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Quantum entanglement is the most surprising feature of quantum
mechanics. Entanglement is simultaneously responsible for the
difficulty of simulating quantum matter on a classical computer
and the exponential speedups afforded by quantum computers.
Ground states of quantum many-body systems typically satisfy an
“area law”: The amount of entanglement between a subsystem
and the rest of the system is proportional to the area of the
boundary. A system that obeys an area law has less entanglement
and can be simulated more efficiently than a generic quantum
state whose entanglement could be proportional to the total sys-
tem’s size. Moreover, an area law provides useful information
about the low-energy physics of the system. It is widely believed
that for physically reasonable quantum systems, the area law can-
not be violated by more than a logarithmic factor in the system’s
size. We introduce a class of exactly solvable one-dimensional
physical models which we can prove have exponentially more
entanglement than suggested by the area law, and violate the
area law by a square-root factor. This work suggests that simple
quantum matter is richer and can provide much more quantum
resources (i.e., entanglement) than expected. In addition to using
recent advances in quantum information and condensed matter
theory, we have drawn upon various branches of mathematics
such as combinatorics of random walks, Brownian excursions,
and fractional matching theory. We hope that the techniques devel-
oped herein may be useful for other problems in physics as well.
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Study of quantum many-body systems (QMBSs) is the study of
quantum properties of matter and quantum resources (e.g.,

entanglement) provided by matter for building revolutionary new
technologies such as a quantum computer. One of the properties
of the QMBS is the amount of entanglement among parts of the
system (1, 2). Entanglement can be used as a resource for quantum
technologies and information processing (2–5); however, at a fun-
damental level it provides information about the quantum state of
matter, such as near-criticality (6, 7). Moreover, systems with high
entanglement are usually hard to simulate on a classical computer
(8). How much entanglement do natural QMBSs possess?What are
the fundamental limits on simulation of physical systems?
The area law says that entanglement entropy between two sub-

systems of a system is proportional to the area of the boundary
between them. A generic state does not obey an area law (9);
therefore, obeying an area law implies that a QMBS contains much
less quantum correlation than generically expected. One can
imagine that any given system has inherent constraints such as
underlying symmetries and locality of interaction that restrict the
states to reside on special submanifolds rendering their simula-
tion efficient (10).
Since the discovery that the Affleck–Kennedy–Lieb–Tasaki

(AKLT) model (11) is exactly solvable, and that the density
matrix renormalization group method (DMRG) (12) works ex-
tremely well on 1D systems, we have come to believe that 1D
systems are typically easy to simulate. The DMRG and its nat-
ural representation by matrix product states (MPS) (13) gave

systematic recipes for truncating the Hilbert space based on ig-
noring zero and small singular values in specifying the states of
1D systems. DMRG and MPS have been tremendously suc-
cessful in practice for capturing the properties of matter in
physics and chemistry (14, 15). We now know that generic local
Hamiltonians, unlike the AKLT model, are gapless (16). One
wonders about the limitations of DMRG.
The rigorous proof of a general area law does not exist;

however, it holds for gapped systems in 1D (17). In the con-
densed matter community it is a common belief that gapped
local Hamiltonians of QMBS on a D-dimensional lattice fulfill
the area-law conjecture (8). That is, the entanglement entropy of
a region of diameter L should scale as the area of the boundary
OðLD−1Þ rather than its volume OðLDÞ. In the more general case,
when the ground state is unique but the gap vanishes in the
thermodynamical limit, it is expected that the area-law conjec-
ture still holds, but now with a possible logarithmic correction,
i.e., S=OðLD−1 logLÞ (8). In other words, one expects that as
long as the ground state is unique, the area law can be violated by
at most a logarithmic factor. In particular, in 1D, it is expected
that if we cut a chain of n interacting spins in the middle, the
entanglement entropy should scale at most like log n. This is
based mostly on calculations done in 1+ 1 conformal field the-
ories (CFTs) (7, 18), as well as in the Fermi liquid theory (19).
This belief has been seriously challenged by both quantum

information and condensed matter theorists in recent years.
Motivated by hardness results in quantum complexity theory,
there are various interesting examples of 1D Hamiltonian con-
structions (20–22) that can have larger, even linear, scaling of
entanglement entropy with the system’s size. In condensed
matter physics, nontranslationally invariant models have been
proposed and argued to violate the area law maximally (i.e.,
linearly for a chain) (23); Huijse and Swingle gave a supersym-
metric model with some degree of fine-tuning that violates the
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area law (24). More recently, Gori et al. (25) argued that in
translationally invariant models a fractal structure of the Fermi
surface is necessary for maximum violation of entanglement en-
tropy, and using nonlocal field theories volume-law scaling was
argued using simple constructions (26). Independently from ref.
20, chap. 6, Ramirez et al. constructed mirror symmetric models
satisfying the volume law, i.e., maximum scaling with the system’s
size possible (27). The models described above are all interesting
for the intended purposes but either have very large spins (e.g.,
s≥ 10) or involve some degree of fine-tuning. In particular, Irani
proposed an s= 10 spin-chain model with linear scaling of the
entanglement entropy. This model is translationally invariant, but
the local terms depend on the systems’ size. This is a fine-tuning,
and the spin dimension is quite high (21).
As noted previously, a generic state violates the area law

maximally (9). It was largely believed that the ground state of
“physically reasonable” models would violate the area law by at
most a logðnÞ factor, where n is the number of particles (see ref. 28
for a review). Physically reasonable models need to have Hamilto-
nians that are (i) local, (ii) translationally invariant, and (iii) have a
unique ground state. These requirements, among other things, elim-
inate highly fine-tuned models. This implies that logðnÞ is the maxi-
mum expected entanglement entropy in realistic physical spin chains.
In an earlier work, Bravyi et al. (29) proposed a spin-1 model with

the ground-state half-chain entanglement entropy S= ð1=2Þlog n+ c,
which is logarithmic factor violation of the area law as expected
during a phase transition. This model is not truly local as it depends
crucially on boundary conditions. The scaling of the entanglement
is exactly what one expects for critical systems.
We have found an infinite class of exactly solvable integer

spin-s chain models with s≥ 2 that are physically reasonable and
exact calculation of the entanglement entropy shows that they
violate the area law to the leading order by

ffiffiffi
n

p
(Eq. 1). The

proposed Hamiltonian is local and translationally invariant in the
bulk but the entanglement of the ground state depends on
boundary projectors. We prove that it has a unique ground state
and give a technique for proving the gap that uses universal con-
vergence of random walks to a Brownian motion. We prove that
the energy gap scales as n−c, where using the theory of Brownian
excursions we show that the constant c≥ 2. This bound rules out the
possibility of these models being describable by a CFT. The
Schmidt rank of the ground state grows exponentially with n.
We then introduce an external field. In the presence of the

external field the boundary projectors are no longer needed. The
model has a frustrated ground state, and its gap and entanglement

are solvable. This makes the model truly local (Eq. 6). We remark
that the particle-spins can be as low as s= 2 for

ffiffiffi
n

p
violation. We

now describe this class of models and detail the proofs and
further discussions in the SI Appendix. Let us consider an in-
teger spin−s chain of length 2n. It is convenient to label the
d= 2s+ 1 spin states by f=, =,⋯, =, 0, n, n,⋯, ng as shown in Fig.
1. Equivalently, and for better readability, we instead use the
labels fu1, u2,⋯, us, 0, d1, d2,⋯, dsg where u means a step up
and d a step down. We distinguish each type of step by asso-
ciating a color from the s colors shown as superscripts on u
and d.
A Motzkin walk on 2n steps is any walk from ðx, yÞ= ð0,0Þ to

ðx, yÞ= ð2n, 0Þ with steps ð1,0Þ, ð1,1Þ, and ð1, − 1Þ that never
passes below the x axis, i.e., y≥ 0. An example of such a walk is
shown in Fig. 2. The height at the midpoint is 0≤m≤ n, which
results from m steps up with the balancing steps down on the
second half of the chain. In our model the unique ground state is
the s-colored Motzkin state which is defined to be the uniform
superposition of all s colorings of Motzkin walks on 2n steps. The
nonzero heights in the middle are the source of the mutual in-
formation between the two halves and the large entanglement
entropy of the half-chain (Fig. 3).
The Schmidt rank is ðsn+1 − 1Þ=s− 1≈ ðsn+1Þ=s− 1, and using a

2D saddle-point method, the half-chain entanglement entropy
asymptotically is (see SI Appendix for derivation)

S= 2 log2ðsÞ
ffiffiffiffiffiffiffiffi
2σn
π

r
+
1
2
log2ð2πσnÞ+

�
γ −

1
2

�
log2 e bits, [1]

where σ =
ffiffi
s

p
=ð2 ffiffi

s
p

+ 1Þ is constant and γ is the Euler constant.
The ground state is a pure state (which we call the Motzkin
state), whose von Neumann entropy is zero. However, the en-
tanglement entropy quantifies the amount of disorder produced
(i.e., information lost) by ignoring half of the chain. The leading
order

ffiffiffi
n

p
scaling of the entropy establishes that there is a large

amount of quantum correlation between the two halves.
Consider the following local operations to any Motzkin

walk: interchanging zero with a nonflat step (i.e., 0dk ↔ dk0 or
0uk ↔ uk0) or interchanging a consecutive pair of zeros with a
peak of a given color (i.e., 00↔ ukdk). Any s-colored Motzkin
walk can be obtained from another one by a sequence of these
local changes. To construct a local Hamiltonian, with projectors
as interactions, that has the uniform superposition of the
Motzkin walks as its zero energy ground state, each of the local
terms of the Hamiltonian has to annihilate states that are sym-
metric under these interchanges. Local projectors as interactions
have the advantage of being robust against certain perturbations
(30). This is important from a practical point of view and
experimental realizations.

Fig. 1. Labeling the states for s= 1 and s= 2.

A B

Fig. 2. Motzkin walk of length 2nwith s= 1. There areM2
n,m such walks with

height m in the middle and coordinates ðx, yÞ:ð0,0Þ, ðn,mÞ, ð2n, 0Þ.
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Therefore, the local Hamiltonian, with projectors as interac-
tions, that has the Motzkin state as its unique zero-energy ground
state is

H =Πboundary +
X2n−1
j=1

Πj,j+1 +
X2n−1
j=1

Πcross
j,j+1 , [2]

where Πj,j+1 implements the local changes discussed above and is
defined by

Πj,j+1 ≡
Xs

k=1

h��Dk�
j,j+1

�
Dk

��+ ��Uk�
j,j+1

�
Uk

��+ ��φk�
j,j+1

�
φk

��i, [3]

with
��Dki∼ ½��0dki− ��dk0i�, ��Uki∼ ½��0uki− ��uk0i�, and

��φki∼
½j00i− ��ukdki�. The projectors Πboundary ≡

Ps
k=1½

��dki1hdk��+��uki2nhuk��� select out the Motzkin state by excluding all walks
that start and end at nonzero heights. Lastly, Πcross

j,j+ 1 ≡P
k≠i

��ukdiij,j+1hukdi�� ensures that balancing is well ordered.
For example, we want to ensure that the unbalanced sequence
of steps u3u1u2 is balanced by d2d1d3 and not, say, d1d3d2. Πcross

j,j+ 1
penalizes wrong ordering by prohibiting 00↔ ukdi when k≠ i.
These projectors are required only when s> 1 and do not ap-
pear in ref. 29.
The difference between the ground-state energy and the en-

ergy of the first excited state is called the gap. One says a system
is gapped when the difference between the two smallest energies
is at least a fixed constant in the thermodynamical limit (n→∞).
Otherwise the system is gapless.
Whether a system is gapped has important implications for its

physics. When it is gapless, the scaling by which the gap vanishes
as a function of the system’s size has important consequences for
its physics. For example, gapped systems have exponentially decaying
correlation functions (22), and quantum critical systems are nec-
essarily gapless (31). Moreover, systems that obey a CFT are gap-
less but the gap must vanish as 1=n (32). Therefore, to quantify the
physics, it is desirable to find new techniques for analyzing the gap
that can be applied in other scenarios.
The model proposed here is gapless and the gap scales as n−c

where c≥ 2 is a constant. We prove this by finding two functions,
both of which are inverse powers of n such that the gap is always
smaller than one of them (called an upper bound) and greater
than the other (called a lower bound). We use techniques from
mathematics such as Brownian excursions and universal con-
vergence of random walks to a Brownian motion, as well as other
ideas from computer science such as linear programming and
fractional matching theory. We describe the ideas and leave the
details of the proofs for SI Appendix.
To prove an upper bound on the gap, one needs a state jϕi

that has a small constant overlap with the ground state and such
that hϕjHjϕi≥Oðn−2Þ. Take

jϕi= 1ffiffiffiffiffiffiffiffi
M2n

p
X
mp

  e2πi~θ
~Ap
��mp

�
, [4]

where the sum is over all Motzkin walks, M2n is the total number
of Motzkin walks on 2n steps, ~Ap is the area under the Motzkin
walk mp, and ~θ is a constant to be determined by the condition of
a small constant overlap with the ground state. The overlap with
the ground state is defined by hM2njϕi= ð1=M2nÞ

P
mp
e2πi~θ~Ap. As

n→∞, the random walk converges to a Wiener process (33) and
a random Motzkin walk converges to a Brownian excursion (34).
We scale the walks such that they take place on the unit interval.
The scaled area is denoted by A and ~θ→ θ. In this limit, the overlap
becomes (see Fig. 4 for the density and Fig. 5 for its Fourier trans-
form; FAðθÞ is the Fourier transform of the probability density
function, which is called the characteristic function.)

lim
n→∞

hM2njϕi≈FAðθÞ≡
Z ∞

0
fAðxÞe2πixθdx, [5]

where fAðxÞ is the probability density function for the area of the
Brownian excursion (35) shown in Fig. 4. In Eq. 5, taking
θ � Oð1Þ, gives limn→∞hM2njϕi≈ 1 because it becomes the in-
tegral of a probability distribution. However, taking θ � Oð1Þ
gives a highly oscillatory integrand that nearly vanishes. To have
a small constant overlap with the ground state, we take θ to be the
standard of deviation of fAðxÞ. Direct calculation then gives
hϕjHjϕi=Oðn−2Þ. This upper bound decisively excludes the possi-
bility of the model being describable by a conformal field theory (18).
Using various ideas in perturbation theory, computer science,

and mixing times of Markov chains we obtain a lower bound on
the gap that scales as n−c, where c � 1. Because it might be of
independent interest in other contexts, we present a combina-
torial and self-contained exposition of the proof in the SI Ap-
pendix, different in some aspects from that given in ref. 29.
The model above has a unique ground state because the

boundary terms select out the Motzkin state among all other
walks with different fixed initial and final heights. Without the
boundary projectors, all walks that start at height m1 and end at
height m2 with −2n≤m1,m2 ≤ 2n are ground states. For exam-
ple, when s= 1, the ground-state degeneracy grows quadratically
with the system’s size 2n and exponentially when s> 1.
For the s= 1 case, if we impose periodic boundary conditions,

then the superposition of all walks with an excess of k up (down)
steps is a ground state. This gives 4n+ 1 degeneracy of the
ground state, which includes unentangled product states.

0.5 1.0 1.5 2.0
x

0.5

1.0

1.5

2.0

2.5

fA x

Fig. 4. Plot of the probability density of the area under a Brownian ex-
cursion fAðxÞ on ½0,1�.

Fig. 3. Motzkin walk with s= 2 colors of length 2n= 10. The height m
quantifies the degree of correlation between the two halves.
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When s> 1, each one of the walks with k excess up (down)
steps can be colored exponentially many ways; however, gener-
ically they will not be product states. Consider an infinite chain
ð−∞,∞Þ and take s> 1. There is a ground state of this system
that corresponds to the balanced state, where on average for
each color, the state contains as many ui as di. Suppose we re-
strict our attention to any block of n consecutive spins. This block
contains the sites j, j+ 1, . . . , j+ n− 1, which is a section of a
random walk. Let us assume that it has initial height mj and final
height mj+n−1. Further, let us assume that the minimum height of
this section ismk with j≤ k≤ j+ n− 1. From the theory of random
walks, the expected values of mj −mk and of mj+n−1 −mk are
Θð ffiffiffi

n
p Þ. The color and number of any unmatched step-ups in this

block of n spins can be deduced from the remainder of the
infinite walk. Thus, a consecutive block of n spins has an
expected entanglement entropy of Θð ffiffiffi

n
p Þ with the rest of the

chain. A similar argument shows that any block of n spins has an
expected half-block entanglement entropy of Θð ffiffiffi

n
p Þ.

If we take s= 1, where the ground state can be a product state, theffiffiffi
n

p
unmatched step-up just mentioned can be matched anywhere on

the remaining left and right part of the chain. Two consecutive
blocks of n spins can be unentangled because the number of un-
balanced steps that are matched in the next block is uncorrelated
with the number of unbalanced steps in the first block. However,
when s> 1 the ordering has to match. Even though the number of
unbalanced steps in two consecutive blocks is uncorrelated, the order
of the types of unbalanced steps in them agrees.
The Hamiltonian without the boundary terms is truly transla-

tionally invariant, yet has a degenerate ground state. We now pro-
pose a model with a unique ground state that has the other desirable
properties of the model with boundaries, such as the gap and en-
tanglement entropy scalings as before. To do so, we put the system in
an external field, where the model is described by the Hamiltonian

~H ≡H + e  F

F ≡
X2n
i=1

Xs

k=1

���dk�i�dk
��+ ��uk�i�uk

��	, [6]

where H is as before but without the boundary projectors and
e= e0=n with e0 being a small positive constant. It is clear that F

treats u and d symmetrically; therefore, the change in the energy
as a result of applying an external field depends only on the total
number of unbalanced steps denoted by m. We denote the
change in the energy of m unbalanced steps by ΔEm. When
s= 1, the degeneracy after applying the external field will be
one for the Motzkin state, twofold when there is a single imbal-
ance, threefold for two imbalances, etc. Because the energies are
equal for all m imbalance states, it is enough to calculate the
energy for an excited state with m imbalances resulting only
from excess step-ups. We denote these states by jgmi, where
0≤m≤ 2n.
The first-order energy corrections, obtained from first-order

degenerate perturbation theory, are analytically calculated to be

ehgmjFjgmi≈ 4σen+
me

8
ffiffi
s

p

m
n

�
. [7]

The physical conclusion is that the Hamiltonian without the
boundary projectors, in the presence of an external field F, has
the Motzkin state as its unique ground state with energy 4σe0.
Moreover, what used to be the rest of the degenerate zero-energy
states acquire energies above 4σe0 that for first elementary exci-
tations scale as 1=n2. Moreover, the numerical calculations in-
dicate that the spin–spin correlation functions are flat (36). We
leave further investigations for future work.
The energy corrections just derived do not mean that the

states with m imbalances will make up for all of the low-energy
excitations. For example, when s> 1, in the presence of an
external field, the energy of states with a single crossed term
will be lower than those with large m imbalances and no
crossings.
Because keFk � kHk, the ground state will deform away

from the Motzkin state to prefer the terms with more zeros in
the superposition. But, as long as e is small, the universality of
Brownian motion guarantees the scaling of the entanglement
entropy. It is, however, not yet clear to us whether e can be
tuned to a quantum critical point where the ground state has a
sharp transition from highly entangled to nearly a product state.
It is possible that the transition is smooth and that the entan-
glement continuously diminishes as e becomes larger. For ex-
ample, in the limit where jej � kHk=kFk, the effective unperturbed
Hamiltonian is approximately F, whose ground state is simply
the product state j0i⊗2n.
Our model shows that simple physical systems can be much

more entangled than expected. From a fundamental physics
perspective, it is surprising that a 1D translationally invariant
quantum spin chain with a unique ground state has about

ffiffiffi
n

p
entanglement entropy. Moreover, this adds to the collection of
exactly solvable models from which further physics can be
extracted. Such a spin chain can in principle be experimentally
realized, and the large amount of entanglement may be used as a
resource for quantum technologies and computation.
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