supply chain. International Journal of 

Manufacturing Technology and Management, 1(1), 79-93. 

Lee, H. L., Padmanabhan, V., & Whang, S. (1997). Information distortion in a supply chain: The 

bullwhip effect. Management Science, 43(4), 546-558. 

Lewin, K. (1945). The Research Center for Group Dynamics at Massachusetts Institute of 

Technology. Sociometry, 8(2), 126-136. 

Lord, C. G., Ross, L., & Lepper, M. R. (1979). Biased assimilation and attitude polarization: The 

effects of prior theories on subsequently considered evidence. Journal of Personality and 

Social Psychology, 37(11), 209-2109. 

Macaulay, J., Buckalew, L., & Chung, G. (2015). Internet of things in logistics: A collaborative 

report by DHL and CISCO in implications and uses cases for the logistics industry. 

Troisdorf, Germany: DHL Customer Solutions & Innovations. 

O'Neil, C. (2016). Weapons of math destruction: How big data increses inequality and threatens 

democracy. New York: Crown Publishers. 

Phadnis, S. S. (2015, Aug). Connecting supply chains to the Internet of Things. Retrieved from 

Supply Chain Frontiers: http://ctl.mit.edu/pub/newsletter/supply-chain-frontiers-58-

connecting-supply-chains-internet-things 

Ravi, R., & Wu, L. (2015). Demystifying Industry 4.0: Implications of internet of things and 

services for the chemical industry. Unpublished master's thesis, Malaysia Institute for 

Supply Chain Innovation, Shah Alam, Malaysia. 

Ren, Y., & Croson, R. (2013). Overconfidence in newsvendor orders: An experimental study. 

Management Science, 59(11), 2502-2517. 



	

MIT	Global	Scale	Network	 27	

Rong, K., Hu, G., Lin, Y., Shi, Y., & Guo, L. (2015). Understanding business ecosystem using a 

6C framework in Internet-of-Things-based sectors. International Journal of Production 

Economics, 159, 41-55. 

Rose, J., Lukic, V., Milon, T., & Cappuzzo, A. (2016). Sprinting to value in Industry 4.0. Boston 

Consulting Group. 

Rose, K., Eldridge, S., & Chapin, L. (2015). The internet of things: An overview. Geneva, 

Switzerland: The Internet Society. 

Schweitzer, M. E., & Cachon, G. P. (2000). Decision bias in the newsvendor problem with a 

known demand distribution: Experimental evidence. Management Science, 46(3), 404-

420. 

Sterman, J. D. (1989). Modeling managerial behavior: Misperceptions of feedback in a dynamic 

decision making experiment. Management Science, 35(3), 321–339. 

The MPI Group. (2016). The internet of things has finally arrived. The MPI Group. 

Tushman, M. L., & Nadler, D. A. (1978). Information processing as an integrating concept in 

organizational design. Academy of Management Review, 3(3), 613-624. 

Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. 

Science, 185(4157), 1124-1131. 

Weick, K. E., Sutcliffe, K. M., & Obstfeld, D. (2005). Organizing and the process of 

sensemaking. Organization Science, 16(4), 409–421. 

World Economic Forum. (2015). Industrial internet of things: Unleashing the potential of 

connected products and services. Gevena, Switzerland: World Economic Forum. 

 



	

MIT	Global	Scale	Network	 28	

7 Figures and Tables 

 

Figure 1: Framework for exploring opportunities to improve supply chain performance 

using internet of things 

 

Data Gathering 

• More data types 
• More data sources 
• Higher frequency 

Data Sharing 

• Instantaneous 
• Without distortion 
• Non-serial 

Interpretation and 
Decision Making 

• Algorithmic 
• Feedback-based 
• Predictive 

+ + 

Supply Chain Outcomes, 
Performance 

• Lower total cost 
• Higher availability 
• Faster response 
• More effective response to 

unexpected changes 
• Lower product aging and 

spoilage 
• Greater customization 
• Increase in sales 
• … 



	

MIT	Global	Scale	Network	 29	

Initiatives to Improve Supply Chain Performance using IoT 
Capabilities 
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Section I: Supply chain in “Beer Distribution Game” 

1. Sharing retailer’s point-of-sales data with other firms in the 
supply chain ü    ü ü    

2. Forecasting customer demand based on point-of-sales data and 
share within the supply chain ü      ü  ü 

3. Multi-echelon inventory optimization, with real-time visibility 
of inventory in the supply chain ü ü  ü ü ü ü   

Section II: More realistic supply chain based on “Beer Distribution Game” (one factory; multiple products; multiple retailers and wholesalers) 

1. Predicting sales of different products at different retail stores 
based on consumers’ electronic footprint, listing of local 
events, weather conditions, etc.  

ü ü    ü   ü 

2. Unscheduled expedited deliveries based on real-time product 
availability at retail stores using centralize storage   ü ü ü ü ü  ü 

3. Customized product packaging for individuals and events  ü ü   ü ü    

4. Product promotions customized to individual consumers, for 
specific time of the day and offered at specific retail stores ü ü ü    ü ü ü 

Table 1: Initiative to improve performance of supply chain in the “Beer Distribution Game” using IoT capabilities 

 
 


