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Abstract   As the supply of desalinated water becomes significant in many 

countries, the reliable long-term operation of desalination infrastructure becomes 

paramount. As it is not realistic to build desalination systems with components 

that never fail, instead the system should be designed with more resilience. To 

answer the question how resilient the system should be, we present in this paper a 

quantitative approach to measure system resilience using semi-Markov models. 

This approach allows to probabilistically represent the resilience of a desalination 

system, considering the functional or failed states of its components, as well as the 

probability of failure and repair rates. As the desalination plants are connected 

with the end-user through water transportation and distribution networks, this 

approach also enables an evaluation of various network configurations and 

resilience strategies. A case study addressing a segment of the water system in 

Saudi Arabia is given with the results, benefits, and limitations of the technique 

discussed. 
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1   Introduction  

Water is a prerequisite for life and its provision in modern society is contingent 

on numerous interacting components that include the water source; physical 

infrastructure; the services it provides; the organizations that govern its use; and 

the people and industry that consume it, and produce waste water. As the 

interdependence between these components is strong, and in order to make water 

use more efficient, together these components may collectively be aggregated in 

one system, that we call the ‘water system’ in this paper.  

Given water’s criticality, water system planners must continuously assess and 

manage a host of challenges to ensure the satisfactory performance of their 
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systems. These challenges include the ever-present need to balance costs and 

impacts to the environments as well as the preparation for a variety of potential 

hazards such as natural disasters, and terrorist attacks, etc. This undertaking 

requires a continuous cycle of evaluation and planning activities following adverse 

events to upgrade and adapt the water system based on lessons learned. In an 

effort to aid and quantify this process, numerous attributes and objectives with 

which to assess the performance of water systems have been proposed. These 

include but are not limited to: cost, sustainability, reliability, robustness, 

preparedness, responsiveness, vulnerability, etc. 

Key among these many overlapping and oftentimes conflicting objectives has 

been the concept of water system ‘resilience.’ Resilient systems have been 

described in the literature as those with “the ability to reduce the magnitude and/or 

the duration of disruptive events” (NIAC, 2009) or “the ability to minimize the 

costs of a disaster, return to the status quo, and to do so in the shortest feasible 

time” (McAllister, 2013). Fiksel et al., 2014 define resilience as “the capacity for a 

system to survive, adapt, and flourish in the face of turbulent change and 

uncertainty.” Hashimoto (1982) describes resilience as one of three key special 

risk-related system performance criteria in the widely utilized Reliability, 

Resiliency, and Vulnerability (RRV) framework and defines it as “how quickly a 

system is likely to recover or bounce back from failure once failure has occurred.” 

 
Figure 1 Graph of Resilience. Adapted from (Hashimoto, 1982) 

Figure 1 graphically illustrates these definitions of system resilience. The 

function F(t) may represent any system performance measure provided that higher 

values correlate to higher performance. At a time Te, the systems performance has 

fallen below a prescribed failure threshold entering a Disrupted State. Following a 

resilience action to repair the system, performance reaches above the failure 

threshold at time Tr. The difference Tr - Te is the time spent in a failed (disrupted) 

state. The design of a resilient system should seek to minimize this time period, 

crafting systems that are both unlikely to fall below the prescribed failure 

threshold and quickly recover from failure should a failure occur.  

A review of the literature on resilience reveals that many of its aspects bear 

similarity to the concepts of risk, reliability, preparedness, vulnerability 

assessment, disaster management and risk management. The question thus 

becomes: how does resilience differ from these concepts; and is it a distinct 

concept or just a different word for the same activities? 

Resilience is indeed heavily intertwined with these concepts, however there 

appears to be a consensus that its key lies in the anticipation of unexpected events 

(EPA, 2015).  

In this vein we propose a probabilistic framework devised using semi-Markov 

models to quantitatively model and assess the expected resilience of a water 

system. Each component in the system is defined by its status (functional/failed) 

and transition probability distributions defined by failure rates, repair rates, and 
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the time that the system can maintain its performance after component failures. 

This technique enables the calculation of all likely potential system states, and the 

probability of system failure within a chosen study period, thereby anticipating 

conceivable system failures. 

To exemplify this approach we analyze a case study from the Kingdom of 

Saudi Arabia, an arid country that has turned to desalination for much of its 

municipal water supply. With a heavy reliance upon desalination and an extensive 

network of plants and pipelines, the Kingdoms water system performance is 

especially beholden to plant outages, pipe breaks, and pump failures. These failure 

conditions are easily anticipated but occur unexpectedly. Our approach provides a 

framework for these events to be anticipated and planned for so that they are less 

disruptive to the overall system performance, thereby increasing resilience.  

The paper is organized as follows: in the Background section we present the 

context of Saudi Arabia, in the Methodology section we discuss the theoretical 

and mathematical procedures of the resilience framework; and in the Application 

section we utilize the developed methodology for the Saudi context. Future work 

and conclusions are presented in the final section. 

2   Background. 

The Kingdom of Saudi Arabia (KSA) is the largest country in the world with 

no permanent natural rivers or lakes, an arid land with seldom rainfall. As such the 

vast majority of water consumed in the Kingdom comes from non-renewable 

ground water resources (SSDN 2015, SIPS 2015).  

To compensate for its lack of natural freshwater the Kingdom has increasingly 

turned to desalination to satisfy its water needs. Today Saudi Arabia is the world’s 

largest market for desalinated water with a capacity of 5.72 million m
3
/day 

accounting for as much as 60% of the total urban water supply (SWCC, 2014). 

Perhaps no city can better demonstrate Saudi Arabia’s extreme reliance upon 

desalination better than its capital Riyadh. Initially a small oasis town of no more 

than 10,000 inhabitants (Al-Naim, 2008) at the start of the 20
th

 century the capital 

is now a bustling metropolis with a population close to 7 million. Having long ago 

outgrown its local water resources, Riyadh now meets nearly half its municipal 

demand from desalinated water that is produced at giant facilities on the East 

Coast and then pumped via pipelines over hundreds of kilometers. 

Thus, the optimal operation of the desalination system depends not only upon 

the stand-alone plants but the network as a whole. The evaluation of a desalination 

system as network of production nodes (desalination plants) and consumption 

nodes (cities) connected by edges of water pipelines is therefore informative for 

enhancing the design of the system in its entirety.  

Ishimatsu, et al., 2015 presented such a deterministic network model that 

allowed for a desalination network’s optimization in space, that is, where 

geographically a new infrastructure component should be located at a given time.  

This procedure utilized a graph theoretic framework with a multi-objective 

optimization to design the network for cost and/or sustainability. 

 However, the stated mission of the Saline Water Conversion Corporation 

(SWCC), the main institution tasked with the supply of desalinated water, is the 

secure and maintained provision of water to the nation.  

Therefore to truly optimize KSA’s desalination network, a model that considers 

failure and resilience is necessary. An optimization that only considers nominal 

operating conditions is not realistic indeed as it will overestimate the systems 

capabilities and underestimate its operating costs.  
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3   Methodology. 

In this paper, we utilize Semi-Markov Processes (SMPs) to examine the 

resilience of water pipeline networks for a given operating duration, looking in 

particular at the amount of downtime, the amount of unmet demand, and the 

number of repair actions that will be required. All of these metrics are stochastic, 

not deterministic, since the underlying processes behind them –failures and 

repairs– are inherently stochastic. As such, the outputs of the model are not single 

point values, but rather distributions. These can then be used by decision-makers 

to make risk-informed decisions regarding local storage capacity, resource 

allocation for maintenance actions, and operating cost projections.  

3.1 Semi-Markov Processes 

SMPs are probabilistic, state-based models of system behavior that are an 

extension of Markov chains. Like Markov chains, SMPs represent system 

behavior in a directed graph of states and transitions, where states (nodes) 

represent a given configuration of the system and transitions (edges) are events 

that cause the system configuration to change from one state to another. Each 

transition has an associated probability distribution which describes the amount of 

time until that transition occurs once the state it leaves is entered. An important 

requirement on SMPs is that, similar to Markov chains, the states must be 

“memoryless,” meaning that the future evolution of the system is dependent only 

on the current state and not on the pathway taken to reach that state. However, 

whereas in Markov chains these distributions must be exponential, SMPs allow 

the use of any distribution (Warr and Collins, 2012; Nunn and Desiderio 1977; 

Lisnianski and Levitin, 2003). An excellent overview of SMPs and techniques for 

solving them is presented by Warr and Collins (Warr and Collins, 2012). 

An SMP is fully characterized by the kernel matrix  and the unconditional 

waiting time density matrix , each of which have entries that are calculated as 

follows (Warr and Collins, 2012): 

 

 
where  is the Probability Distribution Function (PDF) describing the amount 

of time t that passes after entry into state  before a transition from state  to state  

occurs, given that a transition to state  does occur (as opposed to some other 

state). Each entry  of the kernel matrix is a PDF describing the amount of 

time  that passes after entry into state  before a transition from state  to state  

occurs, assuming no transition to any other state occurs in the interim. This can be 

seen from the fact that it is a product of the PDF of the time until transition from 

state  to state  and the complements of the Cumulative Distribution Functions 

(CDFs) of all other transitions. The unconditional waiting time density matrix is a 

diagonal matrix with entries  that give the PDFs describing the amount of 

time  that passes after entry into state  until a transition out of state  occurs, 

regardless of the destination state. Given  and , several key metrics 

describing the behavior of the system modeled by the SMP can be solved for. 

These metrics are listed in Table 1 (Warr and Collins, 2012). The process of 

calculating these metrics from  and  using the Laplace domain is 

described in greater detail below. 
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Table 1: Symbols, names, and descriptions of key SMP metrics. All metrics assume that 

the system starts in state  at time 0 (Warr and Collins, 2012). 

3.2 Application to Resilience Modeling 

SMPs have previously been used to examine the resilience and maintenance 

logistics requirements of space systems (Owens, 2014; Owens and de Weck 2014; 

Owens et al. 2015; Owens et al. 2015; Do et al. 2015; Owens and de Weck 2015; 

Do et al. 2016), and we use a similar approach here. In this formulation, each state 

in the SMP is characterized in terms of the status – functional or failed – of each 

element – pipeline or desalination plant– within the system.  

As is suggested by the state formulation, the transitions between states 

represent failure and repair events. (In the case where degraded states are 

included, these would include degradation and partial repair events.) The PDF 

used depends on the transition being represented. Failures are characterized by 

exponential distributions – a common first-order model of random component 

failures known as the constant failure rate model (Ebeling, 2000). The rate 

parameter of this distribution is equal to the inverse of the Mean Time Between 

Failures (MTBF) for each particular element. Repairs are modeled using a 

lognormal distribution, which provides a good estimate of the time required for 

corrective repair (Kline, 1984; Jones, 2010). In this case, the distribution is formed 

to have a mean and standard deviation equal to the Mean Time to Repair (MTTR) 

and Standard Deviation in Repair Time (SDR) for each particular repair activity. 

The structure of the network of states and transitions representing the SMP is 

specifically constructed to link the generic SMP metrics described in Table 1 to 

system metrics. In particular, the structure of the SMP links the Markov Renewal 

Process (MRP) probabilities – which give the distribution of the number of times a 

given state will be visited in a given period of time – to the number of failures 

experienced by a particular element by ensuring that each state is linked to the 

failure of a particular component. This is done by ensuring that every state is 

entered by one and only one failure transition. Therefore, the number of times that 

a given state is visited corresponds to the number of times that that failure occurs. 

An example of this network structure is given in Figure  2. When multiple states 

are entered by failure of the same element, the MRP distributions for these states 

are convolved together to determine the total number of failures experienced by 

that element. Additional details on the connection between state structure and 

system metrics, as well as restrictions on SMP structure, are discussed by Owens 

(Owens, 2014). 

Symbol Name Description 

 
Time-dependent state 

probability 
Probability that the system will be in state  at time  

 
Expected time in 

state 

Expected amount of time that the system will have 

spent in state  up to time  

 
PDF of first passage 

time 

PDF describing the time  taken to reach state  the 

first time 

 
CDF of first passage 

time 

CDF giving the probability that the system has reached 

state  by time  

 MRP probability 
CDF giving the probability that the system has reached 

state  a total of  or fewer times by time  



Assessment of Resilience in Desalination Infrastructure Using Semi-Markov Models 

 
Figure 2: Example SMP state/transition network for a system with two elements, A and 

B. Each transition is labeled with the event it represents. Red transitions indicate failure 

events, and blue transitions indicate repairs. 

The impacts of failures are captured via the state definitions. Since each state is 

characterized by the status of each element within the system, a model that can 

characterize system performance as a function of element status can then produce 

key metrics for each state, such as the rate of unmet demand in a given city. This 

information can be combined with SMP metrics relating to states, including 

distributions for the number of times a state is visited and the amount of time 

spent in that state, in order to develop distributions for these key metrics (Owens 

and de Weck, 2015). 

3.3 Automated SMP Generation 

A key limitation for the application of SMPs to systems analysis of this type is 

that the number of states that a given system could be extremely large. As a result, 

the generation of the SMP model itself can be a very time-consuming process 

unless some form of automation can be utilized. While some previous applications 

of SMPs have used manually-generated state network models that limit state-space 

with simplifying assumptions (Owens, 2014; Owens et al. 2015), we implement an 

automated SMP generation algorithm based on one presented previously for space 

systems by Owens and de Weck (Owens and de Weck, 2015). 

The algorithm consists of a systematic enumeration of new states based on 

existing ones, starting from the nominal state (i.e. all systems operational). New 

states – called “children” of the current state – are produced by examining all 

possible transitions away from the current state. In general, elements that are 

currently functional can fail, and elements that are currently failed can be repaired. 

For example, the nominal state has a set of transitions away from it representing 

the failure of each element in the system, each of which ends at a new state 

representing the configuration of the system in which that element is failed. 

Additional failures and repairs produce additional new states, unless the 

configuration of the resulting state is equivalent to the nominal state (all systems 

operational), in which case the transition returns to the nominal state rather than 

creating a new state (Owens and de Weck, 2015). 

This iterative generation of new states grows the SMP network, and a pruning 

algorithm is used to remove states that have a probability of occurrence below a 

given threshold. This is done by calculating the first passage probability  for 

each new state to determine the probability that it is visited at least once within the 

time horizon of the analysis; if this probability is below a given threshold, and if 

the state was entered by a failure event and not a repair event, the state is removed 

from the network. States entered by repair events are not removed from the 

network since they are a part of the pathway back to the nominal state, forming the 
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loops that enable the use of MRP probabilities to examine spares requirements 

(Owens and de Weck, 2015). 

The main difference between the algorithm used here and the one described by 

Owens and de Weck (Owens and de Weck, 2015) is that in this case new states are 

produced in generations, rather than one at a time, before pruning is applied. 

Generation 0 is the nominal state, generation 1 consists of all of the children of the 

nominal state, generation 2 consists of all the children of the children of the 

nominal state, and so on. Pruning of states in generations rather than individually 

significantly decreases the amount of computational time required to generate the 

SMP network. 

3.4 Model Solution 

Once an SMP model of the system is produced, it can be solved for the key 

metrics of interest. This process consists of two steps. First, the SMP is solved for 

the metrics described in Table 1, or whatever subset of them is desired for a 

particular problem. In this case, we are particularly interested in the MRP 

probabilities , which are partially based on the first passage time PDFs 

. These metrics can be solved for quickly using matrix multiplication in the 

Laplace domain followed by numerical Laplace transform inversion (Warr and 

Collins, 2012). For convenience, following the convention of Warr and Collins 

(Warr and Collins, 2012), we abbreviate the symbol for the Laplace transform as a 

tilde (~) over the relevant matrix. The equations for first passage time and MRP 

probabilities in the Laplace domain are:  

 

 
Where  is the identity matrix,  is the Hadamard product of two matrices 

(elementwise multiplication), and  is a matrix of ones (Warr and Collins, 2012). 

Once the Laplace transform of the MRP probabilities is obtained using the 

equations above, the EULER numerical Laplace transform inversion technique 

developed by Abate and Whitt (Abate and Whitt, 1995) is utilized to obtain the 

time-domain MRP probabilities. Owens (Owens, 2014) presents a brief overview 

and explanation of the numerical Laplace and inverse Laplace transform 

algorithms used here in Appendix A of his thesis, and more detail, including 

derivations and background, is presented by Warr and Collins (Warr and Collins, 

2012) and Abate and Whitt (Abate and Whitt, 1995). 

The result of the above procedure is the distribution of the number of times 

each state in the SMP is visited. This result can be used directly to determine the 

distribution of the number of failures that each element in the system will 

experience, as described above. When combined with the unconditional waiting 

time density  for each state , the distribution of the number of visits to state 

 (assuming a start in state 0, the nominal state)  can also be used to 

generate , the distribution of the total amount of time that will be spent in 

state  for the time period examined. 

 
Here  is the Dirac delta function and  is a function representing 

the convolution of  instances of a function  – that is, , 

, and so on. When applied to the unconditional waiting 

time density for a particular state, this convolution produces the distribution of the 

total amount of time spent in that state given that the state is visited exactly  
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times. This distribution is then conditioned by the probability that the state is 

visited exactly  times, and the sum of these conditioned distributions 

(representing the possible cases for the number of times the state will be visited) 

gives the distribution of the total amount of time spent in that state. In practice, the 

summation in the equation above is only carried out as far as there is a non-

negligible probability of  visits to the state rather than continuing to infinity. 

As described above, each state in the SMP is characterized by the status of each 

element within it. For this case study, this means the status of each pipeline and 

desalination plant as either functional or failed. For high-level decision-making, 

however, a more relevant metric of interest may be the impact of these failures on 

water delivery to consumers (in this case, cities). Therefore, each state is 

characterized in terms of the rate of unmet demand at each city by solving an 

optimization problem to determine the flow configuration in the network that 

minimizes the total rate of unmet demand across all cities. In the nominal state, 

each pipeline and desalination plant has a maximum capacity indicating the 

amount of water it can transport or produce. States in which a failure has occurred 

in one or more elements have the capacities of that element set to zero in order to 

simulate the impacts of that failure. This reduction in network capability results in 

reduced ability to meet consumer demands, which in turn results in some rate of 

unmet demand at some (or all) of the cities in the network. The optimization 

problem for a system with  cities and  elements (pipelines and desalination 

plants) is formulated as follows: 

 

 

 

 
where  is the rate of unmet demand at city ,  is the rate of demand at city ,  

is the flow capacity for element ,  is the flow rate in element , and  and 

 are the sets of elements flowing into and out of city , respectively. Note that 

self-loops, which represent desalination plants, appear only in the set of elements 

flowing into their city, and not the set flowing out. This linear optimization 

problem is quickly and easily solved using MATLAB’s built-in linprog() function 

in order to determine the rate of unmet demand at each city in each state of the 

SMP. 

It is possible that some states in the SMP are identical in terms of their system-

level characteristics. Therefore, once the amount of time spent in each state and 

the rate of unmet demand for each city in each state are determined, the 

distributions for the amount of time spent in states with identical unmet demand 

profiles are convolved together to determine the total amount of time the system 

spends in that condition. Alternatively, these distributions could be convolved 

together based on the unmet demand rate for a particular city. Once the 

distribution of the total amount of time spent at a given rate of unmet demand is 

obtained, it can be used with the specific rate of unmet demand to determine the 

distribution of the total amount of unmet demand in the time period being 

examined, which can then be used to inform storage capacity decisions. 

4   Application 

The proposed methodology is applied to a subsection of Saudi Arabia’s easterly 

desalination network. Figure 3 (left) shows the system containing the capital city 
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of Riyadh and associated desalination plants and cities on the Arabian Gulf. 

Though in reality the network extends beyond Riyadh, and also branches out onto 

other Eastern cities, for this case study the analysis is focused upon the largest and 

most significant population centers of the region The simplified network 

representation considered in the case study is shown in Figure 3 (right). 

 
Figure 3 Eastern Desalination Network (SWCC, 2013)  & Case Study Representation    

4.1  Network Case Study Parameters 

The parameters of the desalination network are recorded in Table 2 and Table 3 

with the chosen analysis units of cubic meters and days. Daily city desalinated 

water demands were calculated using the population, per capita daily water 

consumption, and percentage contribution of desalination in a manner similar to 

the methodology previously utilized by Ishimatsu, et al., 2015. Desalination plant 

capacities and pipeline throughputs were found as specified in designs by SWCC 

and associated contractors (SWCC, 2016 and Lasser & Heinz, 2011). 

Indications regarding plant failures were received from plant failure logs of 

SWCC. These logs included the duration and specific reason for outages e.g. 

steam line leaks, boiler maintenance; as well as the calculated MTBF, MTTR, and 

SDR for a desalination plant in 2015. Exact information regarding failure and 

repair rates was not made available for the specific desalination plants considered 

in the case study, and so the provided plants MTBF and MTTR were used as 

representative. 

Information on failure and repair rates of pipelines was not forthcoming and 

was therefore estimated from news reports (Khan, 2011), technical reports (Malik, 

Andijani, Mobin, & Al-Hajri, 2005), and the recommendations of SWCC staff. On 

average, desalination pipelines were found to break less often than desalination 

plants, but require longer to repair. 

The data therefore used in this case study is merely notional and intended to 

only demonstrate the proposed methodology, not to provide concrete results or 

recommendations. 

Table 2 Node Parameters 
Node ID Node Name Demands  

[1000 m3/day] 

1 Riyadh 701 

2 Ras Al Khair 0 

3 Jubail 42 

4 Dammam 113 

5 Khobar 572 

6 Hafoof 83 
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Table 3 Edge Parameters 

ID 

From 

 
ID 

To 
Name 

MTBF 

[days] 

MTTR 

[days] 

SDR 

[days] 

Edge 

Capacities 

[1000 m3/day] 

2 
 

2 
Ras Al Khair Desalination 

Plant 
60 4 3 1025 

3  3 Jubail Desalination Plant 60 4 3 1782 

5  5 Khobar Desalination Plant 60 4 3 547 

1  2 Riyadh - Ras Al Khair D 110 14 7 474 

1  2 Riyadh - Ras Al Khair E 110 14 7 474 

1  3 Riyadh - Jubail A 110 14 6 415 

1  3 Riyadh - Jubail B 100 14 6 415 

1  3 Riyadh - Jubail C 100 14 6 380 

3  4 Jubail - Dammam 90 5 1 305 

4  5 Dammam - Khobar 75 4 1 305 

5  6 Khobar- Hafoof 80 5 1 266 

4.2 Case Study Execution and Results 

The model was formulated in MATLAB and executed for a time horizon of 10 

years with a state probability threshold of 0.25%. Computationally this required 

about 15 minutes of running time on a single machine using an Intel® Xeon® 

CPU E5-2650 v3 with 32 GB of installed RAM. 

The CDF of unmet demand for each city was calculated and this is plotted in 

Figure 4. The analysis reveals for example that Riyadh, with its numerous feeder 

pipelines is relatively safe to the risk of unmet demand with nearly an 80% 

probability that unmet demand will not exceed 3 million m
3
 throughout the 10 

years considered. Strategic reserves of only 1 million m
3
 are necessary to ensure 

that the city has a near zero chance of any unmet demand.  

By contrast the Eastern Region cities of Dammam, Khobar, and Hafoof are far 

more vulnerable with Khobar, the largest of the three, being most at risk. 

Throughout the same 10 year period, Khobar has an 80% probability of 

experiencing nearly 50 million m
3
 of unmet demand and would require reserves of 

75 million m
3
 to ensure against failure. This is intuitive, Khobar approaches 

Riyadh in its daily desalination demand but does not have the benefit of a direct 

connection to the Ras Al Khair facility or anywhere near as many redundant 

feeder pipelines. 
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Figure 6 Khobar 80
th
 Percentile Unmet Demand 

 

To design for system resilience various strategies can now be explored using 

the proposed approach. For example adding a new desalination plant at Dammam, 

or connecting Ras Al Khair to Jubail with a new pipeline. Increasing 

plant/pipeline reliability through upgrades and more vigilant maintenance of the 

network elements can be investigated via variance of the failure and repair rates.  

It was discovered that among the most effective ways to reduce the risk of 

unmet demand was by improving the reliability of the Khobar desalination plant. 

Doubling the MTBF from once every 60 days to once every 120 days reduces the 

expected unmet demand at probability of 80% by nearly half as shown in Figure 5. 

Further increasing the reliability of the Khobar desalination plant found further 

reductions in expected unmet demand but at diminishing returns as shown in 

Figure 6. 

 

 

5   Your section 5. 

This is your section 5.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5   Conclusions and Further Work. 

This paper introduces an approach to quantitatively evaluate the resilience of 

water systems. The modelling procedure was illustrated via a notional case study 

of a portion of Saudi Arabia’s desalination network.  

The current approach provides a starting framework upon which to improve for 

an advanced assessment of resilience in water systems. For starters, the current 

approach employs a binary fail/repair status for each network element; further 

work should explore the representation of partially degraded states to more fully 

represent the operation of the system. The current application utilizes static 

network demands to evaluate resilience well into the future. A model that 

incorporates dynamically changing demand and future growth scenarios will 

contribute to the understanding of how efficiency and end-user programs may 

affect the system resilience. Additionally the characterization of specific outages 

and failures needs to be introduced to the framework. For example, if an extreme 

event could cause all desalination plants to be shut-down simultaneously, the 

Figure 4 CDF of Total Unmet Demand Figure 5 CDF of Total Unmet Demand 

for Khobar MTBF 120 
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likelihood and consequences of such an event is not currently considered in the 

model. Finally, the methodology should be enhanced by the implementation of a 

resilience optimization that will automatically find the best combination of 

network upgrades and expansions to maximize resilience. Future work should also 

more holistically evaluate the water system, considering agricultural demands and 

groundwater reserves, as well as waste water treatment, rather than just the 

desalination system in isolation to assess the resilience of the water system in its 

entirety. 
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