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Abstract

We develop the first approximation algorithm with worst-case performance guarantee for
capacitated stochastic periodic-review inventory systems with setup costs. The structure of the
optimal control policy for such systems is extremely complicated, and indeed, only some partial
characterization is available. Thus, finding provably near-optimal control policies has been
an open challenge. In this paper we construct computationally efficient approximate optimal
policies for these systems whose demands can be nonstationary and/or correlated over time, and
show that these policies have a worst-case performance guarantee of 4. We demonstrate through
extensive numerical studies that the policies empirically perform well, and they are significantly
better than the theoretical worst-case guarantees. We also extend the analyses and results to
the case with batch ordering constraints, where the order size has to be an integer multiple of
a base load.
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1 Introduction

In this paper we study capacitated stochastic periodic-review inventory systems with setup costs.
The demand process may be nonstationary (time-dependent) and correlated over time, capturing
demand seasonalities and forecast updates.

These systems are fundamental but notoriously hard to analyze in both theory and computation.
If the ordering capacity in each period is infinity, it is well-known that state-dependent (s, S) type
of policies are optimal for inventory systems with setup costs under independent demand processes.
This structure for optimal policies also holds true for exogenous Markov-modulated demands (e.g.,
Cheng and Sethi [7]) and models with advance demand information (e.g., Gallego and Özer [9]).
One might expect that some form of modified (s, S) policies is optimal for the capacitated case,
but all studies have rejected the conjecture. In fact, even when the demands in different periods
are independent and identically distributed, the structure of the optimal control policies is very
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complicated and only some partial characterization is available in the literature. Thus, the design
and computation of a provably near-optimal control policy have been an open challenge.

It should be noted that computing the optimal control policy using dynamic programming may
not be possible due to the curse-of-dimensionality, i.e., the need to keep track of a state variable of
large dimension. For example, the demand process for our model may be nonstationary, driven by
the state-of-economy or state-of-the-world (e.g., the Markov modulated demand process), or it may
be a forecast-related demand process such as the Martingale Model of Forecast Evolution (MMFE,
see for example, Heath and Jackson [14]) in which the updated forecast (as well as the realization
of the supply capacity in the next period) is the original forecast plus a random error with mean
zero (see e.g. Lu et al. [22]). In these scenarios, the demand structure leads to a multi-dimensional
stochastic dynamic program and computing the optimal policies is usually intractable.

1.1 Main results and contributions of this paper

The major results and contributions of this paper are summarized as follows. We also point out
the major distinction of our proposed algorithms from previous work, in particular, Levi et al. [20]
and Levi and Shi [21].

Algorithms and their worst-case analysis. We develop the first approximation algorithms
for capacitated stochastic periodic-review inventory systems with setup costs under a correlated,
nonstationary and evolving stochastic demand structure. The policy proposed will be referred to
as a randomized 1/2-balancing policy (R/2). We show that the proposed policies admit a constant
worst-case performance guarantee of 4, regardless of any specific demand instance or input param-
eters. Note that this constant worst-case performance guarantee does not scale with the system
size or the length of the planning horizon or the input parameters. Since the structure of optimal
policies for these systems is not well understood, the proposed inventory control policies provide
valuable insights into how various cost components should be balanced.

As mentioned in our literature review below, Levi and Shi [21] developed a 3-approximation
algorithm for the uncapacitated model with setup costs using an exact randomized balancing (i.e.,
exactly balance the marginal holding cost, the forced backlogging cost and the setup cost), and
Levi et al. [20] proposed a concept of forced backlogging cost accounting for the capacitated model
without setup costs. However, exact balancing is not achievable in the presence of both capacity
constraints and the setup cost. The main source of difficulty lies in the fact that the policy may
not be able to order a specific quantity that makes the marginal holding cost equal to the setup
cost, since this particular quantity may exceed the ordering capacity; in such cases, the policy
has to truncate an order at the capacity level. The approach employed in Levi and Shi [21] fails
to work in this case. Instead of exact balancing, our proposed R/2 policy almost balances the
marginal holding or forced backlogging cost with half of the setup cost. We provide a unified and
much simpler analysis of Levi and Shi [21] in the well-behaved cases, and a novel analysis in the
ill-behaved cases.

We also extend our results to capacitated model with setup cost under batch order constraints.
With the batch order constraint, each order quantity has to be an integer multiple of a pre-specified
base load, e.g., a truck-load. We refer interested readers to Veinott [25], Chao and Zhou [3], Chen
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[4] and Huh and Janakiraman [16] for details concerning batch orders on the case with infinite
ordering capacity. We propose a modified randomized 1/2-balancing policy and show that the
worst-case performance guarantee of the proposed policy is still 4.

Empirical performance. We show how these policies can be parameterized to create a broader
class of policies. We demonstrate through extensive computational studies that the proposed al-
gorithms perform well in an empirical study (around 5% – 15% from the optimal cost), which
is significantly better than the theoretical worst-case performance guarantees. The proposed in-
ventory control policies are computationally efficient with a computational complexity of O(T 2)
where T is the length of the planning horizon, which is very efficient compared to the dynamic
programming approach that suffers from the well-known curse of dimensionality.

1.2 Literature review

Stochastic periodic-review inventory systems have attracted the attention of many researchers over
the years. The dominant paradigm in the existing literature has been to formulate and analyze
these problems using dynamic programming. For many uncapacitated inventory systems with setup
costs, it can be shown that some form of (s,S) policies are optimal (see, e.g., Scarf [24], Veinott [27]).
Cheng and Sethi [7] have extended the optimality proof to exogenous Markov-modulated demands
that capture cycles and seasonality to some extent. Gallego and Özer [9] have established their
optimality for models under advance demand information, a demand model that allows correlation
and forecast updates. Myopic policies seem to perform well for some scenarios in uncapacitated
systems and are even optimal in some specific settings (see Veinott [26], Ignall and Veinott [17]
and Iida and Zipkin [18]). However, capacitated problems are inherently harder, structurally and
computationally, compared to their uncapacitated counterparts. The capacity constraint makes
future costs heavily dependent on current decisions. Chen and Lambrecht [6] demonstrated that
the optimal policy for capacitated inventory systems with setup costs exhibits an X − Y band
structure, with X < Y . That is, if the inventory level is below X, order the full capacity, and if the
inventory level is over Y , order nothing; if the inventory level is between X and Y , however, the
ordering policy is complicated and not known. Gallego and Scheller-Wolf [10] and Chen [5] provided
some further refinements to this policy, but again, the optimal control policy remains complicated
and can only be partially characterized when the inventory level at the beginning of a period is
in the middle range. For example, in Gallego and Scheller-Wolf [10], it was shown that the region
between the X −Y bands can be further divided into two subregions. In one of them, it is optimal
to either order nothing or to bring the inventory level to at least some specified level, that is, there
exists a lower bound for the optimal order up-to level in this range; in the other subregion, the
parameters of the solution dictate which one of the two cases hold: In the first case it is optimal to
order, again to at least some specified level (thus only a lower bound is shown to exist), and in the
second, the optimal policy is to either order the full capacity or order nothing. Özer and Wei [23]
studied capacitated inventory systems with advance demand information. They established the
optimality of a state-dependent modified base-stock policy for inventory systems with zero fixed
ordering cost and for the systems with positive fixed costs, they restricted the ordering to the class
of all-or-nothing policies and characterized the optimal policies within that class.

For models with infinite ordering capacities and independent and identically distributed de-
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mands, Federgruen and Zipkin [8] proposed an algorithm to compute the optimal (s, S) policy in
an infinite horizon model. Bollapragada and Morton [2] proposed a simple, myopic heuristic for
computing the policies where the demands in different periods are assumed to have the same form
of distribution function but with different means, and the coefficient of variation of the demands is
assumed to be stationary. Gavirneni [11] designed a simple heuristic to compute (s, S) policies for
nonstationary and capacitated model. Guan and Miller [13] proposed an exact and polynomial-time
algorithm for the uncapacitated stochastic periodic-review inventory system without backlogging
if the stochastic programming scenario tree is polynomially representable. Guan and Miller [12]
extended these algorithms to allow for backlogging. Huang and Küçükyavuz [15] considered similar
problems but with random lead times. These models allow for stochastic and correlated demands.
The main limitation comes from the fact that the number of nodes in the stochastic programming
scenario tree (the size of input) is likely to be exponentially large in the size of the planning hori-
zon. Atali and Özer [1] proposed a close-to-optimal heuristic to manage a multi-item two-stage
production system subject to Markov-modulated demands and production quantity requirements.
All of the existing heuristics and algorithms, either lack any performance guarantees or can only be
applied under restrictive assumptions on the demand processes or the input size, and to the best of
our knowledge, no efficient computational policies have been reported for capacitated models that
admit worst-case performance guarantees.

Our work is closely related to the recent literature on approximation algorithms in stochastic
periodic-review inventory systems, first started by Levi et al. [19]. Levi et al. [19] introduced
the concept of marginal cost accounting that associates the full planning horizon cost with each
decision a particular policy makes. They proposed a dual-balancing policy that admits a worst-
case performance guarantee of 2 for the uncapacitated model without setup costs. Subsequently,
Levi et al. [20] introduced the forced marginal backlogging cost-accounting scheme to analyze the
capacitated models without setup costs, and Levi and Shi [21] proposed the randomized cost-
balancing policy to solve uncapacitated stochastic lot-sizing problems with setup costs. It is worthy
to note that the systems studied in these papers all have nice simple structures for their optimal
control policies. However and as discussed above, the structure of the optimal control policies for
capacitated stochastic inventory models with setup costs is complicated and has not been fully
characterized; and designing an approximation algorithm for the capacitated stochastic inventory
models with setup costs remained a challenging task.

1.3 Structure of this paper

The remainder of the paper is organized as follows. In Section 2, we present the mathematical
model for the capacitated stochastic periodic-review inventory system with setup cost. Section 3
reviews the marginal cost accounting scheme proposed by [20]. More specifically, we present the
marginal holding cost accounting scheme in Section 3.1 and the forced backlogging cost accounting
scheme in Section 3.2. In Section 4, we propose a novel randomized 1/2-balancing policy and
discuss the key ideas. Then we show that the policy has a worst-case performance guarantee of 4
in Section 5. In Section 6 we extend our results to systems with batch order constraints. Finally,
Section 7 is devoted to the numerical studies for our proposed policies. The parameterized policies
are computationally efficient and perform well under a correlated demand structure with advance
demand information (see, e.g., Gallego and Özer [9] and Özer and Wei [23]).
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2 Capacitated Periodic-Review Inventory System with Setup Costs

In this section, we provide the mathematical formulation of the capacitated periodic-review inven-
tory system with setup cost. Our model allows for nonstationary and generally correlated demand
structure. The ordering capacity in each period is denoted by u. The planning horizon is T periods
which can be either finite or infinity, and we index the period by t = 1, . . . , T .

Demand structure. The demands D1, . . . , DT over the planning horizon T are random. At
the beginning of each period s, we are given what we call an information set denoted by fs. The
information set fs contains all of the information that is available at the beginning of time period
s. More specifically, the information set fs consists of the realized demands d1, . . . , ds−1 over the
interval [1, s), and possibly some exogenous information denoted by (w1, . . . , ws). The information
set fs in period s is one specific realization in the set of all possible realizations of the random
vector Fs = (D1, . . . , Ds−1,W1, . . . ,Ws). The set of all possible realizations is denoted by Fs. With
the information set fs, the conditional joint distribution of the future demands (Ds, . . . , DT ) is
known. The only assumption on the demands is that for each s = 1, . . . , T , and each fs ∈ Fs, the
conditional expectation E[Dt | fs] is well-defined and finite for each period t ≥ s. In particular, we
allow for non-stationarity and correlation between the demands in different periods.

Cost structure. In each period t, t = 1, . . . , T , four types of costs are incurred, a per-unit
ordering cost ct for ordering any number of units at the beginning of period t, a per-unit holding
cost ht for holding excess inventory from period t to t + 1, a per-unit backlogging penalty bt that
is incurred for each unsatisfied unit of demand at the end of period t, and a setup cost K that is
incurred in each period with strictly positive ordering quantity. Unsatisfied units of demand are
usually called backorders. Each unit of unsatisfied demand incurs a per-unit backlogging penalty
cost bt in each period until it is satisfied. In addition, we consider a model with a lead time of
L ≥ 0 periods between the time an order is placed and the time at which it actually arrives. We
remark that the analysis and results remain true when the setup cost Kt depends on period t as
long as Kt ≥ Kt+1 is satisfied for all t. We assume without loss of generality that the discount
factor α = 1, and that ct = 0 and ht, bt ≥ 0, for each t (see the discussion in [19]).

System dynamics. The goal is to coordinate a sequence of orders that minimizes the overall
expected setup cost, holding cost and backlogging cost. More specifically, in each period t, t =
1, . . . , T , we place an order of Qt ∈ [0, u] units. Given a feasible policy PL, the dynamics of
the system are described using the following notation. Let NIt denote the net inventory at the
end of period t. Thus, NI+

t and NI−t are inventory on hand and backlog quantities in period t,
respectively, where for any real number x, we let x+ = max{x, 0}. Since there is a lead time of L
periods, one also considers the inventory position of the system, which is the sum of all outstanding
orders plus the current net inventory. Let Xt be the inventory position at the beginning of period
t before the order in period t is placed, i.e., Xt = NIt−1 +

∑t−1
j=t−LQj , and Qj ∈ [0, u] denotes the

number of units ordered in period j. Similarly, let Yt be the inventory position after the order in
period t is placed, i.e., Yt = Xt +Qt. Note that for every possible policy PL, once the information
set ft ∈ Ft is known and order Qt is placed, the values nit−1, xt and yt are known, where these are
the realizations of NIt−1, Xt and Yt, respectively. At the end of each period t, the costs incurred
are holding cost htNI

+
t and backlogging cost btNI

−
t . In addition, if the order quantity Qt > 0,

then the fixed ordering cost K is incurred. Thus, the total cost of a feasible policy PL is
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C (PL) =

T∑
t=1

(
htNI

+,PL
t + btNI

−,PL
t +K · 1(QPL

t > 0)
)
, (1)

where 1(A) is the indicator function taking value 1 if statement “A” is true and 0 otherwise. The
objective is to find the optimal ordering decisions QPL

t , based on information ft, t = 1, . . . , T , that
minimizes the total cost (1).

3 Marginal Cost Accounting Scheme

The cost accounting scheme described in (1) above decomposes the cost by periods. Following
Levi et al. [19] and [20], we next describe an alternative cost accounting scheme that is called
marginal cost accounting scheme. The main idea underlying this approach is to decompose the cost
by decisions. That is, the decision in period t is associated with all costs that, after that decision
is made, become unaffected by any future decisions, and are only affected by future demands. This
may include costs in all subsequent periods.

3.1 Marginal holding cost accounting

Let D[s,t] denote the cumulative demand over the interval [s, t], i.e., D[s,t] =
∑t

j=sDj . We first
focus on the holding costs and assume, without loss of generality, that units in inventory are
consumed on a first-ordered first-consumed basis. This implies that the overall holding cost of the
qs units ordered in period s (i.e., the holding cost they incur over the entire horizon [s, T ]) is a
function only of future demands, and is unaffected by any future decision. Specifically, based on
the assumption that inventory is consumed on a first-ordered first-consumed basis, the qs units on
order will be used to satisfy demand only when the xs units presently in the system have been
completely consumed. Among these qs units, the number of those still remaining in inventory at
the end of period j (where j ≥ s+ L) is precisely

(
qs − (D[s,j] − xs)+

)+
. Thus, the total marginal

holding cost associated with the decision to order qs units in period s is, recall that the discount
factor α = 1, defined to be

∑T
j=s+L hj

(
qs − (D[s,j] − xs)+

)+
. Note that at the time the order qs is

placed, the inventory position xs is already known and indeed the marginal holding cost is just a
function of future demands. In addition, once the order in period s is determined, the backlogging
cost a lead time ahead in period s + L, i.e., bs+L

(
D[s,s+L] − (xs + qs)

)+
, is also affected only by

the future demands. This leads to a marginal cost accounting scheme.

For each feasible policy PL, let HPL
s be the holding cost incurred by the QPL

s units ordered in
period s, for s = 1, . . . , T − L, over the interval [s, T ]. Then,

HPL
s = HPL

s (QPL
s ) =

T∑
j=s+L

hj
(
QPL

s − (D[s,j] −Xs)
+
)+
. (2)

It is readily verified that when we sum up the marginal holding costs of all unit ordered, we would
obtain the total holding cost for all the periods. That is,

T∑
t=1

htNI
+PL
t = H(−∞,0] +

T−L∑
t=1

HPL
t , (3)
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where H(−∞,0] denotes the total holding cost incurred by units ordered before period 1, which is
independent of the ordering decisions during the planning horizon [1, T ].

3.2 Forced backlogging cost accounting

In capacitated models, it is no longer true that a mistake of ordering too little in the current period
can always be fixed by decisions made in the future periods. Levi et al. [20] proposed a new
backlogging cost accounting that associates with decision of how many units to order in period t
what is called forced backlogging cost resulting from this decision in future periods.

Consider some period s. Suppose that xs is the inventory position at the beginning of period
s and that the number of units ordered in period is qs ≤ u. Let q̄s be the resulting unused slack
capacity in period t, i.e., q̄s = u − qs ≥ 0. Focus now on some future period t ≥ s + L when this
order arrives and becomes available. Suppose that for some realization of the demands, we have
that

d[s,t] − (xs + qs + (t− s− L)u) > 0. (4)

This implies that there exists a shortage in period t, and moreover, even if in each period after
period s and until period t− L the orders placed were up to the maximum available capacity, this
part of the shortage in period t would still exist and incur the corresponding backlogging cost. The
actual shortage may be even higher than (4) and is equal to

d[s,t] − (xs + qs +
∑

j∈(s,t−L]

qj) > 0,

(recall that qj ≤ u for each period j). In other words, given our decision in period s, this part of
the shortage could not be avoided by any decision made over the interval (s, t − L] (clearly, any
order placed after period t−L will not be available by time t). We conclude that, if more units had
been ordered in period s, then at least some of the shortage in period t could have been avoided.
More precisely, the maximum number of units of shortage that could have been avoided by ordering
more units in period s is equal to

min

{
q̄s,
[
d[s,t] − (xs + qs + (t− s− L)u)

]+
}
.

The intuition is that by ordering more units in period s, we could have averted part of the shortage
in period t, but clearly not more than the unused slack capacity q̄s, since we could not have
ordered in period s more than additional q̄s units. In this case, we would say that this part of the
backlogging cost in period t was forced by the decision in period s. Denote Ws,t as the backlogging
cost in period t associated with decision made in period s. Then we can write

Wst = bt min
{(
D[s,t] − (Xs +Qs + (t− s− L)u)

)+
, (u−Qs)

}
.

This is significantly different from the traditional backlogging cost accounting, in which this cost
would be associated with period t − L. Since the decision at period s could affect all succeeding
period’s backlogging cost, then the forced backlogging costs that are incurred by any feasible policy
PL in a period s is given by

Π̄PL
s =

T∑
t=s+L

WPL
st . (5)
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It is, again, readily verified that the summation of forced backlogging cost in all periods is equal to
the total backlogging cost. That is,

T∑
t=1

btNI
−PL
t = Π̄(−∞,0] +

T−L∑
t=1

Π̄PL
t , (6)

where Π̄(−∞,0] denotes all the forced backlogging costs of the ordering decisions made before period
1, which is independent of the policy used.

3.3 Total cost of any feasible policy

Let C (PL) be the total cost incurred by using the control policy PL. By (3) and (6), we can
rewrite C (PL) as

C (PL) =

T∑
t=1

(
htNI

+PL
t + btNI

−PL
t +K · 1(QPL

t > 0)
)

=

T−L∑
t=1

(
K · 1(QPL

t > 0) +HPL
t + Π̄PL

t

)
+H(−∞,0] + Π̄(−∞,0].

Since H(−∞,0] and Π̄(−∞,0] are constants that are not affected by the policy used, we will ignore
them in the subsequent analysis and write the effective cost of a policy PL as

C(PL) =
T−L∑
t=1

(
K · 1(QPL

t > 0) +HPL
t + Π̄PL

t

)
.

Clearly, to compare the performances of different policies, it suffices to compare their corresponding
effective costs.

4 The Randomized 1/2-Balancing (R/2) Policy

In this section, we propose a policy called randomized 1/2-balancing policy (R/2, or R-half policy)
which aims to strike a balance between three types of costs, namely, the marginal holding cost, the
forced backlogging cost, and the setup cost.

There are two sources of difficulties in designing cost-balancing algorithms for capacitated
stochastic periodic review inventory systems with setup costs. The first one is that we are un-
able to perfectly balance the three types of costs mentioned above. For instance, we may not be
able to order the quantity that brings the marginal holding cost up to the setup cost K, since the
particular quantity can exceed the capacity constraint u. In these cases, the balancing policy has to
place a truncated order at the full capacity. This creates difficulties in analyzing the performance
bounds of the policy since it is not so clear which cost component of the optimal policy can ‘pay’
for a constant fraction of the cost incurred by the balancing policy. The second source of difficulty
is the need to balance the nonlinear setup cost against the forced backlogging cost that may have
large spikes because of the variability of the demands. Thus, the balancing policy needs to employ
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a randomized decision rules to make the expected setup cost incurred in each period a continuous
function, rather than an indicator function K if an order is placed and 0 otherwise. However,
the randomized decision rules also introduce uncertainties in the relationships between the ending
inventory position of the optimal policy and the balancing policy. In some periods, it is not a-priori
clear how to use the cost of the optimal policy to ‘pay’ for that of a balancing policy.

To describe the new policy, we modify the definition of the information set ft to also include
the randomized decisions of the randomized balancing policy up to period t − 1. Thus, given the
information set ft, the inventory position xt at the beginning of period t is known. However, the
order quantity in period t is still unknown because the policy randomizes among various order
quantities.

4.1 Computing auxiliary balancing quantities and costs

At the beginning of each period t with the realized information set fs, we can efficiently compute
the following auxiliary ordering quantities and costs, since the marginal holding cost H(·) and the
forced backlogging cost Π̄(·) are given in (2) and (5) in closed forms. First, compute the balancing
quantity q̂t and the balancing cost θt such that

θt , E[H
R/2
t (q̂t) | ft] = E[Π̄

R/2
t (q̂t) | ft].

The balancing quantity perfectly balances the conditional expected marginal holding cost against

the conditional expected forced backlogging cost associated with the order q̂t. Since Π̄
R/2
t (u) = 0,

it follows that q̂t ≤ u. Note that Ht(·) is convex and increasing on [0,∞) and Π̄(·) is convex and
decreasing to 0. Thus, q̂t always exists and can be computed efficiently via bi-section search. Then,
compute the holding-cost-K/2 quantity q̃t that solves

E[H
R/2
t (q̃t) | ft] =

K

2
.

The holding-cost-K/2 quantity makes the conditional expected marginal holding cost equal to
K/2, and it is well-defined since Ht(·) is convex and increasing on [0,∞). A caveat is that ordering
q̃t may not be feasible due to the capacity constraint u in each period t. More specifically, if

E[H
R/2
t (u) | ft] < K/2, then the quantity q̃t exceeds the capacity u and therefore cannot be ordered

in full amount. It is natural to consider the order quantity min{q̃t, u} which truncates the holding-
cost-K/2 quantity at u. Thirdly, we compute the conditional expected forced backlogging cost φt if

one orders the minimum of q̃t and the capacity u in period t. That is, φt , E[Π̄
R/2
t (min{q̃t, u}) | ft].

And finally, we compute the conditional expected forced backlogging cost ψt resulting from not

ordering anything in period t. That is, ψt , E[Π̄
R/2
t (0) | ft].

4.2 Description of the R/2 policy

Using the quantities computed above, we propose the following procedure for a randomized policy
for period t.

(i) If the balancing cost exceeds K/2, i.e., θt ≥ K/2, then the R/2 policy orders the balancing
quantity q̂t with probability pt = 1;
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(ii) if the balancing cost is less than K/2, i.e., θt < K/2, then the R/2 policy orders the truncated
holding-cost-K/2 quantity min{q̃t, u} with probability pt and order nothing with probability
1− pt. The probability pt is computed by the following equation,

pt
K

2
= ptφt + (1− pt)ψt. (7)

It follows from (7) that

pt =
ψt

K/2− φt + ψt
.

We argue that 0 ≤ pt < 1. This is because, in (ii) it holds that

E[H
R/2
t (q̂t) | ft] = θt < K/2 = E[H

R/2
t (q̃t) | ft],

hence we must have q̃t > q̂t. In addition, u ≥ q̂t by the construction of q̂t. Thus, q̂t ≤ min{q̃t, u},
which implies that φt ≤ θt < K/2.

In summary, we denote the order quantity of the R/2 policy by q
R/2
t . Then the R/2 policy

orders

q
R/2
t =


q̂t, with probability pt = 1 in case (i),

min{q̃t, u}, with probability pt in case (ii),
0, with probability 1− pt in case (ii),

where pt in case (ii) is given by (7). The R/2 policy is depicted in Figure 1. This concludes the
description of the R/2 policy.

Note that pt is a-priori random and is realized with the information set ft ∈ Ft. Following

the convention we use Pt to denote this a-priori random probability. Similarly, we use Q
R/2
t to

represent the random a-priori ordering quantity in period t.

4.3 Key ideas of the R/2 policy

In the next section, we shall show that the R/2 policy described above has an expected worst-case
performance guarantee of 4. Here we first provide the intuition and keys ideas underlying this
policy.

When the balancing cost θt exceeds K/2, we have K ≤ 2θt, implying that the setup cost K
is smaller than the the total expected marginal holding and forced backlogging costs in period t.
The setup cost in this case is a less dominant factor. Moreover, if the R/2 policy does not place
an order, the conditional expected forced backlogging cost is potentially very large. Thus, it is

worthwhile to order the balancing quantity q
R/2
t = q̂t with probability 1. When the balancing

cost θt is below K/2, the setup cost K becomes more dominant, and therefore it is not advisable
to order with probability 1. It is natural to attempt to perfectly balance the three types of the
costs, namely, marginal holding, forced backlogging and setup costs. Due to the ordering capacity
constraint u, the optimal balancing ratio is no longer 1 : 1 : 1 for each type of the costs. Intuitively,
we want to increase our frequencies of ordering, keeping the sum of the marginal holding and forced
backlogging equal to the setup costs. In particular, since we order the truncated holding-cost-K/2

10



marginal holding cost

forced backlogging cost

Cost

capacity (u)0

θ

balancing quantity

K
2

marginal holding cost

forced backlogging cost

Cost

capacity (u)

0

θ

balancing quantity holding-cost-    quantity

φ

ψ

K
2

K
2

marginal holding cost

forced backlogging cost

Cost

capacity (u)
0

θ

balancing quantity

φ

ψ

K
2

Figure 1: A graphical depiction of how the R/2 policy orders in the following three scenarios:
(1) when the balancing cost exceeds K/2, the policy orders the balancing quantity; (2) when the
balancing cost is below K/2 and the holding-cost-K/2 quantity is below the full capacity, order
the holding-cost-K/2 quantity with probability pt and nothing with probability 1 − pt; (3) when
the balancing cost is below K/2 and the holding-cost-K/2 quantity exceeds the full capacity, order
the full capacity with probability pt and nothing with probability 1− pt. Note that pt is computed
from equation (7).

quantity min{q̃t, u} with probability pt and nothing with probability 1−pt, the conditional expected
marginal holding cost in this case is

E[H
R/2
t (q

R/2
t ) | ft] = pt · E[H

R/2
t (min{q̃t, u}) | ft] + (1− pt) · E[H

R/2
t (0) | ft]

≤ pt · E[H
R/2
t (q̃t) | ft] + (1− pt) · E[H

R/2
t (0) | ft] = ptK/2.

By the construction of the ordering probability pt in (7), the conditional expected forced backlogging
cost is

E[Π̄
R/2
t (q

R/2
t ) | ft] = pt · E[Π̄

R/2
t (min{q̃t, u}) | ft] + (1− pt) · E[Π̄

R/2
t (0) | ft]

= ptφt + (1− pt)ψt = ptK/2.

Finally, since pt is the ordering probability, the expected setup cost is ptK, which is twice of ptK/2.
It follows that this randomized decision rule almost balances in a parameterized way, up to the
capacity constraint, the three types of costs associated with the period. The balancing ratio is
1 : 1 : 2 for the marginal holding, the forced backlogging and the setup costs.

Remark In a way, the balancing randomized R/2 policy we employed for marginal holding, the
forced backlogging and setup costs is optimal in terms of achieving the best worst-case bound.
Indeed, we could show that, if the balancing ratio is a : b : c, then the worst case bound reaches
its minimum at a : b : c = 1 : 1 : 2. For example, if our balancing ratio is 1 : 1 : 1, then we would
obtain a worst-case bound of 6.
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5 Worst-Case Analysis of the R/2 Policy

In this section, we provide a worst-case analysis of the randomized 1/2-balancing policy (R/2) and
show that the R/2 policy has a provable worst-case performance guarantee of 4. In Section 7, we
demonstrate through extensive numerical studies that the R/2 policy empirically performs well,
and it is significantly better than the provable worst-case performance guarantees. We formally
state Theorem 1, which is the main result of this paper.

Theorem 1. For each instance of the capacitated periodic-review stochastic inventory system with
setup cost, the expected cost of the randomized 1/2-balancing policy (R/2) is at most 4 times the
expected cost of an optimal policy OPT , i.e.,

E[C (R/2)] ≤ 4 E[C (OPT )].

The proof of Theorem 1 is divided into a sequence of lemmas. First, let Z
R/2
t be a random

variable defined as

Z
R/2
t ,

{
Θt, if Θt ≥ K/2;

Pt
K
2 , otherwise,

(8)

where Θt , E[H
R/2
t (Q

R/2
t ) | Ft] = E[Π̄

R/2
t (Q

R/2
t ) | Ft] is the balancing cost and Pt is the ordering

probability in period t. Note that Z
R/2
t and Pt are random variables that are realized with the

information set ft ∈ Ft in period t. In the following lemma we show that the expected cost of the

R/2 policy can be upper bounded using the Z
R/2
t variables defined in (8).

Lemma 1. Let C (R/2) be the total cost incurred by the R/2 policy. Then we have,

E[C (R/2)] ≤ 4
T−L∑
t=1

E[Z
R/2
t ].

Proof. We first show that Z
R/2
t ≥ E[H

R/2
t (Q

R/2
t ) | Ft], Z

R/2
t = E[Π̄

R/2
t (Q

R/2
t ) | Ft] and Z

R/2
t ≥

PtK/2 with probability 1. Given any information set ft, we know the inventory level xt and all the
quantities θt, ψt, φt, pt defined above are also known deterministically. We split the analysis into
two cases.

First, if θt ≥ K/2, then q
R/2
t = q̂t with probability Pt = pt = 1 implying z

R/2
t = θt ≥ K/2. In

addition, we have

z
R/2
t = E[H

R/2
t (q̂t) | ft] = E[Π̄

R/2
t (q̂t) | ft],

and the claim follows.

Second, if θt < K/2, then q
R/2
t = min{q̃t, u} with probability pt and q

R/2
t = 0 with 1−pt. Thus,

by the construction of the probability pt, we have z
R/2
t = ptK/2 = E[Π̄

R/2
t (q

R/2
t ) | ft] and

z
R/2
t = ptK/2 = E[H

R/2
t (q̃t) | ft] ≥ E[H

R/2
t (q

R/2
t ) | ft],

hence the claim again follows.
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Applying the above results, we obtain

E[C (R/2)] =

T−L∑
t=1

E[H
R/2
t (Q

R/2
t ) + Π̄

R/2
t (Q

R/2
t ) +K · 1(Q

R/2
t > 0)]

=
T−L∑
t=1

E
[
E[H

R/2
t (Q

R/2
t ) + Π̄

R/2
t (Q

R/2
t ) +K · 1(Q

R/2
t > 0) | Ft]

]
≤

T−L∑
t=1

E[2Z
R/2
t + PtK] ≤ 4

T−L∑
t=1

E[Z
R/2
t ].

This completes the proof of the lemma.

To complete the worst-case analysis, we need to show that the expected cost of an optimal

policy denoted by OPT is at least
∑T−L

t=1 E[Z
R/2
t ]. This will be done by amortizing the cost of

OPT against the cost of the R/2 policy. In the subsequent analysis, we decompose the set of
periods {1, 2, . . . T − L} into the following random partition of six sets:

T1H =

{
t : Θt ≥

K

2
and Y OPT

t ≥ Y R/2
t

}
; (9)

T1Π =

{
t : Θt ≥

K

2
and Y OPT

t < Y
R/2
t

}
; (10)

T2H =

{
t : Θt <

K

2
and Y OPT

t ≥ XR/2
t +Q

R/2
t and Q

R/2
t = Q̃t ≤ u

}
; (11)

T2S =

{
t : Θt <

K

2
and Y OPT

t ≥ XR/2
t +Q

R/2
t and Q

R/2
t = u < Q̃t

}
; (12)

T2Π =

{
t : Θt <

K

2
and X

R/2
t ≥ Y OPT

t

}
; (13)

T2M =

{
t : Θt <

K

2
and X

R/2
t < Y OPT

t < X
R/2
t +Q

R/2
t and Q

R/2
t = min{Q̃t, u}

}
. (14)

Note that the sets (9) − (14) are disjoint and their union is the complete set of periods. It is also
straightforward to check that conditioning on ft, it is already known which part of the partition
period t belongs. We first analyze the sets T1H , T2H , T1Π and T2Π since we can identify the cost
components of the optimal policy larger than those in the R/2 policy. This gives rise to Lemma 2
below.

Lemma 2. The total holding and backlogging costs incurred by OPT , denoted by HOPT and ΠOPT

respectively, satisfy

E[HOPT ] ≥ E

[∑
t

Z
R/2
t · 1(t ∈ T1H

⋃
T2H)

]
, (15)

E[ΠOPT ] ≥ E

[∑
t

Z
R/2
t · 1(t ∈ T1Π

⋃
T2Π)

]
. (16)

13



Proof. Note that in each period t ∈ (T1H
⋃

T2H), we have Y OPT
t ≥ Y R/2

t with probability one. By
the argument of Lemma 4.2 in [19], since the inventory level of the optimal policy is higher than

that of the R/2 policy, the optimal policy must have ordered Q
R/2
t no later than the R/2 policy.

Thus, the total holding cost associated with Q
R/2
t in the optimal policy must exceed that of the

R/2 policy. It remains to check that E[H
R/2
t (Q

R/2
t ) | Ft] = Z

R/2
t in the two sets T1H and T2H .

For t ∈ T1H , since the R/2 policy orders the balancing quantity, i.e., Q
R/2
t = Q̂t,

E[H
R/2
t (Q

R/2
t ) | Ft] = E[H

R/2
t (Q̂t) | Ft] = Θt = Z

R/2
t .

Now for t ∈ T2H , since Q
R/2
t = Q̃t ≤ u by the construction of T2H ,

E[H
R/2
t (Q

R/2
t ) | Ft] = E[H

R/2
t (min{Q̃t, u)} | Ft] = E[H

R/2
t (Q̃t) | Ft] = Pt

K

2
= Z

R/2
t .

Note that Q̃t is the holding-cost-K/2 quantity; in the set T2H , the R/2 policy can order this
quantity in full amount since it is below the capacity u. Thus, we conclude that

E[HOPT ] ≥ E

[∑
t

H
R/2
t (Q

R/2
t ) · 1(t ∈ T1H

⋃
T2H)

]

= E

[
E

[∑
t

H
R/2
t (Q

R/2
t ) · 1(t ∈ T1H

⋃
T2H) | Ft

]]

= E

[∑
t

Z
R/2
t · 1(t ∈ T1H

⋃
T2H)

]
.

Note that in each period t ∈ T1Π
⋃

T2Π, we have Y OPT
t < Y

R/2
t with probability one. By

the argument of Lemma 2 in [20], we have E[ΠOPT ] ≥ E
[∑

t Π̄
R/2
t 1(t ∈ T1Π

⋃
T2Π)

]
. Since

E[Π̄
R/2
t (Q

R/2
t ) | Ft] = Z

R/2
t is automatic by the construction of the R/2 policy, we have

E[ΠOPT ] ≥ E

[∑
t

Π̄
R/2
t (Q

R/2
t ) · 1(t ∈ T1Π

⋃
T2Π)

]

= E

[
E

[∑
t

Π̄
R/2
t (Q

R/2
t ) · 1(t ∈ T1Π

⋃
T2Π) | Ft

]]

= E

[∑
t

Z
R/2
t · 1(t ∈ T1Π

⋃
T2Π)

]
.

This completes the proof of Lemma 2.

In each period t ∈ T2S , the R/2 policy can no longer order the holding-cost-K/2 quantity in

full amount due to the capacity constraint u, i.e., Q
R/2
t = u < Q̃t. Then we have

E[H
R/2
t (Q

R/2
t ) | Ft] = E[H

R/2
t (u) | Ft] < E[H

R/2
t (Q̃t) | Ft] = Pt

K

2
= Z

R/2
t .
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Thus, we can no longer argue that the holding cost of the optimal policy is greater than

E

[∑
t

Z
R/2
t · 1(t ∈ T2S)

]
,

even though the ending inventory of the optimal policy is higher than that of the R/2 policy.
However, we show in Lemma 3 that half of the total setup costs incurred by the optimal policy can

be used to pay E
[∑

t Z
R/2
t · 1(t ∈ T2S)

]
incurred by the R/2 policy.

Lemma 3. Half of the total setup costs incurred by the optimal policy is lower bounded by

1

2
E

[∑
t

K · 1(QOPT
t > 0)

]
≥ E

[∑
t

Z
R/2
t · 1(t ∈ T2S)

]
. (17)

Proof. In each period t ∈ T2S , we have Q
R/2
t = u < Q̃t, the R/2 policy will order the capacity

u with probability pt incurring strictly less than ptK/2 expected marginal holding cost. Since

Z
R/2
t = PtK/2 in each period t ∈ T2S , we shall show that half of the setup costs incurred by the

optimal policy is greater than E
[∑

t Pt
K
2 · 1(t ∈ T2S)

]
.

Fix a period t ∈ T2S . First we claim that the number of orders placed by the optimal policy over
the interval [1, t] is at least the number of orders in which the R/2 policy orders the full capacity
u over [1, t]. We prove the claim by contradiction. Suppose otherwise, the number of orders placed
by the optimal policy over the interval [1, t] is m and the number of orders in which the R/2 policy
orders exactly the capacity u over [1, t] is n and m < n. The maximum inventory position of the
optimal policy in period t is

XOPT
1 +mu−

t−1∑
s=1

Ds ≥ Y OPT
t ,

whereas the minimum inventory position of the R/2 policy in period t is

X
R/2
1 + nu−

t−1∑
s=1

Ds ≤ Y R/2
t = X

R/2
t + u.

Since m < n and both policies start with the same inventory position in period 1, i.e., XOPT
1 =

X
R/2
1 , this implies that Y OPT

t < X
R/2
t + u which contradicts to the fact that t ∈ T2S . The claim

thus holds true.

Thus, by letting A be the event that the R/2 policy orders exactly the capacity u, we have

2 E

[∑
t

Z
R/2
t · 1(t ∈ T2S)

]
= E

[∑
t

PtK · 1(t ∈ T2S)

]

= E

[∑
t

K · 1(A ∩ t ∈ T2S)

]

≤ E

[∑
t

K · 1(QOPT
t > 0)

]
.
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The last inequality holds true because of our previous claim that the number of orders placed by
the optimal policy is not smaller than the total number of full capacity orders placed by the R/2
policy within [1, t] where t ∈ T2S . This completes the proof of Lemma 3.

In each period t ∈ T2M , the R/2 policy orders the truncated holding-cost-K/2 quantity Q
R/2
t =

min{Q̃t, u} with probability pt and nothing with probability 1− pt. The randomized decision rule
introduces uncertainties in the relation between the inventory positions after ordering of the R/2
policy and the optimal policy. Thus, we cannot argue that the holding cost or the backlogging

cost of the optimal policy is greater than E
[∑

t Z
R/2
t · 1(t ∈ T2M )

]
. We resort to the setup costs

incurred by the optimal policy again, and show in Lemma 4 that half of the total setup costs

incurred by the optimal policy is sufficient to pay E
[∑

t Z
R/2
t · 1(t ∈ T2S)

]
incurred by the R/2

policy.

Lemma 4. Half of the total setup cost incurred by the optimal policy is lower bounded by

1

2
E

[∑
t

K · 1(QOPT
t > 0)

]
≥ E

[∑
t

Z
R/2
t · 1(t ∈ T2M )

]
. (18)

Proof. Consider an arbitrary sample path with fT ∈ FT . We denote the period in which the
optimal policy makes the nth order by tn. Then we can partition the planning horizon {1, . . . , T} =
[0, t1) ∪ [t1, t2) · · · [tN−1, tN ) ∪ [tN , tN+1), where tN+1 = T + 1 and N is the total number of orders
that the optimal policy have placed through T .

First we claim that there does not exist a period s ∈ [0, t1) such that s ∈ T2M . Since the

R/2 policy and optimal policy have the same initial inventory XOPT
1 = X

R/2
1 and face the same

demands, if the optimal policy has not placed any orders, we must have X
R/2
s ≥ XOPT

s = Y OPT
s ,

which implies that s does not belong to the set T2M . Therefore the claim is proved.

Next we claim that the R/2 policy will at most make one order in each set of periods T2M ∩
[ti, ti+1) where 1 ≤ i ≤ N . In each period t ∈ T2M∩[ti, ti+1), we haveX

R/2
t < Y OPT

t < X
R/2
t +Q

R/2
t .

By the construction of the R/2 policy, we will order Q
R/2
t with probability pt and nothing otherwise.

Now let A be the event in which the R/2 policy places an order and define the stopping time

k = inf {m ≥ ti : A ∩m ∈ T2M} .

If k ≥ ti+1, the claim holds since the R/2 policy does not place any orders within T2M ∩ [ti, ti+1).
Now suppose that k < ti+1. It suffices to show that T2M ∩ [k + 1, ti+1) = ∅. Since k ∈ T2M and

the R/2 policy places an order, then we must have Y OPT
k < X

R/2
k +Q

R/2
k = Y

R/2
k . In addition, we

know that Y OPT
m = XOPT

m for all m ∈ (ti, ti+1) since the optimal policy does not place any orders
in the set (ti, ti+1). Then for each period j ∈ [k + 1, ti+1), by the dynamics of the model, we have

Y OPT
j = XOPT

j = Y OPT
k −

j−1∑
m=k

Dm < Y
R/2
k −

j−1∑
m=k

Dm ≤ Y R/2
k +

j−1∑
m=k

Qm −
j−1∑
m=k

Dm = X
R/2
j ,

which implies that j does not belong to the set T2M . Thus the second claim is also proved.
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Then we can conclude with probability 1, it holds that

T−L∑
t=1

K · 1(A ∩ t ∈ T2M ) ≤ NK.

Thus, by the above inequality, we have

2 E

[
T−L∑
t=1

Z
R/2
t · 1(t ∈ T2M )

]
= E

[
T−L∑
t=1

PtK · 1(t ∈ T2M )

]
= E

[
T−L∑
t=1

K · 1(A ∩ t ∈ T2M )

]

≤ E [NK] = E

[∑
t

K · 1(QOPT
t > 0)

]
.

This completes the proof of Lemma 4.

Summing up inequalities (15), (16), (18) and (17), we then obtain

E[C (OPT )] ≥
T−L∑
t=1

E[Z
R/2
t ]. (19)

Hence, by (19) and Lemma 1, we have established Theorem 1, i.e., the R/2 policy has an expected
worst-case performance guarantee of 4.

Before closing this section, we provide some intuitions why our proposed policy has a worst
case performance guarantee of 4 but not 3 (in which Levi and Shi [21] were able to prove for the
uncapacitated stochastic problems). It can be readily observed that the set T2S defined in (12)
can be merged into the set T2H defined in (11) in models with infinite ordering capacities. This
follows from the fact that the policy can always order up to holding-cost-K quantity Q̃t. Following
the arguments in Lemma 2, we can show that the holding cost incurred by OPT can cover our
balancing cost in T2H

⋃
T2S . Together with the analysis of the remaining partitions, this leads to

the 3-approximation algorithm in Levi and Shi [21] for the uncapacitated lot-sizing problem. With
ordering capacity constraints, the holding cost incurred by OPT can no longer cover our balancing
cost in T2S . Instead, we have shown that the setup costs incurred by OPT can be used to cover
this gap. Since analyzing the problematic set T2M requires the use of setup costs incurred by OPT
once again, we have in fact used the setup costs incurred by OPT twice. If our balancing ratio
is 1 : 1 : 1 (marginal holding, the forced backlogging and setup costs), then we would obtain a
worst-case bound of 6, which is not optimal in terms of achieving the tightest worst-case bound.
As we discussed earlier, the worst case bound reaches its minimum at 1 : 1 : 2, which yields a
4-approximation algorithm.

6 Extensions to Batch Ordering System

In this section we extend our results to stochastic periodic-review inventory models with setup cost
under batch ordering constraints. The batch constraint specifies that, every order quantity has to
be an integer multiple of a pre-specified base batch size, say q0, which can be, for example, a box, a
pallet, a truckload, etc. The case of batch ordering with infinite order capacity has been studied in
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the literature, see, for example Veinott [25], and Chen [4], among others. Without loss of generality,
we can assume the capacity is also an integer multiple of batch size, since the excess quantity which
is less than a base batch size q0 can never be used under batch order constraints. More specifically,
let u = mq0 where m is a given positive integer, and a feasible policy can only order quantities of
iq0 for some integer i taking value from {0, 1, . . . ,m}.

6.1 Modified randomized 1/2-balancing (MR/2) policy

Since the ordering quantity can only be an integer multiple of the base quantity q0, the marginal
holding cost function Ht(Qt) and the forced backlogging cost function Π̄t(Qt) are defined only at
Qt = iq0 where i = 0, 1, . . . ,m. For other non-negative integer value Qt, we can extend the two
functions Ht(Qt) and Π̄t(Qt) by interpolating piecewise linear extensions of these batch quantities.
More specifically, for any integer value Qt, there exists a scalar λt ∈ [0, 1) such that

Qt = (1− λt)Qlower
t + λtQ

upper
t ,

where
Qlower

t = bQt/q0cq0, Qupper
t = bQt/q0 + 1cq0,

and the floor function bac is the largest integer less than or equal to a. The corresponding marginal
holding cost and forced backlogging cost are defined, using linear interpolation, as

E[Ht(Qt) | Ft] = (1− λt) · E[Ht(Q
lower
t ) | Ft] + λt · EHt(Q

upper
t ) | Ft],

E[Π̄t(Qt) | Ft] = (1− λt) · E[Π̄t(Q
lower
t ) | Ft] + λt · EΠ̄t(Q

upper
t ) | Ft].

It is clear that these extended cost functions Ht(Qt) and Π̄t(Qt) preserve the properties of convexity
and monotonicity.

marginal holding cost

forced backlogging cost

Cost

capacity (u)0

θ

balancing quantitybatch size

Figure 2: A graphical depiction of the extended cost functions by linear interpolation.

We now propose a modified randomized 1/2-balancing policy (MR/2). At the beginning of each
period t with the realized information set ft, we compute the auxiliary order quantities and cost
functions discussed in Section 4.1. Note that these auxiliary functions are defined only on integer
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multiples of the base batch size q0. Thus, to properly balance the cost functions, we need to define
their corresponding lower and upper quantities.

First, compute the balancing quantity q̂t and the balancing cost θt such that θt , E[Π̄t(q̂t) |
ft] = E[Π̄t(q̂t) | ft]. Then, there exists a scalar λ̂t ∈ [0, 1) such that

q̂t = (1− λ̂t)q̂lower
t + λ̂tq̂

upper
t

where q̂lower
t = bq̂t/q0cq0 and q̂uppert = bq̂t/q0 + 1cq0.

Next, compute the holding-cost-K/2 quantity q̃t such that E[Ht(q̃t) | ft] = K/2. There exists
another scalar λ̃t ∈ [0, 1) such that

q̃t = (1− λ̃t)q̃lower
t + λ̃tq̃

upper
t ,

where q̃lower
t = bq̃t/q0cq0 and q̃uppert = bq̃t/q0 + 1cq0.

Third, compute the resulting forced backlogging cost φt , E[Π̄t(min{q̂t, u}) | ft] if one orders
the minimum of the holding-cost-K/2 quantity and the capacity u.

Finally, compute the forced backlogging cost ψt , E[Π̄t(0) | ft] if one orders nothing.

The modified randomized 1/2-balancing (MR/2) order policy we propose for the case with batch
ordering constraint is described as follows:

(i) If the balancing cost θt ≥ K/2, then the MR/2 policy orders q̂lower
t with probability 1 − λ̂t

and q̂uppert with probability λ̂t.

(ii) If the balancing cost θt < K/2, then compute the ordering probability pt from ptK/2 =
ptφt + (1 − pt)ψt similar to (7). The MR/2 policy orders min{q̃lower

t , u} with probability
pt(1 − λ̃t), order min{q̃uppert , u} with probability ptλ̃t, and order nothing with probability
1− pt.

To summarize, if we denote the order quantity of the MR/2 policy by q
MR/2
t , then it is given

by

q
MR/2
t =



q̂lower
t , with probability 1− λ̂t in case (i);

q̂uppert , with probability λ̂t in case (ii);

min{q̃lower
t , u}, with probability pt(1− λ̃t) in case (ii);

min{q̃uppert , u}, with probability ptλ̃t in case (ii);
0, with probability 1− pt in case (ii).

It is clear that the modified randomized 1/2-balancing policy balances the three types of costs
in a similar manner as the original randomized 1/2-balancing policy without the batch order con-
straints.
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6.2 Worst-case analysis

To conduct the performance analysis, we define all the sets similarly to (9) to (14) as follows.

T1H =

{
t : Θt ≥

K

2
and Y OPT

t ≥ XMR/2
t + q̂uppert

}
, (20)

T1Π =

{
t : Θt ≥

K

2
and Y OPT

t ≤ XMR/2
t + q̂lower

t and q̂lower
t < q̂uppert

}
, (21)

T2H =

{
t : Θt <

K

2
and Y OPT

t ≥ XMR/2
t + min{q̃uppert , u} and q̃uppert ≤ u

}
, (22)

T2S =

{
t : Θt <

K

2
and Y OPT

t ≥ XMR/2
t + min{q̃lower

t , u} and u ≤ q̃lower
t < q̃uppert

}
, (23)

T2Π =

{
t : Θt <

K

2
and X

MR/2
t ≥ Y OPT

t

}
, (24)

T2M =

{
t : Θt <

K

2
and X

MR/2
t < Y OPT

t ≤ XMR/2
t + min{q̃lower

t , u}
}
. (25)

To ensure that the union of the sets from (20) to (25) is the complete set of all periods, we show
by Lemma 5 that, conditional on the same demand realization, the base batch load q0 must divide
the absolute difference between inventory levels of the optimal policy and the MR/2 policy. Thus,
it is impossible to have

Y OPT
t ∈ (X

MR/2
t + min{q̃lower

t , u}, XMR/2
t + min{q̃uppert , u})

when the balancing cost Θt ≥ K/2. Similarly, since u is an integer multiple of q0, it is also
impossible for this to happen when the balancing cost Θt < K/2.

Lemma 5. For any realization, the base batch size q0 must divide Y OPT
t − YMR/2

t , the difference
between the inventory positions of the optimal policy and the MR/2 policy for each period t =
1, . . . , T − L.

Proof. Consider an arbitrary period s and suppose the optimal policy ordered mOPT
s q0 while the

MR/2 policy ordered m
MR/2
s q0, where mOPT

s and m
R/2
s are nonnegative integers. Suppose that

the starting inventory positions at the beginning of period 1 are the same for both policies, i.e.,

XOPT
1 = X

MR/2
1 . Then for an arbitrary period t = 1, . . . , T − L, we have

Y OPT
t − YMR/2

t

=

(
XOPT

1 +

(
t∑

s=1

mOPT
s

)
q0 −D[1,t)

)
−

(
X

MR/2
1 +

(
t∑

s=1

mMR/2
s

)
q0 −D[1,t)

)

=

(
t∑

s=1

(mOPT
s −mMR/2

s )

)
q0.

Thus, the base batch load q0 must divide Y OPT
t − YMR/2

t .
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By Lemma 5, we have constructed the disjoint sets (20) - (25) and their union is a complete
set. It can be readily verified that the Lemmas 1, 2, 3 and 4 continue to hold if we replace all the
sets (9) – (14) with (20) – (25). We formally state the result for capacitated stochastic inventory
problem with setup cost under batch order constraints.

Theorem 2. For each instance of the capacitated stochastic periodic-review inventory problem
with setup cost under batch ordering constraints, the expected cost of the modified randomized 1/2-
balancing policy (MR/2) is at most four times the expected cost of an optimal policy OPT , i.e.,

E[C (MR/2)] ≤ 4E[C (OPT )].

Remark Consider a special case of the batch ordering system with the base batch order size equal
to the capacity, i.e., we restrict ourselves to all-or-nothing ordering policies. (Özer and Wei [23]
established the optimality of a state-dependent threshold policy with this class of policies.) In this
special case, we can conveniently transform the original unit ordering cost ctqt plus the setup cost
K · 1(qt = u) into an equivalent modified unit ordering cost c′tqt where c′t = ct + K/u, since qt
can only take values 0 or u. Then the model will be reduced to the one studied in Levi et al.
[20] where a dual-balancing policy yields a 2-approximation. It should be noted that this simple
transformation fails to work for any more-than-two point ordering policies, since the setup cost
exhibits a concave ordering cost structure.

7 Numerical Experiments

In this section, we conduct a numerical study on the performance of the R/2 policy developed in
Section 5. As noted by Levi and Shi [21], the randomized cost-balancing policy can be parameterized
to obtain general classes of policies, respectively, and the worst-case analysis discussed above can
then be viewed as choosing parameter values that perform well against any possible instance. In
contrast, one can try to find the ‘best’ parameter values, for each given instance. This gives rise
to policies that have at least the same worst-case performance guarantees, but are likely to work
better empirically, since we refined the parameters according to the specific instance being solved.
Using simulation based optimization, we have implemented this approach and tested the empirical
performance of the resulting policies. The policies were tested using the demand model of advance
demand information proposed by Gallego and Özer [9], and Özer and Wei [23]. To the best of our
knowledge, these are the only papers that reported optimal computational costs (by brute force
dynamic programming) for the capacitated stochastic periodic-review inventory system with setup
cost and dependent demand structures.

Parameterized policies. We describe a class of parameterized policies involving parameters β,
γ and η, where β controls the holding-cost-βK/2 quantity, γ controls the ratio of the marginal
holding cost to the forced backlogging cost and η controls the level of the forced backlogging cost
resulting from not ordering. Specifically, the parameterized policy first computes several quantities.

1) The balancing quantity q̂t that solves E[H
R/2
t (q̂t) | ft] = γE[Π̄

R/2
t (q̂t) | ft] := θt.

2) The holding-cost-βK
2 quantity q̃t that solves E[H

R/2
t (q̃t) | ft] = βK

2 .
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3) The resulting conditional expected forced backlogging cost if one orders min{q̃t, u} units in

period t, denoted by φt. That is, φt = E[Π̄
R/2
t (min{q̃t, u}) | ft].

4) The conditional expected forced backlogging cost resulting from not ordering in period t,

denoted by ψt. That is, ψt = ηE[Π̄
R/2
t (0) | ft].

Based on the above quantities computed, the following randomized rule is employed to obtain
the ordering quantity for each period t.

a) If θt ≥ βK/2, the R/2 policy orders q
R/2
t = q̂t with probability pt = 1 in period t.

b) If θt < βK/2, the R/2 policy orders q
R/2
t = min{q̃t, u} with probability pt and order nothing

with probability 1− pt in period t, where pt solves 0 ≤ pt = ψt/(β
K
2 − φt + ψt) < 1.

If we denote the order quantity of the R/2 policy by q
R/2
t , then the R/2 policy orders

q
R/2
t =


q̂t, with probability pt = 1 in case (a),

min{q̃t, u}, with probability pt in case (b),
0, with probability 1− pt in case (b).

End-of-horizon rule. To prevent the policy from over-ordering too much near the end of horizon,
we also incorporate the following end-of-horizon rule. In period t, we estimate the total expected
cumulative backlogging cost (assuming no orders are placed) over the interval [t, T ]. If the amount
is less than K, the policy does not place an order in period t.

Algorithmic complexity. We describe the procedures of finding the optimal parameters for a
specific instance of the problem. First, assume that there exists a positive constant U such that
the optimal parameters β∗, γ∗, η∗ are upper bounded by U . In addition, we discretize U with
some step-size ∆, i.e., β, γ, η ∈ [0, U ] can only take values as integer multiples of ∆. Then we
conduct an exhaustive search on a cube of U × U × U for the parameters β, γ and η. In our
numerical studies, U = 100 and ∆ = 1 are chosen to be the upper bound and the resolution
for discretization, respectively. The algorithm runs on every point on this cube, simulates the
cost of each parameterized policy and returns the best possible (β∗, γ∗, η∗) that minimize the
cost. Secondly, assume that there exists a positive constant Û that serves as an upper bound on
the balancing and hold-cost-K/2 quantities. For each t = 1, . . . , T , the complexity for evaluating
marginal holding cost is O(T ) and the complexity for carrying out bisection search is O(log Û).
The algorithm runs in time O(T 2 log Û) for each set of parameters (β, γ, η). Hence, the algorithm
that returns both the optimal parameters and the lowest cost runs in O(U3∆−3T 2 log Û) ≈ O(T 2)
since U3∆−3 log Û is some positive constant. For all tested instances with T = 10, the average CPU
time per test instance on a Pentium 3.0GHz PC is 170s. In contrast, the dynamic programming
algorithm takes 1800s on average per test instance.

Design of experiments and numerical results. When the demand process is correlated over
time, the computation of exact optimal solution becomes impossible for reasonable problem sizes.
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Thus, in order to compare with the optimal minimum cost, we consider a planning horizon of 10
periods. The cost parameters selected for each demand class are as follows: we normalize h = 1
and then vary other parameters, c ∈ {0, 2, 5}, b ∈ {5, 10, 15}, K ∈ {10, 50} and u ∈ {3, 6, 9}.

For the demand process with advance demand information (ADI), we adopt a model studied
in Gallego and Özer [9] and Özer and Wei [23]. That is, we assume that customers could place
orders 2 periods ahead. Thus for each period t, a demand vector (Dt,t, Dt,t+1, Dt,t+2) is received,
where Dt,s is the order placed in period t for period s ≥ t. The total demand for period t is
Dt = Dt−2,t + Dt−1,t + Dt,t. We tested the cases for which each entry Dt,t+i follows a Poisson
distribution with mean λi. Note that the actual demands over periods are correlated due to the
presence of advance demand information. The performance error of an approximation policy P is
defined by

err =

(
C (P )

C (OPT )
− 1

)
× 100.

In words, the performance error of an approximation policy is the percentage of total cost increase
of this policy over the planning horizon with respect to the optimal minimum total cost.

To report all the numerical results for the ADI demand model, we group the instances as follows:
The purchasing cost are L (c = 0), M (c = 5), and H (c = 10); the setup costs are L (K = 10), and
H (K = 50); the capacities are L (u = 3), M (u = 6), and H (u = 9). For each triplet (c,K, u),
three values of shortage cost b ∈ {5, 10, 15} are used in our tests.

The performance errors for the R/2 policy are reported in Table 1. As observed, the numerical
results show that the R/2 policies perform on average 9% of the error from the optimal cost, which
is significantly better than the theoretical worst-case performance guarantees.

Table 1: Performance of the R/2 policy for ADI demand structures (err).
h = 1, c ∈ {0, 2, 5}, b ∈ {5, 10, 15}, K ∈ {10, 50}, u ∈ {3, 6, 9} and T = 10.

c L M H
All

K L H L H L H

demand u mean max mean max mean max mean max mean max mean max mean

(6,0,0)
L 10.63 15.10 15.61 20.12 8.75 12.60 14.73 18.53 8.10 11.80 13.20 16.38 11.84
M 10.40 15.01 15.40 19.94 8.49 12.00 14.38 18.46 7.90 11.68 13.15 16.12 11.62
H 10.10 14.95 14.96 19.69 8.10 12.10 14.20 18.31 7.78 11.50 13.08 16.10 11.37

(3,3,0)
L 8.70 12.55 13.76 18.60 7.32 11.99 13.28 17.46 7.10 10.31 12.76 16.01 10.49
M 8.50 12.41 13.60 18.22 7.30 11.52 13.13 17.19 6.88 10.21 12.58 15.92 10.33
H 8.44 12.34 13.40 18.13 7.21 11.40 13.07 17.11 6.80 10.13 12.50 15.90 10.23

(0,6,0)
L 8.33 12.00 13.23 18.04 6.51 10.68 12.42 16.56 6.22 9.56 10.98 14.27 9.62
M 7.60 11.60 13.11 17.98 6.33 10.34 12.32 16.46 6.12 9.21 10.77 14.17 9.38
H 7.54 11.48 13.01 17.50 6.30 10.15 12.28 16.42 6.03 9.08 10.67 14.12 9.31

(0,3,3)
L 6.70 11.08 11.58 15.89 5.45 9.98 11.40 15.64 4.33 6.55 8.23 11.50 7.95
M 6.22 9.69 11.40 15.80 5.30 9.50 11.28 15.46 4.17 6.32 8.15 11.28 7.75
H 6.10 9.51 11.19 15.61 5.19 9.40 11.19 15.33 4.12 6.21 8.08 11.12 7.65

(0,0,6)
L 5.45 7.85 10.30 14.60 4.83 6.85 9.19 13.38 2.88 3.54 6.88 9.58 6.59
M 5.35 7.69 10.28 14.51 4.45 6.55 8.88 13.10 2.78 3.21 6.78 9.45 6.42
H 5.27 7.49 10.10 14.29 4.31 6.50 8.37 13.00 2.70 3.18 6.70 9.43 6.24
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