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We consider the problem of detecting the source of a rumor which has spread in a network using only observations

about which set of nodes are infected with the rumor and with no information as to when these nodes became infected.

In a recent work (Shah and Zaman 2010) this rumor source detection problem was introduced and studied. The authors

proposed the graph score function rumor centrality as an estimator for detecting the source. They establish it to be the

maximum likelihood estimator with respect to the popular Susceptible Infected (SI) model with exponential spreading

times for regular trees. They showed that as the size of the infected graph increases, for a path graph (2-regular tree), the

probability of source detection goes to 0 while for d-regular trees with d≥ 3 the probability of detection, say αd, remains

bounded away from 0 and is less than 1/2. However, their results stop short of providing insights for the performance

of the rumor centrality estimator in more general settings such as irregular trees or the SI model with non-exponential

spreading times.

This paper overcomes this limitation and establishes the effectiveness of rumor centrality for source detection for

generic random trees and the SI model with a generic spreading time distribution. The key result is an interesting connec-

tion between a continuous time branching process and the effectiveness of rumor centrality. Through this, it is possible

to quantify the detection probability precisely. As a consequence, we recover all previous results as a special case and

obtain a variety of novel results including the universality of rumor centrality in the context of tree-like graphs and the SI

model with a generic spreading time distribution.
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History:

1. Introduction

Imagine someone starts a rumor which then spreads through a social network. After the rumor has spread

for a long amount of time, we observe this network of rumor infected individuals. We only know who has

heard the rumor and the underlying network structure. No information is given about when the people heard

the rumor. Our goal is to use only this information to discover the source of the rumor.

This rumor source detection problem is very general and arises in many different contexts. For exam-

ple, the rumor could be a computer virus spreading through the Internet, a contagious disease infecting a

human population, or a trend or new product diffusing through a social network. In each of these different
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scenarios, detection of the source is of great interest. One would naturally like to find the originator of a

malicious cyber-attack. Detecting the source of a viral epidemic would aid with the development of effec-

tive vaccination, quarantine and prevention strategies. In social networks, sources of rumors, trends or new

product adoption may be effective at disseminating information, and their identification would be of interest

to companies wishing to develop viral marketing campaigns.

Detection of the source is made challenging in each of these situations by the fact that one may not have

information regarding the time of the infection or adoption. For example, if the computer virus remains

dormant and then upon activation renders the system inoperable, it may not be possible to determine when

the machine was infected. For contagious diseases, determining exactly when a person became infected can

be difficult due to lack of sufficient data. Rather, only a broad time window of when the infection occurred

may be known. For trends or new product adoption one may be able to determine the exact time of adoption

if this occurs through a social network such as Facebook which records the time of each user’s activity.

However, there can be situations where people do not share the fact that they have adopted until much after

they have done so, making it difficult to pinpoint precisely when the adoption occurred.

Given the wide ranging applications, it begs to understand the fundamental limitations of the source

detection problem. Concretely, there are two key questions that need to be addressed. First, how does one

actually construct the rumor source estimator? Since no information about infection times is given, a rumor

source estimator would need to extract all information about the identity of the source using only the struc-

ture of the rumor infected network, but it is not obvious in what manner. Second, what are the fundamental

limits to this rumor source detection problem? In particular, how accurately can one find the rumor source,

what is the magnitude of errors made in this detection, and how does the network structure affect one’s

ability to find the rumor source?

1.1. Related Work

Rumor spreading was originally studied in the context of epidemiology in order to predict, control, and

prevent the spread of infectious diseases. The epidemiological models for the spread of disease generally

consisted of individuals that could be in one of three states : susceptible, infected, or recovered. In the

susceptible-infected-recovered or SIR model all three states are allowed, but there are variants such as the

SI model which only consider susceptible and infected individuals. Daniel Bernoulli developed the first

differential equation models for the spread of a disease (Bernoulli and Blower 2004). Modern differential

equation models were introduced in (Kermack and McKendrick 1927) and later expanded in (Anderson

and May 1979a) and (Anderson and May 1979b). These models provided insight into the disease spreading

dynamics, but they were very coarse and made several simplifying assumptions about human populations.

The next level of modeling involved taking into account the network over which the disease spread. Contact

network modeling was able to capture in greater detail the specific manner by which disease spread. These
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models have allowed researchers to understand how the network structure affects the ability of a disease

to become an epidemic (Moore and Newman (2000), Pastor-Satorras and Vespignani (2001), Ganesh et al.

(2005)). The insights obtained from modeling disease spreading at a network level have allowed epidemi-

ologists to develop vaccination and quarantine strategies to control modern viral epidemics (Meyers et al.

(2003), Meyers et al. (2005), Pourbohoul et al. (2005), Pourbohoul et al. (2009), Bansal et al. (2006), Bansal

et al. (2010), Fraser et al. (2009), Yang et al. (2009)).

The network models developed for disease propagation have found application in the context of online

social networks. In Domingos and Richardson (2001), Kempe et al. (2003), and Hartline et al. (2008)

optimization methods were applied to network models to select the best set of users to seed with a new

product or information in order to maximize its spread in a social network. This work is complementary to

that in epidemiology, where the goal is to prevent the spread of a viral outbreak, not accelerate it. Another

interesting line of work has focused on using the spread of rumors in a social network to reconstruct the

unknown network structure (Gomez-Rodriguez et al. (2010), Myers and Leskovec (2010), Netrapalli and

Sanghavi (2012)).

Controlling the spread of a rumor, whether it be a contagious disease or the adoption of a new product, has

been the main focus of a large amount of research, but the question of identifying the source of the rumor has

been largely overlooked. A problem located at the intersection of probability theory and information theory

recently emerged which is thematically related to rumor source detection. It is known as the reconstruction

problem and the goal is to estimate the information possessed by a source based on noisy observations

about this information as it propagates through a network. There are interesting similarities between the

two problems: the signal of interest, the information of the source (for the reconstruction problem) and the

rumor source itself (for the rumor source detection problem) are extremely ‘low-dimensional’. However,

the observations for each problem, the noisy versions of the information (reconstruction) and infected nodes

(rumor source detection), lie in a very ‘high-dimensional’ setting. This makes estimation and detection quite

challenging. It is not surprising that results for the reconstruction problem, even for tree or tree-like graphs,

have required sophisticated mathematical techniques (Evans et al. (2000), Mossel (2001), Gerschenfeld and

Montanari (2007)). Therefore, one would expect similar types of challenges for the rumor source detection

problem, which involves not estimating information at a known source, but rather finding the source itself

among a large number of vertices in a network.

The rumor source detection problem was first formally posed and studied in Shah and Zaman (2010).

The authors proposed a graph-score function called rumor centrality as an estimator for the rumor source.

They showed that the node with maximal rumor centrality is the maximum likelihood (ML) estimate of the

source for rumor spreading on regular trees under the SI model with homogeneous exponential spreading

times. They demonstrated the effectiveness of this estimator by establishing that the rumor source is found
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with strictly positive probability for regular trees and geometric trees under this setting. The model and

precise results from Shah and Zaman (2010) are described in Section 2.

While this work laid the foundations of the rumor source detection problem, the results had some key

limitations. First, they do not quantify the exact detection probability, say αd, for d-regular graphs, for the

proposed ML estimator other than α2 = 0, α3 = 0.25 and 0 < αd ≤ 0.5 for d ≥ 4 for the SI model with

exponential spreading times. Second, the results do not quantify the magnitude of the error in the event of

not being able to identify the source. Third, the results do not provide any insights into how the estimator

behaves for rumor spreading on generic heterogeneous tree (or tree-like) graphs under the SI model with a

generic spreading time distribution.

1.2. Summary of Results

The primary reason behind the limitations of the results in Shah and Zaman (2010) is the fact that the

analytic method employed there is quite specific to regular trees with homogeneous exponential spreading

times. To overcome these limitations, as the main contribution of this work we introduce a novel analysis

method that utilizes connections to the classical Markov branching process (MBP) (equivalently, a general-

ized Polya’s urn (GPU)). As a consequence of this, we are able to quantify the probability of the error event

precisely and thus eliminate the shortcomings of the prior work.

Our results in this work collectively establish that, even though, rumor centrality is an ML estimator only

for regular trees and the SI model with exponential spreading times, it is universally effective with respect

to heterogeneity in the tree structure and spreading time distributions. It’s effectiveness for generic random

trees immediately implies its utility for finding sources in sparse random graphs that are locally tree-like.

Examples include Erdos-Renyi and random regular graphs. A brief discussion to this effect can be found in

Section 3.4.

The following is a summary of our main results (see Section 3 for precise statements):

1. Regular trees, SI model with exponential spreading times:

We characterize αd, the detection probability for d-regular trees, for all d. Specifically, for d≥ 3

αd = dI1/2

( 1

d− 2
,
d− 1

d− 2

)
− (d− 1).

In above Ix(a, b) is the incomplete beta function with parameters a, b evaluated at x ∈ [0,1] (see (3.1)).

This implies that αd > 0 for d ≥ 3, α3 = 0.25, and αd → 1− ln 2 as d→∞. Further, we show that the

probability of rumor centrality estimating the kth infected node as the source decays as exp(−Θ(k)). The

precise results are stated as Theorem 3.1, Corollaries 1 and 2.

2. Generic random trees, SI model with exponential spreading times: For generic random trees (see

Section 3.2 for precise definition) which are expanding, we establish that there is strictly positive probability

of correct detection using rumor centrality. Furthermore, the probability of rumor centrality estimating the
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kth infected node as the source decays as exp (−Θ(k)). The precise results are stated as Theorem 3.2 and

Theorem 3.3.

3. Geometric trees, SI model with generic spreading times:

For any geometric tree (see Section 3.2.2 for precise definition), we establish that the probability of

correct detection goes to 1 as the number of infected nodes increases. The precise result is stated as Theorem

3.4.

4. Generic random trees, SI model with generic spreading times:

For generic expanding random trees with generic spreading times (see Section 3.2 for definition), we

establish that the probability of correct source detection remains bounded away from 0. The precise result

is stated as Theorem 3.2.

2. Model, Problem Statement and Rumor Centrality

We start by describing the model and problem statement followed by a quick recall of the precise results

from Shah and Zaman (2010). In the process, we shall recall the definition of rumor centrality and source

estimation as introduced in Shah and Zaman (2010).

2.1. Model

Let G = (V,E) be a possibly infinite connected graph. Let v ∈ V be a rumor source from which a rumor starts

spreading at time 0. As per the classical Susceptible Infected (SI) model the rumor spreads in the graph.

Specifically, each edge e= (u1, u2) has a spreading time Se associated with it. If node u1 gets infected at

time t1, then at time t1 +Se the infection spreads from u1 to u2. A node, once becoming infected, remains

infected. The spreading times associated with edges are independent random variables with identical distri-

bution. Let F :R→ [0,1] denote the cumulative density function of the spreading time distribution. We shall

assume that the distribution is non-negative valued, i.e. F (0) = 0 and it is non-atomic at 0, i.e. F (0+) = 0.

Since it is a cumulative density function, it is non-decreasing and limx→∞F (x) = 1. The simplest, homo-

geneous SI model has exponential spreading times with parameter λ > 0 with F (x) = 1− exp(−λx) for

x ≥ 0. In Shah and Zaman (2010), the results were restricted to this homogeneous exponential spreading

time setting. In this paper, we shall develop results for arbitrary spreading time distributions consistent with

the above assumptions.

Given the above spreading model, we observe the rumor infected graph G(t) = (V (t),E(t)) at some

time t > 0. To simplify our notation, we will refer to the time dependent rumor infected graph at time t

simply as G = (V,E). We do not know the value of t or the realization of the spreading times on edges

e ∈E; we only know the rumor infected nodes V ⊂ V and edges between them E = V × V ∩ E . The goal

is to find the rumor source (among V ) given G.
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We note here that in this setting we do not observe the underlying graph G. This means we do not observe

edges on the boundary between infected and non-infected nodes. However, these boundary edges do pro-

vide additional information. For example, if an infected node has a large number of uninfected neighbors,

then it is likely that this node has not been infected for very long, otherwise more of its neighbors would be

infected. Intuitively, this would mean that it is less likely that this node is the source. Our rumor source esti-

mator, which we present next, does not require any knowledge of G, though our analysis of the estimator’s

performance will require knowledge of the structure of G. We will find that without observing G, our rumor

source estimator is still able to perform well on a variety of graphs under general spreading models.

2.2. Rumor Centrality: An Estimator

To solve the rumor source detection problem, the notion of rumor centrality was introduced in Shah and

Zaman (2010). Rumor centrality is a ‘graph score’ function. That is, it takesG= (V,E) as input and assigns

a non-negative number or score to each of the vertices. Then the estimated source is the one with maximal

(ties broken uniformly at random) score or rumor centrality. The node with maximal rumor centrality is

called the ‘rumor center’ (which is also the estimated source) with ties broken uniformly at random. We

start with the precise description of rumor centrality for a tree1 graph G: the rumor centrality of node u∈ V

with respect to G= (V,E) is

R(u,G) =
|V |!∏
w∈V T

u
w

, (2.1)

where T uw is the size of the subtree of G that is rooted at w and points away from u. For example, in

Figure 1, let u be node 1. Then |V | = 5; the subtree sizes are T 1
1 = 5, T 1

2 = 3, T 1
3 = T 1

4 = T 1
5 = 1 and

hence R(1,G) = 8. In Shah and Zaman (2010), a linear time algorithm is described to compute the rumor

centrality of all nodes building on the relation R(u,G)/R(v,G) = T vu/T
u
v for neighboring nodes u, v ∈ V

((u, v)∈E).

The rumor centrality of a given node u ∈ V for a tree given by (2.1) is precisely the number of distinct

spreading orders that could lead to the rumor infected graphG starting from u. This is equivalent to comput-

ing the number of linear extensions of the partial order imposed by the graph G due to causality constraints

of rumor spreading. Under the SI model with homogeneous exponential spreading times and a regular tree,

it turns out that each of the spreading orders is equally likely. Therefore, rumor centrality turns out to be

the maximum likelihood (ML) estimator for the source in this specific setting (cf. Shah and Zaman (2010)).

In general, the likelihood of each node u ∈ V being the source given G is proportional to the weighted

summation of the number of distinct spreading orders starting from u, where weight of a spreading order

could depend on the details of the graph structure and spreading time distribution of the SI model. Now

1 We shall call an undirected graph a tree if it is connected and it does not have any cycles.
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1

2 3

4 5

Rumor centrality of node 1 = 8

{1,3,2,4,5},{1,2,3,4,5},
{1,2,4,3,5},{1,2,4,5,3},
{1,3,2,5,4},{1,2,3,5,4},
{1,2,5,3,4},{1,2,5,4,3}

Spreading orders

Figure 1 Example of rumor centrality calculation for a 5 node network. The rumor centrality of node 1 is 8 because there are 8

spreading orders that it can originate, which are shown in the figure.

for a tree graph and SI model with homogeneous exponential spreading times, as mentioned above, such a

quantity can be computed in linear time. But in general, this could be complicated. For example, computing

the number of linear extensions of a given partial order is known to be #P-complete (Brightwell and Win-

kler (1991)). While there are algorithms for approximately sampling linear extensions given a partial order

(Karzanov and Khachiyan (1991)), Shah and Zaman (2010) proposed the following simpler alternative for

general graphs.

Definition 1 [Rumor Centrality] Given node u ∈ V in graph G= (V,E), let T ⊂G denote a breadth-first

search tree of u with respect toG. Then, the rumor centrality of u with respect toG is obtained by computing

it as per (2.1) with respect to T . The estimated rumor source is the one with maximal rumor centrality (ties

broken uniformly at random).

2.3. Prior Results

In Shah and Zaman (2010), the authors established that rumor centrality is the maximum-likelihood esti-

mator for the rumor source when the underlying graph G is a regular tree. They studied the effectiveness

of this ML estimator for such regular trees. Specifically, suppose we observe the n(t) node rumor infected

graph G after time t, which is a subgraph of G. Let Ck
t be the event that the source estimated as per rumor

centrality is the kth infected node, and thus C1
t corresponds to the event of correct detection. The following

are key results from Shah and Zaman (2010):

Theorem 2.1 (Shah and Zaman (2010)) Let G be a d-regular infinite tree with d≥ 2. Let

αLd = lim inf
t→∞

P
(
C1
t

)
≤ limsup

t→∞
P
(
C1
t

)
= αUd . (2.2)

Then,

αL2 = αU2 = 0, αL3 = αU3 =
1

4
, and 0<αLd ≤ αUd ≤

1

2
, ∀ d≥ 4. (2.3)



Shah and Zaman: Finding Rumor Sources
8

3. Main Results

We state the main results of this paper. In a nutshell, our results concern the characterization of the probabil-

ity of Ck
t for any k≥ 1 for large t when G is a generic tree. As a consequence, it provides a characterization

of the performance for sparse random graphs.

3.1. Regular Trees, SI Model with Exponential Spreading Times

We first look at rumor source detection on regular trees with degree d≥ 3, where rumor centrality is an exact

ML estimator when the spreading times are exponentially distributed. Our results will utilize properties of

Beta random variables. We recall that the regularized incomplete Beta function Ix(a, b) is the probability

that a Beta random variable with parameters a and b is less than x∈ [0,1],

Ix(a, b) =
Γ(a+ b)

Γ(a)Γ(b)

∫ x

0

ta−1(1− t)b−1dt, (3.1)

where Γ(·) is the standard Gamma function. For regular trees of degree ≥ 3 we obtain the following result.

Theorem 3.1 Let G be d-regular infinite tree with d≥ 3. Assume a rumor spreads on G as per the SI model

with exponential distribution with rate λ. Then, for any k≥ 1,

lim
t→∞

P
(
Ck
t

)
=I1/2

(
k− 1 +

1

d− 2
,1 +

1

d− 2

)
+ (d− 1)

(
I1/2

(
1

d− 2
, k+

1

d− 2

)
− 1

)
. (3.2)

For k= 1, Theorem 3.1 yields that αLd = αUd = αd for all d≥ 3 where

αd = dI1/2

(
1

d− 2
,
d− 1

d− 2

)
− (d− 1). (3.3)

More interestingly,

Corollary 1

lim
d→∞

αd = 1− ln 2 ≈ 0.307. (3.4)

For any d ≥ 3, we can obtain a simple upper bound for Theorem 3.1 which provides the insight that the

probability of error in the estimation decays exponentially with error distance (not number of hops in graph,

but based on chronological order of infection) from the true source.

Corollary 2 When G is a d-regular infinite tree, for any k≥ 1,

lim
t→∞

P
(
Ck
t

)
≤ k (k+ 1)

(
1

2

)k−1

� exp
(
−Θ(k)

)
.
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Figure 2 limt→∞P
(
Ckt

)
versus k for regular trees of different degree.
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n
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Figure 3 αd versus degree d for regular trees.

To provide intuition, we plot the asymptotic error distribution limt→∞P (Ck
t ) for different degree regular

trees in Figure 2. As can be seen, for degrees greater than 4, all the error distributions fall on top of each

other, and the probability of detecting the kth infection as the source decays exponentially in k. We also

plot the upper bound from Corollary 2. As can be seen, this upper bound captures the rate of decay of the

error probability. Thus we see tight concentration of the error for this class of graphs. Figure 3 plots the

asymptotic correct detection probability αd versus degree d for these regular trees. It can be seen that the

detection probability starts at 1/4 for degree 3 and rapidly converges to 1 − ln(2) as the degree goes to

infinity.
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3.2. Generic Random Trees, SI Model with Generic Spreading Times

The above precise results were obtained using the memoryless property of the exponential distribution and

the regularity of the trees. Next, we wish to look at a more general setting both in terms of tree structures

and spreading time distributions. In this more general setting, while we cannot obtain precise values for the

detection and error probabilities, we are able to make statements about the non-triviality of the detection

probability of rumor centrality. When restricted to exponential spreading times for generic trees, we can

identify bounds on the error probability as well. Let us start by defining what we mean by generic random

trees through a generative model.

Definition 2 (Generic Random Trees) It is a rooted random tree, generated as follows: given a root node

as a starting vertex, add η0 children to root where η0 is an independent random variable with distribution

D0. If η0 6= 0, then add a random number of children chosen as per distribution D over {0,1, . . .} inde-

pendently to each child of the root. Recursively, to each newly added node, add independently a random

number of nodes as per distribution D.

The generative model described above is precisely the standard Galton-Watson branching process ifD0 =

D. If we take D0 and D to be deterministic distributions with support on d and d − 1 respectively, then

it gives the d-regular tree. For a random d-regular graph on n nodes, as n grows the neighborhood of a

randomly chosen node in the graph converges (in distribution, locally) to such a d-regular tree. If we take

D0 = D as a Poisson distribution with mean c > 0, then it asymptotically equals (in distribution) to the

local neighborhood of a randomly chosen node in a sparse Erdos-Renyi graph as the number of nodes

grows. Recall that a (sparse) Erdos-Renyi graph on n nodes with parameter c is generated by selecting each

of the
(
n
2

)
edges to be present with probability c/n independently. Effectively, random trees as described

above capture the local structure for sparse random graphs reasonably well. For that reason, establishing the

effectiveness of rumor centrality for source detection for such trees provide insights into its effectiveness

for sparse random graph models.

We shall consider spreading time distributions to be generic. Let F : [0,∞)→ [0,1] be the cumulative

distribution function of the spreading times. Clearly F (0) = 0, F is non-decreasing and limt→∞F (t) = 1.

In addition, we shall require that the distribution is non-atomic at 0, i.e. F (0+) = 0. We state the following

result about the effectiveness of rumor centrality with such generic spreading time distribution.

Theorem 3.2 Let η0, distributed asD0, be such that Pr(η0 ≥ 3)> 0 and let η, distributed as perD, be such

that 1<E[η]<∞. Suppose the rumor starts from the root of the random tree generated as per distributions

D0 and D as described above and spreads as per the SI model with a spreading time distribution with an

absolutely continuous density. Then,

lim inf
t→∞

P
(
C1
t

)
> 0.
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The above result says that irrespective of the structure of the random trees, spreading time distribution and

elapsed time, there is non-trivial probability of detecting the root as the source by rumor centrality. The

interesting aspect of the result is that this non-trivial detection probability is established by studying events

when the tree grows without bound. For finite size trees with n nodes, the rumor source can be estimated

by selecting a random node, giving a probability of correct detection of n−1 > 0. However, such events are

trivial and are not of much interest to us (neither mathematically, nor motivationally).

3.2.1. Generic Random Trees, SI Model With Exponential Spreading Times Extending the results

of Theorem 3.2 for explicitly bounding the probability of the error event P
(
Ck
t

)
for generic spreading time

distribution seems rather challenging. Here we provide a result for generic random trees with exponential

spreading times.

Theorem 3.3 Consider the setup of Theorem 3.2 with spreading times being homogeneous exponential

distributions with (unknown, but fixed) parameter λ > 0. In addition, let D0 =D. Let η, distributed as per

D, be such that E[η] > 1 and E[exp(θη)] <∞ for all θ ∈ (−ε, ε) for some ε > 0. Then, for appropriate

constants C ′,C ′′ > 0,

limsup
t→∞

P
(
Ck
t

)
≤C ′ exp(−kC ′′). (3.5)

The above result establishes an explicit upper bound on the probability of the error event. The bound

applies to essentially any generic random tree and demonstrates that the probability of identifying later

infected nodes as the rumor source decreases exponentially fast.

3.2.2. Geometric Trees, SI Model With Generic Spreading Times The trees considered thus far, d-

regular trees with d≥ 3 or random trees with E[η]> 1, grow exponentially in size with the diameter of the

tree. This is in contrast with path graphs or d-regular trees with d= 2 which grow only linearly in diameter.

It can be easily seen that the probability of correct detection, P(C1
t ) will scale as Θ(1/

√
t) for path graphs

as long as the spreading time distribution has non-trivial variance (see Shah and Zaman (2010) for proof

of this statement for the SI model with exponential spreading times). In contrast, the results of this paper

stated thus far suggest that the expanding trees allow for non-trivial detection as t→∞. Thus, qualitatively

path graphs and expanding trees are quite different – one does not allow detection while the other does.

To understand where the precise detectability threshold lies, we look at polynomially growing geometric

trees.

Definition 3 (Geometric Tree) A geometric tree is a rooted, non-regular tree parameterized by constants

α, b, and c, with α ≥ 0, 0 < b ≤ c, and root node v∗. Let d∗ be the degree of v∗, let the neighbors of v∗

be denoted v1, v2, ...vd∗ , and let the subtree rooted at vi and directed away from v∗ be denoted by Ti for
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i = 1,2, ..., d∗. Denote the number of nodes in Ti at distance exactly r from the subtree’s root node vi as

ni(r). Then we require that for all 1≤ i≤ d∗

brα ≤ ni(r)≤ crα. (3.6)

The condition imposed by (3.6) states that each of the neighboring subtrees of the root should satisfy

polynomial growth (with exponent α> 0) and regularity properties. The parameter α> 0 characterizes the

growth of the subtrees and the ratio c/b describes the regularity of the subtrees. If c/b≈ 1 then the subtrees

are somewhat regular, whereas if the ratio is much greater than 1, there is substantial heterogeneity in the

subtrees. Note that the path graph is a geometric tree with α= 0, b= 1, and c= 2.

We shall consider the scenario where the rumor starts from the root node of a rooted geometric tree. We

shall show that rumor centrality detects the root as the source with an asymptotic probability of 1 for a

generic spreading time distribution with exponential tails. This is quite interesting given the fact that rumor

centrality is an ML estimator only for regular trees with exponential spreading times. The precise result is

stated next.

Theorem 3.4 Let G be a rooted geometric tree as described above with parameters α > 0, 0< b≤ c and

root node v∗ with degree d∗ such that

dv∗ >
c

b
+ 1.

Suppose the rumor starts spreading on G starting from v∗ as per the SI model with a generic spreading time

distribution whose cumulative density function F :R→ [0,1] is such that (a) F (0) = 0, (b) F (0+) = 0, and

(c) if X is a random variable distributed as per F then E[exp(θX)]<∞ for θ ∈ (−ε, ε) for some ε > 0.

Then

lim
t
P(C1

t ) = 1.

A similar theorem was proven in Shah and Zaman (2010), but only for the SI model with exponential

spreading times. We have now extended this result to arbitrarily distributed spreading times. Theorem 3.4

says that α= 0 and α> 0 serve as a threshold for non-trivial detection: for α= 0, the graph is a path graph,

so we would expect the detection probability to go to 0 as t→∞ as discussed above, but for α > 0 the

detection probability converges to 1 as t→∞.

3.3. Detection Probability and Graph Growth: Discussion

Our results can be viewed as relating detection probability to graph growth parametrized by α. For path

graphs, where no detection is possible, α = 0. For any finite, positive α we have geometric graphs where

the detection probability converges to one. For regular trees or random graphs, the growth is exponential,

which gives α=∞, and we have a detection probability that is strictly between zero and one.
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To understand these results at a high level, it is helpful to consider the properties of the rumor center

given by Lemma 1. Essentially, this lemma states that the graph is balanced around the rumor center. For

the rumor source to be the rumor center (and therefore correctly identified as the true source), the rumor

must spread in a balanced way. For a path graph (α= 0), balance is a very delicate condition, requiring both

subtrees of the source to be exactly equal in size. The probability of this occurring goes to zero as the graph

size goes to infinity.

For any non-negative, finite alpha, this balance condition becomes easier to achieve if the source has

degree greater than or equal to three. In this case, because the number of vertices grows polynomially, the

variation of the size of a rumor infected subtree after a time t is much smaller than the expected value of its

size, resulting in a concentration of the size. This means that with high probability, no subtree will be larger

than half of the network size, and balance is achieved. The key here is that the boundary where the rumor

can spread grows slower than the size of the rumor infected graph. If the graph has dα+1 nodes, then the

boundary contains dα nodes.

For infinite alpha, which corresponds to graphs with exponential growth, the rumor boundary size is of

the same order of magnitude in size as the rumor infected graph. This results in a high variance in the

subtree size. We would expect this high variance to result in detection becoming impossible. However,

our analysis shows that the manner in which the rumor spreads on these graphs results in detection being

possible with strictly positive probability. Another way to view this result is that the vertices in each subtree

act as witnesses which we can use to triangulate the source. If there are three or more subtrees, and the

subtree sizes do not vary considerably (as in graphs with polynomial growth), then the witnesses have low

noise, and we can detect the source exactly as the observed rumor infected graph grows. For exponentially

growing graphs, the noise in the signals provided by the witnesses grows with the number of witnesses.

The increased number of witnesses balances the increased noise to give a detection probability that remains

strictly positive as the graph size goes to infinity.

3.4. Locally Tree-Like Graphs: Discussion

The results of the paper are primarily for tree structured graphs. On one hand, these are specialized graphs.

On the other hand, they serve as local approximations for a variety of sparse random graph models. As

discussed earlier, for a random d-regular graph overm nodes, a randomly chosen node’s local neighborhood

(say up to distance o(logm)) is a tree with high probability. Similarly, consider an Erdos-Renyi graph

over m nodes with each edge being present with probability p= c/m independently for any c > 0 (c > 1

is an interesting regime due to the existence the of a giant component). A randomly chosen node’s local

neighborhood (up to distance o(logm)) is a tree and distributionally equivalent (in the large m limit) to a

random tree with Poisson degree distribution.
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Figure 4 Empirical error probability versus k for Erdos-Renyi graphs with 500 vertices, mean degree 10 and 20, and exponen-

tially distributed spreading times with mean one. Also shown are limt→∞P
(
Ckt

)
for degree 10 and 20 regular trees

with exponentially distributed spreading times with mean one.

Given such ‘locally tree-like’ structural properties, if a rumor spreads on a random d-regular graph or

sparse Erdos-Renyi graph for time o(logm) starting from a random node, then rumor centrality can detect

the source with guarantees given by Theorems 3.1 and 3.2. Thus, although the results of this paper are for

tree structured graphs, they do have meaningful implications for tree-like sparse graphs.

For the purpose of illustration, we conducted some simulations for Erdos-Renyi graphs that are reported

in Figure 4. We generated graphs with m= 50,000 nodes and edge probabilities p= c/m for c= 10 and

c= 20. The rumor graph contained n= 500 nodes and the spreading times had an exponential distribution

with mean one. We used the general graph version of rumor centrality as defined in Definition 1 as the rumor

source estimator. We ran 10,000 rumor spreading simulations to obtain the empirical error distributions

plotted in Figure 4. As can be seen, the error drops of exponentially in k, very similar to the regular tree

error distribution. To make this more evident, we also plot the asymptotic error distributions for regular

trees of degree 10 and 20 and it can be seen that the error decays at similar, exponential rates. This indicates

that even though there is substantial randomness in the graph, the asymptotic rumor source detection error

distribution behaves as though it were a regular tree graph. This result also suggests that the bounds in

Theorem 3.3 are loose for this graph.

4. Proofs

Here proofs of the results stated in Section 3 are presented. We establish results for d-regular trees by

connecting rumor spreading with Polya urn models and branching processes. Later we extend this novel

method to establish results for generic random trees under arbitrary spreading time distributions. After this,
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we prove Theorem 3.4 using standard Chernoff’s bound and the polynomial growth property of geometric

trees.

4.1. Proof of Theorem 3.1: d-Regular Trees

4.1.1. Background: Polya’s Urn. We will recall Polya’s urn process and it’s asymptotic properties that

we shall crucially utilize in establishing Theorem 3.1. An interested reader can find a good exposition in

Athreya and Ney (1972).

In the simplest form, Polya’s Urn process operates in discrete time. Initially, at time 0, an urn contains

balls of two types, say W0 white balls and B0 black balls. Let WnandBn denote the number of white and

black balls, respectively, at the end of time n≥ 1. At each time n≥ 1, a ball is drawn at random from the urn

(Wn−1 +Bn−1 balls in total). This ball is added back along with α≥ 1 new balls of the same type leading

to a new configuration of balls (Wn,Bn). For instance, at time n, a white ball is drawn with probability

Wn−1/(Wn−1 +Bn−1) and we have that Wn =Wn−1 +α, Bn =Bn−1.

Under the above described process, it is easy to check that the fraction of white (or black) balls is a

bounded martingale. Therefore, by the martingale convergence theorem, it has a limit almost surely. What

is interesting is that the limiting distribution is nicely characterized as stated below.

Theorem 4.1 (Athreya and Ney 1972, Theorem 1, pp. 220) For the Polya’s Urn process described above

Wn

Wn +Bn
→ Y almost surely, (4.1)

where Y is a Beta random variable with parameters W0/α and B0/α. That is, for x∈ [0,1],

P (Y ≤ x) = Ix

(W0

α
,
B0

α

)
,

where Ix(a, b) is the incomplete Beta function defined as in (3.1)

4.1.2. Setup and Notation. Let G = (V,E) be an infinite d-regular tree and let the rumor start spreading

from a node, say v1. Without loss of generality, we view the tree as a randomly generated tree, as described

in Section 3, with v1 being the root with d children and all the subsequent nodes with d− 1 children (hence

each node has degree d). We shall be interested in d ≥ 3. Now suppose the rumor is spread on this tree

starting from v1 as per the SI model with exponential distribution with rate λ> 0.

Initially, node v1 is the only rumor infected node and its d neighbors are potential nodes that can receive

the rumor. We will denote the set of nodes that are not yet rumor infected but are neighbors of rumor

infected nodes as the rumor boundary. Initially the rumor boundary consists of the d neighbors of v1.

Under the SI model, each edge has an independent exponential clock of mean 1/λ. The minimum of d

independent exponentials of mean 1/λ is an exponential random variable of mean 1/ (dλ), and hence when
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one of the d nodes (chosen uniformly at random) in the rumor boundary gets infected, the infection time

has an exponential distribution with mean 1/ (dλ). Upon this infection, this node gets removed from the

boundary and adds its d− 1 children to the rumor boundary. That is, each infection adds d− 2 new nodes

to the rumor boundary. In summary, let Z(t) denote the number of nodes in the rumor boundary at time t,

then Z(0) = d and Z(t) evolves as follows: each of the Z(t) nodes has an exponential clock of mean 1/λ;

when it ticks, it dies and d− 1 new nodes are born which in turn start their own independent exponential

clocks of mean 1/λ and so on. Let u1, . . . , ud be the children of v1; let Zi(t) denote the number of nodes

in the rumor boundary that belong to the subtree Ti(t) that is rooted at ui with Zi(0) = 1 for 1 ≤ i ≤ d;

Z(t) =
∑d

i=1Zi(t). Let Ti(t) = |Ti(t)| denote the total number of nodes infected in the subtree rooted at ui

at time t; initially Ti(0) = 0 for 1≤ i≤ d. Since each infected node add d−2 nodes to the rumor boundary,

it can be easily checked that Zi(t) = (d− 2)Ti(t) + 1 and hence Z(t) = (d− 2)T (t) + d with T (t) being

the total number of infected nodes at time t (excluding v1).

4.1.3. Probability of Correct Detection. Suppose we observe the rumor infected nodes at some time

t which we do not know. That is, we observe the rumor infected graph G(t) which contains the root v1 and

its d infected subtrees Ti(t) for 1 ≤ i ≤ d. We recall the following result of Shah and Zaman (2010) that

characterizes the rumor center (for a proof see Section 4.2).

Lemma 1 (Shah and Zaman (2010)) Given a tree graph G = (V,E), there can be at most two rumor

centers. Specifically, a node v ∈ V is a rumor center if and only if

T vi ≤
1

2

(
1 +

∑
j∈N (v)

T vj

)
, ∀ i∈N (v), (4.2)

where N (v) = {u ∈ V : (u, v) ∈ E} are neighbors of v in G and T vj denotes the size of the sub-tree of G

that is rooted at node j ∈N (v) and includes all nodes that are away from node v (i.e. the subtree does not

include v). The rumor center is unique if the inequality in (4.2) is strict for all i∈N (v).

This immediately suggests the characterization of the event that node v1, the true source, is identified

by rumor centrality at time t: v1 is a rumor center only if 2Ti(t) ≤ 1 +
∑d

j=1 Tj(t) for all 1 ≤ i ≤ d,

and if the inequality is strict then it is the unique rumor center. Let Ei = {2Ti(t) < 1 +
∑d

j=1 Tj(t)} and

Fi = {2Ti(t)≤ 1 +
∑d

j=1 Tj(t)}. Then,

P
(
C1
t

)
≥P

(
∩di=1Ei

)
= 1−P

(
∪di=1E

c
i

) (a)

≥ 1−
d∑
i=1

P
(
Ec
i

)
(b)
= 1− dP

(
Ec

1

)
. (4.3)

Above, (a) follows from the union bound of events and (b) from symmetry. Similarly, we have

P
(
C1
t

)
≤P

(
∩di=1 Fi

)
= 1−P

(
∪di=1 F

c
i

)
(a)
= 1−

d∑
i=1

P
(
F c
i

)
(b)
= 1− dP

(
F c

1

)
. (4.4)
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Above, (a) follows because events F c
1 , . . . ,F

c
d are disjoint and (b) from symmetry. Therefore, the probability

of correct detection boils down to evaluating P(Ec
1) and P(F c

1 ) which, as we shall see, will coincide with

each other as t→∞. Therefore, the bounds of (4.3) and (4.4) will provide the exact evaluation of the correct

detection probability as t→∞.

4.1.4. P(Ec
1), P(F c

1 ) and Polya’s Urn. Effectively, the interest is in the ratio T1(t)/(1 +
∑d

i=1 Ti(t)),

especially as t→∞ (implicitly we are assuming that this ratio is well defined for a given t or else by

definition there is only one node infected which will be v1, the true source). It can be easily verified that as

t→∞, Ti(t)→∞ for all i almost surely and hence Zi(t) = (d−2)Ti(t) + 1 goes to∞ as well. Therefore,

it is sufficient to study the ratio Z1(t)/(
∑d

j=1Zj(t)) as t→∞ since we shall find that this ratio converges

to a random variable with density on [0,1]. In summary, if we establish that the ratio Z1(t)/(
∑d

j=1Zj(t))

converges in distribution on [0,1] with a well defined density, then it immediately follows that P(Ec
1)

t→∞−→

P(F c
1 ) and we can use Z1(t)/(

∑d

j=1Zj(t)) in place of T1(t)/(1 +
∑d

j=1 Tj(t)).

With these facts in mind, let us study the ratio Z1(t)/(
∑d

j=1Zj(t)). For this, it is instructive to view the

simultaneous evolution of (Z1(t),Z 6=1(t)) (where Z 6=1(t)
4
=
∑d

j=2Zj(t)) as that induced by the standard,

discrete time, Polya’s urn. Initially, τ0 = 0 and there is one ball of type 1 (white) representing Z1(τ0) = 1

and d− 1 balls of type 2 (black) representing Z 6=1(τ0) = d− 1 in a given urn. The jth event happens at

time τj (also known as a split time) when one of the Z1(τj−1) + Z 6=1(τj−1) (= d+ (j − 1)(d− 2)) balls

chosen uniformly at random is returned to the urn along with d−2 new balls of its type. If we set τj− τj−1

equal to an exponential random variable with mean 1/(λ(d + (j − 1)(d − 2))), then it is easy to check

that the fraction of balls of type 1 is identical in law to that of Z1(t)/(
∑d

i=1Zi(t)) (here we are using the

memoryless property of exponential random variables crucially). Therefore, for our purposes, it is sufficient

to study the limit law of fraction of balls of type 1 (or white) under this Polya’s urn model.

From the discussion in Section 4.1.1, it follows that the ratio Z1(t)/(
∑d

i=1Zi(t)) converges to a Beta

random variable with parameters 1/(d− 2) and (d− 1)/(d− 2). Since the Beta distribution has a density

on [0,1], from the above discussion it follows that as t→∞, |P(Ec
1)−P(F c

1 )| → 0 and hence from (4.3),

(4.4)

lim
t→∞

P
(
C1
t

)
= 1− d

(
1− I1/2

( 1

d− 2
,1 +

1

d− 2

))
, (4.5)

where I1/2(a, b) is the probability that a Beta random variable with parameters a and b takes value in [0,1/2].

Note that this establishes the result of Theorem 3.1 for k= 1 in (3.2).

4.1.5. Probability of Ck
t . Thus far we have established Theorem 3.1 for k = 1 (the probability of the

rumor center being the true source). The probability of the event Ck
t (the kth infected node being the rumor

center) is evaluated in an almost identical manner with a minor difference. For this reason, we present an

abridged version of the proof.
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Figure 5 Illustration of the labeling of the neighbors of vk and their subtrees for k = 3 in a rumor graph at tk (the time of

infection of vk). The rumor infected nodes are colored black, and the uninfected nodes are white.

Let Tk = inf{t : n(t) = k} represent the time when kth node is infected. It can be easily checked that for

d≥ 3 regular tree with exponential spreading time distribution, Tk <∞with probability 1. Consider t≥ Tk.

For k≥ 2, let vk be the kth infected node when the rumor starts from v1. We will evaluate the probability of

identifying vk as the rumor center. Let G represent the rumor infected tree observed at time t with n(t)≥ k

nodes. Let w1, . . . ,wd be the d neighbors of vk, as is illustrated in Figure 5. We shall denote the neighbor of

vk that is along the path joining vk and v1 as w1. Note that w1 must have been infected before vk when the

rumor starts spreading from v1. Let w2, . . . ,wd be the d− 1 ‘children’ of vk, away from v1.

For convenience, we shall use notation t′ = t−Tk with t′ ≥ 0. Let T ki (t′) be the subtree ofG rooted at wi

at time t away from vk. Therefore, T k1 (t′) is rooted at w1 and includes v1, . . . , vk−1. For 2≤ i≤ d, T ki (t′)

are rooted at wi and contain nodes in G that are away from vk. None of the T ki (t′) for 1≤ i≤ d include vk.

When vk is infected at time Tk, we have that T k1 (0) = k− 1, and T ki (0) = 0 for 2≤ i≤ d. This notation is

illustrated in Figure 5.

By definition T k1 (t′) is never empty, but T ki (t′) can be empty if wi is not infected, for 2 ≤ i ≤ d. As

before, let T ki (t′) = |T ki (t′)|. As per Lemma 1, vk is identified as a rumor center if and only if all of its d

subtrees are balanced, i.e.

2T ki (t′)≤ 1 +
d∑
j=1

T kj (t′), ∀ 1≤ i≤ d. (4.6)

Therefore, for t≥ Tk with t′ = t−Tk,

P
(
Ck
t

)
≥P

(
∩di=1Ei

)
= 1−P

(
∪di=1E

c
i

)
≥1−

d∑
i=1

P
(
Ec
i

)
, and (4.7)
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P
(
Ck
t

)
≤P

(
∩di=1 Fi

)
= 1−P

(
∪di=1 F

c
i

)
=1−

d∑
i=1

P
(
F c
i

)
, (4.8)

where Ei = {2T ki (t′)< 1 +
∑d

j=1 T
k
j (t′)} and Fi = {2T ki (t′)≤ 1 +

∑d

j=1 T
k
j (t′)}.

As before, we shall evaluate these probabilities by studying the evolution of the appropriate rumor bound-

aries. However, unlike for k = 1, when k ≥ 2 the rumor boundaries have asymmetric initial conditions.

Specifically, T k1 (0) = k − 1, Zk1 (·) = (d − 2)(k − 1) + 1 and for 2 ≤ i ≤ d, T ki (0) = 0 and Zki (0) = 1.

Beyond this difference, the rules governing the evolution of the rumor boundaries are the same as those

described in the proof for k= 1. To evaluate Ec
1 (and F c

1 ), we consider a Polya’s urn in which we start with

(d− 2)(k − 1) + 1 balls of type 1 (corresponding to Zk1 (0)) and d− 1 balls of type 2 (corresponding to∑d

j=2Z
k
j (0)). With these initial conditions, the limit law of fraction of balls of type 1 turns out to be (see

Athreya and Ney (1972) for details) a Beta distribution with parameters a = ((d− 2)(k − 1) + 1)/(d−

2) = (k− 1) + 1/(d− 2) and b= (d− 1)/(d− 2) = 1 + 1/(d− 2). Finally, since the fraction of balls of

type 1, i.e. the ratio Zk1 (t′)/(
∑k

j=1Z
k
j (t′)), equals T k1 (t′)/(1 +

∑d

j=1 T
k
j (t′)) as t′→∞, we obtain

lim
t′→∞

P
(
Ec

1

)
= lim

t′→∞
P
(
F c

1

)
= 1− I1/2

(
k− 1 +

1

d− 2
, 1 +

1

d− 2

)
. (4.9)

For 2≤ i≤ d, in the corresponding Polya’s urn model, we start with 1 ball of type 1 and k(d− 2) + 1 balls

of type 2. Therefore, using an identical sequence of arguments, we obtain that for 2≤ i≤ d,

lim
t′→∞

P
(
Ec
i

)
= lim

t′→∞
P
(
F c
i

)
= 1− I1/2

( 1

d− 2
, k+

1

d− 2

)
. (4.10)

From (4.7)-(4.10), it follows that

lim
t→∞

P
(
Ck
t

)
=I1/2

(
k− 1 +

1

d− 2
, 1 +

1

d− 2

)
+ (d− 1)

(
I1/2

( 1

d− 2
, k+

1

d− 2

)
− 1
)
. (4.11)

This establishes (3.2) for all k and completes the proof of Theorem 3.1.

4.2. Proof of Lemma 1

We provide here a proof of Lemma 1 for the convenience of the reader. Much of this proof is taken from

Shah and Zaman (2010). We begin by establishing the following property about rumor centrality.

Proposition 1 Consider an undirected tree graphG= (V,E) with |V |=N and any two neighboring nodes

u, v ∈ V such that (u, v)∈E. The rumor centralities of these two nodes satisfy the following relationship:

R(u,G)

R(v,G)
=

T vu
N −T vu

. (4.12)
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We now show that if v is a rumor center then it must satisfy the condition given by equation (4.2) in Lemma

1. For any node i neighboring the rumor center v, Proposition 1 gives
R(i,G)

R(v,G)
=

T vi
N −T vi

≤ 1.

Rearranging terms, we obtain

T vi ≤
N

2
≤ 1

2

1 +
∑

j∈N (v)

T vj

 .

We now establish the other direction of Lemma 1. Assume equation (4.2) of the Lemma is satisfied for a

node v. We now show that v must be a rumor center.

Let i∈ V be a node d hops from v and let {v0 = v, v1, v2, ..., vd = i} be the sequence of nodes in the path

between v and i. Using Proposition 1 we obtain

R(i,G)

R(v,G)
=

d∏
i=1

R(vi,G)

R(vi−1,G)
=

d∏
i=1

T
vi−1
vi

N −T vi−1
vi

.

The subtrees on the path between v and i have the special property that T vi−1
vi = T vvi for i= 1,2, ..., d because

the nodes in the subtree rooted at vi are the same if the subtree is directed away from vi−1 or v. We also

have the property that N/2≥ T vvi−1
> T vvi for i= 2, ..., d because the subtrees must decrease in size by at

least one node as we traverse the path from v to i and node v satisfies equation (4.2) in the Lemma. With

these facts we obtain

R(i,G)

R(v,G)
=

d∏
i=1

T vvi
N −T vvi

≤ 1. (4.13)

If the inequality is strict in equation (4.2), then we have that for any i 6= v, T vi <N/2. Using Proposition

1 it can be shown that this implies that for every i 6= v, there exists a node j 6= i such that T ij >N/2. This

violates equation (4.2), which means i cannot be a rumor center. Therefore, v is the unique rumor center.

4.3. Proof of Proposition 1

The rumor centrality of a node v in a tree G= (V,E) with |V |=N is given by

R(v,G) =
N !∏
w∈V T

v
w

with the tree variables T vw denoting the size of the subtree of G that is rooted at w and points away from v.

For any two nodes u, v in a tree such that (u, v) ∈E there is a special relationship between their subtrees.

For any w ∈ V,w 6= u, v, it can be shown that T vw = T uw . Also, it can be shown that T vu contains all nodes

which are not in T uv . This gives the simple relation that T uv = N − T vu . With these results on the subtree

variables we obtain
R(u,G)

R(v,G)
=

∏
w∈V T

v
w∏

w∈V T
w
v

=
T vu

N −T vu
.
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4.4. Proof of Corollary 1

Simple analysis yields Corollary 1. We start by defining the asymptotic probability for a d-regular tree as

limt→∞P (C1
t ) = αd. This quantity then becomes

αd =dI1/2

(
1

d− 2
,1 +

1

d− 2

)
− d+ 1

=1−
dΓ(1 + 2

d−2
)

Γ( 1
d−2

)Γ(1 + 1
d−2

)

∫ 1

1
2

t
1
d−2−1(1− t)

1
d−2dt

We then take the limit as d approaches infinity.

lim
d→∞

αd = lim
d→∞

1−
dΓ(1 + 2

d−2
)

Γ( 1
d−2

)Γ(1 + 1
d−2

)

∫ 1

1
2

t
1
d−2−1(1− t)

1
d−2dt

= 1− lim
d→∞

dΓ(1 + 2
d−2

)

(d− 2− γ+O (d−1))Γ(1 + 1
d−2

)

∫ 1

1
2

t
1
d−2−1 (1− t)

1
d−2 dt

= 1−
∫ 1

1
2

t−1dt

= 1− ln (2) .

Above, γ is the Euler-Mascheroni constant and we have used the following approximation of Γ(x) for small

x: Γ(x) = x−1− γ+O (x).

4.5. Proof of Corollary 2

Corollary 2 follows from (3.2) and monotonicity of the Γ function over [1,∞). For k≥ 2,

lim
t→∞

P
(
Ck
t

)
= I1/2

(
k− 1 +

1

d− 2
,1 +

1

d− 2

)
+ (d− 1)

(
I1/2

(
1

d− 2
, k+

1

d− 2

)
− 1

)
≤ I1/2

(
k− 1 +

1

d− 2
,1 +

1

d− 2

)
=

Γ(k+ 2
d−2

)

Γ(k− 1 + 1
d−2

)Γ(1 + 1
d−2

)

∫ 1
2

0

tk+ 1
d−2−2(1− t)

1
d−2dt

(a)

≤
Γ(k+ 2

d−2
)

Γ(k− 1 + 1
d−2

)Γ(1 + 1
d−2

)

∫ 1
2

0

tk−2dt

(b)

≤ 4e2Γ(k+ 2)

Γ(k− 1)

∫ 1
2

0

tk−2dt

(c)

≤ 4e2k(k+ 1)(k+ 2)

(
1

2

)k−1

� exp
(
−Θ(k)

)
.



Shah and Zaman: Finding Rumor Sources
22

In above, (a) follows from the fact that t < 1 and hence tk−2+1/(d−2) ≤ tk−2. For (b), we use the following

well-known properties of the Γ function: (i) over [2,∞), the Γ function is non-decreasing and hence for

k≥ 2 and d≥ 3, Γ(k+ 2
(d−2)

)≤ Γ(k+2); (ii) over (0,∞), the Γ function achieves its minimal value in [1,2]

which is at least 1
2e

and therefore, along with (i), we have that Γ(k−1+ 1
d−2

)≥ Γ(k−1)

2e
and Γ(1+ 1

d−2
)≥ 1

2e
.

For (c), we use the fact that Γ(x+ 1) = xΓ(x) for any x∈ (0,∞).

4.6. Proof of Theorem 3.2: Correct Detection for Random Trees

The goal is to establish that there is a strictly positive probability of detecting the source correctly as the

rumor center when the rumor starts at the root of a generic random tree with generic spreading time dis-

tribution as defined earlier. The probability is with respect to the joint distribution induced by the tree

construction and the SI rumor spreading model with independent spreading times. We extend the tech-

nique employed in the proof of Theorem 3.1. However, it requires using a generalized Polya’s urn or

age-dependent branching process as well as delicate technical arguments.

4.6.1. Background: Age-Dependent Branching Process. We recall a generalization of the classical

Polya’s urn known as an age-dependent branching process. Such a process starts at time t= 0 with a given

finite number of nodes, say B(0)≥ 1. Each node remains alive for an independent, identically distributed

lifetime with cumulative distribution function given by F : [0,∞)→ [0,1]. The lifetime distribution func-

tion F will be assumed to be non-atomic at 0, i.e. F (0+) = 0. Each node dies after remaining alive for its

lifetime. Upon the death of a node, it gives birth to random number of nodes, say η. The random variables η

corresponding to each node are independent and identically distributed over the non-negative integers. The

newly born nodes live for their lifetime and the upon death give birth to new nodes, and so on.

As can be seen, the classical Galton-Watson process is a special case of this general model and the size

of the entire urn in the Polya’s urn process described earlier naturally fits this model. An interested reader is

referred to Athreya and Ney (1972) for a detailed exposition. Next we recall certain remarkable asymptotic

properties of this process that will be crucially utilized. We start with a useful definition.

Definition 4 (Athreya and Ney 1972, pp. 146) Let m ≡ E[η]. The Malthusian parameter α = α(m,F ) of

an age-dependent branching process is the unique solution, if it exists, of the equation

m

∫ ∞
0

e−αydF (y) = 1. (4.14)

A sufficient condition for the existence of the Malthusian parameter is m = E[η] > 1. As an example,

consider process where spreading time distribution is exponential with parameter λ, i.e. F (t) = 1− e−λt,

and let m=E[η]> 1. The Malthusian parameter α(m,F ) is given by the solution of

m

∫ ∞
0

e−αyλe−λydy= 1,
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which is

α(m,F ) = λ(m− 1).

The Malthusian parameter captures the average growth rate of the branching process. We now recall the

following result.

Theorem 4.2 (Athreya and Ney 1972, Theorem 2, pp. 172) Consider an age-dependent branching process

as described above with the additional properties that m=E[η]> 1 and E[η log η]<∞. Let α≡ α(m,F )

be the Malthusian parameter of the process and define

c=
m− 1

αm2
∫∞

0
ye−αydF (y)

.

Let B(t) denote the number of nodes alive in the process at time t≥ 0. Then

1

ceαt
B(t)

t→∞→ W in distribution,

where W is such that

E[W ] = 1 (4.15)

P
(
W = 0

)
= q, (4.16)

P
(
W ∈ (x1, x2)

)
=

∫ x2

x1

w(y)dy, for 0<x1 <x2 <∞, (4.17)

where q ∈ (0,1) is the smallest root of the equation
∑∞

k=0 s
kP(η= k) = s andw(·) is absolutely continuous

with respect to the Lebesgue measure so that
∫∞

0
w(y)dy= 1− q.

The above result states that with probability q (0< q < 1) the branching process becomes extinct, and with

probability 1− q the size of the process scales as exp(αt) for large t. We will need finer control on the

asymptotic growth of the branching process. Precisely, we shall use the following implication of the above

stated result.

Corollary 3 Under the setting of Theorem 4.2, for any f > 1, there exists an x> 0 so that

P
(
W ∈ (x, fx)

)
> 0. (4.18)

Proof Define

ak = fk, for k ∈Z.
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By definition, {W > 0} = ∪k∈Z {W ∈ (ak, ak+1]}. Due to the absolute continuity of w(·) in (4.17), it

follows that P(W = ak) = 0 for all k ∈Z. Therefore, it follows that

0<P
(
W > 0

)
=P

(
∪k∈Z

{
W ∈ (ak, ak+1)

})
≤
∑
k∈Z

P
(
W ∈ (ak, ak+1

)
. (4.19)

From above, it follows that there exists a k such that P
(
W ∈ (ak, ak+1)

)
> 0. This completes the proof.

4.6.2. Notation. We quickly recall some notation. To start with, as before let v1 be the root node of the

tree. It has η0 children distributed as per D0. Define the event A = {η0 ≥ 3}. By assumption of Theorem

3.2, P(A)> 0. We shall show that

lim inf
t→∞

P(C1
t |A)> 0, (4.20)

as it will imply the desired result lim inft→∞P(C1
t )> 0, using P(A)> 0 since P(C1

t )≥P(C1
t |A)P(A).

Therefore, we shall consider conditioning on eventA and let d= η0 ≥ 3 for remainder of the proof. Note that

all the spreading times as well as all other randomness are independent of η0. The only effect of conditioning

on A is that we know that root has d≥ 3 children. Let u1, . . . , ud be the d children of root v1. The random

tree G is constructed by adding a random number of children to u1, . . . , ud recursively as per distribution D
as explained in Section 3.2.

Further, as explained in Section 3.2, the rumor spreads on G starting from v1 at time 0 as per the spreading

times with cumulative distribution function F that is non-atomic at 0. Let G be the sub-tree of G that is

infected at time t with n(t) infected nodes in G at time t. Let Ti(t) denote the subtree of G rooted at node

ui (pointing away from root v1) at time t, for 1≤ i≤ d and let Ti(t) = |Ti(t)|. By definition Ti(0) = 0 for

1≤ i≤ d. Let Zi(t) denote the size of the rumor boundary of Ti(t); initially Zi(0) = 1, 1≤ i≤ d.

Now let us consider the evolution of Zi(·): recall that each node in the rumor boundary has a rumor

infected parent (neighbor). This node will become infected after the amount of time given by the spreading

time associated with the edge connecting the node with its infected parent. After the node becomes infected,

it is no longer part of the rumor boundary, but all of its uninfected neighbors (children) become part of the

rumor boundary. And as per the random generative process of the tree construction, the number of children

added, η, has distribution D. Therefore, the rumor boundary process Zi(·) for each 1≤ i≤ d is exactly an

age-dependent branching process. Further, each Zi(·) evolves independently and since initially each starts

at the same time with exactly one node, they are identically distributed. Therefore, we can utilize the results

stated in Section 4.6.1 to characterize the properties of Zi(·) for 1≤ i≤ d. In the case of regular trees, Zi(·)
and Ti(·) were linearly related which allowed us to obtain results about Ti(·) and the desired conclusion.

While in this general setting, Zi(·) and Ti(·) are not linearly related, we show that they are asymptotically

linearly related due to an appropriate Law of Large Numbers effect. This will help us obtain the desired

conclusion. We present the details next.
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4.6.3. Correct Detection. As before, we wish to show that

P
(
C1
t |A
)
≥P

(
∩di=1

{
2Ti(t)< 1 +

d∑
j=1

Tj(t)
})
, (4.21)

where we have removed the conditioning on A, as the only effect of A was having d distinct trees, which is

already captured. We shall establish (4.21) in two steps:

Step 1. Using the characterizations of Zi(·) in terms of age dependent branching processes as dis-

cussed above, we shall show that there is a non-trivial event E1 ⊂ ∩di=1

{
2Zi(t) <

∑d

j=1Zj(t)
}

with

lim inft→∞P(E1)> 0.

Step 2. Identify an event E2 ⊂E1 with lim inft→∞P(E2)> 0 and E2 ⊂∩di=1

{
2Ti(t)< 1 +

∑d

j=1 Tj(t)
}

for all t large enough.

This will yield the desired results.

4.6.4. Step 1. For any x> 0 and ε > 0 define the event E(x, ε, t) as

E(x, ε, t) =∩di=1

{
Zi(t)c

−1e−αt ∈ (x, (1− 3ε)(d− 1)x)
}
. (4.22)

Since d≥ 3, (1− 3ε)(d− 1)> 1 for small enough ε > 0 and hence the above event is well defined. It can

be easily checked that E(x, ε, t)⊂∩di=1

{
2Zi(t)<

∑d

j=1Zj(t)
}

, since under this event,

max
i
Zi(t)≤ (1− 3ε)(d− 1)x< (d− 1)x≤ (d− 1)min

i
Zi(t).

By Theorem 4.2, it follows that Zi(t)c−1e−αt converges to Wi, which are independent across i and iden-

tically distributed as per (4.16)-(4.17). Therefore, using Corollary 3, it follows that there exists an x∗ > 0

such that

lim inf
t→∞

P
(
E(x∗, ε, t)

)
> 0. (4.23)

Define E1 = E(x∗, ε, t).

4.6.5. Step 2. We want to find E2 ⊂E1 so that for t large enough, E2 ⊂∩di=1

{
2Ti(t)< 1+

∑d

j=1 Tj(t)
}

and lim inft→∞P(E2)> 0. For regular trees this was achieved by using the linear (deterministic) relation-

ship between the Zi(·) and Ti(·). Here, we do not have such a relationship. Instead, we shall establish an

asymptotic relationship. To that end, recall that for any t≥ 0,

Zi(t) = 1 +
∑
`∈Ti(t)

(η`− 1). (4.24)

The above holds because as per the branching process, when a node in the ‘boundary’ dies (−1 is added to

Zi(·)) and it is added to Ti(·), η` new nodes are added to boundary.
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Consider Ti(·). It grows by adding nodes with a random number of children as per distribution D inde-

pendently. Let η1, η2, . . . be these random number of children added to it in that order (we assume this

sequence to be infinite irrespective of whether or not Ti(·) stops growing). Since these are i.i.d. random

variables with finite mean (actually, E[η log η] <∞), by the standard Strong Law of Large Numbers, for

any small enough ε, δ > 0, with probability at least 1− δ, for all 1≤ i≤ d, we have that for all p≥ 1

(1− ε)p
m

−C(ε, δ)≤Ni(p) ≤
(1 + ε)p

m
+C(ε, δ) (4.25)

where Ni(p) = inf{` :
∑`

j=1(ηj − 1) ≥ p}, m = E[η] and C(ε, δ) is a non-negative constant depending

upon ε, δ but independent of p. Let us call the event represented by (4.25) as E ′(ε, δ). Here, we have the

freedom of choosing as small a δ and ε as we like. We will choose δ so that it is much smaller than the

probability of event E1 for t large enough. Given such a choice, it will follow that for all t large enough,

the event E2 = E1 ∩ E ′(ε, δ) has strictly positive probability. Under event E2, we have (with the definition

Ẑi(t) =Zi(t)c
−1e−αt)

Ẑi(t)∈ (x∗, x∗(1− 3ε)(d− 1)), for all 1≤ i≤ d, (4.26)

Ti(t)c
−1e−αt ∈

(
Ẑi(t)(1− ε)

m
− at,

Ẑi(t)(1 + ε)

m
+ at

)
for all 1≤ i≤ d,

where the constants at → 0 as t→∞. Therefore, it can be easily checked that for t large enough and ε

small enough, E2 ⊂ ∩di=1

{
2Ti(t) < 1 +

∑d

j=1 Tj(t)
}

, just the way we argued that E1 ⊂ ∩di=1

{
2Zi(t) <∑d

j=1Zj(t)
}

. As discussed above, with an appropriate choice of δ and ε, we can guarantee that

lim inft→∞P(E2) > 0. This concludes the search for the desired event E2 and we have established the

desired claim of lim inft→∞P(C1
t )> 0. This completes the proof of Theorem 3.2.

4.7. Proof of Theorem 3.3

4.7.1. Background: Properties of Age-Dependent Branching Processes. We shall utilize the follow-

ing property known in the literature about bounds on the moment generating function of the size of an

age-dependent branching process. We shall assume the notation from the earlier section.

Theorem 4.3 (Nakayama et al. 2004, Theorem 3.1) Consider an age dependent branching process with the

properties that m= E[η]> 1, E[exp(θη)]<∞ for all θ ∈ (0, θ1) for some θ1 > 0, and the spreading time

distribution is non-atomic. Let B(t) represent the number of living nodes in the branching process at time t

and let V (t) represent the number of nodes born before time t. Then, there exists a θ∗ > 0 such that for all

θ ∈ (−θ∗, θ∗)

E
[
eθB(t)

]
≤E

[
eθV (t)

]
<∞. (4.27)
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4.7.2. Background: Two inequalities. We state two useful concentration-style inequalities that we

shall derive here for completeness.

Proposition 2 For i ≥ 1 let Xi be independent and identically distributed random variables such that

E[exp(θX1)] < ∞ for all θ ∈ (−δ, δ) for some δ > 0. Then, for any ε > 0, there exists constants

C1,C2(ε, δ)> 0 such that

P

(
n∑
i=1

Xi ≤ µn(1− ε)

)
≤C1 exp

(
−C2(ε, δ)µn

)
, (4.28)

where µ=E[X1].

Proposition 3 Consider independent and identical random variables X1, . . . ,Xr+s for integers r, s such

that 1≤ s < r. Let µ= E[X1] and E[exp(θX1)]<∞ for all θ ∈ (−δ, δ) for some δ > 0. Then there exists

a constant c such that for any γ > 0, there exists a constant θ∗ = min(γ+(r−s)µ
2(r+s)c

, δ1/2) for some 0< δ1 < δ,

such that

P(
r∑
i=1

Xi−
s∑
j=1

Xr+j ≤−γ)≤ exp
(
− 1

2
θ∗(γ+ (r− s)µ)

)
. (4.29)

Next, we prove these two propositions.

Proof of Proposition 2. Let X be a random variable with identical distribution as that of Xi, i ≥ 1. By

assumption in the Proposition statement, it follows that for θ ∈ (−δ, δ)

MX(θ)≡ logE[exp(θX)]

= log
(

1 +
∞∑
j=1

θjE[Xj]/j!
)

≤ log
(

1 + θµ+ cθ2
)
,

for some c > 0 for all θ ∈ (−δ1, δ1) for some 0< δ1 < δ. Using the inequality log(1+x)≤ x for all x>−1,

we obtain

MX(θ)≤ θµ+ cθ2. (4.30)

Now, for any Γ> 0 and θ > 0, using standard arguments and (4.30), we obtain

P(
n∑
i=1

Xi ≤ nµ−Γ) =P
(

exp(−θ(
n∑
i=1

Xi−nµ))≥ exp(Γθ)
)

≤ exp(−θΓ + θnµ)E[exp(−θX)]n

= exp
(
− θΓ + θnµ+nMX(−θ)

)
≤ exp

(
− θΓ + cnθ2

)
(4.31)
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For any 0< θ≤ Γ/(2nc),

P(
n∑
i=1

Xi ≤ nµ−Γ)≤ exp
(
− 1

2
Γθ
)
.

Using Γ = nµε and θ∗ = min(δ/2, µε/(2c)), we have

P(
n∑
i=1

Xi ≤ nµ(1− ε))≤ exp
(
− 1

2
nµεθ∗

)
= exp

(
−C2(ε, δ)nµ

)
, (4.32)

where C2(ε, δ) = 1
2
εmin(δ/2, µε/(2c)). This completes the proof of Proposition 2.

Proof of Proposition 3. Given 1≤ s < r, γ > 0 and θ > 0, using standard arguments (with the notation that

the random variable X has an identical distribution as Xi,1≤ i≤ r+ s)

P(
r∑
i=1

Xi−
s∑
j=1

Xr+j ≤−γ) =P(−θ(
r∑
i=1

Xi−
s∑
j=1

Xr+j)≥ γθ)

≤ exp(−θγ)E[exp(−θX)]rE[exp(θX)]s.

Using notation and arguments similar to that in the proof of Proposition 2, we conclude that the above

inequality can be bounded above, for some c > 0 and θ ∈ (−δ1, δ1) for 0< δ1 < δ as

P(
r∑
i=1

Xi−
s∑
j=1

Xr+j ≤−γ)≤ exp(−θγ+ (s− r)θµ+ (r+ s)cθ2). (4.33)

For θ∗ = min(γ+(r−s)µ
2(r+s)c

, δ1/2), we obtain

P(
r∑
i=1

Xi−
s∑
j=1

Xr+j ≤−γ)≤ exp
(
− 1

2
θ∗(γ+ (r− s)µ)

)
. (4.34)

4.7.3. Proof of Theorem 3.3. Theorem 3.3 assumes that the spreading times have an exponential dis-

tribution with (unknown) parameter λ> 0 for all edges. The underlying graph is a generic random tree, just

like that in Theorem 3.2. We shall crucially utilize the ‘memory-less’ property of the exponential distribu-

tion to obtain the exponential error bound on limsupt→∞P(Ck
t ) claimed in Theorem 3.3.

To that end, continuing with notations from the proof of Theorem 3.2, let Tk = inf{t > 0 : T (t) = k}. By

definition,

limsup
t→∞

P(Ck
t |Tk =∞) = 0. (4.35)

Therefore,

limsup
t→∞

P(Ck
t )≤ limsup

t→∞
P(Ck

t |Tk <∞). (4.36)

Therefore, let us assume that Tk <∞ and we will be interested in t > Tk. We shall re-define the index for

time as t′ = t − Tk. When t′ = 0, we have exactly k nodes infected and let them be v1, . . . , vk, chrono-

logically infected in that order. Let d = ηk + 1 denote the total number of neighbors of vk, let w1 denote
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v1

vk=v3

X1(0)=0

v2

X2(0)=0

X6(0)=0

X4(0)=0

X3(0)=0

X5(0)=0

Z(t3)=6
η3=2

T2(t’)=X5(t’)
3

T3(t’)=X6(t’)
3

T1(t’)=2+Σ Xi(t’)
3

i=1

4

Figure 6 Illustration of the labeling of the subtree random processes Xj(t′) for k = 3 in a rumor graph at t= tk (the time of

infection of vk). The rumor infected nodes are colored black, and the uninfected nodes are white.

the neighbor of vk on the path connecting vk and v1 and let w2, . . . ,wd be the other neighbors of vk. Let

T k1 (t′) (with T k1 (t′) = |T k1 (t′)|) be the sub-tree rooted at w1 including v1 (and not including vk). Similarly,

let T kj (t′) (with T kj (t′) = |T kj (t′)|) be the sub-tree rooted at wj , not including vk for 2≤ j ≤ d. By definition

T k1 (0) = k− 1 and T kj (0) = 0, 2≤ j ≤ d.

Let Z(t′) be the size of the rumor boundary of the graph at t′ and let ζk =Z(0) be the size of the rumor

boundary immediately after the kth node is infected. By definition, ζk ≥ d− 1 as w2, . . . ,wd are part of

the rumor boundary when t′ = 0. Let X1(t′), . . . ,Xζk(t′) be the size of the sub-trees at time t′ = t− Tk
(for t≥ Tk) growing from these ζk rumor boundary nodes. Due to the memory-less property of exponen-

tial spreading time distribution, it can be argued that X1(t′), . . . ,Xζk(t′) are independent and identically

distributed random variables. Putting the above discussion together, we have that

T k1 (t′) = k− 1 +

ζk−d+1∑
j=1

Xj(t
′),

d∑
i=2

T ki (t′) =

ζk∑
j=ζk−d+2

Xj(t
′). (4.37)

With Tk <∞, for t≥ Tk and t′ = t−Tk,

P
(
Ck
t |Tk <∞

)
≤P

(
∩di=1

{
2T ki (t′)≤

d∑
j=1

T kj (t′)
}

+ 1
∣∣Tk <∞)

≤P

(
T k1 (t′)≤

d∑
j=2

T kj (t′) + 1|Tk <∞

)
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≤P

k− 1 +

ζk−d+1∑
j=1

Xj(t
′)≤

ζk∑
j′=ζk−d+2

Xj′(t
′) + 1

 . (4.38)

We shall argue that the term on the right in (4.38) is bounded from above by O(exp(−ak)) for all k large

enough. To that end, we shall utilize Propositions 2 and 3.

First, recall that ζk−d+1, which is the total number of nodes in the rumor boundary at time t= Tk due to

the first k− 1 infected nodes, equals
∑k−1

i=1 (ηi− 1), where η1, . . . , ηk−1 are the random number of children

of the first k − 1 infected nodes. By assumption, E[η]> 1. Therefore, using Proposition 2, it follows that

for an appropriate choice of constants C1,C2,

P
(
ζk− d+ 1≤ (k− 1)(E[η]− 1)/2

)
≤C1 exp(−C2k). (4.39)

Second, consider the rumor boundary induced due to the children of vk, denoted in the above sum as d− 1

nodes (corresponding to the terms in the right hand side of the equation). Since d, the degree of vk is a

random number distributed as per η and E[exp(θη)]<∞ for all θ ∈ (−ε, ε) for some ε > 0, it follows that

for appropriate constants C3,C4 > 0 (with k≥ 2),

P(d− 1> (k− 1)(E[η]− 1)/4)≤C3 exp(−C4k). (4.40)

Define the event E = {ζk − d+ 1> (k − 1)(E[η]− 1)/2} ∩ {d− 1≤ (k − 1)(E[η]− 1)/4}. Then, from

(4.39)-(4.40), we have P(Ec)≤C5 exp(−C6k) where C5 =C1 +C3 and C6 = min(C2,C4).

Finally, to bound P(F ), where F = {k− 1 +
∑ζk−d+1

j=1 Xj(t
′)≤

∑ζk
j′=ζk−d+2Xj′(t

′) + 1}, consider the

following: for all k large enough, using Proposition 3, we have

P(F )≤P(F |E) +P(Ec)

≤C7 exp(−C8k) +C5 exp(−C6k) = C ′ exp(−C ′′k). (4.41)

In the last inequality, the first term is derived by applying Proposition 3 where r≥ (k− 1)(E[η]− 1)/2 and

s≤ (k− 1)(E[η]− 1)/4, i.e. r ≥ 2s, γ = k− 2, and C ′,C ′′ > 0 are appropriate constants depending upon

C5,C6,C7 and C8. Note that the conditions of Proposition 3 are satisfied because of Theorem 4.3. This

completes the proof of Theorem 3.3.

4.8. Proof of Theorem 3.4: Geometric Trees

The proof of Theorem 3.4 uses the characterization of the rumor center provided by Proposition 1. That is,

we wish to show that for all n large enough, the event that the size of the d∗ rumor infected sub-trees of

the source v∗ are essentially ‘balanced’ occurs with high probability. To establish this, we shall use coarse

estimations on the size of each of these sub-trees using the standard concentration property of renewal

processes along with geometric growth. This will be unlike the proof for regular trees where we had to
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necessarily delve into very fine detailed probabilistic estimates of the size of the sub-trees to establish the

result. This relatively easier proof for geometric trees (despite their heterogeneity) brings out the fact that

it is fundamentally much more difficult to analyze expanding trees than geometric structures as expanding

trees do not yield to generic concentration based estimations as they necessarily have very high variances.

To that end, we shall start by obtaining sharp estimates on the size of each of the d∗ rumor infected

sub-trees of v∗ for any given time t. We are assuming here that the spreading times have a distribution

F with mean µ > 0 and an exponential tail (precisely, if X is random variable with distribution F , then

E[exp(θX)] <∞ for θ ∈ (−ε, ε) for some ε > 0). Initially, at time 0 the source node v∗ is infected with

the rumor. It starts spreading to its d∗ children (neighbors). Let Ti(t) denote the size of the rumor infected

subtree, denoted by Ti(t), rooted at the ith child (or neighbor) of node v∗. Initially, Ti(0) = 0. Due to the

balanced and geometric growth conditions assumed in Theorem 3.4, the following will be satisfied: for

small enough ε > 0 (a) every node within a distance t
µ

(1− ε) of v∗ is in one of the Ti(t), and (b) no node

beyond distance t
µ

(1 + ε) of v∗ is in any of the Ti(t). Such a tight characterization of the ‘shape’ of Ti(t)
along with the polynomial growth will provide sharp enough bound on Ti(t) that will result in establishing

Theorem 3.4. This result is summarized below with its proof in Section 4.8.1.

Proposition 4 Consider a geometric tree with parameters α > 0 and 0 < b ≤ c as assumed in Theorem

3.4 and let the rumor spread from source v∗ starting at time 0 as per the SI model with spreading time

distribution F such that the mean is µ and E[exp(θX)] <∞ for θ ∈ (−ε, ε) for some ε > 0 where X is

distributed as per F . Define ε= t−1/2+δ for any 0< δ < 1/2. Let G(t) be the rumor infected tree at time t.

Let Gt be the set of all trees rooted at v∗ (rumor graphs) such that all nodes within distance t
µ
(1− ε) from

v∗ are in the tree and no node beyond distance t
µ
(1 + ε) from v∗ is in the tree. Then

P(Gt ∈ Gt) = 1−O
(
e−t

δ) t→∞−→ 1.

Define Et as the event that Gt ∈ Gt. Under event Et, consider the sizes of the sub-trees Ti(t) for 1≤ i≤ dv∗ .
Due to the polynomial growth condition and Et, we obtain the following bounds on each Ti(t) for all

1≤ i≤ dv∗ :
t
µ (1−ε)−1∑
r=1

brα ≤ Ti(t) ≤

t
µ (1+ε)−1∑
r=1

crα.

Now bounding the summations by Riemann integrals, we have∫ L−1

0

rαdr≤
L∑
r=1

rα ≤
∫ L+1

0

rαdr.

Therefore, it follows that under event Et, for all 1≤ i≤ dv∗

b

1 +α

(
t

µ
(1− ε)− 2

)α+1

≤ Ti(t) ≤
c

1 +α

(
t

µ
(1 + ε)

)α+1

.
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In the most ‘unbalanced’ situation, dv∗−1 of these sub-trees have minimal size Tmin(t) and the remaining

one sub-tree has size Tmax(t) where

Tmin(t) =
b

1 +α

(
t

µ
(1− ε)− 2

)α+1

,

Tmax(t) =
c

1 +α

(
t

µ
(1 + ε)

)α+1

.

Since by assumption c < b(dv∗ − 1), there exists γ > 0 such that (1 + γ)c < b(dv∗ − 1). Therefore, for

any choice of ε= t−1/2+δ for some δ ∈ (0,1/2), we have

(d∗− 1)Tmin(t) + 1

Tmax(t)
=
b(dv∗ − 1)

c

(
t
µ
− t 12+δ − 2

t
µ

+ t
1
2+δ

)α+1

+
1 +α

c

(
1

t
µ

+ t
1
2+δ

)α+1

(i)

>(1 + γ)

(
1− t− 1

2+δµ− 2µt−1

1 + t−
1
2+δµ

)α+1

+
1 +α

c

(
1

t
µ

+ t
1
2+δ

)α+1

>1 + γ

>1,

for t large enough since as t→∞ the first term in inequality (i) goes to 1 and the second term goes to 0.

From this, it immediately follows that under event Et for t large enough

max
1≤i≤dv∗

Ti(t)<
1

2

(
dv∗∑
i=1

Ti(t) + 1

)
.

Therefore, by Lemma 1 it follows that the rumor center is unique and equals v∗. We also have that

Et ⊂C1
t . Thus, from above and Proposition 4 we obtain

lim
t
P
(
C1
t

)
≥ lim

t
P
(
Et
)

= 1.

This completes the proof of Theorem 3.4.
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4.8.1. Proof of Proposition 4 We recall that Proposition 4 stated that for a rumor spreading for time t

as per the SI model with a general distribution with mean spreading time µ the rumor graph on a geometric

tree is full up to a distance t
µ
(1−ε) from the source and does not extend beyond t

µ
(1+ε), for ε= t−1/2+δ for

some positive δ ∈ (0,1/2). To establish this, we shall use the following well known concentration property

of renewal processes. We provide its proof later for completeness.

Proposition 5 Consider a renewal process P (·) with holding times with mean µ and finite moment gen-

erating function in the interval (−ε, ε) for some ε > 0. Then for any t > 0 and any γ ∈ (0, ε′) for a small

enough ε′ > 0, there exists a positive constant c such that

P

(∣∣∣∣P (t)− t

µ

∣∣∣∣≥ tγ

µ

)
≤ 2e−

γ2µ
8c t

Now we use Proposition 5 to establish Proposition 4. Recall that the spreading time along each edge is an

independent and identically distributed random variable with mean µ. Now the underlying network graph

is a tree. Therefore for any node v at distance r from source node v∗, there is a unique path (of length r)

connecting v and v∗. Then, the spread of the rumor along this path can be thought of as a renewal process,

say P (t), and node v is infected by time t if and only if P (t)≥ r. Therefore, from Proposition 5 it follows

that for any node v that is at distance t
µ
(1− ε) for ε= t−

1
2+δ for some δ ∈ (0,1/2) (for all t large enough),

P
(
v is not rumor infected

)
≤ 2e−

ε2µt
8c

= 2e−
µ
8c t

2δ

.

Now the number of such nodes at distance t
µ
(1− ε) from v∗ is at most O

((
t
µ

)α+1
)

(which follows from

arguments similar to those in the proof of Theorem 3.4). Therefore, by an application of the union bound it

follows that

P

(
a node at distance

t

µ
(1− ε) from v∗ isn’t infected

)
=O

(
2

(
t

µ

)α+1

e−
µ
8c t

2δ

)
=O

(
e−

µ
8c t

δ
)
.

Using similar argument and another application of Proposition 5, it can be argued that

P (a node at distance t(1 + ε) from v∗ is infected)

=O
(
e−

µ
8c t

δ
)
.

Since the rumor is a ‘spreading’ process, if all nodes at distance r from v∗ are infected, then so are all

nodes at distance r′ < r from v∗; if all nodes at distance r from v∗ are not infected then so are all nodes

at distance r′ > r from v∗. Therefore, it follows that with probability 1−O
(
e−

µ
8c t

δ
)

, all nodes at distance

up to t
µ
(1− ε) from v∗ are infected and all nodes beyond distance t

µ
(1 + ε) from v∗ are not infected. This

completes the proof of Proposition 4.



Shah and Zaman: Finding Rumor Sources
34

4.8.2. Proof of Proposition 5 We wish to provide bounds on the probability of P (t)≤ µt(1− γ) and

P (t)≥ µt(1 +γ) for a renewal process P (·) with holding times with mean µ and finite moment generating

function. Define the nth arrival time Sn as

Sn =
n∑
i=1

Xi

whereXi are non-negative i.i.d. random variables with a well defined moment generating functionMX(θ) =

E[exp(θX)]<∞ for θ ∈ (−ε, ε) for some ε > 0 and mean E [Xi] = µ> 0. We can relate the arrival times

to the renewal process by the following relations:

P (P (t)≤ n) =P (Sn ≥ t)

and

P (P (t)≥ n) =P (Sn ≤ t) .

The first relation says that the probability of less than n arrivals in time t is equal to the probability that the

nth arrival happens after time t. The second relation says that the probability of more than n arrivals in time

t is equal to the probability that the nth arrival happens before time t.

We now bound P (Sn ≥ t). To that end, for θ ∈ (0, ε) it follows from the Chernoff bound that

P (Sn ≥ t) =P
(
eθSn ≥ eθt

)
≤MX (θ)

n
e−θt.

We can use the following approximation for MX (θ) which is valid for small θ, say θ ∈ (0, ε+) for 0< ε+ ≤

ε.

MX (θ) = 1 + θµ+ θ2E [X2]

2
+ θ3

∞∑
i=3

θi−3E [X i]

i!

≤ 1 + θµ+ c1θ
2

for some finite positive constant c1. Using this along with the inequality log (1 +x) ≤ x for −1 < x, we

obtain

log (P (Sn ≥ t))≤ n log (MX (θ))− θt

≤ n log
(
1 + θµ+ c1θ

2
)
− θt

≤ θ (µn− t) +nc1θ
2.

To minimize this probability, we find the θ that minimizes θ (µn− t) + nc1θ
2. This happens for θ =

1
2c1

(
t
n
−µ
)
. We set n = t

µ
(1− γ), so the minimum value is achieved for θ∗ = γµ

2c1(1−γ)
. Therefore, there
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exists ε1 > 0 so that for γ ∈ (0, ε1), the corresponding θ∗ = γµ
2c1(1−γ)

< ε+, so that the quadratic approxima-

tion of MX(θ) is valid. Given this, we obtain

log
(
P
(
S t
µ (1−γ) ≥ t

))
≤− γµ

2c1(1− γ)
(γt) +

tc1

µ
(1− γ)

γ2µ2

4c2
1 (1− γ)

2

≤− γ2µt

2c1(1− γ)
+

γ2µt

4c1(1− γ)

≤− γ2µt

4c1(1− γ)

≤−γ
2µt

8c1

.

With this result, we obtain

P

(
P (t)≤ t

µ
(1− γ)

)
≤ e−

γ2µt
8c1 ,

for any t and γ ∈ (0, ε1). For the upper bound, we have for θ > 0

P (Sn ≤ t) =P
(
e−θSn ≥ e−θt

)
≤MX (−θ)n eθt.

We can use the following approximation for MX (−θ) which is valid for small enough θ ∈ (0, ε−) with

0< ε− ≤ ε.

MX (−θ) = 1− θµ+ θ2E [X2]

2
− θ3

∞∑
i=3

θi−3 (−1)
i−3 E [X i]

i!

≤ 1− θµ+ c2θ
2

for some finite positive constant c2. Using this we obtain

log (P (Sn ≤ t))≤ n log (MX (−θ)) + θt

≤ n log
(
1− θµ+ c2θ

2
)

+ θt

≤ θ (t−µn) +nc2θ
2.

To minimize this probability, we find the θ that minimizes θ (t−µn) + nc2θ
2. This happens for θ =

1
2c2

(
µ− t

n

)
. We set n= t

µ
(1 + γ), so the minimum value is achieved for θ∗ = γµ

2c2(1+γ)
. There exists, ε2 > 0

so that for all γ ∈ (0, ε2), θ∗ = γµ
2c2(1+γ)

≤ ε− and thus guaranteeing the validity of quadratic approximation

of MX(−θ) that we have assumed. Subsequently, we obtain

log
(
P
(
S t
µ (1+γ) ≤ t

))
≤− γµ

2c2(1 + γ)
(γt) +

tc2

µ
(1 + γ)

γ2µ2

4c2
2 (1 + γ)

2

≤− γ2µt

2c2(1 + γ)
+

γ2µt

4c2(1 + γ)

≤− γ2µt

4c2(1 + γ)

≤−γ
2µt

8c2

.
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With this result, we obtain

P

(
P (t)≥ t

µ
(1 + γ)

)
≤ e−

γ2µt
8c2 ,

for any t and γ ∈ (0, ε2).

If we set c= max(c1, c2) and ε′ = min(ε1, ε2) and combine the upper and lower bounds then we obtain

P

(∣∣∣∣P (t)− t

µ

∣∣∣∣≥ tγ

µ

)
≤ 2e−

γ2µ
8c t,

for any t and γ ∈ (0, ε′) with ε′ > 0. This completes the proof of Proposition 5.

5. Conclusion

Finding the source of a rumor in a network is an important and challenging problem in many different

fields. Here we characterized the performance of the rumor source estimator known as rumor centrality

for generic tree graphs. Our analysis was based upon continuous time branching processes and generalized

Polya’s urn models. As an implication of this novel analysis method, we recovered all the previous results

for regular trees from Shah and Zaman (2010) as a special case. We also showed that for rumor spreading

on a random regular graphs, the probability that the estimated source is more than k hops away from the

true source decays exponentially in k. Additionally, we showed that for general random trees and hence

for sparse random graphs like Erdos-Renyi graphs, there is a strictly positive probability of correct rumor

source detection. Thus, even though rumor centrality is an ML estimator only for a very specific setting, it is

still very effective for a wide range of other graphs and spreading models. In summary, we have established

the universality of rumor centrality as a source estimator across a variety of tree structured graphs and

spreading time distributions.
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