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Constructing Near Spanning Trees with Few Local Inspections∗

Reut Levi† Guy Moshkovitz‡ Dana Ron§ Ronitt Rubinfeld¶ Asaf Shapira‖

Abstract

Constructing a spanning tree of a graph is one of the most basic tasks in graph theory.

Motivated by several recent studies of local graph algorithms, we consider the following variant
of this problem. Let G be a connected bounded-degree graph. Given an edge e in G we would

like to decide whether e belongs to a connected subgraph G′ consisting of (1 + ǫ)n edges (for a

prespecified constant ǫ > 0), where the decision for different edges should be consistent with the
same subgraph G′. Can this task be performed by inspecting only a constant number of edges

in G? Our main results are:

• We show that if every t-vertex subgraph of G has expansion 1/(log t)1+o(1) then one can
(deterministically) construct a sparse spanning subgraph G′ of G using few inspections. To

this end we analyze a “local” version of a famous minimum-weight spanning tree algorithm.

• We show that the above expansion requirement is sharp even when allowing randomization.
To this end we construct a family of 3-regular graphs of high girth, in which every t-vertex

subgraph has expansion 1/(log t)1−o(1).

1 Introduction

Given a graph G, one of the most basic tasks one would like to perform on G is to find a spanning

tree of it or perhaps some other sparse spanning subgraph G′. This task can be easily accomplished

using numerous well-known algorithms such as DFS (depth-first search), BFS (breadth-first search)

and more. What all of these algorithms have in common is that in order to decide whether a given

edge e belongs to the spanning subgraph G′, one has to construct the entire spanning tree. Suppose

however that one is not interested in constructing the entire spanning subgraph G′, but rather to
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be able to “quickly” tell if a given edge e belongs to G′ or not. By “quickly” we mean using a

constant number of operations.

Such algorithms are of importance in distributed settings, where processors reside on the ver-

tices of the graph and the goal is to select as few communication links (edges) as possible while

maintaining connectivity. Another relevant setting is one in which the graph resides in a centralized

database, but different, uncoordinated, servers have access to it, and are interested in only parts of

a common sparse spanning subgraph. In both cases we would like the decision regarding any given

edge to be made after inspecting only a very small portion of the whole graph, but all decisions

must be consistent with the same spanning subgraph. Such algorithms belong to a growing family

of local algorithms for solving classical problems in graph theory. We elaborate on relevant related

works in Subsection 1.1.

Let us make a simple observation regarding the task of locally constructing a spanning subgraph.

Note that if one insists on locally constructing a spanning tree G′, then it is easy to see that the

task cannot be performed in general without inspecting almost all of G; that is, this task cannot

be achieved using a constant number of queries to G. To see this, observe that if G consists of a

single path, then the algorithm must answer positively on all edges, while if G consists of a single

cycle then the algorithm must answer negatively on one edge. However, the two cases cannot be

distinguished without inspecting a linear number of edges.

So suppose we allow the algorithm some slackness, and rather than requiring that G′ be a tree,

only require that it be relatively sparse, i.e., contain at most (1 + ǫ)n edges. Summarizing, the

question is then, given ǫ > 0, for which graphs G can we locally construct a spanning subgraph G′

consisting of (1 + ǫ)n edges, such that given an edge e ∈ E(G) one can determine if e ∈ G′ using a

constant (that may depend on ǫ but not on n) number of queries to G?

Our main result in this paper, stated informally as Theorem 1 below, shows that the answer to

the above question is given by a certain variant of graph expansion, which we now turn to define.

For a graph G and a subset S ⊆ V (G), we write ∂G(S) for the set of edges of G with precisely one

endpoint in S. We write φG for the (edge) expansion of G, that is, φG = minS |∂G(S)| / |S| where
the minimum is taken over all S ⊆ V (G) of size 1 ≤ |S| ≤ |V (G)|/2. Note that a graph may have

small expansion yet contain (large) subgraphs with large expansion. For example, a vertex-disjoint

union of cliques has expansion 0, yet it contains complete graphs that have the largest expansion

possible (for graphs of their order). Let us thus say that a graph is f -non-expanding if every t-vertex

subgraph H satisfies φH ≤ f(t) (we assume t > 2).

Our main result in this paper can be informally stated as follows.

Theorem 1 (Informal Statement). We have the following dichotomy:

• If G is f -non-expanding for f(t) ≪ 1/ log t then one can locally construct a sparse spanning

subgraph of G. The algorithm is deterministic.

• There is a family of 3-regular graphs Gn that are (roughly) 1/ log t-non-expanding so that

every (possibly randomized) local algorithm for constructing a sparse spanning subgraph of

Gn must accept every edge of Gn.

We refer the reader to Definition 1 for the precise definition of what it means to locally construct

a sparse spanning subgraph, and to Theorems 2 and 3 for the precise statements of the two assertions

in Theorem 1.
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We note that there are numerous families of graphs that satisfy the condition in the first item

of Theorem 1. For example, it follows from the planar separator theorem of Lipton and Tarjan [23]

and its extension by Alon, Seymour and Thomas [3] that planar graphs (and more generally, H-

minor-free graphs) of bounded degree satisfy the condition of the first item. Also, observe that

since the graphs Gn in the second item of Theorem 1 have 3n/2 edges, there is no algorithm that

can locally construct a spanning subgraph of Gn with (1 + ǫ)n edges for ǫ < 1/2.

We make two comments regarding the results which appeared in the preliminary conference

version of this paper [21]. First, it was shown in [21] that there are graphs such that any algorithm

has to inspect Ω(
√
n) edges in order to decide whether a given edge belongs to a spanning subgraph

G′ containing (1+ ǫ)n edges, for a constant ǫ. However, those graphs resulted from random graphs,

which have expansion Θ(1), and so could not be used in order to show that the non-expansion

requirement given in the first item of Theorem 3 cannot be relaxed. Second, it was shown in [21]

that for certain families of graphs, one can solve the sparse spanning subgraph problem in time

O(
√
n). It is an interesting open problem to decide whether this can be extended to hold for all

bounded-degree graphs. In fact, it would even be interesting to show that for any bounded-degree

graph G, one can find a sparse spanning subgraph using o(n) queries1.

1.1 Related work

As is evident from the above description of the problem, the model we study here is similar to both

classical models, such as distributed and parallel computation, and to more recent ones. In what

follows, we describe these models and some related results, so as to provide a broad context for our

work.

1.1.1 Local algorithms for other graph problems

The model of local computation algorithms as considered in this work, was defined by Rubinfeld

et al. [36] (see also Alon et al. [2]). Such algorithms for maximal independent set, hypergraph

coloring, k-CNF and maximum matching are given in [36, 2, 25, 26]. This model generalizes other

models that have been studied in various contexts, including locally decodable codes (e.g., [24]),

local decompression [14], and local filters/reconstructors [1, 37, 9, 18, 17, 12]. Local computation

algorithms that give approximate solutions for various optimization problems on graphs, including

vertex cover, maximal matching, and other packing and covering problems, can also be derived

from sublinear time algorithms for parameter estimation [33, 27, 31, 15, 40].

The model of local computation is related to several other models, including property testing

and online algorithms. To give a notable example, Mansour et al. [25] proposed a general scheme

for converting a large family of online algorithms into local computation algorithms, consequently,

improving the complexity of hypergraph 2-coloring and k-CNF in the local computation model.

In the related field of local reconstructors, Campagna et al. [10] study the property of connec-

tivity. Namely, under the promise that the input graph is almost connected, their reconstructor

provides oracle access to the adjacency matrix of a connected graph which is close to the input

graph. We emphasize that our model is different from theirs, in that they allow the addition of new

1Note that if we are allowed to make Θ(n) queries, then we can just use the standard BFS or DFS algorithms,

which find the entire spanning tree of G.
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edges to the graph, whereas our algorithms must provide spanning graphs whose edges are present

in the original input graph.

1.1.2 Distributed and parallel algorithms

The name local algorithms is also used in the distributed context [28, 30, 22]. As observed by Parnas

and Ron [33], local distributed algorithms can be used to obtain local computation algorithms as

defined in this work, by simply emulating the distributed algorithm on a sufficiently large subgraph

of the graph G. However, while the main complexity measure in the distributed setting is the

number of rounds (where it is usually assumed that each message is of length O(log n)), our main

complexity measure is the number of queries performed on the graph G. By this standard reduction,

the bound on the number of queries (and hence running time) depends on the size of the queried

subgraph and may grow exponentially with the number of rounds. Therefore, this reduction gives

meaningful results only when the number of rounds is significantly smaller than the diameter of

the graph.

While the problem of computing a spanning graph has not been studied in the distributed

model, the problem of computing a minimum-weight spanning tree is a central one in this model.

Kutten and Peleg [20] provided an algorithm that works in O(
√
n log∗ n + D) rounds, where D

denotes the diameter of the graph. Their result is nearly optimal in terms of the complexity in n,

as shown by Peleg and Rubinovich [34] who provided a lower bound of Ω(
√
n/ log n) rounds (when

the length of the messages must be bounded).

Another problem studied in the distributed setting that is related to the one studied in this

paper, is finding a sparse spanner. The requirement for spanners is much stronger since the dis-

tortion of the distance should be as small as possible. Thus, to achieve this property, it is usually

the case that the number of edges of the spanner is super-linear in n. Pettie [35] was the first

to provide a distributed algorithm for finding a low distortion spanner with O(n) edges without

requiring messages of unbounded length or O(D) rounds. The number of rounds of his algorithm

is log1+o(1) n. Hence, the standard reduction of [33] yields a local algorithm with a trivial linear

bound on the query complexity.

The problems of computing a spanning tree and a minimum weight spanning tree were studied

extensively in the parallel computing model as well (see, e.g., [7], and the references therein).

However, these parallel algorithms have time complexity which is at least logarithmic in n and

therefore do not yield an efficient algorithm in the local computation model. See [36, 2] for further

discussion on the relationship between the ability to construct local computation algorithms and

the parallel complexity of a problem.

1.1.3 Local cluster algorithms

Local algorithms for graph theoretic problems have also been given for PageRank computations on

the web graph [16, 8, 38, 5, 4]. Local graph partitioning algorithms have been presented in [39, 5, 6,

41, 32], which find subsets of vertices whose internal connections are significantly richer than their

external connections in time that depends on the size of the cluster that they output. For instance,

Andersen and Peres [6] provide an algorithm which, given a starting vertex v, finds a cluster of v of

small conductance, whose complexity depends on the volume of the cluster it outputs but has only

polylogarithmic dependence in the size of the graph. However, even when the size of the cluster

4



is guaranteed to be small, it is not obvious how to use these algorithms in the local computation

setting where the cluster decompositions must be consistent among queries to all vertices.

1.1.4 Other related sublinear-time approximation algorithms for graphs

The problem of estimating the weight of a minimum-weight spanning tree in sublinear time was

considered by Chazelle, Rubinfeld and Trevisan [11]. They describe an algorithm whose running

time depends on the approximation parameter, the average degree and the range of the weights,

but does not directly depend on the number of vertices.

1.2 Organization

The rest of the paper is organized as follows. In Section 2 we formally define the local sparse

spanning subgraph problem which we consider in this paper. In Section 3 we prove the first item

of Theorem 1, which is formally stated as Theorem 2. The proof of this part has two main steps.

In the first one, we show that if G is f -non-expanding with f ≪ 1/ log t then one can remove from

G only a relatively small number of edges and thus partition it into connected components of size

O(1) each. We then show that if a graph can be so partitioned, then one can solve on it the local

spanning subgraph problem by executing a “localized” version of Kruskal’s [19] famous algorithm

for finding minimum-weight spanning tress2.

The proof of the second paper of Theorem 1, which is the more challenging part of this paper, is

given in Section 4 and formally stated as Theorem 3. It establishes that the 1/ log t-non-expansion

requirement from the first item of Theorem 1 is essentially tight. What we show is that there are

graphs which are (about) 1/ log t-non-expanding, and have the property that any local algorithm

for constructing a spanning subgraph using a constant number of queries must accept every edge

of the graph. To prove this result we describe a construction of certain extremal graphs that might

be of independent interest. These are 3-regular graphs, that on one hand have unbounded girth3,

but on the other hand are (about) 1/ log t-non-expanding.

We make no serious attempt to optimize the constants obtained in the various statements. In

fact, the f -non-expansion requirements in our upper and lower bound results (Theorems 2 and 3),

which are about (1/ log t)(1/ log log t)2 and (1/ log t)(log log t)2 respectively, can each be improved

by replacing the (log log t)2 term by (log log t)1+o(1). We opted for proving our results with the

slightly weaker bounds in order to simplify the presentation. We henceforth write log(·) for log2(·).

2 Preliminaries

Let us now give the precise definition of the algorithmic problem we are addressing in this paper.

As in most cases where one tries to design a local/distributed/sublinear algorithm, we will assume

that the input graph is given via an oracle access to its incidence-list representation, meaning the

following: First, we assume that the input graph G = (V,E) is given via incidence-lists representa-

tion, that is, for each vertex v ∈ V (G), there is an ordered list of its neighbors in G. Second, the

2Recall that if G is a graph with weights assigned to its edges, then Kruskal’s algorithm finds a spanning tree of

minimal total weight
3As usual, the girth of a graph is the minimum length of a cycle in it.
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algorithm is supplied with integers n and d, that represent the number of vertices, and an upper

bound on the degrees of vertices of G. Finally, given a pair (v, i) with 1 ≤ v ≤ n and 1 ≤ i ≤ d, the

oracle either returns the ith neighbour of v (in the incidence list representation) or an indication

that v has less than i neighbours. We will assume that each vertex v has an id, id(v), where there

is a full order over the ids. We will think of the ids of vertices in the graphs simply as the integers

{1, . . . , n}. We now turn to formally define the algorithmic problem we consider in this paper.

Definition 1. An algorithm A is an (ǫ, q)-local sparse spanning graph algorithm if, given n, d ≥ 1

and oracle access to the incidence-lists representation of a connected graph G = (V,E) on n vertices

and degree at most d, it provides query access to a subgraph G′ = (V,E′) of G such that:

i. G′ is connected.

ii. |E′| < (1 + ǫ) · n with probability at least 2/3 (over the internal randomness of A).

iii. E′ is determined by G and the internal randomness of A.

iv. A makes at most q queries to G.

By “providing query access to G′” we mean that on input (u, v) ∈ E, A returns whether (u, v) ∈ E′

and for any sequence of queries, A answers consistently with the same G′.

An algorithm A is an (ǫ, q)-local sparse spanning graph algorithm for a family of graphs C if

the above conditions hold, provided that the input graph G belongs to C.
We note that the choice of the required success probability being 2/3 is of course arbitrary and

can be replaced by any probability smaller than 1. Having said this, let us stress that the positive

results we obtain here (i.e., the algorithmic results) in Theorem 2 are deterministic (i.e., hold with

probability 1), whereas our lower bound in Theorem 3 holds for any positive success probability.

We also note that even though Definition 1 considers only the number of queries performed by the

algorithm, our algorithm in Theorem 2 runs in time polynomial in the number of queries, and in

particular, independent of n.

We are interested in local algorithms that have query complexity which is independent of n,

namely, that perform a constant number of queries to the graph (for each edge they are queried on)

and whose running time (per queried edge) is small as well. In the next section, we show that the

family of graphs that are f -non-expanding with f ≪ 1/ log t have a local sparse spanning graph

algorithm. In the following section, we will show that one cannot prove such a result when f is

only slightly larger.

3 Upper bound

In this section we prove the following theorem, which formalizes the first assertion of Theorem 1.

Theorem 2. For every C there is a function q : R+ × N → N so that for every ǫ > 0 there is an

(ǫ, q(ǫ, d))-local sparse spanning graph algorithm for the family of f -non-expanding graphs with

f(x) =
C

log x · (log log x)2 , (1)

where d is the input degree-bound. Furthermore, the algorithm is deterministic.
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3.1 Decomposition of non-expanding graphs

The first step in the proof of Theorem 2 is a decomposition result stated in Lemma 1 below. It

shows that if G is f -non-expanding, with f as in Equation (1), then G can be decomposed into

connected components of bounded size by removing only ǫn edges. This extends a result of [13]

that applies for somewhat larger f . As mentioned earlier, there are many families of graphs which

are f -non expanding with f as in Equation (1). For example, planar graphs of bounded degree

are f -non-expanding with f = O(1/
√
x) by the famous planar separator theorem of Lipton and

Tarjan [23]. More generally, a result of Alon, Seymour and Thomas [3] implies that for any fixed

H, the family of H-minor-free graphs of bounded degree is f -non-expanding with f = O(1/
√
x).

Hence, Lemma 1 applies to these families of graphs in particular. We note that the reason why the

bound in Lemma 1 is doubly exponential in ǫ is that we insist on assuming that f is very close to

the threshold of 1/ log x (which by Theorem 3 is essentially tight). For example, the details of the

proof of Lemma 1 show that if f = x−c for some 0 < c < 0 (as is the case with planar graphs, say),

then the bound can be improved to polynomial in 1/ǫ. We note that in such cases we can also set

k = poly(1/ǫ) in step 1 of our algorithm (Algorithm 1 below), thus obtaining a much more efficient

algorithm.

Lemma 1. If G is an n-vertex f -non-expanding graph with f(x) = C/ log x(log log x)2, then one

can remove ǫn edges from G so that each connected component of the remaining graph is of size at

most 22
2(C/ǫ)+3

.

Proof: First, we claim that any f -non-expanding n-vertex graphG = (V,E) has a subset S ⊂ V (G)

of size n/3 ≤ |S| ≤ (2/3)n and expansion φG(S)
def
= |∂G(S)| / |S| ≤ f(n/3). For the proof we

iteratively construct subsets S1, . . . , Sk ⊆ V (G) as follows. To obtain Si, we consider the induced

subgraph Gi = G[V \⋃i−1
j=1 Sj] and let Si ⊆ V (Gi) satisfy |Si| ≤ ni/2 and φGi(Si) ≤ f(ni), where

ni = |V (Gi)|. We stop once S
def
=

⋃k
i=1 Si is of size |S| ≥ n/3. Note that

|S| ≤
k−1
∑

i=1

|Si|+ nk/2 = (n+
k−1
∑

i=1

|Si|)/2 ≤ 2n/3 .

It remains to bound φG(S). Observe that every edge in the edge boundary ∂G(S) is a member of

some edge boundary ∂Gi(Si). Hence,

|∂G(S)|
|S| ≤

∑k
i=1 |∂Gi(Si)|

|S| =

k
∑

i=1

|Si|
|S| φGi(Si) ≤ max

1≤i≤k
φGi(Si) ≤ max

1≤i≤k
f(ni) = f(nk) ≤ f(n/3) ,

where in the last inequality we used the fact that nk ≥ n− |S| ≥ n/3. This proves our claim.

Fix an integer k ≥ 50 and let G = (V,E) be any f -non-expanding graph on n ≥ k/3 vertices.

Consider the following process; take any subset S ⊂ V of size n/3 ≤ |S| ≤ n/2 and expansion

φG(S) ≤ 2f(n/3) (whose existence follows from the claim above), remove all its outgoing edges and

proceed recursively on the two induced subgraphs G[S] and G[V \ S], which are f -non-expanding

as well. The recursion stops whenever we reach a graph on at most k vertices. It is clear that

at the end of this process, the edges removed from G leave a graph whose connected components

have at most k vertices each. Let rk(G) be the number of edges removed by the above process.
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We will shortly prove that if G has n vertices, then rk(G) ≤ Cn/ ln ln(k/3). Hence, setting k =

22
2(C/ǫ)+3 ≥ max{50, 3 · eeC/ǫ} enables us to remove no more than ǫn edges and break G into

connected components of size at most k, thus proving the lemma.

In order to facilitate an inductive proof, it will be more convenient to prove the following slightly

stronger claim:

rk(G) ≤ β(n)
def
=

Cn

ln ln(k/3)
− Cn

ln lnn
. (2)

Set h(x) = x/ ln lnx and f∗(x) = f(x)/C = (log x)−1(log log x)−2. First, we establish some

properties of h. It is easy to verify that the derivative of h is h′(x) = (ln lnx)−1−(lnx)−1(ln lnx)−2,

and moreover, h′′(x) ≤ 0 for x ≥ 20. It follows that for every n ≥ 50 and n/3 ≤ s ≤ n/2 we have

h(n)− h(n− s) ≤ s · h′(n− s) ≤ h(s)− s · 2f∗(n/3) (3)

where in the first inequality we used the concavity of h on the interval (20,∞), and in the second

inequality we used the fact that n ≥ 50 and n/3 ≤ s ≤ n/2 and that in this range

(log(n/3)(log log(n/3))2/2 ≥ ln(2n/3)(ln ln(2n/3))2 ≥ ln(n − s)(ln ln(n − s))2 .

We prove Equation (2) by induction on n. For the base case(s) where (k/3 ≤) n ≤ k we have

that β(n) ≥ β(k/3) = 0 = rk(G), as needed. For the induction step we have

rk(G) ≤ max
S⊂V :

n/3≤|S|≤n/2

|S| · 2f(n/3) + rk(G[S]) + rk(G[V \ S])

≤ max
n/3≤s≤n/2

s · 2f(n/3) + β(s) + β(n− s)

= C
(

n/ ln ln(k/3) + max
n/3≤s≤n/2

s · 2f∗(n/3)− h(s)− h(n− s)
)

≤ C
(

n/ ln ln(k/3) − h(n)
)

= β(n)

where the first inequality follows from the definition of the process described in the second paragraph

of the proof, the second inequality follows from the induction hypothesis since k/3 ≤ s, n−s ≤ n−1,

and in the third inequality we used (3) since n ≥ k ≥ 50. This completes the proof of Equation (2).

3.2 The algorithm

The algorithm we design in order to prove Theorem 2 is based on Kruskal’s minimum-weight

spanning tree algorithm [19]. The idea is to assign weights to the edges of the graph in a way that

will determine some fixed spanning tree T . The algorithm will always accept the edges of T but

will also accept a few other edges. We will pick the weights of the edges in a way that will make it

possible to determine the edges of a sparse spanning subgraph in a “local” fashion.

Recall that Kruskal’s algorithm for finding a minimum-weight spanning tree in a weighted

connected graph works as follows. First it sorts the edges of the graph e1, . . . em from minimum to

maximum weight (breaking ties arbitrarily). It then goes over the edges in this order, and adds ei
to the spanning tree if and only if it does not close a cycle with the previously selected edges. Put

differently:
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Fact 1. Edge e is picked by Kruskal’s algorithm if and only if for any cycle C of G containing e,

the edge e does not have the largest weight among the edges of C.

It is well known (and easy to verify) that if the weights of the edges are distinct, then there

is a single minimum-weight spanning tree in the graph. For an unweighted graph G, consider the

order defined over its edges by the order of the ids of the vertices. Namely, we define a ranking

r of the edges as follows: r(u, v) < r(u′, v′) if and only if min{id(u), id(v)} < min{id(u′), id(v′)}
or min{id(u), id(v)} = min{id(u′), id(v′)} and max{id(u), id(v)} < max{id(u′), id(v′)}. If we run

Kruskal’s algorithm using the rank r as the weight function (where there is a single ordering of the

edges), then we obtain a (well-defined) spanning tree of G.

While the local algorithm described next (Algorithm 1) is based on the aforementioned global

algorithm, it does not exactly emulate it, but rather emulates a certain relaxed version of it which

can be executed locally. In particular, it will answer YES for every edge selected by the global

algorithm (ensuring connectivity), but may answer YES also on edges not selected by the global

algorithm. We will thus need to show that it does not answer YES on too many edges that are not

selected by the global algorithm.

In the description and analysis of the algorithm we will use the following standard notation; for

a vertex v ∈ V and an integer k, we denote by Ck(v,G) the subgraph of G induced by the set of

vertices at distance at most k from v.

Algorithm 1 (Kruskal-based Algorithm)

(The algorithm works for some fixed ǫ > 0.)

Input: n, d ≥ 1, query access to a graph G on n vertices and degree at most d.

Queried edge: (x, y) ∈ E(G).

1. Set k = 22
2(C/ǫ)+3

.

2. Perform a BFS to depth k from x, thus obtaining the subgraph Ck(x,G).

3. If (x, y) is the edge with largest rank on some cycle in Ck(x,G) then answer NO;

Otherwise, answer YES.

Proof of Theorem 2: We will show that if G = (V,E) is C/ log x(log log x)2-non-expanding then

Algorithm 1 is an (ǫ, q(ǫ, d))-local sparse spanning subgraph algorithm, where q(ǫ, d) = dk+1 with

k being the constant from step 1 of the algorithm. By the description of Algorithm 1 it directly

follows that the algorithm is deterministic and that its answers are consistent with a connected

subgraph G′. Indeed, if T is the tree returned by Kruskal’s algorithm, then Fact 1 and step 3 of

Algorithm 1 guarantee that each edge of T will be accepted by Algorithm 1. Observe that the

number of queries to G performed by Algorithm 1 is at most dk+1. We now complete the proof by

showing that the algorithm returns YES on fewer than (1 + ǫ)n edges.

Let R be a set of at most ǫn edges whose removal disconnects G into connected components

of size at most k. The existence of such a set is guaranteed by Lemma 1. Let GR be the graph

obtained by removing R from G; that is, GR = (V,E \ R). We note (crucially) that while the

analysis of the algorithm uses properties of GR, the algorithm does not actually compute R. We
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will now show that G′ does not contain a cycle of GR. Since |R| ≤ ǫn, this means that G′ has fewer

than (1 + ǫ)n edges.

Let σ be a cycle in GR. Suppose (w, v) is the edge of σ with the largest rank. Since the

connected components of GR are of size at most k, we infer that σ has at most k vertices, implying

that Ck(w,G) contains σ. It follows that on query (w, v) the algorithm will return NO. Thus, G′

does not contain σ.

4 Lower bound

The next theorem shows that there are graphs for which any local sparse spanning graph algorithm

must perform a number of queries that grows with n, yet these graphs are f -non-expanding with

f(x) only slightly larger than 1/ log x. This is essentially the best one can hope for in light of

Theorem 2.

Theorem 3. For infinitely many n, there is an f -non-expanding n-vertex graph G with

f(x) =
1

log x
· (70 log log x)2

such that every (12 , q)-local sparse spanning graph algorithm for the graphs isomorphic to G satisfies

q ≥ log log(n)/8000.

4.1 A regular non-expanding graph

The main result in this subsection (stated in Lemma 2) is a construction of regular non-expanding

graphs that we will use in Subsection 4.2 to prove Theorem 3. A main ingredient is a result from [29]

showing that, roughly speaking, there are graphs that simultaneously have large girth and small

hereditary expansion (in fact, small edge separators). While the degree of these graphs may grow

with n, their maximum degree is at most a constant times their average degree. We will use this in

order to construct a regular graph with similar properties. We note that the regularity condition

is crucial for proving Theorem 3. The following theorem was proved in [29].

Theorem 4 ([29]). For any n, k with 2 ≤ k ≤ 1
648 log log n there is an n-vertex graph G = Gn,k

satisfying:

i. G has average degree at least k and maximum degree at most 6k.

ii. G has girth at least log n/(6k)2.

iii. For every t-vertex subgraph H of G that is not a forest, there exists a subset S ⊆ V (H) of

size (1/3)t ≤ |S| ≤ (2/3)t such that

|∂H(S)| ≤ t

log t
· (log log t)2 .

We note that each of the parameters in Theorem 3 is quantitatively essentially optimal (see [29]

for further discussion).

The main result in this section is the following.
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Lemma 2. For any n0 there is a connected graph G◦ on n ≥ n0 vertices satisfying:

i. G◦ is 3-regular.

ii. G◦ has girth at least log log(n)/2000.

iii. G◦ is f -non-expanding with f(x) = (1/ log x) · (4 log log x)2.

For the proof we will need the weighted version of the well-known vertex separator theorem for

trees. For completeness, we give a short proof below.

Claim 3. Let T = (V,E) be a tree, and let w : V → R
+ be a nonnegative weight function over the

vertices of T . There is a vertex v ∈ V whose removal disconnects T into connected components of

weight at most w(V )/2 each.4

Proof: Start a walk in T from an arbitrary vertex, in each step moving from a vertex u to

a neighbor u′ if the weight of the tree rooted at u′, when the edge (u, u′) is removed, is strictly

greater than w(V )/2. Since T has no cycles and since the walk never reverts the last step taken, the

walk eventually stops at some vertex v. This means that when v is removed from T , the weight of

the tree rooted at each of the neighbors of v is at most w(V )/2. Since these trees are the connected

components resulting from the removal of v, we are done.

Proof of Lemma 2: Set k = log logm/648 and let Gm,k be the graph from Theorem 4, where

we take m to be large enough such that k ≥ min{n0, 2}. We note that in the rest of the proof we

will use the inequality

(6k)4 ≤ logm (4)

which holds since m is sufficiently large. As is well known, by iteratively removing vertices of Gm,k

of degree at most k/2, one obtains a (non-empty) graph of minimum degree at least k/2. Let G be

a connected component of the largest average degree in the obtained graph. Note that the average

degree of G is at least k, the maximum degree is still at most 6k, and the girth is still at least

logm/(6k)2. Finally, G still satisfies item (iii) of Theorem 4, being a subgraph of Gm,k.

Let G◦ be obtained by taking the replacement product of G with a cycle. That is, G◦ is obtained

from G by replacing each vertex of degree x by a cycle on x new vertices – which we henceforth refer

to as a “cloud” – and further adding edges as follows: if u, v are adjacent in G, with u being the

i-th neighbor of v and v being the j-th neighbor of u (under a fixed arbitrary enumeration of the

neighbors of each vertex), then the i-th vertex in the cloud corresponding to v is connected by an

edge to the j-th vertex in the cloud corresponding to u. So for example, it is easy to see that there

is a one-to-one correspondence between the edges of G and those edges of G◦ that connect vertices

from different clouds. Note that our graph G◦ is connected, as needed. Letting n denote the number

of its vertices, note that n equals the sum of the degrees of all vertices of G, so n ≥ k |V (G)| ≥ n0,

as needed. Furthermore, G◦ is 3-regular, since each vertex has two neighbors in its cloud and one

neighbor in precisely one other cloud, as required by item (i) of the statement.

Let us now prove that the girth of G◦ is equal to the minimum between the girth of G and the

minimum degree of G. First, note that any cycle C in G◦, other than a cloud, naturally determines

a closed trail in G (i.e., where vertices may be visited more than once, but not edges). Indeed, for

4For a subset X ⊆ V we write w(X) =
∑

v∈X w(v).
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each edge of C that connects two different clouds, the trail simply moves along the corresponding

edge in G.. Note that the length of C is at least the length (i.e., number of edges) of the trail.

Since the length of the shortest closed trail in G is its girth, we conclude that the length of any

cycle in G◦ is at least the girth of G, unless that cycle is a cloud. Furthermore, since the smallest

number of vertices in a cloud of G◦ equals the minimum degree of G, our claim follows. That is,

the girth of G◦ is at least

min{logm/(6k)2, k/2} = log log(m)/1296 ≥ log log(n)/2000 ,

where we used the setting of k, Equation (4) and the fact that n ≤ 6k |V (G)| ≤ 6km ≤ m2. This

proves item (ii) of the statement.

It remains to show that G◦ satisfies item (iii) of the statement as well. Let H◦ be a t-vertex

subgraph of G◦. Our goal is to bound φH◦ from above. Let H be the induced subgraph of G

obtained by retaining only those vertices whose corresponding cloud has at least one vertex in H◦.

Put h = |V (H)|, and notice t ≥ h. We next consider two cases, depending on whether H is a forest

or not.

First, suppose that H is not a forest. Hence, by item (iii) of Theorem 4 (a property which is also

satisfied by G, as mentioned above) there is a partition V (H) = S∪S′ with |S| , |S′| ≥ h/3 satisfying

|∂H(S)| , |∂H(S′)| ≤ (h/ log h) · (log log h)2. Let S◦ be the subset of V (H◦) corresponding to S (i.e.,

obtained by replacing each vertex in S with the vertices of its cloud in H◦). Assume without loss

of generality that |S◦| ≤ t/2 (otherwise take S′
◦, which is defined from S′ in a similar fashion).

Observe that |∂H◦(S◦)| ≤ |∂H(S)|, since any edge in ∂H◦(S◦) must go between two different clouds,

and there is a unique edge in ∂H(S) connecting the two vertices corresponding to these clouds.

Therefore,

φH◦ ≤ |∂H◦(S◦)|
|S◦|

≤ (h/ log h) · (log log h)2
h/3

=
3(log log h)2

log h
≤ 3(log log t)2

log(t/6k)
≤ 6(log log t)2

log t
,

where in the second inequality we used the fact that |S◦| ≥ |S| ≥ h/3, in the third inequality we

used the fact that h ≤ t ≤ 6k · h, and in the last inequality we used the fact that t/6k ≥
√
t (i.e.,√

t ≥ 6k); the latter follows from the fact that since H is not a forest, h is at least the girth of G,

so t ≥ h ≥ logm/(6k)2 ≥ (6k)2 by Equation (4). This proves item (iii) of the statement under the

assumption that H is not a forest.

Suppose next that H is a forest. Notice we may assume that H is a connected graph since

otherwise H◦ is also not connected, meaning that φH◦ = 0 so we are done. We apply Claim 3

on the tree H, where we set the weight of each vertex in H to be the number of vertices in the

corresponding cloud in H◦. Let v be the vertex guaranteed by Claim 3, and let v1, . . . , vd be the

vertices of the cloud/cycle corresponding to v, in their order on the cycle. For each 1 ≤ i ≤ d, let

Si ⊆ V (H◦) be the set of vertices in H◦ corresponding to the i-th connected components of H − v

(i.e., so that vi is the unique vertex in the cloud of v that is connected to Si). Put S
′
i = Si ∪ {vi}.

Then
∑d

i=1 |S′
i| = t, and our choice of v guarantees that |S′

i| ≤ t/2 + 1. We claim that there is an

index 1 ≤ j ≤ d such that (1/4)t ≤ ∑j
i=1 |S′

i| ≤ (3/4)t. Indeed, if 1 ≤ j ≤ d is the smallest index

such that
∑j

i=1 |S′
i| ≥ (1/4)t then

j
∑

i=1

∣

∣S′
i

∣

∣ =

j−1
∑

i=1

∣

∣S′
i

∣

∣+ |S′
j | ≤ (t/4− 1) + (t/2 + 1) = (3/4)t .
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Now, let S◦ ⊆ V (H◦) be the smallest between
⋃j

i=1 S
′
i and its complement, so that t/4 ≤ |S◦| ≤ t/2.

Observe that since {1, 2, . . . , j} is an interval, |∂H◦(S◦)| ≤ 2. We conclude that

φH◦ ≤ 2/(t/4) = 8/t ≤ (1/ log t) · (4 log log t)2 ,

where in the last inequality we used the fact that (x/ log x) ·(log log x)2 ≥ 1/2, which can be verified

to hold for any real x ≥ 3 (and thus for any integer t > 2). This completes the proof.

4.2 Lower bound proof

For our proof of Theorem 3 we will need the graph witnessing the lower bound to contain a bridge.

The following lemma shows that one can modify a given graph so as to contain a bridge while

preserving high girth and small hereditary expansion.

Lemma 4. Suppose there is a 3-regular connected n-vertex graph G with girth g that is f -non-

expanding, where f : [1/2,∞) → R is monotone decreasing. Then there is a 3-regular connected

(2n + 2)-vertex graph that contains a bridge, and moreover, has girth at least g and is h-non-

expanding with h(x) = 3f(x/2− 1).

Proof: Let G1, G2 be two vertex-disjoint copies of G. Let ei be an arbitrary edge of Gi, i ∈ {1, 2},
and let G′

i be obtained by subdividing ei. That is, G
′
i is obtained from Gi by adding a new vertex

wi, removing the edge ei = (ui, vi) and adding the edges (ui, wi), (wi, vi). It is clear that subdividing

an edge does not decrease the girth. Now, construct the graph F from the union of G′
1 and G′

2

by adding the bridge (w1, w2). It is clear that F is 3-regular, connected and has girth at least g.

It therefore remains to show that F is h-non-expanding. Let H be a t-vertex subgraph of F with

t > 2. We need to show that φH ≤ h(t). Without loss of generality, H has at least t/2 vertices

in G′
1. Let H ′ be the subgraph of H induced by those vertices, where we remove the subdividing

vertex w1 if w1 ∈ V (H). Note that H ′ is a subgraph of G1. Let t′ ≥ t/2 − 1 denote the number

of vertices of H ′. Since H ′ is f -non-expanding, there is a subset S ⊆ V (H ′) with |S| ≤ t′/2 and

|∂H′(S)| / |S| ≤ f(t′). Note that |∂H(S)| ≤ |∂H′(S)| + 2, since the only edges in H connecting a

vertex in H ′ and a vertex not in H ′ are (u1, w1) and (w1, v1). We conclude that

φH ≤ 3f(t′) ≤ 3f(t/2− 1) = h(t) ,

where in the second inequality we used the monotonicity of f for t ≥ 1/2.

For a local sparse spanning graph algorithm A, we denote by A(G,u, v) ∈ {0, 1} the output of A
when the input graph is G = (V,E) and the input edge is (u, v) ∈ E. The query-answer transcript

of A on G, where A makes q queries and G is d-regular, is the sequence of triples ((xj , ij , yj))
q
j=1

where (xj , ij) ∈ V × [d] is the j-th query and yj ∈ V is the corresponding answer.

Finally, for a permutation σ on V , we denote by σ(G) the graph isomorphic to G on the same

vertex set, for which (u, v) ∈ E(σ(G)) if and only if (σ(u), σ(v)) ∈ E(G). We stress that in what

follows, the graph σ(G) will not necessarily have the same neighborhood ordering as that of G.

That is, if y is the i-th neighbor of x in G and σ(v) = x, σ(u) = y then u is not necessarily the i-th

neighbor of v in σ(G).

Lemma 5. Let G be a 3-regular connected graph of girth g that contains a bridge. Any (12 , q)-local

sparse spanning graph algorithm for the graphs isomorphic to G satisfies q ≥ g/2.
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Proof: Let A be an (12 , q)-local sparse spanning graph algorithm for the graphs isomorphic to G,

and assume, contrary to the claim in the lemma, that q < g/2. We shall say that A accepts an edge

(u, v) in G if it gives a positive answer when queried on (u, v) (that is, (u, v) belongs to the sparse

spanning graph G′). We will show that with probability 1 over its random coins, A accepts every

edge of G. This will complete the proof as it means that the number of edges of G that A accepts

is (1 + 1
2 )n, where n is the number of vertices of G, contradicting condition (ii) in Definition 1.

Let (u, v) ∈ E(G) and assume for contradiction that there is a sequence r of random coins

for A such that the corresponding deterministic algorithm Ar satisfies Ar(G,u, v) = 0. Suppose,

without loss of generality, that the vertex set of G is [n] and that (1, 2) is a bridge in G. We

will construct a permutation σ on [n] with σ(u) = 1, σ(v) = 2 so that the graph σ(G) (with an

appropriate way of ordering the neighbors of each vertex) has the property that the query-answer

transcript of Ar(G,u, v) is identical to that of Ar(σ(G), u, v). Note that Ar(σ(G), u, v) is well

defined since the input edge (u, v) is indeed an edge of σ(G), and since σ(G) is a valid input graph

to Ar being isomorphic to G. Since Ar is deterministic, whether or not Ar accepts (u, v) depends

solely on the query-answer transcript. Therefore, the existence of σ as above would imply that

Ar(σ(G), u, v) = 0. However, this would contradict condition (i) in Definition 1 since (u, v) is a

bridge in σ(G).

Let Q = (xj , ij , yj)
q
j=1 be the query-answer transcript of Ar(G,u, v). We first claim that if

a permutation σ and an ordering of the neighbors of each vertex of σ(G), are such that σ(u) =

1, σ(v) = 2 and for every 1 ≤ j ≤ q the ij-th neighbor of vertex xj in σ(G) is vertex yj then the

query-answer transcript of Ar(G,u, v) is identical to the query-answer transcript of Ar(σ(G), u, v).

To see this, let the query-answer transcript of Ar(σ(G), u, v) be denoted by (x′j , i
′
j , y

′
j)

q′

j=1. We prove,

by induction on j, that the two query-answer transcripts are the same when restricted to the first

1 ≤ j ≤ q queries, that is, (x′j , i
′
j) = (xj , ij) and y′j = yj for every 1 ≤ j ≤ q. Note that this will also

imply that q = q′ (i.e., that the number of queries is identical). For j = 1 we have (x′1, i
′
1) = (x1, i1)

since Ar is deterministic and in both cases the input is (u, v). Our assumption on σ thus guarantees

that we also have y′1 = y1. Suppose our claim holds for the first j − 1 queries. Again, since Ar is

deterministic, the j-th query is determined only by the query-answer transcript of the first j − 1

queries (and the input edge). Hence, the induction hypothesis implies that (x′j , i
′
j) = (xj , ij) and

our assumption on σ again implies that we also have y′j = yj . This completes the inductive proof.

It follows that in order to complete the proof it suffices to find a permutation σ and an ordering of

the neighbors of each vertex, as above. Let again Q = (xj , ij , yj)
q
j=1 be the query-answer transcript

of Ar(G,u, v), and let F be the (labeled) graph spanned by the edge set5

E(F ) = {(xj , yj)}qj=1 ∪ {(u, v)} .

Since

|E(F )| ≤ q + 1 ≤ g/2 , (5)

we have that F is a forest. Let T1, . . . , Tk be the (labeled) trees in F . For the sake of defining

σ it will be convenient to consider a single tree T . The edge-set of T consists of E(F ) and k − 1

additional edges. The additional edges do not necessarily belong to G, and are selected as follows.

5E(F ) might contain the edge (x, y) twice if y is the i-th neighbor of x, x is the j-th neighbor of y and the

algorithm queried both (x, i) and (y, j). In this case we will keep just one copy of (x, y) thus making sure that E(F )

is indeed a set, and not a multi-set.
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For each labeled tree Ti, let ti denote an arbitrary vertex of degree smaller than 3. For every

i ∈ [k − 1], add the edge (ti, ti+1).

Observe that Equation (5) implies that |E(T )| < g. Consider a rooted version of T where u is

the root, and construct σ as follows. Set σ(u) = 1, σ(v) = 2, and define the neighborhood relation

between u, v in σ(G) as it is in G. That is, if u is the i-th neighbor of v and v is the j-th neighbor

of u in G then the same holds in σ(G). Suppose we have already defined σ(x) for all x at distance

at most d − 1 from u (in T ) as well as for some vertices at distance d, and let y be a vertex at

distance d for which σ(y) has not been defined yet. Let x be the parent of y in T (whose distance

from v is thus d − 1) and let us set σ(y) to be a neighbor of σ(x) in G which is not the image of

any vertex under the σ we have defined thus far. Such a vertex exists since G is 3-regular and the

degree in T is at most 3. If the edge (x, y) is in F then we define the neighborhood relation between

σ(x) and σ(y) as x and y in G. Once we define σ for all vertices of T we arbitrarily extend σ to

a permutation, and extend the neighborhood relation between the vertices in a consistent manner.

We are now ready to prove Theorem 3.

Proof of Theorem 3: Let

h(x) =
1

log(3x)
· 32(log log(8x))2 .

It is not hard to check that h : [1/2,∞) → R is monotone decreasing. Note that the graph in

Lemma 2 is h-non-expanding, since for x ≥ 3,

h(x) ≥ 1

log(x2)
· 32(log log x)2 = 1

log x
· (4 log log x)2 .

Apply Lemma 4 on the graph(s) in Lemma 2. We get a 3-regular connected n-vertex graph, for

infinitely many n, that contains a bridge, has girth at least

log log((n − 1)/2)

2000
≥ log log(n/4)

2000
≥ log log(n)

4000

and is f -non-expanding with

f(x) = 3h(x/2 − 1) ≤ 1

log(x/2)
· 96(log log(4x))2 ≤ 3

log x
· 96(4 log log x)2 ≤ 1

log x
· (70 log log x)2

where we assumed x ≥ 3. The proof now follows immediately from Lemma 5.
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