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The microscopic principles organizing dynamic units in complex networks —

from proteins to power-grid generators — can be understood in terms of net-

work ‘motifs’: small interconnection patterns that appear much more frequently

in real networks than expected in random networks [1, 2]. When considered as

subgraphs isolated from a larger network, these motifs are more robust to pa-

rameter variations, easier to synchronize than other possible subgraphs, and can

provide specific functionalities [3–15]. But one can only isolate these subgraphs

by assuming, for example, a significant separation of time scales, and the origin

of network motifs and their functionalities when embedded in larger networks

remain unclear. Here we show that most motifs emerge from interconnection

patterns that best exploit the intrinsic stability characteristics at different scales

of interconnection, from simple nodes to whole modules. This functionality sug-

gests an efficient mechanism to stably build complex systems by recursively

interconnecting nodes and modules as motifs. We present direct evidence of

this mechanism in several biological networks.

In complex natural systems, as biological networks, the particular topologies of network

motifs have been shaped by evolution. Evolution and natural selection accumulate stable

intermediate components (i.e., nodes), which are interconnected to form more complex sys-

tems. This modular design principle is observed at many scales, from the motion control

architecture of vertebrates to the emotional response of human beings [16–19]. Yet, in gen-

eral, the interconnection of stable components may result in an unstable system [20]. Thus,

it is natural to hypothesize that nature favors interconnections that make it easier to ob-

tain a stable networked system. In this letter, we show that most network motifs in real

networks emerge precisely from such consideration. This property can be used for building

larger systems by applying it at different scales of interconnection.

To start, we consider a set of N nodes with scalar dynamics of the form

ẋi = fi(xi, t) + ui, yi = xi (1)

with initial condition xi(t0) = xi0, i = 1, · · · , N . Here the scalars xi, ui and yi are the state,

input and output of node i, respectively. The state of a node may represent the expression

level of a gene, the concentration of a metabolite, the charge of a capacitor, etc. Vector

dynamics are discussed later in the context of modules. The functions fi(xi, t), which are
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typically nonlinear, determine the nodal dynamics.

Nodes interact with each other by interconnecting their inputs u = col(u1, · · · , uN) ∈ RN

with their outputs y = col(y1, · · · , yN) ∈ RN . Analyzing the stability of networked systems

with nonlinear interconnections

u = g(y), g : RN → RN , (2)

requires knowledge of the functional form and parameters of the interconnection g(y) and

nodal dynamics fi(xi, t), which is hard to obtain in most systems (SI-1.7). Linear inter-

connections do not require such knowledge, enabling us to quantify the contribution of the

interconnection to the stability of the networked system without the need of detailed knowl-

edge of the nodal dynamics. More precisely, by considering

u = Ay, (3)

where A = (aij) ∈ RN×N is the weighted adjacency matrix of the interconnection network,

our analysis requires a single constant per node — its contraction rate, defined later on —

characterizing its intrinsic stability properties. Here aij 6= 0 represents a directed edge from

node i to node j. In general, the linear interconnection (3) can be used to approximate (2)

in some working range [5, 7, 21]. Furthermore, diffusive coupling of oscillators and several

models of neural networks actually use linear interconnection networks [22–24].

Our standing assumption on the isolated nodes is that they are stable, and we aim to

quantify for which interconnections is easier to get a stable networked system. The separate

contribution of the isolated nodes and the interconnection to the stability of the networked

system is made transparent by using contraction theory. Contraction theory is a tool to

analyze the stability of dynamic systems based on a differential-geometric viewpoint inspired

by fluid mechanics [25], in contrast to Lyapunov stability theory that is based on analogs of

mechanical energy. A system is contracting if the trajectories associated to any two initial

conditions exponentially converge towards each other. More precisely, a dynamic system of

the form

ẋ = f(x, t), x(t0) = x0 (4)

with state x ∈ RN is contracting with rate α > 0 if there exists a vector norm | · | and

constant β > 0 such that for any two initial conditions xa, xb ∈ RN their corresponding
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trajectories x(xa, ·), x(xb, ·) satisfy

|x(xa, t)− x(xb, t)| ≤ β|xa − xb|e−α(t−t0), ∀t ≥ t0.

Denote by J(x, t) = ∂xf(x, t) the Jacobian of system (4). Then contraction is equivalent to

the existence of a matrix measure µ such that µ(J(x, t)) ≤ −α, for all x ∈ RN and t ≥ t0

[25, 26]. Any vector norm | · | induces a matrix norm ‖ · ‖ and a matrix measure µ by

‖A‖ := sup
|x|=1

|Ax|, µ(A) := lim
h↘0

‖I + hA‖ − 1

h
,

both of which are well defined for any matrix A ∈ RN×N . In particular, we prove that

µA(A) := min
µ∈M

µ(A) = max
1≤i≤N

Reλi(A), (5)

where M is the set of all matrix measures in RN×N and λi(A) are the eigenvalues of A

(Theorem 1 in SI-1). We use the notation µA to emphasize that the matrix measure achieving

the minimum in (5) depends on the matrix A itself. Recall also that matrix measures are

subadditive: µ(A1 + A2) ≤ µ(A1) + µ(A2), for any A1, A2 ∈ RN×N .

In the case of scalar isolated systems, as in (1) with ui = 0, contraction with rate αi

is equivalent to the condition Ji(xi, t) = ∂xif(xi, t) ≤ −αi for all xi ∈ R and t ≥ t0. The

contraction property of isolated nodes might be lost when they are interconnected, so that

the networked system is no longer contracting. Indeed, due to the subadditivity of matrix

measures, the Jacobian of the networked system (1)-(3) satisfies

µ(J(x, t)) ≤ µ(diag{Ji}) + µ(A) ≤ µ(−Dα) + µ(A), (6)

where Ji = Ji(xi, t) and Dα = diag(α1, · · · , αN).

We define µ(A) as the contraction loss of the interconnection network. Then the inequal-

ity (6) indicates that the networked system remains contracting if the effective contraction of

the isolated nodes µ(−Dα) < 0 dominates the contraction loss µ(A) due to the interconnec-

tion. Consequently, interconnections with small contraction loss best favor stability, since

they require smaller contraction rates from the isolated nodes to keep the whole network

contracting.

The choice of matrix measure in (6) is a degree of freedom that should be optimized to

make µ(−Dα)+µ(A) as negative as possible. Solving this optimization problem is not trivial,

since the matrix measure minimizing the contraction loss µ(A) might also decrease the
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effective contraction of the isolated nodes (i.e., making the term µ(−Dα) less negative). In

Proposition 1 of SI-1, we prove that the optimal matrix measure is given by µA defined in (5),

provided that the contraction rates of all nodes are equal, or that the off-diagonal entries of

A are non-negative (i.e., interactions between nodes are only positive). Choosing the matrix

measure (5), the contraction loss of some classes of networks depends only on their topology.

For example, Proposition 2a of SI-1.4 shows that acyclic networks have zero contraction loss

regardless of their edge-weights (positive or not). This implies that feedforward and bifan

interconnections, and their generalizations [27], always have zero contraction loss (SI-1.5).

Moreover, non-positive contraction loss for interactions with arbitrary strength requires

that reciprocal interactions have opposite signs, and the absence of cycles (feedback loops)

of length 3 or more, Proposition 2b in SI-1.4. In particular, the contraction loss of negative

feedback between two nodes is at most zero (SI-1.4).

Interestingly, the presence of negative interactions always improves the stability of the

networked system by decreasing the contraction loss, in the sense that µ(A) ≤ µ(Ā) for

any µ ∈ M and A = (aij) ∈ RN×N , see Lemma 1 in SI-1.3. Here Ā = (āij) ∈ RN×N is

defined as āii = aii and āij = |aij| if j 6= i. Therefore, it is possible to add functionalities

requiring negative interactions by replacing a positive interaction by a negative one without

decreasing the stability of the networked system. This result motivated us to consider

positive interactions only in the rest of the paper because (i) they provide the worst-case

analysis of the contraction loss of an interconnection with respect to all possible edge-weights,

and (ii) their contraction loss can be optimally computed using µA.

We analyzed the contraction loss of all 3- or 4- node subgraphs and identified those with

the lowest contraction loss in their density class, defined as the set of all subgraphs with the

same number of nodes and edges [5]. Those subgraphs with lowest contraction loss best favor

the stability of the networked system. Since the precise value of the interactions may change

from one system to other, we randomly select them from a uniform distribution on [0, amax] to

form an ensemble of 10,000 weighted adjacency matrices with the same connectivity pattern.

From this ensemble the mean contraction loss 〈µA〉 is computed, see Fig.1. SI-2 details how

to compute analytically and numerically the mean contraction loss of a subgraph. The

observed order of the subgraphs according to their mean contraction loss is independent

of the interaction strength distribution and the value of amax > 0 (SI-3). See also SI-4 for

results using a different matrix measure to compute the contraction loss.
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FIG. 1. Mean contraction loss of all 3- or 4-node subgraphs. Error bars represent standard

deviation. A. Mean contraction loss of all subgraphs with 3 and 4 nodes (amax = 1), same color

indicating same number of edges. Vertical dashed lines separate groups of subgraphs with the

same number of edges (density classes) in increasing order from left to right (2 to 6 edges for 3-

node subgraphs, and 3 to 12 edges for 4-node subgraphs). Gray markers show the network motifs

reported in [1], circles denoting biological networks (gene transcription, neurons and food webs)

and triangles denoting man-made networks (electronic circuits and the WWW). Motif M2 appears

in both, gene regulatory networks and some electronic circuits (forward logic chips). B. The 12

network motifs reported in [1].

We find that all motifs reported in [1] (except M3, M9 and M12 that contain feedback

loops of length 3 or more) emerge among the subgraphs with the minimum 〈µA〉 within

their respective density class. In particular, all motifs found in biological networks (marked

in circles in Fig.1) have zero contraction loss. Motifs containing feedback loops with length

3 or more do not have the minimum contraction loss within their density class —they do not

favor stability— and these motifs also require more accurate tuning of their edge-weights

to be stable (SI-1.4). Recall also that feedback provides functionalities associated with

performance (like robustness to external disturbances [25]), which do not necessarily favor

the stability of the networked system.
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To further disentangle the relation between network motifs and subgraphs with low con-

traction loss, we compared the Z-score and relative contraction loss of subgraphs in several

real networks. As introduced in [1], the Z-score of a subgraph A in a real network quantifies

its statistical significance as a motif, and is defined by

Z(A) :=
Nreal(A)− 〈Nrand(A)〉

σrand(A)
,

where Nreal is the number of occurrences of subgraph A in the real network, 〈Nrand〉 the

average number of occurrences in an ensemble of its randomizations, and σrand its standard

deviation. A subgraph with a high (low) Z-score is over (under) represented in the real

network. The normalized Z-score of a subgraph is its Z-score divided by the maximum (in

absolute value) Z-score of all subgraphs with the same number of nodes.

We define the relative contraction loss of a subgraph A as

r(A) :=
〈µA(A)〉 − µmin

µmax − µmin
,

where µmax (or µmin) is the maximum (or minimum) mean contraction loss among all sub-

graphs within the density class of A. The case r(A) = 0 (or r(A) = 1) corresponds to a

subgraph with the minimal (or maximal) mean contraction loss among its density class. The

relative contraction loss is undefined for all subgraphs with 3-nodes/2-edges or 4-nodes/3-

edges (i.e., µmin = µmax = 0), since they are acyclic and thus have zero contraction loss

(Proposition 2a of SI-1.4). Hence, we discard them from the discussion that follows since

subgraphs with zero contraction loss maintain the stability of the networked system.

We compared the relative contraction loss and the normalized Z-score of 3- and 4-node

subgraphs in several biological networks, finding that overrepresented subgraphs (e.g., mo-

tifs) tend to have low relative contraction loss, see Fig. 2. The phenomenon is stronger for

3-node subgraphs, where underrepresented subgraphs (e.g., anti-motifs) have high relative

contraction loss. In other words, subgraphs that favor stability are overrepresented, while

3-node subgraphs which do not favor stability are underrepresented. We did not find this

phenomenon in other classes of networks containing feedback motifs with high Z-score (like

the electronic circuits shown in SI-6), suggesting that other factors apart of maintaining

stability play a central role in their construction.

Next we explore how the small contraction loss property of motifs can be used to build

bigger networked systems. Consider a set of N modules (i.e., connected subgraphs) possibly
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FIG. 2. Relative contraction loss vs. normalized Z-score. Each marker represents a subgraph

of the neuron network of C. elegans, the gene transcription networks of Yeast and E. coli, and

the food-web at Saint Martin Island. Subgraphs with high Z-score tend to have small relative

contraction loss. In the case of 3-node subgraphs, under-represented subgraphs (anti-motifs) tend

to have high relative contraction loss.

having vector dynamics

ẋi = fi(xi, t) +Biui, yi = Cixi, (7)

i = 1, · · · , N , where xi ∈ Rni , ui ∈ Rmi and yi ∈ Rpi are the state, input and output vectors

of module i. The matrices Bi ∈ Rni×mi and Ci ∈ Rpi×ni determine which nodes of the

module interact with other modules. The interconnection of modules is again described by

equation (3), but the matrix A ∈ R(m1+···+mN )×(p1+···+pN ) is not necessarily square anymore

because some modules may have different number of inputs and outputs.

Each isolated module is assumed contracting with rate αi > 0 under measure µi. The

contraction rate of a module can be calculated using the contraction rate of its internal nodes

and their respective interconnection topology Ai. To each module, we associate a condensed

node, with scalar state and linear dynamics, that inherits the module’s contraction rate

żi = −αizi + ui, yi = zi. (8)

Additionally, we use the interconnection network of the full system to define a condensed
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weighted adjacency matrix Acond ∈ RN×N as follows:

Acond :=


µ1(M11) ‖M12‖1,2 · · · ‖M1N‖1,N
‖M21‖2,1 µ2(M22) · · · ‖M2N‖2,N

...
. . .

...

‖MN1‖N,1 ‖MN2‖N,2 · · · µN(MNN)

 , (9)

where Mij = BiAijCj, and Aij ∈ Rmi×pj is the (i, j) block of the original A interconnection

network (3), see Fig S1 in supplement. Above ‖ · ‖i,j stands for the induced matrix norm

‖M‖i,j := sup
|x|i=1

|Mx|j

with |x|i = |P 1/2
i x|2 a weighted Euclidean norm with metric Pi ∈ Rni×ni found as the solution

to the linear matrix inequality of Theorem 1 in SI-1. When the off-diagonal elements of Ai

are non-negative, a diagonal solution to such matrix inequality exists and the metric Pi just

assigns different units to different modules (SI-1). Also, in the case when each module has

a single input and a single output, Acond takes a particular simple form in which its (i, j)

entry is |γijAij| if i 6= j and γijAij if i = j, with γij = Bᵀ
i Cj ∈ R.

In Theorem 2 of SI-1 we prove that if the condensed networked system (8)-(9) is con-

tracting, then the original system (7)-(3) is also contracting. This result also holds when

instantaneous contraction rates are used for the modules, making the condensed dynamics

(8) dependent on the states of the original dynamics (SI-1.6). Hence, the interconnections

between modules have minimal contraction loss if they are also network motifs. This sug-

gests a modular design principle to build complex systems, starting by building modules

interconnecting nodes as network motifs, and then interconnecting those modules again as

network motifs.

To better illustrate this point, consider the feedback interconnection of three 3-node

motifs shown in Fig. 3A. Each isolated motif, will be contracting if

−αj := −αj,min + µj(Aj) < 0, j = 1, 2, 3,

where αj,min is the minimum contraction rate of the nodes inside the j-th motif, and Aj is

its internal interconnection. Indeed, αj is just the contraction rate of motif j. The smaller

is the contraction loss of the internal topology, the larger is the contraction inherited by

the module. Since the contraction loss of feedforward motifs is zero, in this example each
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FIG. 3. Relative contraction loss of motifs at different scales of interconnection. A. Interconnection

of motifs as motifs. The original network is condensed using (8) and (9) into the condensed network.

Contraction of the condensed network ensures contraction of the original network. B. Original and

two consecutive condensations for the Yeast transcription network. Network motifs are recursively

found and condensed into a single node, see SI-5 for details. C. Number of motifs vs. relative

contraction loss for the original and condensed networks. The Saint Martin food-web network is

not shown since it does not contain motifs after a single condensation.

condensed node inherits the minimal contraction rate of its nodes, i.e., αj = αj,min. To

construct the condensed interconnection network, we first note that

B1 = Cᵀ
2 =


0

0

1

 , B2 = Cᵀ
3 =


1

0

0

 , B3 = Cᵀ
1 =


0

1

0

 .
The interconnection of the modules is described by the adjacency matrix of the 3-node feed-

back interconnection motif A ∈ R3×3, whose only nonzero values are A12, A23 and A31 (see

Fig. 3A). Then, it is not surprising that the corresponding Acond obtained using (9) is again

the adjacency matrix of a 3-node feedback interconnection. The condensed interconnected

system will be contracting if αmin = min{α1, α2, α3} > µcond(Acond) = µA(A). Additionally,
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Theorem 2 of SI-1 implies that under such condition the original interconnected system is

also contracting. Since the constraints were imposed in the contraction rates only, the details

of the node dynamics were not used in the analysis.

The contraction loss of the interconnection plays an important role in the stability of

the whole network, because modules inherit a larger contraction rate when their internal

interconnection has a smaller contraction loss. And this applies at different scales of in-

terconnection: if the system is recursively condensed, the resulting condensed modules at

each step inherit larger contraction rates when the interconnections between the modules in

the previous step have smaller contraction loss. In this form, the interconnection of “motifs

of motifs” is a recursive and modular network design procedure in which the contraction

loss remains minimal at each step of construction of the network. Both humans and nature

seem to favor this design principle by recursively interconnecting already designed modules

[28, 29].

The idea of “motifs of motifs” was used in [30] to reverse-engineer electronic circuits

and coarse-grain a signal-transduction protein network. In contrast, here we aim to check

if motifs at different scales still have low relative contraction loss, thus providing direct

evidence of a design principle found in real-world complex networks. We used a collection of

real networks to test our hypothesis by recursively searching and condensing motifs (details

of the method and used networks are found SI-5 and SI-7, respectively). We found that

most motifs in the original and condensed regulatory networks of E. coli and Yeast have low

relative contraction loss, Fig. 3. For the neuron network of C. elegans this only happens

for 3-node motifs. A closer analysis reveals that most 4-node motifs in the C. elegans with

high relative contraction loss also have small Z-score, see Fig. 2. In other words, they are

not strongly overrepresented.
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