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ABSTRACT
Designing phononic crystals by creating frequency

bandgaps is of particular interest in the engineering of elastic
and acoustic microstructured materials. Mathematically, the
problem of optimizing the frequency bandgaps is often non-
convex, as it requires the maximization of the higher indexed
eigenfrequency and the minimization of the lower indexed
eigenfrequency. A novel algorithm [1] has been previously
developed to reformulate the original nonlinear, nonconvex
optimization problem to an iteration-specific semidefinite
program (SDP). This algorithm separates two consecutive
eigenvalues – effectively maximizing bandgap (or bandwidth)
– by separating the gap between two orthogonal subspaces,
which are comprised columnwise of “important” eigenvectors
associated with the eigenvalues being bounded. By doing so,
we avoid the need of computation of eigenvalue gradient by
computing the gradient of affine matrices with respect to the
decision variables. In this work, we propose an even more
efficient algorithm based on linear programming (LP). The new
formulation is obtained via approximation of the semidefinite
cones by judiciously chosen linear bases, coupled with “delayed
constraint generation”. We apply the two convex conic formula-
tions, namely, the semidefinite program and the linear program,
to solve the bandgap optimization problems. By comparing
the two methods, we demonstrate the efficacy and efficiency of
the LP-based algorithm in solving the category of eigenvalue
bandgap optimization problems.

∗Address all correspondence to this author.

1 INTRODUCTION
Phononic crystal, as an elastic and acoustic analogue of the

photonic crystal, is a periodic microstructure created from the
arrangement of composite elastic materials. Similar to the fre-
quency bandgap to electromagnetic wave propagation in pho-
tonic crystals, it is also possible for phononic crystals to exhibit
a range of prohibitive frequencies in their transmission spectra to
the propagation of elastic and/or acoustic waves of any polariza-
tion or wave vector. This property lends phononic bandgap struc-
tures to a wide range of applications – acoustic mirrors, filters,
and waveguides. Among many important studies on phononic
crystals, the design of phononic crystals with optimal bandgaps
is undoubtedly still the most fundamental topic, as it provides the
building block for other extensive applications [2, 3, 4].

The design problem of the basic periodic structure of
phononic crystals can be mathematically formulated as an
infinite-dimensional, nonlinear, nonconvex optimization prob-
lem in very much the same way as the bandgap optimization
problem for photonic crystals: find a periodic configuration of
the prescribed composite materials that is parameterized by a
spatial function σ(rrr), such that the designated frequency gap
between two consecutive frequency bands (often expressed as
a fractional function in terms of two consecutive eigenvalues) is
optimized [5].

Wheather the considered structure is infinite bulk material
[6] or moderately thick plates [7, 8], Bloch theory can be em-
ployed to reduce the computation domain to a single primitive
cell of the periodic lattice. Among various strategies for ge-
ometry representation of the computational design domain(e.g.,
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topology optimization and shape optimization), the method of
topology optimization has convincingly established its superior-
ity as it provides the most flexible and effective conceptual de-
sign proposals [9]. In topology optimization, the unknown σ(rrr)
is discretized into an array of binary variables (or linear bounded
variables in the relaxed setting), and each variable represents the
material property at a grid point or a piecewise constant/linear
element of the computation domain. The analysis part of the
problem involves solving the governing eigenvalue equation with
numerical schemes such as finite element method [10], and the
design part of the problem seeks the optimial solution of the
discrete geometry/material variables. To obtain the solution of
these discrete variables to a nonlinear and nonconvex optimiza-
tion problem using mathematical programming, gradient based
nonlinear solvers are often used for convenience (e.g., Method
of Moving Asymptote [11]). In our earlier works [1, 12], a lin-
ear and convex algorithm was proposed instead. This algorithm
makes use of subspace approximation to reformulate the original
problem as a sequence of convex semidefinite programs (SDPs),
and hence can be efficiently solved by interior point methods.
Another advantage of the SDP formulation is that it avoids the
calculation of the eigenvalue gradients required in other methods
(such as the MMA based works [5, 13]), which can be problem-
atic in case of eigenvalue multiplicity or high density of states.

While topology optimization has proven reliable in the con-
cept level of the design process, the optimal design proposals ob-
tained are often not guaranteed to be feasible for direct fabrica-
tion, either due to (i) the deliberate simplification of a model, (ii)
technological limitations, and/or (iii) human factors. To over-
come these challenges, we developed a new modeling paradigm
called “fabrication-adaptive optimization” [14] that stems from
the robust regularization of a function [15]. Unfortunately, the
fabrication adaptive counterpart of a SDP problem is NP-hard,
which motivates us to instead work with an LP relaxation of the
SDP problem. The new LP formulation is obtained via approx-
imation of the semidefinite cones by judiciously chosen linear
bases and coupled with “delayed constraint generation”. Al-
though being a somewhat heuristic method, the LP relaxation has
shown improved performance compared to the SDP formulation
when solving the bandgap optimization problems for photonic
crystals.

In this paper, we extend the study of the LP formulation to
additional design problems of microstructured materials, such as
phononic bandgap structures. We first introduce the phononic
crystal bandgap optimization problem in section 2, and briefly
review the SDP algorithm in section 3 for completeness. The for-
mulation based on linear programming is discussed in details in
section 4. In section 5, we compare the performance of the SDP
and LP formulations, and present the optimal phononic bandgap
structures of different propagation modes and different lattice
structures. The concluding remarks are presented in section 6.

2 PROBLEM STATEMENT
Elastic wave propagation in a continuous media is governed

by the following equations of motion,

ρ üi =
∂

∂xi
(λ∇ ·uuu)+∇ · (µ∇ui +µ

∂uuu
∂xi

)+ fi, i = 1,2,3, in R3.

(1)
The equation describes the displacement uuu = (u1,u2,u3) and ac-
celeration üuu of a small elemental volume with density ρ when
it is subject to external body force fff = ( f1, f2, f3) and internal
strain. The constants λ and µ are known as the Lamé param-
eters. These constants can also be expressed in terms of other
familiar elastic parameters such as Young’s modulus E and Pois-
son’s ratio σ : λ = E

(1+σ)(1−2σ) , µ = E
2(1+σ) .

A phononic crystal is a periodic lattice-like structure with
primitive lattice vectors aaa1 = a1êee1, aaa2 = a2êee2, and aaa3 = a3êee3.
For every lattice vector RRR written in terms of the primitive lat-
tice vectors, i.e., RRR = m1aaa1 +m2aaa2 +m3aaa3, and any spatial co-
ordinate rrr = x1êee1 + x2êee2 + x3êee3, the material properties in a
phononic crystal satisfy the periodic condition, ρ(rrr) = ρ(rrr+RRR),
λ (rrr) = λ (rrr+RRR), and µ(rrr) = µ(rrr+RRR).

We consider only the elastic structures with two-
dimensional periodicity and no body force ( fff = 0) in this work.
Two-dimensional periodicity means that the material only varies
periodically in, say, the êee1–êee2 plane, and is invariant in the êee3
direction, i.e., a3 = 0. This implies that the displacement field
should also be independent of x3, i.e., uuu(x1,x2,x3) = uuu(x1,x2), or
∂uuu/∂x3 = 0. We can rewrite equation (1) as

ρ ü1 =
∂

∂x1

[
(λ +2µ)

∂u1

∂x1
+λ

∂u2

∂x2

]
+

∂

∂x2

(
µ

∂u1

∂x2
+µ

∂u2

∂x1

)
,

(2a)

ρ ü2 =
∂

∂x1

(
µ

∂u2

∂x1
+µ

∂u1

∂x2

)
+

∂

∂x2

[
(λ +2µ)

∂u2

∂x2
+λ

∂u1

∂x1

]
,

(2b)

ρ ü3 =
∂

∂x1

(
µ

∂u3

∂x1

)
+

∂

∂x2

(
µ

∂u3

∂x2

)
. (2c)

Applying the Bloch theorem for wave propagation in the periodic
medium, the displacement of the movement can be represented
as

uuu = ũuuei(kkk·rrr+ωt), (3)

where kkk = (k1,k2,k3) is the wavevector, and ω is the wave fre-
quency. The displacement ũuu is an envelope function that is pe-
riodic in R3, i.e., ũuu(rrr) = ũuu(rrr +RRR). The computation can thus
be reduced to one primitive cell of the phononic crystal, Ω⊂R2.
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Substituting (3) into (2) and simplifying, we obtain the first equa-
tion,

−ω
2
ρ ũ1 =

∂

∂x1

[
(λ +2µ)

∂ ũ1

∂x1

]
− k2

1(λ +2µ)ũ1

+ ik1(λ +2µ)
∂ ũ1

∂x1
+ ik1

∂

∂x1

[
(λ +2µ)ũ1

]
+

∂

∂x2

(
µ

∂ ũ1

∂x2

)
+ ik2µ

∂ ũ1

∂x2
+ ik2

∂

∂x2
(µ ũ1)− k2

2µ ũ1

+
∂

∂x1

(
λ

∂ ũ2

∂x2

)
+ ik1λ

∂ ũ2

∂x2
+ ik2

∂

∂x1
(λ ũ2)− k1k2λ ũ2

+
∂

∂x2

(
µ

∂ ũ2

∂x1

)
+ ik2µ

∂ ũ2

∂x1
+ ik1

∂

∂x2
(µ ũ2)− k1k2µ ũ2,

(4a)

the second equation,

−ω
2
ρ ũ2 =

∂

∂x1

(
µ

∂ ũ2

∂x1

)
+ ik1µ

∂ ũ2

∂x1
+ ik1

∂

∂x1
(µ ũ2)− k2

1µ ũ2

+
∂

∂x2

[
(λ +2µ)

∂u2

∂x2

]
− k2

2(λ +2µ)ũ2

+ ik2(λ +2µ)
∂ ũ2

∂x2
+ ik2

∂

∂x2
[(λ +2µ)ũ2]

+
∂

∂x1

(
µ

∂ ũ1

∂x2

)
+ ik1µ

∂ ũ1

∂x2
+ ik2

∂

∂x1
(µ ũ1)− k1k2µ ũ1

+
∂

∂x2

(
λ

∂ ũ1

∂x1

)
+ ik2λ

∂ ũ1

∂x1
+ ik1

∂

∂x2
(λ ũ1)− k1k2λ ũ1,

(4b)

and the third equation,

−ω
2
ρ ũ3 =

∂

∂x1

(
µ

∂ ũ3

∂x1

)
+ ik1µ

∂ ũ3

∂x1
+ ik1

∂

∂x1
(µ ũ3)− k2

1µ ũ3

+
∂

∂x2

(
µ

∂ ũ3

∂x2

)
+ ik2µ

∂ ũ3

∂x2
+ ik2

∂

∂x2
(µ ũ3)− k2

2µ ũ3.

(4c)

We can see that ũ1 and ũ2 are coupled through (4a) and (4b),
while ũ3 is independently governed by (4c). In the literature of
elastic wave propagation and phononic crystals [16, 5], the de-
coupling of ũ3 from the other two displacement components is
often treated as out-of-plane propagation, while the coupling of
ũ1 and ũ2 is known as in-plane propagation. These two propaga-
tion modes can exist independently (analogous to the transverse-

electric (TE) or transverse-magnetic (TM) mode of the electro-
magnetic wave propagation in photonic crystals) or simultane-
ously (analogous to the combined TEM mode in photonic crys-
tals). Regardless of the propagation mode being discussed, all
can be analyzed in a unified way by studying the discrete gov-
erning equation of analogous format. Next, we employ a simi-
lar discretization strategy as proposed in the design of photonic
crystals.

First, to completely characterize the dispersion relation ω(kkk)
of the periodic structure, it is customary to trace the boundary of
the irreducible Brillouin zone (denoted by ∂B) where the op-
tima of ω(kkk) occur, and consider only a finite number nkkk of wave
vectors in the set

P ≡ {kkkt ∈ ∂B, 1≤ t ≤ nk}. (5)

Second, we assume the phononic crystal is made up of two
homogenous phases of materials, and the mechanical properties
of the two prescribed materials are ρL,λL,µL, and ρH ,λH ,µH ,
respectively. Next we use a distribution function σ(rrr) =
σ(x1,x2)∈ [0,1] to represent the proportion of the two materials.
The computation domain Ω is then discretized into Nt elements
on which σ(rrr) takes piecewise-constant values between 0 and 1.
The discretized distribution function σ(rrr) is denoted by a vec-
tor σσσ whose components represent the material property of each
element of the unit cell:

Q ≡ {σσσ : σσσ = (σ1,σ2, . . . ,σnσ
)T ∈ [0,1]nσ }. (6)

The symmetry of the prescribed lattice is also taken into con-
sideration to reduce the number of discrete variables necessary
to represent the structure, hence nσ < Nt . To approximate the
discrete mechanical properties of the composite material, ρρρ =
(ρ1, . . . ,ρnσ

)T , λλλ = (λ1, . . . ,λnσ
)T , and µµµ = (µ1, . . . ,µnσ

)T , lin-
ear interpolation of the two prescribed phases is used,

ρi = σρH +(1−σi)ρL = σi(ρH −ρL)+ρL,

λi = σλH +(1−σi)λL = σi(λH −λL)+λL,

µi = σ µH +(1−σi)µL = σi(µH −µL)+µL.

(7)

Third, we use a Galerkin finite element method with piece-
wise linear polynomials to approximate the system in (4), and
derive the following discrete eigenvalue problem:

A (σσσ ,kkk)u j = χ jM (σσσ)u j, σσσ ∈Q, kkk∈P, j = 1,2, . . . ,N . (8)

Equation (8) could represent either the in-plane propagation
mode in equations (4a) and (4b) where u j := (ũ1, ũ2)

T
j , or
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the out-of-plane propagation mode in (4c) where u j := (ũ3) j,
or both propagation modes with all three equations in (4)
where u j := (ũ1, ũ2, ũ3)

T
j . The Hermitian stiffness matrix

A (σσσ ,kkk)∈CN ×N and the symmetric positive definite mass ma-
trix M (σσσ) ∈ RN ×N for all three problems follow the same
affine σ -dependence,

A (σσσ ,kkk) = A0(kkk)+
nσ∑
i=1

σiAi(kkk), M (σσσ) = M0 +

nσ∑
i=1

σiMi.

(9)
In the following, we will use superscripts (·)IP, (·)OP, and (·)IOP

on the respective matrices to specify each of these three propa-
gations. By convention, matrices without superscripts indicate a
general formulation that applies to all three cases.

The central and the most fundamental problem of phononic
crystal design is to identify a configuration of crystal structure,
or σσσ , such that one or multiple selected eigenvalue gap-midgap
ratios is(are) maximized. Let J = {m j|1≤ j ≤ J} denote a set
of J bands for which we seek to achieve gaps. The jth bandgap
is defined as the eigenvalue gap-midgap ratio between bands m j
and m j +1, and is denoted as:

R j(σσσ) =
min
kkk∈P

χm j+1(σσσ ,kkk)−max
kkk∈P

χm j(σσσ ,kkk)

1
2

(
min
kkk∈P

χm j+1(σσσ ,kkk)+max
kkk∈P

χm j(σσσ ,kkk)
) . (10)

The optimization problem to be solved is then:

max
σσσ∈Q

min
1≤ j≤J

α jR j(σσσ)

s.t. A (σσσ ,kkk)um j = χm jM (σσσ)um j ,

A (σσσ ,kkk)um j+1 = χm j+1M (σσσ)um j+1,

for j = 1, . . . ,J, kkk ∈P.

(11)

The α j, j = 1, . . . ,J, are prescribed weights for each bandgap. By
adjusting α j, one can obtain optimal crystal structures with vary-
ing emphasis among the multiple bandgaps, see [12] for such a
trade-off study in the context of photonic crystal design. In oth-
erwise general computations we typically set α j = 1, j = 1 . . . ,J.

3 SDP RELAXATION
Problem (11) is clearly nonlinear and nonconvex. In our

previous work [1, 12] on the optimal design of photonic crystal
bandgap structures, an algorithm has been sucessfully developed
to relax such an optimization problem to an iteration-specific
semidefinite program (SDP). The same approach can be applied
to problem (11). A short review of the SDP problem is provided
here for completeness.

Let σ̂σσ be the current iterate. We construct two subspace ma-
trices for each of the target bandgaps at each kkk ∈P . For each
kkk ∈P , we have,

Φ
σ̂σσ ,`
j (kkk) = [um j−N`

jkkk+1(σ̂σσ ,kkk), . . . ,um j(σ̂σσ ,kkk)],

Φ
σ̂σσ ,u
j (kkk) = [um j+1(σ̂σσ ,kkk), . . . ,um j+Nu

jkkk
(σ̂σσ ,kkk)],

where ui(σ̂σσ ,kkk) are the orthonormal eigenvectors of the Hermitian
eigenvalue equation (8) with σσσ = σ̂σσ . The dimensions of the sub-

space matrices are Φ
σ̂σσ ,`
j (kkk) ∈ CN ×N`

jkkk , Φ
σ̂σσ ,u
j (kkk) ∈ CN ×Nu

jkkk . Ide-

ally, Φ
σ̂σσ ,`
j (kkk) and Φ

σ̂σσ ,u
j (kkk) should include all the lower m j eigen-

vectors, and all the higher N −m j eigenvectors respectively. As
proposed in [1], we instead work with a small “important” subset
of these eigenvectors to reduce computation, i.e, N`

jkkk ≤ m j, and
Nu

jkkk �N −m j. Typically, the dimensions of the subspaces are
3− 7. Readers are referred to the previous work for details on
the construction of these reduced subspaces. Now the problem
in (11) can be locally reformulated as follows,

max
σσσ , χχχ` ,χχχu, F

F

s.t. Φ
σ̂σσ ,`∗
j (kkk)

[
A (σσσ ,kkk)−χ`

jM (σσσ)
]

Φ
σ̂σσ ,`
j (kkk)� 0,

Φ
σ̂σσ ,u∗
j (kkk)

[
A (σσσ ,kkk)−χu

j M (σσσ)
]

Φ
σ̂σσ ,u
j (kkk)� 0,

2α j(χ
u
j −χ`

j )−F(χu
j +χ`

j )≥ 0,

χ`
j ,χ

u
j ,F ≥ 0, for j = 1, . . . ,J, kkk ∈P,

(12)
where “�” is the Löwner partial ordering on symmetric matrices,
i.e., A � B if and only if A−B is positive semidefinite. As a re-
sult of the affinity of the stiffness and mass matrices (9), the con-
straints in the third row of (12) are bilinear, and can be linearized
around the previous solution to obtain a linear semidefinite pro-
gram. Note that if only one bandgap is to be optimized, i.e., J
= 1, the third constraint row can be represented as a linear frac-
tional objective function, and can be converted to a linear objec-
tive using standard homogenization [17]. The final formulation
can be efficiently solved by modern SDP solvers, for example,
the interior-point method based optimization solver SDPT3 [18].

4 LP RELAXATION
4.1 Approximation of the Eigenvalue Bounds using

Linear Inequalities
We start from the definition of positive semi-definiteness of

a matrix: an Nsp×Nsp matrix B is positive semi-definite if and
only if vT Bv≥ 0 for all non-zero vectors v. That is to say, a linear
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matrix inequality (LMI) of the form B(x) := B0 +
∑n

i=1 Bixi � 0
is equivalent to

bT B(x)b≥ 0 ∀b ∈ RNsp . (13)

We then approximate the above inequality by judiciously gener-
ating a finite number of approximating vectors b(1), . . . ,b(NB) ∈
RNsp . (The method for choosing and updating these sets of vec-
tors will be discussed in the next subsection.) We can multiply
the two linearized SDP inclusions in (12) with appropriate ap-
proximating vectors, and reformatting by rescaling, we obtain
the following two linear inequality systems:

Bσ̂σσ ,`
j σσσ +gσ̂σσ ,`

j ≤ eχ
`
j , Bσ̂σσ ,u

j σσσ +gσ̂σσ ,u
j ≥ eχ

u
j , j = 1, . . . ,J,

(14)
where Bσ̂σσ ,`

j ∈ C(N`
j nk)×nσ , gσ̂σσ ,`

j ∈ CN`
j nk , Bσ̂σσ ,u

j ∈ C(Nu
j nk)×nσ , and

gσ̂σσ ,u
j ∈ CNu

j nk . These two families of inequalities are concatena-
tion of the sets of linear inequalities for each of the kkk points, i.e.,
N`

j =
∑

kkk∈P N`
jkkk, and Nu

j =
∑

kkk∈P Nu
jkkk. Replacing the semidef-

inite inclusions in (12) with their linear inequality approxima-
tions (14), we obtain the following almost linear approximation
of (12):

Pσ̂σσ
LP : max

σσσ , χχχ`, χχχu, F
F

s.t. Bσ̂σσ ,`
j σσσ +gσ̂σσ ,`

j ≤ eχ`
j ,

Bσ̂σσ ,u
j σσσ +gσ̂σσ ,u

j σσσ ≥ eχu
j ,

2α j(χ
u
j −χ`

j )−F(χu
j +χ`

j )≥ 0,

χ`
j ,χ

u
j ,F ≥ 0, for j = 1, . . . ,J, kkk ∈P.

(15)

where e= (1, . . . ,1) denotes the vector of ones, whose dimension
will be given in context. The third constraint is bilinear and can
be linearized as before. In order for the LP formulation to be rea-
sonably accurate, the optimal solution σσσ∗ of (15) should be close
enough to the linearizing point σ̂σσ , i.e., ‖σσσ∗− σ̂σσ‖≤ εtol. Problem
Pσ̂σσ

LP can be solved using standard LP optimization software, e.g,
Gurobi [19]. Table 1 presents the basic outline of the algorithm
for solving bandgap optimization problems by the linear program
(15) instead of the semidefinite program (12). We note in Step
4 of the algorithm that one can augment the solution process for
Pσ̂σσ

LP with a standard delayed constraint generation procedure [20].
More detailed implementation of Step 2b is discussed in the next
subsection.

TABLE 1. Algorithm for solving bandgap problems using linear in-
equalities approximation of eigenvalue bounds.

Algorithm for Bandgap Optimization using

Linear Inequalities Approximation

Step 1. Start with initial guess σ̂σσ := σσσ0 and tolerance εtol

Step 2a. Construct the matrices for (12) based on σ̂σσ ,

for each kkk ∈P , i = 1, . . . ,nσ , and j = 1, . . . ,J:

Aσ̂σσ ,`
i j (kkk) := Φ

σ̂σσ ,`∗
j (kkk)Ai(kkk)Φ

σ̂σσ ,`
j (kkk),

Aσ̂σσ ,u
i j (kkk) := Φ

σ̂σσ ,u∗
j (kkk)Ai(kkk)Φ

σ̂σσ ,u
j (kkk),

Mσ̂σσ ,`
i j (kkk) := Φ

σ̂σσ ,`∗
j (kkk)MiΦ

σ̂σσ ,`
j (kkk),

Mσ̂σσ ,u
i j (kkk) := Φ

σ̂σσ ,u∗
j (kkk)MiΦ

σ̂σσ ,u
j (kkk).

Step 2b. Choose approximating vectors b(1), . . . ,b(NB)

for each of the 2nk SDP inclusions:

Step 2c. Construct the data for (15) based on σ̂σσ and

the linear operators from Step 2a:

Bσ̂σσ ,`
j , gσ̂σσ ,`

j , Bσ̂σσ ,u
j , and gσ̂σσ ,u

j

Step 3. Form the linear problem Pσ̂σσ
LP in (15)

Step 4. Solve Pσ̂σσ
LP for an optimal solution (σσσ∗,χχχ`∗,χχχu∗,F)

(Optional: augment Pσ̂σσ
LP with

Delayed Constraint Generation)

Step 5. If ‖σσσ∗− σ̂σσ‖ ≤ εtol, stop.

Else update σ̂σσ ← σσσ∗ and go to Step 2.

4.2 Methodology for Constructing the Approximating
Vectors

We describe our approach for constructing the approximat-
ing vectors b(1), . . . ,b(NB) ∈ RNsp for any matrix B ∈ RNsp×Nsp ,
e.g., B := Φσ̂σσ∗

j (kkk)A0(kkk)Φσ̂σσ
j (kkk). Note that Nsp, being the dimen-

sion of the approximate and reduced subspace, is not large (recall
Nsp ≈ 3− 7 typically). Ideally, we would want the approximat-
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ing vectors to be distributed uniformly over the upper half of the
Euclidean sphere: {b ∈ RNsp :

√
bT b = 1, bNsp ≥ 0}, where we

need only consider a half-sphere because vT Mv = (−v)T M(−v)
for any v ∈ RNsp . For ease of construction, we choose to work
with the upper half of the unit L1-sphere, also known as the upper
boundary of the cross-polytope {b ∈RNsp : ‖b‖1 = 1, bNsp ≥ 0},
whose 2(Nsp−1) facets are the unit (Nsp−1)-simplices in their re-
spective orthants. Given an integer dilation constant K, we first
define:

K :=
{

k ∈ RNsp :
Nsp∑
i=1

|ki|= K, ki integer
}
, (16)

and then define the approximating vectors b(1), . . . ,b(NB) ∈ RNsp

to be the elements of the following set:

BK :=
{

b ∈ RNsp : b = (1/K)k for some k ∈K , kNsp ≥ 0
}
.

The resulting approximating vectors are distributed uniformly on
the surface of the half cross-polytope. This is illustrated in Fig-
ure 1 for Nsp = 2. Note that the number of vectors in BK grows as
O(KNsp−1). Increasing K will render the piecewise linear approx-
imation model more accurate albeit at higher computational cost.
In addition and if necessary, we expand the set of approximat-
ing vectors at each iteration using delayed constraint generation:
once the linear optimization problem (15) is solved, we check the
semidefinite inclusions in (12) for any eigenvectors violating the
constraints and add them to the set of approximating vectors to
generate additional linear inequality cuts which are then added
to (15). Note that checking the semidefinite inclusions in (12) is
inexpensive due to the reduced size of the system.

5 COMPUTATION RESULTS AND DISCUSSION
5.1 Quality of Linear Inequalities Approximation

To verify the quality of the approximation of the semidef-
inite inclusions by using the linear inequalities, we compare it
with the the design of photonic crystals using SDP formulation
studied in our earlier work [1]. We focus on the effect of the
tunable parameter K (defined in equation (16)) and the resulting
number of linear inequalities. We first note that when K is large,
more vectors (larger NB) are generated to presumably approxi-
mate semidefinite inclusions more accurately, yielding a linear
optimization problem (15) that better approximates the semidef-
inite problem (12). As a result, the resulting linear optimiza-
tion problem will contain a larger number of linear inequalities
and thus require more computation time. On the other hand, a
smaller value of K will reduce the number of linear inequality
constraints, but result in a less accurate approximation of (12).

B

b
1

b
2

b(1)

b(2)b(n  )

...
...

b(3)

10

1

1/K

2/K

1-2/K 1-1/K

FIGURE 1. The vectors chosen to construct the approximating lin-
ear inequalities are distributed uniformly on the surface of a half cross-
polytope arising from the L1 norm.

The quality of the linear inequalities approximation may be em-
pirically measured in terms of the number of outer iterations of
the algorithm of Table 1 and the number of “successful” solu-
tions, where a solution is deemed successful if it opens up a
bandgap more than 10%.

We conduct an empirical test in order to determine a good
value of K. In particular, we make 10 runs of the algorithm of
Table 1 using 10 randomly chosen starting point configurations
for a variety of types of bandgap problems and report the results
in Table 2. In this table, the headings in the right side columns
of the form ∆T E

1,2 refer to bandgap optimization of the bandgap
between the 2nd and 1st eigenvalues in TE polarization, etc. Ta-
ble 2 shows average outer iterations, and number of successful
runs, for various bandgap optimization problems by using the al-
gorithm of Table 1, with a large value of K (K = 5, resulting in
NB ∼ 500) and a small value of K (K = 3, resulting in NB ∼ 10)
combined with delayed constraint generation (DCG). The results
of the SDP approach (presented in [1]) are shown in the table as a
benchmark for comparison. We observe that using a small value
of K = 3 combined with delayed constraint generation appears
to strike a good compromise between system size (and computa-
tion time) and the success rate, and are used in all the subsequent
computations.

5.2 Optimal Phononic Bandgap Structures
We present the LP optimization results for the design of

phononic crystals made up of two room-temperature solid ma-
terials: epoxy and lead. The properties of the softer material
epoxy are ρ1 = 1180 kg m−3, CT 1 = 1160 m s−1, and CL1 =
2540 m s−1, and the properties of the stiffer material lead are
ρ2 = 11357 kg m−3, CT 2 = 860 m s−1, and CL2 = 2158 m s−1
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TABLE 2. Average number of outer iterations and the total number
of successful runs (out of 10 runs) for bandgap optimization using the
semidefinite program (SDP) formulation and the linear program (LP)
formulation. ∆λm,m+1 indicates the optimized bandgap is between the
mth and the m+1st eigenvalues. DCG denotes delayed constraint gen-
eration.

∆λ T E
1,2 ∆λ T E

2,3 ∆λ T E
8,9 ∆λ T E

9,10

TE Polarization

SDP 9.0/7 9.0/6 14.2/2 23.5/1

LFP (K = 5) 17.0/9 9.1/8 43.5/3 40.5/3

LFP (K = 3) 20.0/6 12.6/6 37.1/1 26.1/2

LFP (K = 3) with DCG 14.0/8 15.8/6 27.7/3 24.1/4

TM Polarization

SDP 3.4/10 4.1/8 10.9/3 22.5/2

LFP (K = 5) 5.1/10 10.2/7 31.2/3 36.1/4

LFP (K = 3) 5.2/10 6.3/8 20.5/2 34.2/2

LFP (K = 3) with DCG 5.2/10 6.9/7 23.2/2 27.6/2

[16] 1. We computed a wide range of bandgaps in out-of-plane
(OP), in-plane (IP), and coupled out-of-plane and in-plane (IOP)
modes for both square and hexagonal lattices. In the results pre-
sented herein, the eigenvalues are plotted in the dimensionless
unit χa2/4π2C2

T 1, where a is the lattice constant for both square
and hexagonal lattices.

In order to improve computation efficiency, the mesh adap-
tivity procedure developed in [12] is also incorporated in all the
computations here. With such a procedure, one usually initial-
izes with a very coarse finite element grid (e.g., 8× 8 in the
square lattice) representing both the field solution and the geom-
etry, and solves to optimality at current resolution before further
refining the mesh elements only at the material interface (as dic-
tated by the optimal solution). An interpolated optimal solution
of the coarser mesh is then used as the initial solution for the
finer mesh. The procedure continues until the mesh is adaptively
refined up to a desired resolution (e.g., 128×128).

In all the optimal crystal structures presented in figures 2 to
7, the dark color represents the inclusions made of material lead
imbedded in the softer epoxy, which is represented by the white
background color. Drawing analogy to the dictum in the photonic

1CT and CL are the velocities at which transverse and longitudinal elastic
waves propagate. The mechanical properties – the Lamè parameters of the un-
derlying solid material can be computed from the formulas,

µ = ρC2
T , λ = ρ(C2

L−2C2
T ).

crystal bandgap structures “the TM bandgaps are favored in lat-
tices of isolated high dielectric regions, and TE bandgaps are
favored in connected lattices”, we observed one common feature
in all the optimal structures here, that is, “phononic bandgaps
are favored in lattices of isolated stiff material”. Further exam-
ination reveals that despite the different parameter dependence,
the optimal crystal structures for IP propagation (Figures 2 and
3) exhibit astonishing similar topology to the optimal photonic
crystal structures for TM polarization. Nevertheless, no interest-
ing resemblance is observed in the more complicated IP and IOP
propagation modes.

6 CONCLUSION
Motivated by our new modeling paradigm “fabrication-

adaptive optimization” [14], a linear program (LP) based algo-
rithm is proposed in this work to solve the bandgap optimiza-
tion problems for phononic crystals. The LP formulation is then
compared to the SDP formulation [1] to demonstrate its approxi-
mation quality and improved efficiency. The proposed algorithm
is shown to be able to solve a variety of phononic crystal de-
sign problems of different propagation modes and different lat-
tice structures.

The successful application of the LP formulation in both
types of microstructured materials (photonic and phononic) de-
sign not only suggests its further applicability to a broad category
of eigenvalue-driven optimization problems, but also enables us
to extend the development of fabrication-adaptive optimizations
to other engineering design problems.
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FIGURE 7. Optimization of various IOP bandgaps in hexagonal lat-
tice. Left column shows the optimal crystal structures, and the plots in
the right column are the corresponding eigenfrequency structures.
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