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Nearly maximally predictive features and their dimensions
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Scientific explanation often requires inferring maximally predictive features from a given data set.
Unfortunately, the collection of minimal maximally predictive features for most stochastic processes is
uncountably infinite. In such cases, one compromises and instead seeks nearly maximally predictive features.
Here, we derive upper bounds on the rates at which the number and the coding cost of nearly maximally predictive
features scale with desired predictive power. The rates are determined by the fractal dimensions of a process’
mixed-state distribution. These results, in turn, show how widely used finite-order Markov models can fail as
predictors and that mixed-state predictive features can offer a substantial improvement.
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Often, we wish to find a minimal maximally predictive
model consistent with available data. Perhaps we are designing
interactive agents that reap greater rewards by developing
a predictive model of their environment [1–6] or, perhaps,
we wish to build a predictive model of experimental data
because we believe that the resultant model gives insight into
the underlying mechanisms of the system [7,8]. Either way,
we are almost always faced with constraints that force us to
efficiently compress our data [9].

Ideally, we would compress information about the past
without sacrificing any predictive power. For stochastic pro-
cesses generated by finite unifilar hidden Markov models
(HMMs), one need only store a finite number of predictive
features. The minimal such features are called causal states,
their coding cost is the statistical complexity Cμ [10], and
the implied unifilar HMM is the ε-machine [10,11]. However,
most processes require an infinite number of causal states [7]
and so cannot be described by finite unifilar HMMs.

In these cases, we can only attain some maximal level of
predictive power given constraints on the number of predictive
features or their coding cost. Equivalently, from finite data we
can only infer a finite predictive model. Thus, we need to know
how our predictive power grows with available resources.

Recent work elucidated the tradeoffs between resource
constraints and predictive power for stochastic processes gen-
erated by countable unifilar HMMs or, equivalently, described
by a finite or countably infinite number of causal states
[12–14]. Few, though, studied this tradeoff or provided bounds
thereof more generally.

Here, we place bounds on resource-prediction tradeoffs in
the limit of nearly maximal predictive power for processes
with either a countable or an uncountable infinity of causal
states by coarse-graining the mixed-state simplex [15]. These
bounds give an operational interpretation to the fractal dimen-
sion of the mixed-state simplex and suggest routes towards
quantifying the memory stored in a stochastic process when,
as is typical, statistical complexity diverges.
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Background. We consider a discrete-time, discrete-state
stochastic process P generated by an HMM G, which comes
equipped with underlying states g and labeled transition
matrices T x

g,g′ = Pr(Gt+1 = g′,Xt+1 = x|Gt = g) [16]. There
is an infinite number of alternate HMMs that generate P
[17–20], so we specify here that G is the minimal generative
model—that is, the generative model with the minimal number
of hidden states consistent with the observed process [21].

For reasons that become clear shortly, we are inter-
ested in the block entropy H (L) = H [X0:L], where Xa:b =
Xa,Xa+1, . . . ,Xb−1 is a contiguous block of random vari-
ables generated by G. In particular, its growth—the entropy
rate hμ = limL→∞ H (L)/L—quantifies a process’s intrinsic
“randomness”. Finite-length entropy-rate estimates hμ(L) =
H [X0|X−L:0] provide increasingly better approximations to
the true entropy rate hμ as L grows large.

The excess entropy E = limL→∞ [H (L) − hμL] quantifies
how much is predictable: how much future information can
be predicted from the past [22]. Finite-length excess-entropy
estimates,

E(L) = H (L) − hμL (1)

=
L−1∑
�=0

[hμ(�) − hμ], (2)

tend to the true excess entropy E as L grows large [23]. As
there, we consider only finitary processes, those with finite E
[24].

Predictive features R from some alphabet F are formed by
compressing the process’s past X−∞:0 in ways that implicitly
retain information about the future X0:∞. (From here on,
our block notation suppresses infinite indices.) A predictive
distortion quantifies the predictability lost after such a coarse
graining:

d(R) = I [X:0; X0:|R]

= E − I [R; X0:].

We choose to use an informational distortion, though in prin-
ciple, any other predictive distortion would do; for instance,
bounds in Appendix A of the Supplemental Material [25] have
bearing on total variation. On the one hand, the informational
distortion considered here achieves its maximum value E when
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R captures no information from the past that could be used
for prediction. On the other, it can be made to vanish trivially
by taking the predictive features R to be all of the possible
histories X:0.

Results. Ideally, we would identify the minimal number |F |
of predictive features or the coding cost H [R] [9,26] required
to achieve at least a given level d of predictive distortion. This
is almost always a difficult optimization problem. However,
we can place upper bounds on |F | and H [R] by constructing
suboptimal predictive feature sets that achieve predictive
distortion d.

We start by reminding ourselves of the optimal solution
in the limit that d = 0—the causal states S [10,11,13].
Causal states can be defined by calling two pasts, x:0 and x ′

:0,
equivalent when by using them our predictions of the future
are the same: Pr(X0:|X:0 = x:0) = Pr(X0:|X:0 = x ′

:0). (These
conditional distributions are referred to as future morphs.)
One can then form a model, the ε-machine, from the set S of
causal-state equivalence classes and their transition operators.
The Shannon entropy of the causal state distribution is the
statistical complexity: Cμ = H[S]. A process’s ε-machine can
also be viewed as the minimal unifilar HMM capable of
generating the process [27] and Cμ the amount of historical
information the process stores in its causal states. Though the
mechanics of working with causal states can become rather
involved, the essential idea is that causal states are designed
to capture everything about the past relevant to predicting the
future and only that information.

In the lossless limit, when d = 0, one cannot find predictive
representations that achieve |F | smaller than |S| or that achieve
H[R] smaller than Cμ. Similarly, no optimal lossy predictive
representation will ever find |F | > |S| or H[R] � Cμ. When
the number of causal states is infinite or statistical complexity
diverges, as is typical, as we noted, these bounds are quite
useless, but otherwise, they provide a useful calibration for the
feature sets proposed below.

Markov features. Several familiar predictive models use
pasts of length L as predictive features. This feature set
can be thought of as constructing an order-L Markov model
of a process [28]. The implied predictive distortion is
d(L) = I [X:0; X0:|X0:L] = E − E(L) [29], while the number
of features is the number of length-L words with nonzero
probability and their entropy H [R] = H (L). Generally, hμ(L)
converges exponentially quickly to the true entropy rate hμ

for stochastic processes generated by finite-state HMMs,
unifilar or not; see Ref. [30] and references therein. Then,
hμ(L) − hμ ∼ Ke−λL in the large L limit. From Eq. (2), we
see that the convergence rate λ also implies an exponential rate
of decay for E − E(L) ∼ K ′e−λL. Additionally, according to
the asymptotic equipartition property [26], when L is large,
|F | ∼ eh0L and H (L) ≈ hμL, where h0 is the topological
entropy rate and hμ is the entropy rate, both in nats.

In sum, this first set of predictive features—effectively, the
construction of order-L Markov models—yields an algebraic
tradeoff between the size of the feature setF and the predictive
distortion d:

|F | ∼
(

1

d

)h0/λ

, (3)

and a logarithmic tradeoff between the entropy of the features
and distortion:

H [R] ∼ hμ

λ
ln

(
1

d

)
. (4)

In principle, λ can be arbitrarily small, and so h0/λ and hμ/λ

arbitrarily large, even for processes generated by finite-state
HMMs. This can be true even for finite unifilar HMMs
(ε-machines). To see this, let W be the transition matrix of
a process’s mixed-state presentation, defined shortly. From
Ref. [29], when W ’s spectral gap γ is small, we have
E − E(L) ∼ (1 − γ )L, so that λ = ln 1

1−γ
can be quite small.

In short, when the process in question has only a finite
number of causal states, |F | optimally saturates at |S| and
H [R] optimally saturates at Cμ, but from Eqs. (3) and (4), the
size of this Markov feature set can grow without bound when
we attempt to achieve zero predictive distortion.

Mixed-state features. A different predictive feature set
comes from coarse graining the mixed-state simplex. As
described by Blackwell [15], mixed states Y are probability
distributions Pr(G0|X−L:0 = x−L:0) over the internal statesG of
a generative model given the generated sequences. Transient
mixed states are those at finite L, while recurrent mixed
states are those remaining with positive probability in the
limit that L → ∞. Recurrent mixed states exactly correspond
to causal states S [31]. When Cμ diverges, recurrent mixed
states often lay on a Cantor set in the simplex; see Fig. 1.
In this circumstance, one examines the various dimensions
that describe the scaling in such sets. Here, for reasons that
will become clear, we use the box counting dim0(Y ) and
information dimensions dim1(Y ) [32].

More concretely, we partition the simplex into cubes of side
length ε, and each nonempty cube is taken to be a predictive
feature in our representation. The number of nonempty cubes
is denoted Nε . When there are only a finite number of causal
states, then this feature set consists of the causal states S for
some nonzero ε. There is no such ε if, instead, the process
has a countable infinity of causal states. Sometimes, as for the
finite |S| case, the information dimension and perhaps even
the box-counting dimension of the mixed states will vanish.
When there is an uncountable infinity of causal states and ε is
sufficiently small, the corresponding number of features scales
as:

|F | ∼
(

1

ε

)dim0(Y )

,

where dim0(Y ) denotes the box-counting dimension [33] and
the coding cost scales as:

H [R] ∼ dim1(Y ) ln
1

ε
,

where dim1(Y ) is the information dimension. These dimen-
sions can be approximated numerically; see Fig. 1 and
Appendix A of the Supplemental Material [25].

For processes generated by infinite ε-machines, finding the
better feature set requires analyzing the scaling of predictive
distortion with ε. Appendix B of the Supplemental Materials
[25] shows that d(R) at coarse graining ε scales at most as
ε in the limit of asymptotically small ε. Our upper bound
relies on the fact that two nearby mixed states have similar
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FIG. 1. Mixed-state presentations Y for three different generative models given in Appendix A of the Supplemental Materials [25]. To
visualize the mixed-state simplex, the diagrams plot iterates yt such that the left vertex corresponds to the pure state Pr(A,B,C) = (1,0,0) or
HMM state A, the right to pure state (0,1,0) or HMM state B, and the top to pure state (0,0,1) or HMM state C. Left plot has 55 mixed states
plotted in a 1 × 100 bin histogram; middle plots 2,391,484 mixed states in a 1000 × 1000 bin histogram; and right plots 21,523,360 mixed
states in a 4000 × 4000 bin histogram. Bin cell coloring is negative logarithm of the normalized bin counts. The box-counting dimensions are
respectively dim0(Y ) ≈ 0.3 at left, dim0(Y ) ≈ 1.8 in the middle, and dim0(Y ) ≈ 1.9 at right. Box-counting dimension calculated by estimating
the slope of ln (1/ε) vs ln Nε as described in Appendix A of the Supplemental Material [25].

future morphs, i.e., they have similar conditional probability
distributions over future trajectories given one’s mixed state.
From this, we conclude that:

|F | ∼
(

1

d

)dim0(Y )

(5)

and:

H [R] ∼ dim1(Y ) ln
1

d
. (6)

In general, both dim0(Y ) and dim1(Y ) are bounded above by
|G|, the number of states in the minimal generative model.

Resource-prediction tradeoff. Finally, putting Eqs. (3)–(6)
together, we find that for a process with an uncountably infinite
ε-machine, the necessary number of predictive features |F∗|
scales no faster than:

|F∗| �
(

1

d

)min (h0/λ,dim0(Y ))

(7)

and the requisite coding cost H [R∗] scales no faster than:

H [R∗] � min (hμ/λ,dim1(Y )) ln
1

d
, (8)

where d is predictive distortion.
These bounds have a practical interpretation. From finite

data, one can only justify inferring finite-state minimal
maximally predictive models. Indeed, the criteria of Ref. [34]
applied as in Ref. [13] suggests that the maximum number of
inferred states should not yield predictive distortions below
the noise in our estimate of predictive distortion d from T

data points. This noise scales as ∼1/
√

T , since from T data
points, we have approximately T separate measurements of
predictive distortion. This, in turn, sets upper bounds on |F∗| �
T (1/2) min (h0/λ,dim0(Y )) and H [R∗] � min (hμ/λ,dim1(Y )) lnT

when the process in question has an uncountable infinity of
causal states.

We can test this prediction directly using the Bayesian
structural inference (BSI) algorithm [35] applied to the

processes described in Fig. 1. The major difficulty in em-
ploying BSI is that one must specify a list of ε-machine
topologies to search over. Since the number of such topologies
grows superexponentially with the number of states [36],
experimentally probing the scaling behavior of the number
of inferred states with the amount of available data is, with
nothing else said, impossible.

However, “expert knowledge” can cull the number of
ε-machine topologies that one should search over. In this
spirit, we focus on the simple nonunifilar source (SNS), since
ε-machines for renewal processes have been characterized in
detail [37–40]. The SNS’s generative HMM is given in Fig. 2
(left). This process has a mixed-state presentation similar to
that of “nond” in Fig. 1 (left). We choose to only search over the
ε-machine topologies that correspond to the class of eventually
Poisson renewal processes.

We must first revisit the upper bound in Eq. (7), as the
SNS has a countable (not uncountable) infinity of causal
states. When a process’s ε-machine is countable instead of
uncountable, then we can improve upon Eq. (7). However,
the magnitude of improvement is process dependent and
not easily characterized in general for two main reasons.
First, predictive distortion can decrease faster than ε for
processes generated by countably infinite ε-machines since
there might only be one mixed state in an ε hypercube. (See
the left-hand factor in the Supplemental Material, Eq. (B5)
[25], 1 − ∑

r∈R(ε):H [Y |R(ε)=r]=0 π (r). We are guaranteed that
limε→0

∑
r∈R(ε):H [Y |R(ε)=r]=0 π (r) = 0, but the rate of conver-

gence to zero is highly process dependent.) Second, the scaling
relation between Nε and 1/ε may be subpower law.

Given a specific process, though, with a countably infinite
ε-machine—here, the SNS—we can derive expected scaling
relations. See Appendix C in the Supplemental Material [25].
We argue that, roughly speaking, we should expect predictive
distortion to decay exponentially with Nε , so that d(Rε)∝∼ λNε

for some λ < 1. In Appendix C of the Supplemental Ma-
terial, we empirically argue that Nε scales as (1/ε)2 when
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FIG. 2. Model-size scaling for the parametrized simple nonunifi-
lar source (SNS). Top: Generative HMM for the SNS. Bottom: Scaling
of 〈|M|〉 = ∑

M |M|P (M|x0:T ) with T , with the posterior P (M|x0:T )
calculated using formulas from BSI [35] with α = 1 and the set of
model topologies being the eventually Poisson ε-machines described
in Ref. [37]. Data generated from the SNS with p = q = 1

2 . Linear
regression reveals a slope of ≈1 for ln lnT vs ln〈|M|〉, confirming the
expected NT

∝∼ ln T , where the proportionality constants depend on

β. Curves from top to bottom: β = 1,4,8 and blue, green, and red,
respectively.

p = q = 0.5. As we expect, since our uncertainty in d scales
as ∼1/

√
T , where T is the amount of data, we expect that the

number of inferred states NT should scale as ∝∼ ln T .

These scaling relationships are confirmed by BSI applied
to data generated from the SNS, where the set of ε-machine
topologies selected from are the eventually Poisson ε-machine
topologies characterized by Ref. [37]. Given a set of machines
M and data x0:T , BSI returns an easily calculable posterior
Pr(M|x0:T ) for M ∈ M with (at least) two hyperparameters:
(i) the concentration parameter for our Dirichlet prior on the
transition probabilities α, and (ii) our prior on the likelihood
of a model M with number of states |M|, taken to be
proportional to e−β|M| for a user-specified β. From this
posterior, we calculate an average model size 〈|M|〉(T ) =∑

M∈M |M| Pr(M|x0:T ) as a function of T for multiple data
strings x0:T . The result is that we find the scaling of 〈|M|〉(T )
with T is proportional to ln T in the large T limit, where
the proportionality constant and the initial value depends on
hyperparameters α and β.

In theory, this scaling might be affected by our restrictive
prior over ε-machine topologies, but the scaling is hard to
analyze if a naive search over ε-machine topologies is used.
The number of ε-machine topologies grows superexponen-
tially with the number of states, practically limiting unbiased
estimates of 〈|M|〉 to 6 using a single standard computer’s

memory. We therefore conjecture (without proof) that the
scaling of 〈|M|〉 with T is qualitatively similar if the prior
of ε-machine topologies allows for consistency.

Conclusion. We now better understand the tradeoff between
memory and prediction in processes generated by a finite-state
hidden Markov model with infinite statistical complexity. Im-
portantly and perhaps still underappreciated, these processes
are more “typical” than those with finite statistical complexity
and Gaussian processes, which have received more attention
in related literature [12,13].

We proposed a method for obtaining predictive features—
coarse-graining mixed states—and used this feature set to
bound the number of features and their coding cost in the limit
of small predictive distortion. These bounds were compared
to those obtained from the more familiar and widely used
(Markov) predictive feature set—that of memorizing all pasts
of a fixed length.

The general results here suggest that the mixed-state
feature set can outperform the standard set—order-L Markov
models—in many situations. Examples to the contrary exist,
but are difficult to find, given that it is difficult to accurately
calculate λ [the exponential rate of decay of hμ(L) to hμ]
without at least an approximate mixed-state presentation [41].
As such, rigorously finding such an example in which order-L
Markov features outperform a mixed-state presentation coarse
graining is an interesting open problem.

Practically speaking, the bounds presented have at least
three potential uses. First, they give weight to Ref. [7]’s sugges-
tion to replace the statistical complexity with the information
dimension of mixed-state space as a complexity measure when
statistical complexity diverges. Second, they suggest a route to
an improved, process-dependent tradeoff between complexity
and precision for estimating the entropy rate of processes
generated by nonunifilar HMMs [42]. Admittedly, space here
precludes us from addressing how to estimate the probability
distribution over ε boxes, and accurate estimation of such is an
important open problem. Third, and perhaps most importantly,
our upper bounds provide an attempt to calculate the expected
scaling of inferred model size with available data. This scaling
can be then used to estimate when more memory is needed
to store information about the predictive model, even when
an online inference algorithm is utilized, and thus how finite
memory lower bounds the achievable predictive distortion.

Finally, from a statistics point of view, we characterized
the asymptotics of the posterior distribution over model size.
It is commonly accepted that inferring time-series models
from finite data typically has two components—parameter
estimation and model selection—though these two can be
done simultaneously. Our focus above was on model selection,
as we monitored how model size increased with the amount
of available data. One can view the results as an effort to
characterize the posterior distribution of ε-machine topologies
given data or as the growth rate of the optimum model cost
[43] in the asymptotic limit. Posterior distributions of esti-
mated parameters (transition probabilities) are almost always
asymptotically normal, with standard deviation decreasing
as the square root of the amount of available data [44–46].
However, asymptotic normality does not typically hold for this
posterior distribution, since using finite ε-machine topologies
almost always implies out-of-class modeling. Rather, we
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showed that the particular way in which the mode of this
posterior distribution increases with data typically depends on
a gross process statistic—the box-counting dimension of the
mixed-state presentation.

Stepping back, we only tackled the lower parts of the
infinitary process hierarchy identified in Ref. [47]. In par-
ticular, “complex” processes in the sense of Ref. [48] have
different resource-prediction tradeoffs than analyzed here,
since processes generated by finite-state HMMs (as assumed
here) cannot produce processes with infinite excess entropy.
To do so, at the very least, predictive distortion must be
more carefully defined. We conjecture that success will
be achieved by instead focusing on a one-step predictive
distortion, equivalent to a self-information loss function, as
is typically done [43,49]. Luckily, the derivation in Appendix

B of the Supplemental Material [25] easily extends to this case,
simultaneously suggesting improvements to related entropy-
rate-approximating algorithms.

We hope these introductory results inspire future study of
resource-prediction tradeoffs for processes.
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