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Recent studies of active matter have stimulated interest in the driven self-assembly of complex
structures. Phenomenological modeling of particular examples has yielded insight, but general thermo-
dynamic principles unifying the rich diversity of behaviors observed have been elusive. Here, we study the
stochastic search of a toy chemical space by a collection of reacting Brownian particles subject to periodic
forcing. We observe the emergence of an adaptive resonance in the system matched to the drive frequency,
and show that the increased work absorption by these resonant structures is key to their stabilization.
Our findings are consistent with a recently proposed thermodynamic mechanism for far-from-equilibrium
self-organization.
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Matter is termed “active” when it experiences sustained
inputs of work energy from chemical, mechanical, or other
sources at the single-particle level. Even active matter
systems of quite simple composition can exhibit a striking
array of complex collective behaviors, some of which
mimic dynamical patterns found in living organisms
[1–5]. Yet while it is known that being driven far from
equilibrium is essential to many phenomena that emerge in
active matter, it is challenging to make general thermody-
namic statements that constrain or explain experimental
observations. The need for such principles is felt especially
acutely in examples where assembly outcomes are well
adapted to harvesting work energy from an available drive
[5,6], suggesting a mechanism of structure formation that
might readily be understood in thermodynamic terms.
New theoretical progress [7–12] in statistical mechanics

has begun to point towards such a mechanism: given many
interacting particles described by the configurational coor-
dinates x and driven energy landscape Hðx; tÞ, held in
contact with a heat bath at temperature T ¼ 1=ðβkBÞ, the
relative probability πτ of evolving in time τ from a starting
point x to configurations y or z is [7,10]

πτ½x→y�
πτ½x→z�¼

�
e−βHðy;τÞ

e−βHðz;τÞ

��
π�τ ½y�→x��
π�τ ½z�→x��

��he−βWix→z

he−βWix→y

�
; ð1Þ

whereW is the work absorbed from the drive, the � operator
indicates time-symmetry reversal of momenta and drive,

and the average h…i is taken over repeated stochastic
realizations of the transition from x to y or z (See
Supplemental Material [13] for derivation).
It is apparent in the above that several different factors

can affect the relative likelihoods of dynamical outcomes in
a given system of interest; like in the undriven case, states
of lower energy are more likely, and so are states that are
more likely to return to the starting state x in the same
amount of time. Holding these energetic and kinetic factors
fixed, however, reveals a new and uniquely nonequilibrium
way that an outcome y can be made to have high
probability: namely, by ensuring that as many of the likely
microtrajectories leading to y from x as possible have
exceptionally positive values of dissipated work W. Cases
where this effect dominates have the potential to be quite
important in systems where the ability to absorb work from
an external drive is strongly dependent on the system state
(as, for example, in the case of mechanical resonance).
Under such conditions, it has been proposed that likely
dynamical outcomes should exhibit a dissipative adaptation
phenomenon, in which their physical properties bear the
signature of the highly work-absorbing states the system
had to traverse during its history [10,11].
It must be emphasized at the outset that the character of

this signature may differ depending on the detailed physical
rules of a system under study. The fact that a system
adopted highly work-absorbing configurations in the past
only sometimes means that its likely outcome state will also
be highly work absorbing; indeed, alongside systems that
tend to grow their rates of dissipation in “energy-seeking”
fashion over time [5,9], there are also cases (one of which
will be discussed below) where driving causes the opposite
to happen (see Fig. S8 in the Supplemental Material
[13]). In either event, however, there is an opportunity to
explain properties of the long-time-stable outcomes of
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driven dynamics once one recognizes that particular work-
absorbing states have to be visited on the way into states of
high kinetic stability.
We set out to establish and characterize clear examples of

such dissipative adaptation in a system where both the
dynamical and thermodynamic properties could be moni-
tored and controlled with exquisite precision. Our first and
main goal was to find a regime of physical rules in which
energy-seeking behavior [5] could be observed, and then to
investigate the thermodynamics underlying the emergence
of this pattern of dynamics.
Accordingly, we devised a simulated “toy chemical”

reaction in which a collection of idealized Newtonian
particles randomly form and break harmonic spring bonds
with each other while subject to drag forces from a
surrounding viscous medium held at temperature T. At
each instant, a given pair of particles i and j separated by
distance Δxij either share a single bond of internal energy
Eij ¼ 1

2
k½ΔxijðtÞ�2 − ε, or do not (in which case, Eij ¼ 0).

In order to ensure that the model of the surrounding thermal
bath is consistent with Newtonian mechanics, the formation
and breakage of bonds is assumed to follow a simple two-
state stochastic switching process whose bonding and
unbonding rates are governed by an Arrhenius [14] relation
rijðΔxijÞ ¼ r0 exp ½−Ea;ijðΔxÞ=kBT� (see Fig. 1), where

Ea;ij ≡ BðΔxijÞ − Eij and BðΔxijÞ is the height of the
transition state barrier separating the bonded and unbonded
states. The system may therefore be thought of loosely as a
group of reacting “atoms” transiting randomly between
differently bonded “molecular” states over time under the
influence of thermal fluctuations.
The appeal of studying such a system is that we expect

different patterns of bonding within a group of atoms to
give rise to different mechanical response properties,
because the spectrum of normal mode frequencies for
the group is determined by the bond connectivity of the
system as a whole. Moreover, the number of possible
connectivities is large; even a group as small as 20 particles
can be very roughly estimated to have 1

20!
2ð202 Þ∼1039

bonding states available to it, comprising a vast space of
different ways of hooking springs together to give rise to a
distinct vibrational fingerprint. What remains is to deter-
mine how this space of fingerprints is explored along
typical dynamical trajectories when the system is driven far
from thermal equilibrium by a time-varying external field.
To answer this question, we carried out simulations [15]

of 20 particles confined in a shallow, one-dimensional
harmonic well of stiffness k0 under conditions of under-
damping viscous drag, low temperature, and strong, sinus-
oidal forcing [16,17] of a single particle (labeled with index
0). In this setting, the diffusive motions of the particles due
to fluctuating random forces from the thermal bath can be
ignored (see Supplemental Material [13]), and the ith
particle obeys

m
d2xi
dt2

¼ −
XN−1

j¼0

kLijðtÞxj − b
dxi
dt

þ δi0F sin ðωdtÞ − k0xi

ð2Þ
between stochastic events that form or break bonds. The
Laplacian matrix LijðtÞ depends on which particles are
connected by springs at each moment in time, and changes
according to the sequence of “reactions” between particles.
The Arrhenius law governing such reactions contains an
arbitrary rate constant r0, which we assume to be much less
than the drive frequency so that the drive undergoes many
full oscillations between each bonding or unbonding event.
In this regime, the driven long-time dynamics of the
oscillator network for a given realization of LijðtÞ has an
exact analytical expression, from which the interparticle
distances ΔxijðtÞ can be computed. Thus, the stochastic
evolution of the spring connectivity is a Markov process
whose transition rates to new bonding states are determined
by the driven vibrational dynamics of the current graph
connectivity.
To complete the dynamical rules for the system, it is

necessary to specify how the transition state barrier heights
BðΔxÞ vary with particle configuration. To start, we chose
this function to have the simple, “catch bond” form

FIG. 1. (a) Twenty particles experience viscous drag as they
move in one dimension. The only interaction between any two
particles is a bonding reaction that follows two-state Arrhenius
kinetics, as shown in (b), whereby a bond forms or breaks at a
Poissonian rate determined by the distance Δx between them. A
bonding energy ε controls the tendency to form bonds at random.
(c) In the absence of any drive, the particles tend to form a
random graph at equilibrium (left). When a single particle
(yellow) is subjected to an oscillatory external force, vibrations
in the network change the rates of formation and breakage of
certain bonds, and new structures are sampled in a nonequili-
brium steady state. A color gradient superimposed on the bonds
indicates minimal connectivity distance from the driven particle
(with reddest being the closest). Particles are depicted with sizes
proportional to their number of bonded neighbors in the graph.
Produced using the ForceAtlas2 algorithm in Gephi.
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BðΔxÞ ¼ kΔx2 to ensure that particles react only when they
are close together in space. It should be noted that, while
catch bonds can be realized on the mesoscale and above in
various ways, and in general are a physically consistent
way of describing interparticle interactions, they do not
reproduce the nanoscale intuition that bonds under strain
break more rapidly. Accordingly, the particle clusters in this
case should only be thought of as molecules made of atoms
to the extent that they exhibit diverse physical properties in
novel combinations.
Using Gillespie’s algorithm, we generated a large ensem-

ble of trajectories which were initialized in the same
connectivity state and then driven at frequency ωd for many
iterations. At each iteration, we computed the normal modes
of Lij and the associated rate of heat dissipation _Q. See the
Supplemental Material [13] for details. Figure 2(a) plots the
statistics of normal mode frequencies observed for driven
and undriven (equilibrium) bonding connectivities, with
units ofmass and spring stiffness chosen so that

ffiffiffiffiffiffiffiffiffi
k=m

p ¼ 1.
In the absence of drive, the thermal equilibrium ensemble of
random graphs has a normal mode spectrum stereotypically
shaped like a haystack [18], with a finite gap separating the
lowest nontrivial vibrational frequency from zero. The
striking effect when a sinusoidal driving force was applied
to one of the particles in the networkwas that the steady-state
shape of this normal mode spectrum changed, exhibiting an
additional peak jutting out of the haystack at the drive
frequency ωd. The emergence of this peak indicates a
nonequilibrium enrichment in structures whose connectiv-
ities have natural frequencies of vibration that are better
matched with the frequency of the drive. The peak generally
appeared when the system was driven at frequencies in the
haystack [Figs. 2(b) and S9 in the Supplemental Material
[13]], and in a parameter regime where damping was
sufficiently low for most modes in the system to be under-
damped. We further found that the reshaping of the normal
mode spectrum brought about by these dynamics resulted in
an altered rate ofwork absorption and heat dissipation by the
system; in principle, this need not have been the case, since
the normal modes with natural frequency matched to the
drive might not have been strongly coupled to the motion
of the driven particle, making resonance impossible.
Figure 3(b) establishes that, although the average rate of
work absorption in the driven ensemble relaxes to steady
state more slowly than the shape of the normal mode
spectrum, it is in any event always higher than for a random
(thermal equilibrium) ensemble. Moreover, plotting the
statistics of applied force amplitude in the normal mode
basis as a function of frequency revealed that the spring
networks that evolved in the presence of a drive were even
biased towards connectivities that distributed the most drive
amplitude to those modes with the greatest capacity to
resonate, indicating a strong pressure on the networks to
become organized in ways that increase work absorption
[Fig. 2(c)].

Given the remarkably different physical properties of the
driven nonequilibrium spring network ensemble relative to
its equilibrium counterpart, we undertook to characterize the
topologies of these networks to understand what structural
differences enable them to be more “finely-tuned” to the
drive than random graphs. In general, driven and equilibrium
graph ensembles had different average numbers of bonds
(see Supplemental Material [13]). However, the main effect
of this coarse structural difference was simply to shift the
center of the normal mode spectrum slightly in the direction
of the drive frequency [Fig. 2(a)]; thus, the change in bond
number could not explain the appearance of a newpeak in the
spectrum precisely at the chosen value of drive frequency.
In order to understand the dynamical mechanism for the

observed self-organization, we characterized the thermo-
dynamic properties of the driven steady state (Fig. 3). As
one might expect, the increased resonance of the driven
ensemble leads to a rate of work absorption far above that
of the random graph ensemble that is sampled at thermal
equilibrium [Fig. 3(b)]. What causes this energy-seeking
behavior [5]? Each graph topology has an associated value
of _Q that is the steady-state rate of work absorption of the

(a) (b)

(c)

FIG. 2. (a) The normal mode spectrum PðωÞ is sampled for an
equilibrium ensemble of spring networks (blue) and exhibits a
stereotypical haystack shape. When driven at frequency
ωd ¼ 1.2, the normal mode spectrum rearranges (red) in two
noticeable respects: First, the average number of springs de-
creases; indeed, an equilibrium normal mode spectrum computed
for a value of ε that leads to the same average number of bonds
(orange) has a very similar shape. However, in the nonequili-
brium spectrum, there is an additional peak at the chosen drive
frequency. (b) The drive induces a peak in the nonequilibrium
normal mode spectrum at any chosen drive frequency within the
haystack region of the spectrum. (c) The average forcing
magnitude distributed to normal modes of a given frequency
is plotted for different drive frequencies. The diagonal line
indicates that modes with greater resonant response to the drive
frequency tend to be more strongly forced. Eigendirection signs
for the normal mode basis have been chosen so that the

corresponding driving force components FðiÞ
0 are all positive.
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corresponding damped harmonic oscillator when the driven
particle is sinusoidally forced. By scatter plotting this
quantity for graphs at adjacent iteration steps in dynamical
trajectories sampled from the driven steady state, we
uncovered a strong tendency in the spring networks that
already had atypically high _Q to transit to other states with
similarly high values [Fig. 3(a)]. Thus, the adaptive
resonance observed with driving resulted from the extra
kinetic stabilization of high _Q structures achieved through
driving.
The intuition behind this effect is that resonant structures

stretch out more during a drive cycle, and thus the particle
motions most associated with resonance tend to be asso-
ciated with springs that spend more time in a stretched
state. Since catch bond springs like the ones simulated here
are less likely to break while stretched, resonant structures
stay trapped in a high _Q part of configuration space that is
only sampled very rarely at equilibrium.

The emergence of resonance in this particular “toy
chemistry” scenario is surprising, but can it be explained
as an instance of dissipative adaptation? The signature of a
process of dissipative adaptation is that the changes in
system configuration that are more irreversible (and thus
give rise to the observed far-from-equilibrium organization)
occur when the system passes through or into states that can
absorb and dissipate especially large amounts of drive
work [10,11].
To investigate this question, we coarse grained the space

of graph topologies. By defining thresholds in _Q [repre-
sented by the vertical and horizontal grid lines in Fig. 3(a)]
we divided the space of graph topologies into three separate
macrostates, labeled A, B, and C, which, respectively,
correspond to low, medium, and high values of _Q. We
sampled many transitions between each pair of macro-
states, and computed the stochastic entropy production [19]
(ΔS ¼ lnðrfwd=rrevÞ), which in this case sets a lower bound
on the heat dissipated during the transition. As Fig. 3(c)
shows, transitions that led to an increase in _Q had a very
similar distribution of ΔS, skewing significantly towards
positive values. In contrast, transitions that brought about a
decrease in _Q were less likely to be highly irreversible, and
thus had less positive values of ΔS.
Motivated by the dissipative adaptation hypothesis, we

sought to test whether the difference in irreversibility
between these two types of transitions might originate in
their differing tendency to harvest work from the drive. In
making this comparison, it is important to note that it is the
extra work above the basal rate of _Q absorbed during the
transient relaxation from one graph connectivity’s particu-
lar solution to another’s that can contribute to statistical
irreversibility in transitions between connectivities [11,20].
As Fig. 3(d) shows, transitions that are accompanied by a
rise in the dissipated power _Q do indeed tend to result in
elevated levels of transient work being absorbed and
dissipated during the transition. We surmise that the
observed statistical tendency of the system to adopt
structures with higher-than-equilibrium rates of work
absorption does follow a dissipative adaptation mechanism,
whereby the highly irreversible transitions that sustain the
system’s nonequilibrium bias towards resonant structures
occur because the resonance helps them harvest more work
from the external drive.
The self-organized energy-seeking behavior in this

particular system is striking, but how general is it? Put
another way, why does the fundamental relationship
between statistical irreversibility and the absorption and
dissipation of work not always imply a tendency towards
elevated levels of work absorption through self-organized
resonance?
To show how the specific physical characteristics of a

nonequilibrium steady state can turn out differently under
alternate conditions, we simulated the same 20 particle

FIG. 3. (a) Scatter plot of rates of dissipation _Q for spring
networks at adjacent iteration steps along a driven Markov
microtrajectory of the network graph. States with atypically high
values of _Q tend to jump to states that retain this property,
indicating that this subset of spring networks is kinetically
stabilized by driving. (b) Mean dissipation rate _Q over time of
the ensemble of random graphs, initialized in the equilibrium and
driven with an oscillatory drive. Across a wide range of drive
frequencies ωd, the dissipation rate _Q increases monotonically
from its value in the initial equilibrium distribution (c) Distribu-
tions of stochastic entropy ΔS ¼ lnðrfwd=rrevÞ for transitions in
the driven steady state. Markov transitions in spring network
connectivity that lead to an increase in _Q (red) show a signifi-
cantly greater tendency toward positiveΔS than those that lead to
a decrease, and are thus more irreversible. (d) Distributions of
transient work ΔW for transitions in the driven steady state. This
quantity measures the extra work performed by the drive during
dissipative relaxation after formation or breakage of a bond.
Transitions that lead to an increase in _Q typically absorb and
dissipate more work from the drive relative to those that lead to a
decrease in _Q.
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system with a different energy landscape of transition state
barriers, so that the stretching of formed bonds gave rise to
an increased (rather than decreased) rate of spontaneous
snapping. Under these new conditions, the steady-state
normal mode spectrum of the driven ensemble exhibits the
opposite behavior: modes with frequencies close to reso-
nance with the drive are strongly suppressed, while those
that resonate less remain (see Fig. S8). Thus, the steady-
state dissipated power of the driven ensemble turns out to
be lower than in the equilibrium state.
One may think of the driven steady state in this case as

the “shattered” remnants of structures that resonated,
absorbed work from the drive, and broke apart irreversibly.
Accordingly, although the rate of work absorption has
dropped after driving, the outcome may still be understood
through the lens of dissipative adaption in light of Eq. (1):
elevated work absorption during the system’s history has
enabled irreversible configurational change, except in this
case, the outcome states are less capable of absorbing work
than their predecessors. It must be stressed, however, that
these states nonetheless exhibit a fine-tuned adaptation to
the drive, since they possess normal mode spectra that are
distinct from that of a random, undriven graph in a way that
reflects the history of work absorption.
Taken together, these findings illustrate that both sponta-

neous self-organization into states that absorb extra drive
work, and ejection into shattered states that absorb less, are
scenarios that can be made physically sensible. In a given
nonequilibrium system of interest, it may be the case that
both such effects are at play to some extent [4]; here,
however, the self-organized resonance we have character-
ized provides a clean, idealized in silico illustration of a
potentially more general thermodynamic mechanism for
emergent energy-seeking behavior in a many-body mixture
with a diverse space of “chemical” combinations. We are
thus encouraged to hope that future investigations of
dissipative adaptation in more complex self-assembly
reactions far from equilibrium may go significantly further
towards a physical elucidation of lifelike patterns of
collective molecular behavior.
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