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Abstract 

Microbes are an essential component of marine food webs and biogeochemical cycles, and therefore 

precise estimates of their biomass are of significant value.  Here, we measured single-cell biomass 

distributions of isolates from several numerically abundant marine bacterial groups, including 

Pelagibacter (SAR11), Prochlorococcus, and Vibrio using a microfluidic mass sensor known as a 

suspended microchannel resonator (SMR). We show that the SMR can provide biomass (dry mass) 

measurements for cells spanning more than two orders of magnitude, and that these estimates are 

consistent with other independent measures. We find that Pelagibacterales strain HTCC1062 has a 

median biomass of 11.9±0.7 fg cell-1, which is five- to twelve-fold smaller than the median 

Prochlorococcus cell’s biomass (depending upon strain), and nearly 100-fold lower than that of rapidly 

growing V. splendidus strain 13B01. Knowing the biomass contributions from various taxonomic groups 

will provide more precise estimates of total marine biomass, aiding models of nutrient flux in the ocean. 
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Introduction 

Per-cell microbial biomass estimates are extremely important in parameterizing ecological and 

biogeochemical models (Ducklow, 2000). Beyond the average, the full distribution of single-cell biomass 

may also be important in biophysical models. However, single-cell biomass is non-trivial to determine.  

Established techniques include CHN analyzers (Lee and Fuhrman, 1987) and high-temperature catalytic 

oxidation (Fukuda et al., 1998), which when combined with cell counts can be used to estimate average 

biomass and elemental mass per cell. Alternatively, transmission electron microscopy, x-ray 

microanalysis, and particle volume sensors based on the Coulter principle (also known as resistive pulse 

sensing) provide single cell mass or volume distributions (e.g., Fagerbakke et al., 1996; Kogure and 

Koike, 1987; Loferer-Krößbacher et al., 1998). However, particle volume sensors are generally not 

sensitive enough to resolve the smallest marine bacteria, and TEM-based analyses are difficult to scale 

up since they require significant labor, technical skill, and image processing.  

Here, we demonstrate the use of a micromechanical mass sensor to measure the single-cell 

biomass (dry mass) distributions of isolates from several ubiquitous marine bacterial groups including 

Pelagibacter (SAR11), Prochlorococcus, and Vibrio. The SAR11 clade is estimated to have a global 

abundance of 2.4 x 1028 cells, and is the most abundant marine bacterial group (Morris et al., 2002). 

Prochlorococcus is the most abundant primary producer on Earth with a global estimate of 2.9 x 1027 

cells (Flombaum et al., 2013) and supports a significant fraction of the secondary production that occurs 

in warm oligotrophic surface waters. Unlike Pelagibacter and Prochlorococcus, which are abundant 

open-ocean organisms (Flombaum et al., 2013; Morris et al., 2002; Partensky et al., 1999), Vibrio is 

commonly found in more productive waters at concentrations ~103 cells mL-1 (Takemura et al., 2014); 

however, massive, short-lived blooms have recently been documented, during which vibrios can 

represent dominant community members (up to 50% of total bacteria) (Gilbert et al., 2012; Westrich et 

al., 2016).  
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 To measure single-cell biomass, we used suspended microchannel resonators (SMRs) - 

microcantilever-based microfluidic mass sensors that directly measure single-cell buoyant mass (Burg et 

al., 2007). The SMR consists of a hollow vibrating microcantilever with an internal microfluidic channel, 

which changes its resonant frequency proportionally to a cell’s buoyant mass whenever a cell flows 

through the interior of the cantilever. A cell’s buoyant mass is its total mass minus the mass of the fluid 

it displaces. To obtain dry mass (biomass), we combine information from paired buoyant mass 

measurements performed in H2O and D2O (Feijó Delgado et al., 2013). In pure H2O, a cell’s buoyant mass 

is only the buoyant mass of its dry material, as its intracellular water is neutrally buoyant. Similarly, in 

heavy water (D2O) – which permeates the cell and replaces internal H2O – a cell’s buoyant mass is also 

only the buoyant mass of its dry material. We exploit this property to obtain the density of a cell’s dry 

material (termed its dry density), with which we can convert from buoyant mass in H2O or D2O to 

biomass (Feijó Delgado et al., 2013), as shown in Figure 1A. We fixed cells so they would not lyse under 

hypoosmotic conditions, resuspended them in H2O or D2O, and then measured their buoyant mass 

distributions. We then use these distributions to calculate the single cell biomass distributions and 

uncertainty in their associated statistics (supplementary methods).  

 

Results and discussion 

Previous work on natural bacterial assemblages has found nearly three orders of magnitude 

variation in single cell biomass, from three femtograms to over a picogram (Loferer-Krößbacher et al., 

1998). In accordance with this natural variation, we find that median biomass varies nearly 100-fold 

between cultivated isolates from abundant marine bacterial clades. Pelagibacter median single cell 

biomass was between 12 and 16 fg, Prochlorococcus between 60 and 158 fg, and V. splendidus, 

depending on the growth stage, between 150 and 1000 fg (Figure 1B, Table 1). These values are 

consistent both with our measurements of buoyant mass in seawater-based media (Figure S1) and with 
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literature values, summarized below. Upon initial cultivation, Pelagibacterales strain HTCC1062 was 

reported to be extremely small, with an estimated cell volume of ca. 0.01 µm3 determined by TEM 

(Rappé et al., 2002). The carbon content of HTCC1062 was later estimated at 5.8 fg C per cell  (Tripp et 

al., 2008), which corresponds to 11.6 fg of total biomass if carbon accounts for half the cell's biomass.  

Our direct estimates of single-cell biomass for HTCC1062 and HTCC7211 are consistent with these 

previous reports and support the notion that Pelagibacterales are among the smallest known free-living 

cells. Previous estimates of Prochlorococcus biomass range from 15 to 94 fg C cell-1 (or 30-188 fg total 

biomass, assuming 50% carbon content), and were derived from strains belonging to the HLI clade 

(Bertilsson et al., 2003; Buitenhuis et al., 2012), the same as strain MED4 used here.  Here we find 

median dry mass for Prochlorococcus to be between 60 and 158 fg, with higher values corresponding to 

the first direct biomass measurements of low light-adapted Prochlorococcus (NATL2A and MIT9313), 

which we find can be >2-fold higher than their high light-adapted relatives. We also note that across our 

Prochlorococcus and Pelagibacter strains, biomass increases monotonically with genome size (Figure 

1C).  

To our knowledge, the dry mass of Vibrio splendidus has not been previously measured; however 

x-ray microanalysis of Vibrio natriegens yielded a geometric mean dry mass of 850 fg for exponential-

phase cells and 145 fg for stationary-phase cells (Fagerbakke et al., 1996). Such drastic differences 

between exponential and stationary phase cells – exceeding 5-fold mass changes – have also been 

observed in E. coli (Feijó Delgado et al., 2013; Loferer-Krößbacher et al., 1998), and are correlated with a 

substantial reduction in RNA:protein ratio. 

Our measurement also provides information on within-strain size variation. Strikingly, we found 

that the coefficient of variation (estimated using a robust metric – see supplementary methods) was 

highly consistent across strains, ranging from 26-30%. For unsynchronized cells, deterministically 

growing either linearly or exponentially from mass m0 to 2m0 and then dividing symmetrically, one 
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would expect a robust CV of ~25%. While we expect our Pelagibacter and Vibrio populations to be 

unsychronized, the Prochlorococcus strains were grown under diel light conditions and thus were fixed 

toward the end of the day, just before division begins, so likely at their maximal size. This suggests that 

unsynchronized Prochlorococcus would likely have a broader size distribution than Pelagibacter or 

Vibrio. Estimates of cell-to-cell mass variation may be useful in constraining biophysical models of 

marine microbial behavior, and could ultimately inform how uniquely a mass identifies a microbe or its 

growth state.  

Our results show that SMR can provide single cell biomass estimates spanning nearly two orders 

of magnitude among marine bacteria, a variation that needs to be taken into account when considering 

the importance of different taxonomic groups in the global carbon cycle. Moreover, Pelagibacter and 

Prochlorococcus strains also demonstrate considerable biomass variation within taxonomic groups that 

may reflect the ecological constraints different ecotypes or populations live under.  We propose that 

SMR micromechanical mass sensors are an efficient means to determine biomass under different 

ecological conditions to further refine estimates of global microbial biomass. 
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Table: 

 

Table 1. Summary statistics for the biomass distributions shown in Fig 1B. Robust CV: robust coefficient 

of variation, calculated as 0.741*interquartile range/median.  

 Strain  N 
Median  

(fg) 
10% 90% 

Robust 

CV (%) 

Dry density 

(g/mL) 

Pelagibacter 
 HTCC1062 1325 11.9±0.7 9 17 30.1±1  1.48±0.04 

HTCC7211 1989 16±0.8 13 23 25.7±1 1.52±0.03 

        

Prochlorococcus 

MIT9301 (HLII)  818 60±3 44 87 29±1 1.35±0.02 

MED4 (HLI) 1177 66±4 49 94 30±1 1.39±0.02 

NATL2A (LLI) 1154 91±5 69 127 26.3±0.9 1.42±0.03 

MIT9313 (LLIV) 1936 158±6 120 216 26.9±0.8 1.43±0.02 

        

Vibrio 
Stationary 13B01  1875 150±8 107 200 26±0.7 1.51±0.03 

 Exponential 13B01 817 1000±100 750 1530 29±1 1.58±0.08 

 

 

 

 

Figure legend: 

 

Figure 1. Measuring single-cell biomass (dry mass) of marine microbial isolates via Archimedes’ 

principle. (a) Paired measurements of a population of cells in H2O (ρfluid = 1.0 g/mL) and D2O (ρfluid = 1.1 
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g/mL) yields the dry density of the population, enabling conversion of buoyant mass distributions to dry 

mass distributions. (b) Biomass distributions for various cell types. (c) Log-log plot of genome size vs 

median single-cell biomass. Colors are as in (b)  
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Supplementary methods 

 

Suspended microchannel resonator 

A 120 micron long suspended microchannel resonator was used, operated in the second mode 

at 2.1 MHz. The cross-section of the device’s interior fluidic channel was 3x5 µm2. The device was 

calibrated with 1.1 µm polystyrene particles and NaCl density standards prior to use.  

 

Data analysis and calculation of dry mass 

As detailed in Feijó Delgado et al., 2013, a cell’s buoyant mass in H2O and D2O are given as 

follows: 

𝑚𝑏,𝐻2𝑂 = 𝑚𝑑𝑟𝑦 (1 −
𝜌𝐻2𝑂

𝜌𝑑𝑟𝑦
)      (1) 

𝑚𝑏,𝐷2𝑂 = 𝑚𝑑𝑟𝑦 (1 −
𝜌𝐷2𝑂

𝜌𝑑𝑟𝑦
)     (2) 

 

Where 𝑚𝑏,𝐻2𝑂 is a cell’s buoyant mass in H2O, 𝑚𝑑𝑟𝑦 is the cell’s dry mass, and 𝜌𝑑𝑟𝑦 is the cell’s 

dry density (the density of only its biomass). Measurements of both 𝑚𝑏,𝐻2𝑂 and 𝑚𝑏,𝐷2𝑂 are sufficient to 

solve for 𝑚𝑑𝑟𝑦 and 𝜌𝑑𝑟𝑦as follows: 

𝑚𝑑𝑟𝑦 =
𝜌𝐷2𝑂𝑚𝑏,𝐻2𝑂 − 𝜌𝐻2𝑂𝑚𝑏,𝐷2𝑂

𝜌𝐷2𝑂 − 𝜌𝐻2𝑂
 

𝜌𝑑𝑟𝑦 =
𝜌𝐷2𝑂𝑚𝑏,𝐻2𝑂 − 𝜌𝐻2𝑂𝑚𝑏,𝐷2𝑂

𝑚𝑏,𝐻2𝑂 −  𝑚𝑏,𝐷2𝑂
 

We take the median buoyant mass of a strain in H2O or D2O to be 𝑚𝑏,𝐻2𝑂 or 𝑚𝑏,𝐷2𝑂, 

respectively, and thus calculate median dry mass and dry density. We assess our uncertainty in both dry 

density and median biomass by bootstrapping this process 1000 times (resampling the H2O and D2O 

buoyant mass distributions and recalculating our statistics each time).   
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To obtain the distributions shown in Figure 1B, we calculated a strain’s dry density based on its 

median dry masses, and then converted each single-cell buoyant mass measurement to dry mass using 

equations (1) and (2). 

The robust coefficient of variation was calculated using the ratio of two robust statistics, the 

interquartile range over the median. We then rescale this statistic by 0.741, such that for the normal 

distribution, this estimate is consistent with the non-robust estimator of the sample standard deviation 

over the sample mean.  

 

Cell culture and fixation: 

Pelagibacterales strains HTCC1062 and HTCC7211 were obtained from Stephen Giovannoni. 

HTCC1062 cells were grown in AMS1 (Carini et al., 2013) with the following additions/modifications: 1 

mM NH4Cl, 10 µM KH2PO4, 1 µM FeCl3, 25 µM Glycine, 25 µM methionine, 100 µM pyruvate and the 

following mixed vitamins (1 µM pantothenate, 1 nM biotin, 1 nM PQQ, 1 nM HMP and 1 nM B12). The 

culture was fixed by adding formaldehyde (0.37% final concentration) and immediately storing it at 4oC 

until processing.  HTCC7211 was grown in AMS1 supplemented with 50uM pyruvate, 50uM glycine and 

10 µM methionine.  Cells were fixed with glutaraldehyde (0.125% final concentration), incubated in the 

dark for 10 min, and stored at 4oC until processing.   

Prochlorococcus strains were grown in natural Sargasso seawater-based Pro99 medium (Moore 

et al., 2007) at 24oC under a 13-h/11-h light (10 mol quanta m-2 s-1)/dark cycle. Cultures were fixed the 

same way as HTCC7211. All Pelagibacterales and Prochloroccoccus strains were between 1-4 x 107 mL-1 

at the time of fixation. 

Vibrio splendidus 13B01 was grown in 1mL 2216 Marine Broth (Difco, BD) for ∼18 h at room 

temperature under continuous shaking. Stationary phase cells were harvested from the 18 h culture, 

while exponential phase cells were obtained after diluting the stationary phase cells 1000-fold and 
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allowing 5 h of growth (OD600 of approximately 0.1). Fixation was identical to HTCC7211, but with 1.25% 

glutaraldehyde.  
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Supplementary Figure legend: 

 

Figure S1. Buoyant mass distributions in media (natural or artificial seawater-based media for SAR11 and 

Prochlorococcus, Marine Broth 2216 for Vibrio). 
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