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We present a new method for multistage adaptive mixed integer optimization (AMIO) problems that

extends previous work on finite adaptability. The approach analyzes the optimal solution to a non-adaptive

version of an AMIO problem to gain insight into which regions of the uncertainty set are restricting the

objective function value. We use this information to construct partitions in the uncertainty set, leading to a

finitely adaptable formulation of the AMIO problem. We repeat this process iteratively to further improve

the objective until appropriate termination criteria are reached. We provide theoretical motivation for this

method, and fully detail how to apply finite adaptability to multistage AMIO problems in a way that respects

the natural nonanticipativity constraints. We provide lower and upper bounds on the solution quality that

have implications for computational tractability. Finally we demonstrate in computational experiments that

the method can provide substantial improvements over a non-adaptive solution and existing methods. In

particular, we find that our method delivers high-quality solutions even as the problem scales in both number

of time stages and in the number of decision variables.
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1. Introduction

Robust optimization is a methodology for addressing uncertainty in optimization problems where

uncertain parameters are modeled as belonging to uncertainty sets, which contrasts with the more

traditional approach of modeling uncertainty with probability distributions. We solve robust opti-

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/83234378?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Bertsimas and Dunning: Multistage Robust Mixed Integer Optimization with Adaptive Partitions
2 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

mization (RO) problems by optimizing with respect to the worst-case realization of the uncertain

parameters over the uncertainty set Ξ,

max
x

min
ξ∈Ξ

c (ξ,x) (1)

subject to g (ξ,x)≤ 0 ∀ξ ∈Ξ

x∈X ,

where x is the vector of decision variables and ξ is a vector representing the uncertain parameters.

The optimization problem (1) typically has an infinite number of constraints but is tractable for

many uncertainty sets of interest by reformulating as a deterministic optimization problem of finite

size (see, e.g. Bertsimas et al. (2011a), Ben-Tal et al. (2009) for a survey). Another approach is to only

generate constraints as needed until all uncertain constraints are satisfied (e.g. Fischetti and Monaci

(2012)), in the same spirit as other constraint generation methods like Benders’ decomposition.

RO was introduced in the context of single-stage problems as a way to address uncertainty in

problem data. Since then it has been shown to be a more general methodology to address multistage

optimization problems, where the uncertain parameters are revealed over time. In most multistage

problems our future recourse decisions can be made with knowledge of at least some of the values

of the uncertain parameters - those realized by the time those decisions must be made. If we place

no restrictions on the functional relationship between uncertain parameters and recourse decisions,

which is the ideal case, then the resulting problem is generally intractable (Ben-Tal et al. 2004)

(although there has been some success for specific problems, e.g. Bertsimas et al. (2013)). The goal

then of adaptive optimization (AO) is to provide methods to approximate and approach this fully

adaptable ideal and to quantify, if possible, how close our approximations are.

Perhaps the most popular approach in the AO literature is to restrict the recourse decisions to

be simple functions of the uncertain parameters. Affine adaptability, also known as linear decision

rules, was introduced to the RO setting in Ben-Tal et al. (2004) and has proven to be useful in a wide
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variety of settings including control problems (Goulart et al. 2006), supply chain problems (Ben-Tal

et al. 2005), and project management (Chen et al. 2007). The choice of these linear decision rules

is primarily one of computational practicality with no real expectation that they will be optimal

(where optimality would be finding an affinely adaptive policy that performs as well as the fully

adaptive policy). Many of the papers just cited demonstrate these shortcomings with both toy

problems and more realistic experiments, with more in-depth characterizations provided in particular

settings, e.g. Bertsimas et al. (2010), Bertsimas and Goyal (2012). More complicated approaches

trade computational efficiency for optimality by using polynomial adaptability (Bertsimas et al.

2011b) and deflected linear decision rules (Chen et al. 2008). A major shortcoming of all these

approaches is that they do not allow for discrete recourse decisions, significantly reducing their

modeling power for adaptive mixed-integer optimization (AMIO) problems. This has been partially

addressed recently by Bertsimas and Georghiou (2013) which proposes a cutting-plane method that

allows for piecewise linear decision rules for continuous recourse decisions and piecewise constant

decision rules for integer recourse decisions. This approach was shown to be able to solve small

problems but has significant trouble with fractionality of the solution as the number of time stages

and pieces grows. A recent extension to this work in Bertsimas and Georghiou (2014) for the case

of binary recourse decisions that allows for a reformulation demonstrates improved performance on

multistage problems.

An alternative approach is finite adaptability, where instead of focusing on the functional form of

the recourse decisions we instead partition the uncertainty set and have different recourse decisions

for each partition. This can be viewed as modeling the recourse decisions as piecewise constant

functions of the uncertain parameters, with the domain of each piece (or equivalently the uncertainty

set partitioning) either fixed, or decided as part of the optimization problem. One of the key benefits

of this approach is that it handles discrete recourse decisions naturally, suggesting it is a good choice

for AMIO. The quality of solutions obtained with a finite adaptability approach rests entirely on how

the partitions are selected. For example, in Vayanos et al. (2011) the uncertainty set is partitioned
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ahead of time using hyper-rectangles. A bilinear optimization problem that decides the best two-

partition recourse decision is proposed in Bertsimas and Caramanis (2010), and the gap between a

fully adaptive solution and a finitely adaptive solution is bounded. Finally Hanasusanto et al. (2014)

propose a general methodology for obtaining K-partition recourse decisions using an arbitrarily

accurate mixed-integer approximation. They too can solve small two-stage AMIO problems but are

negatively affected by the degree to which the problem structure is affected (in particular, the use of

fractional big-M constraints). While this recent work represents great progress in AMIO, the size of

AMIO problems that can be solved remains small and lags significantly behind the size of tractable

continuous AO problems, particularly in the multistage case.

While finalizing our paper we became of aware of a recent paper (Postek and Den Hertog 2014)

that presents an iterative finite partitioning approach similar to the idea we present in this paper.

They too make the observation that it is not necessary to directly optimize the specific partitions, but

that instead we can pick partitions heuristically and still realize significant improves over the static

case. However, their method of constructing the partitions differs substantially from the method we

present in this paper, as we detail in Section 2. We compare the computational aspects of the two

approaches in Section 5.

In this paper we will consider multistage AMIO problems of the general form

zfull = min
x

max
ξ∈Ξ

T∑
t=1

ct (ξ) ·xt
(
ξ1, . . . ,ξt−1

)
(2)

subject to
T∑
t=1

At (ξ) ·xt
(
ξ1, . . . ,ξt−1

)
≤ b (ξ) ∀ξ=

(
ξ1, . . . ,ξT

)
∈Ξ

x∈X ,

where ξ represents the uncertain parameters, A, b and c define linear constraints and the objective

respectively (all functions of ξ), and xt is the vector of decision variables for stage t, which can be

a mixture of discrete and continuous variables as captured by the deterministic set X . For t= 1 we

note that x1 is a non-adaptive here-and-now decision that does not depend on ξ.
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The key contribution of this paper is a new method for solving the multistage AMIO problem (2)

that scales better to larger instances than alternative methods. We demonstrate this with computa-

tional evidence that our method produces high quality solutions in a reasonable time. The method

builds on the basic finite adaptability approach to AMIO that utilizes the information obtained

about the (possibly partitioned) uncertainty set when solving an AO problem to select a new par-

titioning scheme. This process of solving and updating the partitioning can be repeated until a

termination criterion in terms of solution quality or computation time is reached. We note that affine

adaptability can be incorporated into our approach, and that it contrasts with approaches that

determine the optimal partitions simultaneously with the values of the decisions x (Bertsimas and

Caramanis 2010, Hanasusanto et al. 2014) and methods that select a partitioning a priori (Vayanos

et al. 2011). Finally, we give a detailed treatment to the interactions between finite adaptability and

the need to enforce non-anticipativity - the natural notion that a decision at time t must be made

without certain knowledge of uncertain parameters that will be revealed after time t.

We have structured the paper as follows:

• In Section 2, we present a theoretical result that demonstrates a property that a new partitioning

of an uncertainty set must have to improve a solution of an AMIO over an existing partitioning. We

use this result to propose a method of constructing partitions using the solution of AMIO problems

that is inspired by Voronoi diagrams. We detail two variants of this method for the two-stage

case that have different computational and theoretical properties and provide guidance on practical

implementations of both variants.

• In Section 3, we generalize both variants to the multistage case, and in particular discuss in

depth when nonanticipativity constraints must be enforced.

• In Section 4, we provide theoretical results for three bounds. First, we demonstrate a lower

bound that improves with additional iterations of our method and enables a gap-based termination

criterion. Second, we demonstrate that we can provide an upper bound (and feasible solution) for

subsequent iterations of the variants of the methods, and discuss the implications for tractability of
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our method. Third, we demonstrate a bound on the most improvement possible from iteration-to-

iteration for our method, which can aid tractability and also suggest whether we should terminate

early.

• In Section 5, we provide results of computational experiments that show that our method is

practical and can solve problems that were previously unsolvable by other methods. In particular,

we solve instances of a capital budgeting problem Hanasusanto et al. (2014), a multistage lot sizing

problem Bertsimas and Georghiou (2013), and a multistage lot sizing problem in a network setting.

• In the final Section 6, we provide some concluding remarks.

Notation

We use lowercase, non-bold face symbols for scalar quantities (e.g., z ∈R) and a bold face for vectors

(e.g., x ∈ Rn). Matrices are denoted by bold face uppercase symbols, e.g., A ∈ Rm×n. We use Ξ

to denote an uncertainty set and ξ to denote uncertain parameters. Our uncertain parameters are

typically a vector-of-vectors, i.e.,

ξ=
[
ξ1, . . . ,ξt, . . . ,ξT

]
,

where ξt is the vector of uncertain parameters for stage t. The jth component of the uncertain

parameters for time stage t is expressed with a subscript, e.g., ξtj. We also often refer to samples, or

particular realizations of uncertain parameters, from the uncertainty set. These are denoted with a

hat and may be indexed by subscripts. For example ξ̂i is the ith sample, ξ̂ti is the vector of uncertain

parameters for sample i for stage t. Finally we occasionally need to refer to a particular component

of ξ̂ti , for which we employ a second subscript: the jth component of the vector ξ̂ti is the scalar ξ̂ti,j.

2. Iterative improvement method for adapting partitions

In this section, we describe an iterative improvement method for a finite adaptability approach to

two-stage AMIO. In particular, we consider the problem

min
x,z

z (3)
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subject to c1 (ξ) ·x1 + c2 (ξ) ·x2 (ξ)≤ z ∀ξ ∈Ξ

a1
i (ξ) ·x1 + a2

i (ξ) ·x2 (ξ)≤ bi (ξ) ∀ξ ∈Ξ, i∈ {1, . . . ,m}

x∈X ,

which has m linear uncertain constraints and the objective expressed in epigraph form. This is

a special case of the multistage problem (2) where T = 2. We first demonstrate some properties

of AO solutions that motivate the design of our proposed method, then discuss algorithmic and

implementation details.

2.1. Cutting planes and Voronoi diagrams

Two main approaches exist in the literature to solve RO problems. The first uses duality theory to

reformulate the robust problem into a deterministic problem of finite size, and is by far the most

commonly discussed approach in the literature. The use of reformulation introduces new variables

and constraints and can change the problem class: for example, a robust linear problem with an

ellipsoidal uncertainty set will become a second-order cone problem (Bertsimas et al. 2011a, Ben-

Tal et al. 2009). The other approach, which we refer to as the cutting plane method, iteratively

solves a deterministic relaxation of the RO problem with a finite subset of the possible constraints

(the master problem) and adds violated constraints from the full RO problem as needed until the

solution of the master problem is feasible with respect to all uncertain parameters in the uncertainty

set. It has been shown (Bertsimas et al. 2014, Fischetti and Monaci 2012) that one approach does

not dominate the other in performance and the best approach for a given problem depends on the

uncertainty set, the structure of the uncertainty in the problem, and the problem class. For example,

a purely binary robust optimization problem will remain purely binary using a cutting plane method

but will become a mixed-integer optimization problem using reformulation, with possible impacts

on the fractionality of relaxed solutions. On the other hand, for some problems a very large number

of constraints may need to be added to reach feasibility with respect to the uncertain parameters,

which is not only time-consuming but may negatively affect the sparsity patterns of a problem. The
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method described in this paper works with both reformulation and the cutting plane method, but

we will use the cutting plane method to aid the exposition.

Consider the state of the cutting plane method’s master problem at optimality. For every uncertain

constraint in the original RO problem we may have many generated constraints in the master

problem, each of which corresponds to a realization of the uncertain parameters ξ ∈Ξ. Each of these

generated constraints will have some slack s≥ 0, with some possibly having no slack (the constraint

is said to be active or tight). For each set of generated constraints we define the active uncertain

parameters (or active samples) as the value of the uncertain parameters for the constraint with

minimum slack (selecting arbitrarily if there a multiple uncertain parameters with the same slack).

If we were to remove all generated constraints that correspond to uncertain parameters that are

not active at optimality, we are left with a reduced set of constraints that is sufficient to constrain

the solution of the master problem to be no better than the solution to the original RO problem.

These remaining constraints, and the values of the active uncertain parameters that give rise to

them, offer an insight into how the uncertainty set structure relates to the optimal solution of the

RO problem.

We now to turn to finite adaptability (e.g., Bertsimas and Caramanis (2010)), which is a compu-

tationally tractable way of allowing wait-and-see decisions to depend on the uncertain parameters.

It can be viewed as a restriction of the decisions x2 (ξ) in (3) to the class of piecewise constant

policies, i.e.

x2 (ξ) =



x2
1, ξ ∈Ξ1,

...

x2
K , ξ ∈ΞK ,

where Ξk, k ∈ {1, . . . ,K} defines a partitioning of Ξ and x2
k is the value of x2 if the realized value of ξ

is in the partition Ξk. In the limiting case of many small partitions we approach the fully adaptable

solution, but this is unlikely to be computationally tractable due to the resulting increase in problem

size. Our method then is primarily addressing the question of how to select a partitioning scheme in
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such a way as to deliver an improvement of the solution without sacrificing too much computational

tractability.

If we solve a static (non-adaptive) version of the two-stage problem (3), i.e.,

zstatic = min
x,z

z (4)

subject to c1 ·x1 + c2 ·x2 ≤ z

a1
i (ξ) ·x1 + a2

i (ξ) ·x2 ≤ bi (ξ) ∀ξ ∈Ξ, i∈ {1, . . . ,m}

x∈X ,

with the cutting-plane method then we can define Ξ̂ to be the set of active uncertain parameters ξ̂

from the uncertainty set Ξ that correspond to the generated constraints with minimum slack in the

master problem. If we were to now arbitrarily partition the uncertainty set into two sets Ξ1 and Ξ2,

we could construct a finitely adaptable approximation to (3), i.e.,

zpartition = min
x,z

z

subject to c1 ·x1 + c2 ·x2
1 ≤ z ∀ξ ∈Ξ1

c1 ·x1 + c2 ·x2
2 ≤ z ∀ξ ∈Ξ2

a1
i (ξ) ·x1 + a2

i (ξ) ·x2
1 ≤ bi (ξ) ∀ξ ∈Ξ1, i∈ {1, . . . ,m}

a1
i (ξ) ·x1 + a2

i (ξ) ·x2
2 ≤ bi (ξ) ∀ξ ∈Ξ2, i∈ {1, . . . ,m}

x∈X ,

which we would hope improves over the static problem soultion. We now consider what properties

Ξ1 and Ξ2 need to have such that this improvement is possible.

Theorem 1. If Ξ̂, the set of active uncertain parameters for the static problem, is either Ξ̂⊂ Ξ1

or Ξ̂⊂Ξ2 then z∗partition = z∗static. Otherwise z∗partition ≤ z∗static.
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Proof Consider the problem

zhalfpart = min
x,z

z (5)

subject to c1 ·x1 + c2 ·x2
1 ≤ z ∀ξ ∈Ξ1

a1
i (ξ) ·x1 + a2

i (ξ) ·x2
1 ≤ bi (ξ) ∀ξ ∈Ξ1, i∈ {1, . . . ,m}

x∈X ,

and suppose that the set of active uncertain parameters Ξ̂ is a subset of Ξ1. This means that

zhalfpart = zstatic, as every deterministic constraint with minimal slack in (4) will also be a valid

constraint for (5), so no improvement is possible. The equivalent problem to (5) for the other

partition Ξ2 may have an objective function value better than zstatic, but as zpartition is limited by

the worst objective function value of the two partitions there will be no improvement of objective

function value overall (i.e., zpartition = zstatic). On the other hand, if we now suppose that Ξ̂ 6⊂ Ξ1

and Ξ̂ 6⊂ Ξ2 then the possibility of improvement exists as the solution to (5) is not restricted to be

the same solution as (4).

The above result shows we must partition the uncertainty set in such a way as to guarantee

the uncertain parameters ξ̂ for the active constraints do not all lie in one partition, at the very

least. This naturally leads us to consider a partitioning where every ξ̂ lies in its own partition.

There are many ways to do this, but an efficiently computable and generalizeable method is to use

Voronoi diagrams (Aurenhammer 1991). Given a set of N points ξ̂1, . . . , ξ̂N ∈Ξ the Voronoi diagram

associated these points defines a partition for each ξ̂i that contains only the ξ ∈ Ξ such that the

Euclidean distance between ξ̂i and ξ is less than or equal to the distance to any other given point

ξ̂j.

We can express the partition induced by ξ̂i as the set

Ξ
(
ξ̂i

)
= Ξ∩

{
ξ
∣∣∣ ∥∥∥ξ̂i− ξ∥∥∥

2
≤
∥∥∥ξ̂j − ξ∥∥∥

2
∀j ∈ {1, . . . ,N} , i 6= j

}
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Figure 1 Voronoi diagrams embedded in simple uncertainty sets. The first two diagrams use the polyhe-

dral uncertainty set ΞP =

{
ξ

∣∣∣∣∥∥∥∥[ 1
2
ξ1, ξ2

]∥∥∥∥
1

≤ 1

}
, and the third uses an ellipsoidal set ΞU ={

ξ

∣∣∣∣∥∥∥∥[ 1
2
ξ1, ξ2

]∥∥∥∥
2

≤ 1

}
. The bold points represent the active samples ξ̂.

= Ξ∩

{
ξ

∣∣∣∣∣ ∑
k

(
ξ̂i,k− ξk

)2

≤
∑
k

(
ξ̂j,k− ξk

)2

∀j ∈ {1, . . . ,N} , i 6= j

}

= Ξ∩

{
ξ

∣∣∣∣∣ 2
∑
k

(
ξ̂i,k− ξ̂j,k

)
ξk ≥

∑
k

((
ξ̂i,k

)2

−
(
ξ̂j,k

)2
)
∀j ∈ {1, . . . ,N} , i 6= j

}
,

which is a set defined by Ξ and N − 1 additional linear constraints (and if Ξ is polyhedral then

Ξ
(
ξ̂i

)
will also be polyhedral). In Figure 1 we demonstrate the partitions induced in a polyhedral

uncertainty set for two different sets of points, as well as an ellipsoidal set. When Voronoi diagrams

are discussed in the literature the focus is often on the computational complexity of enumerating

all extreme points of the partitions of the Voronoi diagram which becomes increasingly difficult in

higher dimensions, with asymptotic complexity of O
(
N dd/2e

)
where d is the dimension. This may

suggest that they are not appropriate for our needs, but we note that in our application we are

generating new constraints by optimizing affine functions of ξ over a partition Ξ
(
ξ̂i

)
, for which

we do not need to emumerate all the extreme points of Ξ
(
ξ̂i

)
. Computational experience in the

literature with linear optimization thus suggests that, if Ξ is polyhedral, this is a substantially more

tractable computation than enumeration of extreme points.

After an initial solve of an AO problen that uses finite adaptability with the Voronoi diagram

partitions, we will have a new set of active uncertain parameters which can be used to improve the

solution further. We propose two variants for iteratively partitioning which we analyse with both

theoretical bounds and computational results. The first variant we propose, the non-nested variant,

uses all active samples ξ̂ obtained so far to construct a new partitioning scheme from scratch at

each iteration of the method (Section 2.2). We will refer to the second variant as the nested variant
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which, unlike the non-nested variant, retains an association between samples ξ̂ and the partition

they were obtained from (Section 2.3). We use this information to create nested partitions inside

the partitions formed at the previous iteration. We will describe the non-nested variant first as it

is more conceptually and notationally simpler, before moving to the nested variant. Additionally

we restrict ourselves to the two-stage case of (3) for simplicity of exposition, but we generalize the

results to the multistage case in Section 3.

2.2. Non-nested Variant

We now present the first of the two variants of our method to iteratively improve the partitions in

a finite adaptability approach to two-stage AMIO using the understanding developed above. One

of the key operations in both variants is to determine the set of active samples Ξ̂ from the solution

of a RO problem. Given a solution (z̄, x̄1, x̄2) and a set Ξ̄ we can define the set of active samples as

Ξ̂
(
z̄, x̄1, x̄2, Ξ̄

)
=

{
ξ̂

∣∣∣∣ξ̂= arg min
ξ∈Ξ̄

{
bi (ξ)−a1

i (ξ) · x̄1 + a2
i (ξ) · x̄2

}
∀i∈ {1, . . . ,m}

}
∪
{
ξ̂

∣∣∣∣ξ̂= arg min
ξ∈Ξ̄

{
z̄− c1 (ξ) · x̄1− c2 (ξ) · x̄2

}}
.

In the non-nested variant we create a partition for every sample seen at any previous iteration, thus

we simply maintain a set Fk of all samples observed up to but not including iteration k.

Algorithm 1. Non-nested variant of iterative partitioning method.

1. Initialization. Define F1 to be the initially empty set of samples, and set iteration counter

k← 1.

2. Initial Solve. Solve the following unpartitioned, non-adaptive version of (3)

znonnested
(
F1
)

= min
x,z

z

subject to c1 (ξ) ·x1 + c2 (ξ) ·x2 ≤ z ∀ξ ∈Ξ

a1
i (ξ) ·x1 + a2

i (ξ) ·x2 ≤ bi (ξ) ∀ξ ∈Ξ, i∈ {1, . . . ,m}

x∈X ,

with solution (z̄, x̄1, x̄2). Set F2← Ξ̂ (z̄, x̄1, x̄2,Ξ) and k← 2.
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3. Partitioned Problem. Solve the following partitioned version of (3), with one partition for

every ξ̂j ∈Fk:

znonnested
(
Fk
)

= min
x,z

z (6)

subject to c1 (ξ) ·x1 + c2 (ξ) ·x2
j ≤ z ∀ξ ∈Ξ

(
ξ̂j

)
, ∀ξ̂j ∈Fk

a1
i (ξ) ·x1 + a2

i (ξ) ·x2
j (ξ)≤ bi (ξ) ∀ξ ∈Ξ

(
ξ̂j

)
, ∀ξ̂j ∈Fk, i∈ {1, . . . ,m}

x∈X

with solution (z̄, x̄1, x̄2
1, x̄

2
2, . . . ), where

Ξ
(
ξ̂i

)
= Ξ∩

{
ξ
∣∣∣∥∥∥ξ̂i− ξ∥∥∥

2
≤
∥∥∥ξ̂j − ξ∥∥∥

2
∀ξ̂j ∈Fk

}
and x2

j is the set of recourse decisions corresponding to the partition induced by sample ξ̂j.

4. Grow set. Let

Fk+1←Fk ∪

{⋃
j

Ξ̂
(
z̄, x̄1, x̄2

j ,Ξ
(
ξ̂j

))}
and k← k+ 1. Terminate if termination criteria are reached otherwise and go to 3.

We will defer discussion of termination criteria until Section 4. We will demonstrate this method

with a simple example problem.

Example 1. Two-stage inventory problem, non-nested variant. In this problem, we must order

stock to meet future, unknown demand. There are three ways to order stock: ordering any amount

now at a unit cost of 50, ordering a fixed lot of size 25 at a unit cost of 60, and ordering a fixed lot

of size 25 at a unit cost of 75. Only one lot of each size may be ordered, but the decision to order

them can be made after the demand is known. We must meet all the demand, and we pay a unit

cost of 65 for any stock left over. We formulate this as the two-stage AMIO problem

min z (7)

subject to 50x1 + 65I2 (ξ) + 1500y2
A (ξ) + 1875y2

B (ξ)≤ z ∀ξ ∈Ξ

I2 (ξ)≥ 0 ∀ξ ∈Ξ

x1 ≥ 0

y2
A (ξ) , y2

B (ξ)∈ {0,1} ∀ξ ∈Ξ
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where x1 is the here-and-now continuous ordering decision, y2
A (ξ) and y2

B (ξ) are the wait-and-see

binary ordering decisions, I2 (ξ) = x1− ξ+ 25y2
A (ξ) + 25y2

B (ξ), and ξ is the uncertain demand that

is drawn from the uncertainty set Ξ = {ξ |5≤ ξ ≤ 95}. We solve (7) intially with no partitions (step

2) to obtain the solution z = 10600, x1 = 95, y2
A = 0, y2

B = 0. The worst-case for the objective is

when the demand is low (ξ̂ = 5, leaving 90 units of stock) and the worst-case for the non-negative

inventory constraint is when the demand is high (ξ̂ = 95, leaving no stock), thus as the start of

iteration 2 (step 3) we have F2 =
{
ξ̂1 = 5, ξ̂2 = 95

}
. We use this information to construct and solve

the partitioned problem

min z

subject to 50x1 + 65I2
j (ξ) + 1500y2

A,j (ξ) + 1875y2
B,j (ξ)≤ z ∀ξ ∈Ξ

(
ξ̂j

)
, j ∈ {1,2}

I2
j (ξ)≥ 0 ∀ξ ∈Ξ

(
ξ̂j

)
, j ∈ {1,2}

y2
A,j (ξ) , y2

B,j (ξ)∈ {0,1} ∀ξ ∈Ξ
(
ξ̂j

)
, j ∈ {1,2}

x1 ≥ 0,

where

Ξ
(
ξ̂1 = 5

)
= {ξ |5≤ ξ ≤ 95}∩ {ξ |‖5− ξ‖2 ≤ ‖95− ξ‖2 }

= {ξ |5≤ ξ ≤ 50}

and Ξ
(
ξ̂2 = 95

)
= {ξ |50≤ ξ ≤ 95}. The solution to this problem is z = 7926, x1 = 70, y2

A,1 = 0,

y2
B,1 = 0, y2

A,2 = 1, y2
B,2 = 0, where we have reduced the objective value to 75% of the non-adaptive

solution. We now grow the set (step 4) to F3 = {5,95}∪{5,50}∪{50,95}= {5,50,95}. We solve the

partitioned problem at iteration k= 3 and obtain a solution z = 7575, x1 = 45,
(
y2
A,1, y

2
B,1

)
= (0,0)

for ξ̂1 = 5,
(
y2
A,2, y

2
B,2

)
= (1,0) for ξ̂2 = 50,

(
y2
A,3, y

2
B,3

)
= (1,1) for ξ̂3 = 95. We can also express this

solution as piecewise constant policies, that is

y2
A (ξ) =


0, 5≤ ξ < 35,

1, 35≤ ξ ≤ 95,
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and

y2
B (ξ) =


0, 5≤ ξ < 35,

1, 65≤ ξ ≤ 95.

This third iteration solution represents a reduction in objective value to 71% of the non-adaptive

solution.

The above example demonstrated the non-nested variant, which was able to make a substantial

improvement over a non-adaptive solution. We now describe the nested variant and will revisit this

same example to contrast the two variants.

2.3. Nested Variant

The key distinction between the nested and non-nested variants is that, in the nested variant,

partitions are constructed inside the partitions of the previous iteration, which we can think of as

nested Voronoi diagrams. From an algorithmic standpoint this means that we need to maintain

a hierarchy or a tree (in the computer science sense) of samples, rather than a simple set. To

describe how the partitions are constructed from a sample tree T we require the following operations:

Leaves (T ) is the set of leaves of the tree, Children
(
ξ̂
)
is the set of children of the sample ξ̂ in

the tree, Parent
(
ξ̂
)
is the parent sample of sample ξ̂ in the tree, and Siblings

(
ξ̂
)
is the set of

children of the parent sample of ξ̂, i.e.

Siblings
(
ξ̂
)

=Children
(
Parent

(
ξ̂
))

.

Each leaf of T corresponds to a partition of the uncertainty set Ξ and each level of the tree corre-

sponds to an iteration of the method. At each iteration we construct a partition for a leaf sample

ξ̂i as an intersection of partitions

Ξ
(
ξ̂i

)
=
{
ξ
∣∣∣∥∥∥ξ̂i− ξ∥∥∥

2
≤
∥∥∥ξ̂j − ξ∥∥∥

2
∀ξ̂j ∈ Siblings

(
ξ̂i

)}
(8)

∩
{
ξ
∣∣∣∥∥∥Parent(ξ̂i)− ξ∥∥∥

2
≤
∥∥∥ξ̂j − ξ∥∥∥

2
∀ξ̂j ∈ Siblings

(
Parent

(
ξ̂i

))}
...

∩Ξ,
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which terminates when the parent is the root node, which has no siblings and thus is equivalent to

the entire uncertainty set. At each iteration we add the active samples for partition Ξ
(
ξ̂i

)
as leaves

of ξ̂i, which subdivides Ξ
(
ξ̂i

)
and has no effect on the other partitions. A visual comparison of the

two variants is provided in Figure 2 to aid in understanding the difference. We now formally state

the nested variant of the method:

Algorithm 2. Nested variant of iterative partitioning method.

1. Initialization. Define T 1 to be the initial tree of samples, consisting of one root node (any

ξ̂ ∈Ξ). Set iteration counter k← 1

2. Partitioned Problem. Solve the following partitioned version of (3), with one partition for

every ξ̂j ∈Leaves (T k):

znested
(
T k
)

= min
x,z

z (9)

subject to c1 (ξ) ·x1 + c2 (ξ) ·x2
i ≤ z ∀ξ ∈Ξ

(
ξ̂j

)
, ∀ξ̂j ∈Leaves

(
T k
)

a1
i (ξ) ·x1 + a2

i (ξ) ·x2
j (ξ)≤ bi (ξ) ∀ξ ∈Ξ

(
ξ̂j

)
, ∀ξ̂j ∈Leaves

(
T k
)
, i∈ I

x∈X

with solution (z̄, x̄1, x̄2
1, x̄

2
2, . . . ), where Ξ

(
ξ̂j

)
is the set defined in equation 8, I = {1, . . . ,m} and

x2
j is the set of recourse decisions corresponding to the partition induced by sample ξ̂j.

(a) Grow tree. Initialize T k+1←T k. For every leaf ξ̂j ∈Leaves (T k+1) add the samples

Ξ̂
(
z̄, x̄1, x̄2

j ,Ξ
(
ξ̂j

))
as children of that leaf. Terminate if termination criteria are reached otherwise set k← k+ 1 and

go to 2.

We now demonstrate this variant on the same problem as example 1.

Example 2. Two-stage inventory problem with the nested variant. We consider the same problem

described in 1. We will initalize our tree T 1 with a root sample ξ̂ = 50, which means we have no

partitions initially and thus the same solution as the non-nested variant at iteration 1. We grow the
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tree (step 3) to obtain T 2 = {50 : {5,95}} and use this to construct and solve the partitioned problem

for iteration 2. The partitions are Ξ
(
ξ̂1 = 5

)
= {ξ |5≤ ξ ≤ 50} and Ξ

(
ξ̂2 = 95

)
= {ξ |50≤ ξ ≤ 95},

which are the same as in the non-nested variant and thus we again have the same solution. The key

difference is that we associate the active samples for Ξ
(
ξ̂1 = 5

)
and Ξ

(
ξ̂1 = 95

)
with their respective

partitions, leading to the tree T 3 = {50 : {5 : {5,50} ,95 : {50,95}}}. We have 4 leaf samples and

thus 4 partitions in iteration 3, against the non-nested variant’s 3 partitions. The calculation of the

partition for the leaf ξ̂ = 50 that is a child sample of ξ̂ = 5 is

Ξ
(
ξ̂ = 50

)
={ξ |‖50− ξ‖2 ≤ ‖5− ξ‖2 }∩ {ξ |‖5− ξ‖2 ≤ ‖95− ξ‖2 }∩Ξ

={ξ |ξ ≥ 27.5}∩ {ξ |ξ ≤ 50}∩Ξ

={ξ |27.5≤ ξ ≤ 50} ,

which we repeat for the other three leaves. When we solve the resulting partitioned problem we

obtain the solution z = 7375, x1 = 47.5,
(
y2
A,1, y

2
B,1

)
= (0,0),

(
y2
A,2, y

2
B,2

)
= (1,0),

(
y2
A,3, y

2
B,3

)
=

(1,0), and
(
y2
A,4, y

2
B,4

)
= (1,1) which is a 70% reduction over the non-adaptive solution, slightly

better than the non-nested variant (z = 7575) and slightly worse than the fully adaptive solution

(z = 7250).

2.4. Affine Adaptability

In the introduction we discussed the popularity and success of affine adaptability, also known as

linear decisions rules. We can express this type of adaptability in the context of our two-stage

problem (3) with the substitution

x2 (ξ) = Fξ+ g, (10)

where F and g are now the decision variables instead of x2. There are two problems with substituting

(10) directly into (3). The first is that if a2
i (ξ) and c2 (ξ) are not constant with respect to the

uncertain parameters then we will have products of uncertain parameters, which is not generally

tractable (Ben-Tal et al. 2004). The second is that if a variable x2
j (ξ) is integer then Fj must
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Non-nested

F1 = {} F2 = {(10,10) , (20,5) ,

(30,10) , (20,15)}
F3 = {(10,10) , (15,12.5) , (20,15) ,

(25,12.5) , (30,10) , (20,10) ,

(15,7.5) (20,5) (25,7.5)}

Nested

T 1 = root T 2 = root

20,5

30,10

20,15

10,10

T 3 = root

20,5

25,7.5

30,10

25,12.5

20,10

30,10 . . .

20,15 . . .

10,10

15,7.5

20,10

15,12.5

10,10

Figure 2 Comparison of the partitions and sample sets created by the non-nested variant (top) and nested variant

(bottom) of the iterative partitioning method over three iterations. The uncertainty set displayed is

Ξ =
{

(ξ1, ξ2)
∣∣∣ |ξ1−20|

10
+ |ξ1−10|

5
≤ 1

}
, and we assume that at each iteration all the extreme points of the

set/partitions are active samples. The red points denote the active samples in the solved partitioned

problem for each iteration. As expected the two variants have the same partitions at iterations 1 and

2, but diverge in iteration 3.
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necessarily be 0T and there is no adaptability. Given these problems we consider the following

variant of (3)

min
x,y,z

z (11)

subject to c1 (ξ) ·x1 + c2
x ·x2 (ξ) + c2

y (ξ) ·y2 (ξ)≤ z ∀ξ ∈Ξ

a1
i (ξ) ·x1 + a2

x,i ·x2 (ξ) + a2
y,i (ξ) ·y2 (ξ)≤ bi (ξ) ∀ξ ∈Ξ, i∈ {1, . . . ,m}

x2 ∈Rnx , y ∈Zny ,

where we assume that the deterministic constraints X are captured by the other constraints and

variable type restrictions. We have restricted the continuous second stage decisions x2 to be certain

which enables us to substitute (10) into (11) to obtain the problem

min
F,g,y,z

z (12)

subject to c1 (ξ) ·x1 + c2
x · (Fξ+ g) + c2

y (ξ) ·y2 (ξ)≤ z ∀ξ ∈Ξ

a1
i (ξ) ·x1 + a2

x,i · (Fξ+ g) + a2
y,i (ξ) ·y2 (ξ)≤ bi (ξ) ∀ξ ∈Ξ, i∈ {1, . . . ,m}

F∈Rnx×nξ , g ∈Rnx , y ∈Zny

which has a similar form to the original problem two-stage problem (3). The key observation with

respect to our finite partitioning method is that F and g are themselves second-stage variables, so

can be functions of ξ. This allows use to combine finite adaptability and affine adaptability, as we

can have a different affine policy (F,g) for each partition. More formally, we will have the piecewise

linear policy

x2 (ξ) =



F1ξ+ g2, ξ ∈Ξ
(
ξ̂1

)
,

F2ξ+ g2, ξ ∈Ξ
(
ξ̂2

)
,

...
...
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for continuous second stage decisions, and the piecewise constant policy

y2 (ξ) =



y2
1, ξ ∈Ξ

(
ξ̂1

)
,

y2
2, ξ ∈Ξ

(
ξ̂2

)
,

...
...

for integer decisions. We demonstrate combining affine adaptability with finite adaptability in our

mulitstage lot sizing example (Section 5.2).

2.5. Implementation Considerations

We have described two variants of our iterative partitioning method and demonstrated them on an

example two-stage AMIO problem. We now present minor alterations which could be considered

when implementing either variant to explore the trade-off between computation time and quality of

solution. Consider re-writing (6) as

min
x,z,z̃

z+ εe · z̃

subject to z̃j ≤ z ∀ξ̂j ∈Fk

c1 (ξ) ·x1 + c2 (ξ) ·x2
j ≤ z̃j ∀ξ ∈Ξ

(
ξ̂j

)
, ∀ξ̂j ∈Fk

a1
i (ξ) ·x1 + a2

i (ξ) ·x2
j (ξ)≤ bi (ξ) ∀ξ ∈Ξ

(
ξ̂j

)
, ∀ξ̂j ∈Fk, i∈ {1, . . . ,m}

where ε is a very small number and e is the vector of ones. This epigraph formulation creates an

auxiliary variable for the objective value for each partition and attempts to force them individually

as low as possible without affecting z. At optimality one or more active partitions will have an

objective value z̃∗j equal to the objective function value z∗. If a partition is not active, further

partitioning it may not deliver as much of an improvement to the objective as one that is. Therefore

we the change to the method would be to only add samples to Fk (or T k) if they come from an active

partition. This will reduce the number of partitions at the next iteration, improving computational

efficiency. The possibility of applying this arises in Example (2) (nested variant) as at the end of
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iteration 3 the objectives for the four partitions Ξ
(
ξ̂1 = 5

)
to Ξ

(
ξ̂4 = 95

)
are 5137.5, 6800, 5337.5,

and 7375 respectively, and it is simple to check that adding more partitions at the lower end of the

uncertain parameter’s range does not further improve the solution.

A similar alteration would be to only take active samples from generated constraints with no

slack. The reasoning behind this alteration is that constraints with slack may not constrain the

solution even with additional partitions, so we can reduce our partition count further. This may

not be applicable in all cases: for example, a purely binary AO problem is very likely to have some

slack in most of its constraints if there is fractional data in the problem.

2.6. Contrast with Alternative Partitioning Proposal

The method presented in Postek and Den Hertog (2014) shares some similarities with the algorithm

we propose. Both describe an iterative partitioning method for AMIO that uses active uncertain

parameters to inform which partitions to use. The key difference is that we use Voronoi diagrams

to construct the partitioning, which results in multiple partitions being added at each iteration,

whereas multiple heuristics are presented in Postek and Den Hertog (2014) that only add one

partition at each iteration. This results in both qualitative differences in the partitioning scheme

and quantitative differences, as shown in Section 5.

3. Multistage Partitioning

We now generalize our partitioning method described above from two-stage AMIO to the full multi-

stage case (2). The order of events, for the sake of clarity, is that the here-and-now decision x1

is made, then the first stage uncertain parameters ξ1 are revealed. We make the decision x2 with

the benefit of knowing ξ1, but no other knowledge of the uncertainty parameters except what is

implied by knowing ξ1. This then proceeds until we make the decision xT knowing ξ1, . . . ,ξT−1 and

the final uncertain parameters ξT are revealed. Modeling these nonanticipativity restrictions - that

a decision now cannot depend on exact future knowledge - is the primary complication that we

address in this section. Enforcing these restrictions is trivial for some classes of adaptability, such
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as affinely adaptive policies, as we simply restrict the policy to use only the correct components of

ξ. It is less obvious how to proceed with finite adaptability: the following example demonstrates

how a naive application of the methods in Section 2 will either not produce valid solutions or will

produce needlessly conservative solutions.

Example 3. Consider a three-stage (T = 3) version of the inventory problem of Examples 1 and 2.

We make a continuous ordering decision x1 before any demand is known, as before. The demand

ξ1 then arrives, which we must satisfy with a combination of the stock ordered beforehand and the

fixed lots y2
A (ξ1) and y2

B (ξ1). Any stock remaining at this point I2 (ξ1) incurs a holding cost. We

then make another continuous ordering decision x2 (ξ1) before a second round of demand arives, ξ2.

This demand may be satisfied with a combination of left-over inventory I2 (ξ1), x2 (ξ1), and fixed

lots y3
A (ξ1, ξ2) and y3

B (ξ1, ξ2). Finally we incur a holding cost penalty on any remaining inventory.

The three-stage AMIO is formulated (using the same parameters as before) as

min z (13)

subject to 50x1 + 65I2
(
ξ1
)

+ 1500y2
A

(
ξ1
)

+ 1875y2
B

(
ξ1
)

+ 50x2
(
ξ1
)

+ 65I3
(
ξ1, ξ2

)
+ 1500y3

A

(
ξ1, ξ2

)
+ 1875y3

B

(
ξ1, ξ2

)
≤ z ∀

(
ξ1, ξ2

)
∈Ξ

I2
(
ξ1
)
, I3

(
ξ1, ξ2

)
≥ 0 ∀

(
ξ1, ξ2

)
∈Ξ

x1, x2
(
ξ1
)
≥ 0 ∀

(
ξ1, ξ2

)
∈Ξ

y2
A

(
ξ1
)
, y2

B

(
ξ1
)
, y3

A

(
ξ1, ξ2

)
, y3

B

(
ξ1, ξ2

)
∈ {0,1} ∀

(
ξ1, ξ2

)
∈Ξ

where

I2
(
ξ1
)

= x1− ξ+ 25y2
A

(
ξ1
)

+ 25y2
B

(
ξ1
)

and

I3
(
ξ1, ξ2

)
= I2

(
ξ1
)

+x2− ξ2 + 25y3
A

(
ξ1, ξ2

)
+ 25y3

B

(
ξ1, ξ2

)
.

We will use the simple box uncertainty set Ξ = {5≤ ξ1, ξ2 ≤ 95}. If we solve this problem with no

partitions we obtain the three active samples ξ̂1 = (5,5) (for the objective constraint), ξ̂2 = (95,5)
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(for the non-negativity constraint on I2 (ξ1)) and ξ̂3 = (95,95) (for the non-negativity constraint on

I3 (ξ1, ξ2)). The objective value of the unpartitioned problem is 27050. We now construct partitions

for each of these samples exactly as we did before, resulting in the three partitions

Ξ
(
ξ̂1 = (5,5)

)
=
{
ξ1, ξ2

∣∣5≤ ξ1 ≤ 50, ξ1 + ξ2 ≤ 100
}
,

Ξ
(
ξ̂2 = (95,5)

)
=
{
ξ1, ξ2

∣∣50≤ ξ1 ≤ 95, 5≤ ξ2 ≤ 50
}
,

Ξ
(
ξ̂3 = (95,95)

)
=
{
ξ1, ξ2

∣∣5≤ ξ1 ≤ 95, ξ1 + ξ2 ≥ 100
}
,

which are displayed in Figure 3. As this is a multistage problem we must now consider nonan-

ticipativity. In particular for each partition we will create new variables, for example x2
1, x2

2, and

x2
3 for x2 (ξ1). The intention is that if the realized value of ξ1 is in Ξ

(
ξ̂1

)
, then we select x2

1 as

the implemented decision, and similarly for the other partitions. However consider the case when

ξ1 is 10. This value of ξ1 is in both Ξ
(
ξ̂1

)
and Ξ

(
ξ̂3

)
, thus we must add the restriction that

x2
1 = x2

3 as there is insufficient information at that time to distinguish between them. If we now

consider ξ1 = 90, which is in both Ξ
(
ξ̂2

)
and Ξ

(
ξ̂3

)
, we know we must also add the restriction

that x2
2 = x2

3, leaving us with no adaptability in our second-stage decisions. The third-stage vari-

ables are unaffected by these problems as at that time we know both ξ1 and ξ2, which allows us to

fully identify the partition (and decision) we implement. The solution to this partitioned problem

is x1 = 95, y2
A,1 = y2

B,1 = y2
A,2 = y2

B,2 = y2
A,3 = y2

B,3 = 0, x2
1 = x2

2 = x2
3 = 45, y3

A,1 = y3
B,1 = y3

A,2 = 0,

y3
B,2 = y3

A,3 = y3
B,3 = 1 with objective 22075, which is 82% of the unpartitioned solution. The high

initial order of stock suggests there is room for improvement in stage 2.

This example demonstrates that unless we take appropriate care to respect non-anticipitavity we

will lose the benefits of partitioning that we hoped to gain and were demonstrated in the examples

in Section 2. We now present generalizations of the two variants of Section 2 that allow us to benefit

from the partitioning while respecting nonanticipativity.
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ξ̂1 = (5,5) ξ̂2 = (95,5)

ξ̂3 = (95,95)

Figure 3 Partitioning of the uncertainty set in Example 3 using the two-stage non-nested variant case (Algo-

rithm 1) without any adjustments for the multistage case, producing poor partitions.

3.1. Multistage Non-nested Variant

The multistage non-nested variant is essentially the same as the two-stage case, except with a

more complex partition construction procedure. We do need this added complexity to ensure that

nonanticipativity is enforceable and does not cut the number of effective partitions too much (as in

Example 3, where we lost all adaptability in the second stage). We propose using only a subset of

the uncertain parameters to construct the partition. In particular, when determining the dividing

hyperplane between the partitions for a sample ξ̂i and a sample ξ̂j we first compare them to deter-

mine which components ξ̂t they share. For example, in Example 3 samples ξ̂2 and ξ̂3 are identical

in the first stage, but different in the second. Samples ξ̂1 and ξ̂3 were different in both the first and

second stages. We then construct the hyperplane that defines the boundary between between two

partitions using only the uncertain parameters for the first time stage where there is a difference.

Formally, we can express the partition for a sample ξ̂i as

Ξ
(
ξ̂i

)
= Ξ∩

{
ξ
∣∣∣∥∥∥ξ̂ti,ji − ξti,j

∥∥∥
2
≤
∥∥∥ξ̂ti,jj − ξti,j

∥∥∥
2
∀ξ̂j ∈Fk

}
(14)

where Fk is the set of samples (as in Algorithm 1) and ti,j is the minimum t such that ξ̂ti 6= ξ̂tj. We

then claim the following result regarding non-anticipitavity:
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Proposition 1. If xti and xtj are the decisions at time stage t≥ 2 corresponding to the partitions

Ξ
(
ξ̂i

)
and Ξ

(
ξ̂j

)
respectively, then constraining xti = xtj iff ξ̂1,...,t−1

i = ξ̂1,...,t−1
j ensures nonantici-

pativity.

Proof xt is a function of the uncertain parameters ξ1, . . . ,ξt−1, thus to “ensure nonanticipativ-

ity” means that it’s value may not depend on ξt, . . . ,ξT . If t ≤ ti,j (as defined in Equation 14),

then ξ̂1,...,t−1
i = ξ̂1,...,t−1

j so the hyperplane between Ξ
(
ξ̂i

)
and Ξ

(
ξ̂j

)
does not not involve any

ξ1, . . . ,ξt−1 and thus any realization of those uncertain parameters that falls within Ξ
(
ξ̂i

)
could

be in Ξ
(
ξ̂j

)
. Thus, we must enforce the nonanticipativity constraints. If t > ti,j then a realization

of the uncertain parameters ξ1, . . . ,ξt−1 can be uniquely assigned to either one of the partitions (or

neither) as the separating hyperplane involves the components ξti,j . Thus, we do not need to enforce

the nonanticipativity constraints.

We again define the set of active samples for a partition or set given a solution as

Ξ̂
(
z̄, x̄, Ξ̄

)
=

{
ξ̂

∣∣∣∣∣ξ̂= arg min
ξ∈Ξ̄

{
bi (ξ)−

T∑
t=1

ati (ξ) · x̄t
}
∀i∈ {1, . . . ,m}

}
(15)

∪

{
ξ̂

∣∣∣∣∣ξ̂= arg min
ξ∈Ξ̄

{
z̄−

T∑
t=1

ct (ξ) · x̄t
}}

,

which is the same as in Algorithm 1 with the natural generalization to multiple stages.

Algorithm 3. Non-nested variant of iterative partitioning algorithm (multistage).

1. Initialization. Define F1 to be the initial empty set of samples, and iteration counter k← 1

2. Initial Solve. Solve the following unpartitioned, non-adaptive version of (2)

znonested
(
F1
)

= min
x,z

z

subject to
T∑
t=1

ct (ξ) ·xt ≤ z ∀ξ ∈Ξ

T∑
t=1

ati (ξ) ·xt ≤ bi (ξ) ∀ξ ∈Ξ, i∈ {1, . . . ,m}

x∈X ,

with solution (z̄, x̄). Set F2← Ξ̂ (z̄, x̄,Ξ) and k← 2.
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3. Partitioned Problem. Solve the following partitioned version of (2), with one partition for

every ξ̂j ∈Fk:

znonnested
(
Fk
)

= min
x,z

z (16)

subject to
T∑
t=1

ct (ξ) ·xtj ≤ z ∀ξ ∈Ξ
(
ξ̂j

)
, ∀ξ̂j ∈Fk

T∑
t=1

ati (ξ) ·xtj ≤ bi (ξ) ∀ξ ∈Ξ
(
ξ̂j

)
, ∀ξ̂j ∈Fk, i∈ {1, . . . ,m}

xti = xtj ∀ξ̂i, ξ̂j ∈Fk where ξ̂1,...,t−1
i = ξ̂1,...,t−1

j , ∀t∈ {2, . . . , T}

x∈X

with solution (z̄, x̄1, x̄2, . . . ) and partitions Ξ
(
ξ̂j

)
as defined in Equation 14.

4. Grow set. Let

Fk+1←Fk ∪

{⋃
j

Ξ̂
(
z̄, x̄j,Ξ

(
ξ̂j

))}
where Ξ̂ is defined in Equation 15, and set k← k+ 1. Terminate if termination criteria are reached

otherwise and go to 3.

The partitions we create and the nonanticipativity constraints xti = xtj are naturally related. A

partition is created using only the uncertain parameters for the first stage where they differ. As a

result the variables corresponding to two different samples must take the same values for all stages

up to but not including that first different stage. We now demonstrate the multistage non-nested

variant with the same three-stage problem as Example 3.

Example 4. Consider the three-stage problem of Example 3. After solving the unpartitioned prob-

lem we had three active samples ξ̂1 = (5,5), ξ̂2 = (95,5) and ξ̂3 = (95,95) and an objective of 27050.

We now consider building the partition for the second sample. As the second sample and third

sample first differ in the second stage we set t2,3 = 2, and as the second and first samples differ in

the first stage we set t2,1 = 1. We can now construct the partition for the second sample as

Ξ
(
ξ̂2 = (95,5)

)
= Ξ∩

{
ξ
∣∣∥∥95− ξ1

∥∥
2
≤
∥∥5− ξ1

∥∥
2

}
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∩
{
ξ
∣∣∥∥5− ξ2

∥∥
2
≤
∥∥95− ξ2

∥∥
2

}
=
{
ξ
∣∣50≤ ξ1 ≤ 95, 5≤ ξ2 ≤ 50

}
,

and likewise for the other partitions

Ξ
(
ξ̂1 = (5,5)

)
=
{
ξ
∣∣5≤ ξ1 ≤ 50

}
and

Ξ
(
ξ̂3 = (95,95)

)
=
{
ξ
∣∣50≤ ξ1 ≤ 95, 50≤ ξ2 ≤ 95

}
.

These partitions are displayed in Figure 4. We also impose the restriction that x2
2 = x2

3 as they

share the same first stage value. If we now check this construction like we did before, we note that

ξ1 = 10 is unambiguously in Ξ
(
ξ̂1

)
and we have no nonanticipativity constraint for x2

1. On the

other hand ξ2 = 90 could be in either Ξ
(
ξ̂2

)
or Ξ

(
ξ̂3

)
, but we have already taken account of that

in the construction of the partitioned problem. Thus we have used the three samples to construct

three partitions, with two distinguishable partitions for the first stage uncertain parameters - an

improvement on the lack of adaptability before. The solution to this partitioned problem is x1 = 50,

y2
A,1 = y2

B,1 = 0, y2
A,2 = y2

B,2 = y2
A,3 = y2

B,3 = 1, x2
1 = 95, x2

2 = x2
3 = 65, y3

A,1 = y3
B,1 = y3

A,2 = y3
B,2 = y3

B,3 =

0, y3
A,3 = 1 with objective 19725, which is 73% of the unpartitioned solution and an improvement

on the incorrectly partitioned solution of Example 3 which only improved to 82% due to a lack of

adaptability in the second stage.

3.2. Multistage Nested Variant

As the two-stage nested variant extended the non-nested variant, the multistage nested variant

extends the multistage non-nested variant. We again have a partition for each leaf of the sample

tree, and we will use the same tree operators and terminology we established previously. There is
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ξ̂1 = (5,5) ξ̂2 = (95,5)

ξ̂3 = (95,95)

Figure 4 Partitioning of the uncertainty set in Example 4 using the multistage non-nested variant (Algorithm 3).

no change in how the samples are stored in the tree, only in how they are converted into partitions.

The partitioning scheme we use is

Ξ
(
ξ̂i

)
=
{
ξ
∣∣∣∥∥∥ξ̂ti,ji − ξti,j

∥∥∥
2
≤
∥∥∥ξ̂ti,jj − ξti,j

∥∥∥
2
∀ξ̂j ∈ Siblings

(
ξ̂i

)}
(17)

∩
{
ξ

∣∣∣∣∥∥∥∥Parent(ξ̂i)t′i,j − ξt′i,j∥∥∥∥
2

≤
∥∥∥ξ̂t′i,jj − ξt

′
i,j

∥∥∥
2
∀ξ̂j ∈ Siblings

(
Parent

(
ξ̂i

))}
...

∩Ξ,

where ti,j is the minimum t such that ξ̂ti 6= ξ̂tj ∈ Siblings
(
ξ̂i

)
, t′i.j is the minimum t such that

Parent
(
ξ̂i

)t
6= ξ̂tj ∈ Siblings

(
Parent

(
ξ̂i

))
, and so on. This is the same nesting scheme as in

Algorithm 2, with the selective use of components seen in (14).

Enforcement of the nonanticipativity constraints is more complex than in Algorithm 3. We propose

a method to determine whether, for two samples ξ̂i and ξ̂j, we need to enforce the nonanticipativity

constraints xti = xtj. The rule is as follows:

1. Let ξ̂A← ξ̂i and ξ̂B← ξ̂j.

2. If ξ̂A and ξ̂B are siblings, then let tA,B = arg mins

{
ξ̂sA 6= ξ̂sB

}
. If t > tA,B, then we do not need

to enforce the nonanticipativity constraints. If t≤ tA,B, then we must.

3. If they are not siblings, let ξ̂A← Parent
(
ξ̂A

)
and ξ̂B← Parent

(
ξ̂B

)
and go to Step 2.
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We first seek to demonstrate that this decision rule is sufficient to enforce nonanticipativity, but

we will then show by example that it is conservative: it will enforce nonanticipativity constraints

needlessly in some cases.

Proposition 2. If xti and xtj are the decisions at time stage t≥ 2 corresponding to the partitions

Ξ
(
ξ̂i

)
and Ξ

(
ξ̂j

)
respectively, then constraining xti = xtj according to the above decision rule

ensures nonanticipativity.

Proof If ξ̂i and ξ̂j are siblings, then the rule is equivalent to the situation in Proposition 1. If

not, we let ξ̂A← Parent
(
ξ̂i

)
and ξ̂B← Parent

(
ξ̂j

)
, and tA,B = arg mins

{
ξ̂sA 6= ξ̂sB

}
. If they are

siblings, then we know that all child partitions are separated by a constraint involving the terms

ξtA,B . If t≤ tA,B then the hyperplane induced by ξ̂A and ξ̂B does not not involve any ξ1, . . . ,ξt−1

and thus any realization of those uncertain parameters could fall in a child partition of ξ̂A or ξ̂B,

and we must enforce the nonanticipativity constraints. If t > ti,j then a realization of the uncertain

parameters ξ1, . . . ,ξt−1 can be uniquely assigned to one of child partitions of either ξ̂A or ξ̂B (or

neither) as the separating hyperplane involves the components ξtA,B , so we do not need to enforce

the nonanticipativity constraints. If they are not siblings, then we set ξ̂A← Parent
(
ξ̂A

)
and ξ̂B←

Parent
(
ξ̂B

)
and apply the same logic.

We now provide an example uncertainty set and sample tree for which this decision rule over-

constrains the variables.

Example 5. Over-conservative application of nonanticipativity constraint. Consider the two-stage

uncertainty set Ξ = {(ξ1, ξ2) |0≤ ξ1, ξ2 ≤ 10} with sample tree

T = root



(10,0) ,


(0,0) :A

(10,0) :B

(10,10) ,


(0,10) :C

(10,10) :D
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where we have labelled each leaf sample. The uncertainty sets corresponding to each leaf are

Ξ
(
ξ̂A

)
=
{(
ξ1, ξ2

) ∣∣0≤ ξ1 ≤ 5, 0≤ ξ2 ≤ 5
}

Ξ
(
ξ̂B

)
=
{(
ξ1, ξ2

) ∣∣5≤ ξ1 ≤ 10, 0≤ ξ2 ≤ 5
}

Ξ
(
ξ̂C

)
=
{(
ξ1, ξ2

) ∣∣0≤ ξ1 ≤ 5, 5≤ ξ2 ≤ 10
}

Ξ
(
ξ̂D

)
=
{(
ξ1, ξ2

) ∣∣5≤ ξ1 ≤ 10, 5≤ ξ2 ≤ 10
}

which we can manually inspect and determine that we must enforce the nonanticipativity constraints

x2
A =x2

C and x2
B =x2

D. However, consider the application of the decision rule above to this problem

for t= 2 (x2 (ξ1)):

• ξ̂A and ξ̂B are siblings, and tA,B = 1< t, so they do not require a nonanticipativity constraint.

• ξ̂A and ξ̂C are not siblings, so we must compare their parents. The parents are siblings, and

differ in ξ2 so they do require a nonanticipativity constraint.

• ξ̂A and ξ̂D are not siblings, so we must compare their parents. The parents are siblings, and

differ in ξ2 so we add a nonanticipativity constraint. However, this constraint is not required.

Thus the decision rule is over-conservative in this case.

The problem of deciding whether or the nonanticipativity constraints need to be enforced for time

stage t can be determined by the solution of an optimization problem. Let us express the partitions

for the two samples of interest ξ̂i and ξ̂j as

Ξ
(
ξ̂i

)
= {ξ ∈Ξ |Fξ≤ f } ,

Ξ
(
ξ̂j

)
= {ξ ∈Ξ |Gξ≤ g} ,

and consider the optimization problem

INTERSECT (t) = max α (18)

subject to Fψ+αe ≤ f

Gφ+αe ≤ g

ψs =φs ∀s∈ {1, . . . t− 1}

ψ ∈Ξ,φ∈Ξ.
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If problem 18 is infeasible, then we do not need to enforce the nonanticipativity constraints for time

stage t as no value of ξ1,...,t−1 appears in both partitions. If the problem is feasible with objective

zero, then there is as a value of ξ1,...,t−1 that is on the boundary of the partitions, so again we do not

need to enforce the nonanticipativity constraints as we could simply perturb the partitions to make

the decision unique. If the objective is greater than zero, then we must enforce the non-anticipitavity

constraints. We can use this technique to reduce the number of nonanticipativity constraints required

by applying it only to those pairs of partitions that the above conservative decision rule says require

them. This should be a cheap operation (compared to solve the AMIO) as we will have to check far

less than all possible pairs, and the uncertainty set is typically a low-dimensional set. Given these

tools, we can now state the multistage nested variant.

Algorithm 4. Nested variant of iterative partitioning algorithm (multistage).

1. Initialization. Define T 1 to be the initial tree of samples, consisting of one root node (any

ξ̂ ∈Ξ). Set iteration counter k← 1.

2. Partitioned Problem. Solve the following partitioned version of 2, with one partition for

every ξ̂j ∈Leaves (T k):

ztree
(
T k
)

= min
x,z

z (19)

subject to
T∑
t=1

ct (ξ) ·xti ≤ z ∀ξ ∈Ξ
(
ξ̂j

)
, ∀ξ̂j ∈Leaves

(
T k
)

T∑
t=1

ati (ξ) ·xtj ≤ bi (ξ) ∀ξ ∈Ξ
(
ξ̂j

)
, ∀ξ̂j ∈Leaves

(
T k
)
, i∈ {1, . . . ,m}

xti = xtj ∀ξ̂i, ξ̂j ∈Leaves
(
T k
)
iff . . .

x∈X (20)

with solution (z̄, x̄1, x̄2, . . . ). The partitions are defined as in Equation 17, and the nonanticipativity

constraints are enforced using the logic stated above.

3. Grow set. Initialize T k+1 ← T k. For every leaf ξ̂j ∈ Leaves (T k+1) add the samples

Ξ̂
(
z̄, x̄j,Ξ

(
ξ̂j

))
as children of that leaf. Terminate if termination criteria are reached otherwise set

k← k+ 1 and go to 2.
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F1 F2 F3

T 1 T 2 T 3

Figure 5 Comparison of the uncertainty set partitions for three iterations of the multistage non-nested (top) and

nested (bottom) variants for the inventory control problem of Examples 13, 4 and 6. Both are the same

in the first two iterations, but diverge in the third. The solid points represent the active samples after

solution, and the hollow points in the third iteration represent the samples that define the partitions

(some points overlap).

To demonstrate the differences from the multistage non-nested variant we extend Example 4 to a

third iteration.

Example 6. In Example 4 we solved the three-stage inventory problem using the non-nested variant

for two iterations. The first and second iteration for the nested and non-nested variants produce the

same partitions, so we will start from the solution of the non-nested variant. In particular, the active

samples are as follows: we have active samples (5,5), (50,5), (50,95) for Ξ̂
(
ξ̂1 = (5,5)

)
, (50,5),

(95,5), and (95,50) for Ξ̂
(
ξ̂2 = (95,5)

)
, and finally (50,50), (95,50), (95,95) for Ξ̂

(
ξ̂3 = (95,95)

)
.

We display the induced partitions for both the non-nested and the nested variants in Figure 5.

The third stage objective value for the non-nested variant is 17100 (with 7 partitions, 63% of non-

adaptive) and 16200 for the nested variant (with 9 partitions, 60% of non-adaptive).

In this section we demonstrated that both variants can be adapted to the multistage case. Inter-

estingly the number of partitions we have at any iteration is not directly connected to the number
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of time stages. However, we expect that in practical problems the number of partitions will scale

with the number of time stages as the uncertainty set dimension grows. In the example used in this

section the non-nested variant had 3 unique samples at the end of iteration 1, 7 unique samples

at the end of iteration 2, and 13 at the end of iteration 3. The nested variant had 3 leaves at the

end of iteration 1, 9 leaves at the end of iteration 2, and 27 at the end of iteration 3. However, the

nested variant had a better objective value than the non-nested variant. For this reason we suggest

practitioners evaluate both variants to evaluate what provides the best balance of solution quality

and computational efficiency for the problem at hand.

4. Bounds on Performance

In this section, we present results for three types of bounds for different aspects of our methods

and AMIO. These bounds are useful for their ability to improve computational tractability. The

first bound is perhaps the most critical as it provides an estimate of the gap between our finitely

adaptable solution and the fully adaptive solution. The second bound is an upper bound on the

objective value of a subsequent iteration of the algorithm. This bound is only available for the nested

variant, which we show has monotonically decreasing objectives, whereas the non-nested variant

may become worse from iteration-to-iteration. Finally we provide a lower bound on the objective

value of a subsequent iteration using duality theory, which may be useful for the purposes of early

termination.

4.1. Lower Bound on Fully Adaptive Solution

The finite adaptability methods of this paper are an approximation of the fully adaptive AMIO

problem (2). In particular, the difficult-to-calculate solution to (2) is a lower bound on the objective

value of our finitely adaptable problem at any iteration with either variant. Without knowledge of

the objective value of the fully adaptive solution, we must use an easier to calculate lower bound

with the information we have. Given this lower bower bound on the fully adaptive solution, we can

estimate the gap between our finitely adaptive solution and the fully adaptive solution. We propose
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using the set of samples available at the end of iteration k to obtain this lower bound. That is,

after the solution of the partitioned problem at iteration k, we can augment the set of samples (i.e.

Fk+1,T k+1) and use those samples to construct and solve a deterministic problem whose objective

provides the lower bound.

Proposition 3. Consider the solution of the optimization problem

zlower (A) = min
x,z

z (21)

subject to
T∑
t=1

ct
(
ξ̂i

)
·xti ≤ z ∀ξ̂i ∈A

T∑
t=1

At
(
ξ̂i

)
·xti ≤ b

(
ξ̂i

)
∀ξ̂i ∈A

xti =xtj ∀ξ̂i, ξ̂j ∈A such that ξ̂1,...,t−1
i = ξ̂1,...,t−1

j

x∈X ,

where A is a set of samples ξ̂ ∈Ξ. Then zlower (A)≤ zfull, where is zfull is the solution to (2).

Proof Let x̄t (ξ1,...,t−1) be the optimal solution to (2). We can thus construct a feasible solution

x̃ti to (21) using the mapping

x̃ti = x̄t
(
ξ̂1,...,t−1
i

)
which satisfies the linear constraints because x̄t (ξ1,...,t−1) is feasible for all ξ ∈ Ξ, and satisfies the

nonanticipativity constraints because if ξ̂1,...,t−1
i = ξ̂1,...,t−1

j then x̄t
(
ξ̂1,...,t−1
i

)
= x̄t

(
ξ̂1,...,t−1
j

)
and

thus x̃ti = x̃tj. This constructed solution for (21) will have the same objective value as the solution

for (2), so zlower (A)≤ zfull.

We construct the set A in (21) differently for each variant: in the non-nested variant the set A is

simply Fk, and in the nested variant it is all samples in the tree T k - not just the leaf samples. We

thus have the bound

zlower (A)≤ zfull ≤


znonnested (Fk)

znested (T k)
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and we can use the relative gap between zlower (A) and zvariant as a termination criterion, e.g.

terminate if

zvariant− zlower
zlower

≤ α.

We note that there is a close relationship between this bound and the a posteriori “scenario based

bound” of Hadjiyiannis et al. (2011) in a two-stage setting. Indeed they also discuss the use of

“binding” uncertainty realizations, much like our active samples. The primary difference in the bound

is addition of the multistage nonanticipativity constraints, which they do not need to consider for

their formulation.

A useful property of this bound is that as we obtain more samples the lower bound improves

monotonically, so at each iteration we shrink the bound gap from above and below. However,

calculating a solution to (21) may be computationally intensive in its own right. A solution to the

partitioned problems (16) or (19) can be mapped to a feasible solution to (21), which enables us

to provide an initial solution for the branch-and-bound solver. This can reduce solve times for the

bounding problem, which we do not necessarily need to solve to provable optimality.

4.2. Upper Bound on Subsequent Iterations

We now present an upper bound on the objective value of the partitioned problem at iteration k+1

relative to the solution at iteration k for the nested variant, and demonstrate by example that the

non-nested variant does not have a useful upper bound of this nature.

Proposition 4. The objective values of znonnested (Fk) do not necessarily decrease monotonically

in k, and a solution to (6) at iteration k does necessarily provide a feasible solution for (6) at

iteration k+ 1.

Proof We provide an example of this behavior as proof. Consider the two-stage AMIO problem

min
w,x,y,z

z
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Figure 6 Optimal policies for y as a function of ξ for one (left), two (center), and three (right) partitions for

the problem described in the proof for Proposition 4 using the non-nested algorithm. The two partition

policy is the same as optimal policy for y in this problem, but it is impossible to express the optimal

policy with these particular three partitions.

subject to z ≥ x+ 20w (ξ)− 10y (ξ) ∀ξ ∈ [0,1]

w (ξ)≥ ξ ∀ξ ∈ [0,1]

y (ξ)≤min

{
x, ξ+

1

2

}
∀ξ ∈ [0,1]

y (ξ)∈ {0,1}

x∈ {0,1} ,

which has one first-stage variable x and two second-stage variables w (ξ) and y (ξ). If we solve the

non-adaptable version of the problem at iteration 1 we obtain the solution w = 1, x = 0, y = 0,

with objective value z = 20. The active samples are ξ̂1 = 0 and ξ̂2 = 1, so at iteration 2 we have

partitions Ξ
(
ξ̂1 = 0

)
=
[
0, 1

2

]
and Ξ

(
ξ̂2 = 1

)
=
[

1
2
,1
]
. The solution at iteration 2 is w1 = 1

2
, w2 = 1,

x= 1, y1 = 0, y2 = 1, with objective value z = 11. It can be shown that this is equivalent to the fully

adaptive solution for this problem.

If we now construct a new set of partitions using the active samples ξ̂1 = 0, ξ̂2 = 1
2
, and ξ̂3 = 1,

we obtain a solution with a worse objective 14 1
3
. This is due to the impossibility of expressing the

optimal policy for y with these three partitions, which we demonstrate visually in Figure 6.

Proposition 5. The objective values of znested (T k) do decrease monotonically in k, and a solution

to (9) at iteration k provides a feasible solution for (9) at iteration k+ 1.
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ξ̂ = · · · → [0,1]

ξ̂ = 1→
[

1
2
,1
]

ξ̂ = 1→
[

3
4
,1
]

ξ̂ = 1
2
→
[

1
2
, 3

4

]
ξ̂ = 0→

[
0, 1

2

]
ξ̂ = 1

2
→
[

1
4
, 1

2

]
ξ̂ = 0→

[
0, 1

4

]

0 1
0

1

ξ

y (ξ)

0 1
2 1

0

1

ξ

y (ξ)

0 1
4

1
2

3
4 1

0

1

ξ

y (ξ)

Figure 7 Optimal policies for y as a function of ξ for one (left), two (center), and four (right) partitions for the

problem described in Theorem 4 using the nested algorithm. The two and four partition policies are the

same as fully adaptive optimal policy for y in this problem.

Proof Consider the sample tree T k at iteration k and the solution to the corresponding opti-

mization problem (9). Each leaf ξ̂i of the tree corresponds to a partition of the uncertainty set

Ξ
(
ξ̂i

)
, and a second-stage solution x2

i . For each leaf we will obtain new samples, which we will use

in iteration k+ 1 to create sub-partitions of Ξ
(
ξ̂i

)
. The solution at iteration at k is by definition

feasible for all ξ ∈ Ξ
(
ξ̂i

)
, and as we only sub-partition existing partitions, x2

i at iteration k is a

feasible value for all second-stage variables corresponding to the sub-partitions of Ξ
(
ξ̂i

)
at iteration

k+ 1. Because the solution at iteration k is a feasible solution for the problem at iteration k+ 1,

we will obtain a solution no worse than at iteration k.

We can demonstrate Proposition 5 in practice for the example problem in Proposition 4. The

nested variant produces identical partitions and solutions for the first two iterations but in the third

iteration it produces partitions
[
0, 1

4

]
,
[

1
4
, 1

2

]
,
[

1
2
, 3

4

]
,
[

3
4
,1
]
, which allows the optimal policy that we

found at iteration 2 to be also be found at iteration 3. This is demonstrated in Figure 7.
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4.3. Lower Bound on Subsequent Iterations

We now present a third bound that bounds the maximum improvement for subsequent iterations.

Consider the two-stage adaptive linear optimization (ALO) problem

z∗nopart = min
x,z

z (22)

subject to c1 ·x1 + c2 ·x2 (ξ)≤ z

a1
i ·x1 + a2

i ·x2 (ξ)≤ bi · ξ ∀ξ ∈Ξ, i∈ {1, . . . ,m}

x∈X

where the uncertainty set Ξ is a polyhedron. We note that if bi = 0 the constraint is not uncertain

and should be included in set X , so we will assume all bi 6= 0. Consider solving the non-adaptive

version of (22) using a cutting plane method: as the uncertainty is only in the right-hand-side of

the problem it is sufficient to solve once, for each constraint i, the cutting plane problem

ξ̂i = arg min
ξ∈Ξ

bi · ξ

The deterministic problem created through the cutting plane method is thus

z∗nopart = min
x,z

z (23)

subject to c1 ·x1 + c2 ·x2 ≤ z

a1
i ·x1 + a2

i ·x2 ≤ bi · ξ̂i ∀i∈ {1, . . . ,m}

x∈X

with dual variable πi associated to each constraint i. Consider now the set A of active samples ξ̂i

for each constraint in (23), and use them to create the partitioned problem

z∗part = min
x,z

z (24)

subject to c1 ·x1 + c2 ·x2
j ≤ z ∀ξ̂j ∈A

a1
i ·x1 + a2

i ·x2
j ≤ bi · ξ ∀ξ ∈Ξ

(
ξ̂j

)
, ∀ξ̂j ∈A, i∈ {1, . . . ,m}

x∈X .
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We now seek to bound the maximum improvement in objective value between unpartitioned problem

and partitioned problem, i.e., a bound on z∗nopart− z∗part. To do so, we first prove a result about the

objective for a single partition.

Lemma 1. Given a ξ̂ ∈A define the partitioned optimization problem

z∗onepart = min
x,z

z (25)

subject to c1 ·x1 + c2 ·x2 ≤ z

a1
i ·x1 + a2

i ·x2
j ≤ bi · ξ ∀ξ ∈Ξ

(
ξ̂
)
, i∈ {1, . . . ,m}

x∈X .

For each constraint i solve the cutting plane problem

arg min
ξ∈Ξ(ξ̂)

bi · ξ

to obtain a ξ̃i. The objective z∗onepart is bounded by the relationship

z∗onepart ≥ z∗nopart +
m∑
i=1

bi ·
(
ξ̃i− ξ̂i

)
πi

where ξ̂i is the active sample for constraint i in Problem (23).

Proof π, the dual solution to (23), is a sub-gradient of the objective function of (23) with respect

to the right-hand-side of the constraints. That is, if the right-hand-side changes by ∆, the objective

changes by at most π ·∆. The change in the right-hand-side between (23) and (25) is determined by

the change in the active uncertain parameters, i.e. ∆i = bi ·
(
ξ̃i− ξ̂i

)
. Thus the change in objective

is at least
∑m

i=1 bi ·
(
ξ̃i− ξ̂i

)
πi.

We now use this lemma to provide our bound on the improvement between two iterations.

Theorem 2. For each partition Ξ
(
ξ̂j

)
of (24) calculate a ξ̃j,i for each constraint i as in Lemma 1.

The objective z∗part is bounded by the relationship

z∗part ≥ z∗nopart +
m∑
i=1

bi ·
(
ξ̃j,i− ξ̂i

)
πi ∀ξ̂j ∈A
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Proof This follows from Lemma 1. The objective of z∗part is the largest of the respective objective

of each partition (c1x1 + c2 · x2
j) so the lower bound is the largest (worst) of the bounds on each

individual partition. That is, the bound is the most pessimistic of the partition bounds.

We can illustrate this bound using the following two-stage ALO problem.

Example 7. Two-stage stock allocation problem. Consider the following two-stage ALO problem

z = max 3(S1 +S2)− (B1 +B2)

s.t. 0≤ S1 ≤B1

0≤ S2 ≤B2

S1 ≤D1 ∀D∈U

S2 ≤D2 ∀D∈U

U =

{
D | |D1− 20|

10
+
|D2− 10|

5
≤ 1

}
where S is the second-stage decision (amount sold at a store) which is dependent on how much stock

is bought in the first stage (B) and the uncertain demand (D). The optimal objective value z for

the non-adaptive problem is 30. For the uncertain constraint on S1 we find that the active sample

is D̂ = (10,10) with π1 = 2 and correspondingly for S2 we find that the sample is D̂ = (20,5) with

π2 = 2 as well. If now create the partitioned problem, but only obtain the cuts/active samples, we find

that for the partition induced by D̂ = (10,10) we have active samples corresponding to D̃ = (10,10)

and D̃ = (15,7.5), giving a partial upper bound (as we are maximizing) for that partition of

30 + 2 [1 0]

10− 10

10− 10

+ 2 [0 1]

10− 15

10− 7.5

= 35.

For the partition induced by D̂ = (20,5) we have active cuts corresponding to D̃ = (15,7.5) and

D̃ = (20,5), giving a partial upper bound of

30 + 2 [1 0]

20− 15

5− 7.5

+ 2 [0 1]

20− 20

5− 5

= 40.



Bertsimas and Dunning: Multistage Robust Mixed Integer Optimization with Adaptive Partitions
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 41

The bound on the objective value for the partitioned problem is thus 35, the more pessimistic of

the two partial bounds. The actual objective value of the partitioned problem is 32.5, but we note

the best possible objective value (with full adaptability) is 35.

This bound generalizes naturally to multiple iterations and time stages, which we omit for brevity.

However, the bound as stated is dependent on both the uncertainty being only in the right-hand-side,

and on the problem being continuous. The first restriction cannot be relaxed, but the second may be

overcome in some cases. For mixed-integer problems it may be sufficient to fix integer variables to

get a continuous problem, solve and use the dual solution of that. The bound no longer necessarily

holds, but may be able to provide insights regardless.

5. Computational Experiments

The goal of this section is to demonstrate that, for problems of interest from the literature, the

methods described in this paper are practical. In particular, we provide comparisons with alternative

methods, guidance on the question of whether to use the nested or non-nested variant, and how the

methods scale. To do so we consider a two-stage binary capital budgeting problem (Section 5.1), a

mulitstage lot sizing problem (Section 5.2), and finally an extension of the lot sizing problem to the

network setting (Section 5.3). We will summarize the conclusions drawn from these benchmarks in

Section 6.

5.1. Capital Budgeting

For our first example we revisit the capital budgeting problem from Hanasusanto et al. (2014) where

we must decide which of N projects to pursue to maximize profits. We are constrained by a known

budget B, and the cost ci and profit ri for each facility i are functions of uncertain parameters

ξ. We have the option of pursuing a project either before or after these uncertain parameters are

observed. If we pursue a project after they are observed then we generate only a fraction θ ∈ [0,1)

of the profit - a penalty for delaying the decision. This can be expressed as the adaptive binary

optimization problem

max
z,x

z
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subject to r (ξ) ·
(
x1 + θx2 (ξ)

)
≥ z ∀ξ ∈Ξ

c (ξ) ·
(
x1 + x2 (ξ)

)
≤B ∀ξ ∈Ξ

x1 ∈ {0,1}N

x2 (ξ)∈ {0,1}N ∀ξ ∈Ξ,

where x1 is the first-stage decision to pursue now, and x2 is the second-stage decision to pursue

later.

We will use our finite partitioning to approximate a solution to this fully adaptable problem.

We generate instances of size size N ∈ {5,10, . . . ,30} using the same parameters as in Hanasusanto

et al. (2014), which we reproduce here for completeness. We use four uncertain parameters for all

problem sizes N and define the uncertainty set to be Ξ =
{
ξ
∣∣∣ξ ∈ [−1,1]

4
}
. The project costs and

profits are, for all i,

ci (ξ) =

(
1 +

1

2
Φi · ξ

)
c0
i and ri (ξ) =

(
1 +

1

2
Ψi · ξ

)
r0
i

respectively where c0
i and r0

i are the nominal costs and profits. We sample c0
i from the interval [0,10],

and set r0
i = c0i/5. The rows of the matrices Φ and Ψ are sampled from the unit simplex in R4, with

the budget B set to 1
2
e · c0 and θ set to 0.8.

We used both variants described in Section 2. It is illustrative to consider the size of the adapt-

able formulation at each iteration for the methods proposed in this paper versus the approach in

Hanasusanto et al. (2014). Their approach uses O (KN) binary variables and O (2KKN) continuous

variables whereK is the number of partitions (selected a priori), with fractionality-inducing “big-M”

constraints. For both our variants our partitioned problem at iteration k has at most (1 + 2k−1)N

binary variables (with one auxiliary continuous variable to represent the objective). We do not make

any substantial changes in problem structure, just the duplication of the second-stage variables for

each partition.

To compare our results with Hanasusanto et al. (2014) we measured performance our method by

the same metric: the improvement in objective relative to the solution with no adaptability,

zk=kmax
variant − zk=1

variant

zk=1
variant

. (26)
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They demonstrate an improvement by this metric of approximately 65% with their two-partition

solution, 90% with their three-partition solution, and 110% with their four-partition solution. How-

ever, even with only N = 20 almost all instances failed to solve to optimality using their method

within 2 hours.

We add a new metric, gap, which estimates how far we are from the fully adaptive solution using

the bound presented in Section 4.1,
zkupper− zkvariant

zkupper
, (27)

where zkupper is the objective value of the bound problem. Table 1 shows that for problems of size

N = 10 we can obtain an average improvement of 77% in 3 seconds with the nested variant. Table 2

shows similar results for problems of size N = 40 with an 80% improvement in 3 seconds with the

nested variant. We attained an average improvement of 110% with the non-nested variant in an

average of 388 seconds for N = 40, similar to the best improvement demonstrated by Hanasusanto

et al. (2014). While our method requires multiple solves and has more binary variables, we suggest

the reason our approach is far more tractable is that it preserves the relatively simple problem

structure, allowing the MIO solver to branch smarter and generate good solutions using heuristics.

We note that the results obtained in Postek and Den Hertog (2014) achieve similar results, although

a more precise comparison is difficult due not only to the use of different solver settings and hardware,

but that both methods can trade off time/iterations for solution quality.

When comparing the two variants we note that the nested variant delivers improvements similar

to the non-nested variant in a much smaller amount of time, but that the biggest improvement over

eight iterations was with the non-nested variant. Figures 8 and 9 demonstrate the improvement and

gap versus time for N = 10 and N = 40, and seem to suggest there is little difference between the

two in terms of progress made per unit time.

5.2. Multistage Lot Sizing

The multistage lot sizing problem described in Bertsimas and Georghiou (2013) is a challenging

AMIO problem that features a mix of continuous and binary decisions across multiple time stages.
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Figure 8 Comparison of rate of improvement in objective for the capital budgeting example of the partitioned

problem (Equation (26)) for N = 10 (left) and N = 40 (right). The nested variant is the dashed line

with a square iteration marker, and non-nested variant is a solid line with circular iteration markers.
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Figure 9 Comparison of rate of improvement in gap (Equation (27)) for the capital budgeting example of the

partitioned problem versus the unpartitioned problem (k= 1) for N = 10 (left) and N = 40 (right). The

nested variant is the dashed line with a square iteration marker, and non-nested variant is a solid line

with circular iteration markers
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Iteration

N = 10 Variant 1 2 3 4 5 6 7 8

Total Time (s)
Non-nested 0.0 0.0 0.1 0.2 0.8 2.7 12.8 112.4

Nested 0.0 0.0 0.1 0.1 0.2 0.7 1.5 3.2

Improvement (%)
Non-nested 0 34 37 40 65 76 81 83

Nested 0 34 36 38 40 68 74 77

Gap (%)
Non-nested 62 48 46 45 34 29 27 34

Nested 62 48 47 46 45 34 31 30
Table 1 Average results over 20 instances of the capital budgeting problem for both variants of the iterative

method for the capital budgeting problem with N = 10. “Total time” is the total cumulative time to solve the

partitioned problems across the iterations. “Improvement” is defined in Equation (26), “gap” in Equation (27).

Iteration

N = 40 Variant 1 2 3 4 5 6 7 8

Total Time (s)
Non-nested 0.0 0.1 0.2 0.3 1.2 4.3 23.8 388.2

Nested 0.0 0.1 0.1 0.2 0.4 1.1 2.5 6.0

Improvement (%)
Non-nested 0 40 40 40 73 86 99 110

Nested 0 40 40 40 40 78 80 80

Gap (%)
Non-nested 62 46 46 46 33 28 23 18

Nested 62 46 46 46 46 31 31 30
Table 2 Average results over 20 instances of the capital budgeting problem for both variants of the iterative

method for the capital budgeting problem with N = 40. “Total time” is the total cumulative time to solve the

partitioned problems across the iterations. “Improvement” is defined in Equation (26), “gap” in Equation (27).

We have used small versions of this problem throughout this paper as a motivating example. We now

state the full problem using the notation of Bertsimas and Georghiou (2013). Our goal is to minimize

the cost of stock ordered plus holding costs, subject to the need to satisfy uncertain demand. The
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deterministic problem, where demand ξ is known, is

min
x,y,I

T∑
t=2

(
cxx

t−1 + chI
t +

M∑
m=1

cmqmy
t
m

)
(28)

subject to It−1 +xt−1 +
M∑

,m=1

qmy
t
m− ξt = It ∀t∈ {2, . . . , T}

t−1∑
s=1

xs ≤ x̄tot,t ∀t∈ {2, . . . , T}

It ≥ 0 ∀t∈ {2, . . . , T}

xt−1 ≥ 0 ∀t∈ {2, . . . , T}

yt ∈ {0,1}M , ∀t∈ {2, . . . , T}

where xt is the (continuous, non-negative) amount of stock ordered at time stage t for delivery at

time stage t+ 1 at a unit cost of cx, ytm is a binary decision indicating whether to order a fixed

amount qm of stock for immediate delivery at time t at a unit cost of cm, and It is the level of

inventory at time t. We do not allow stock levels to become negative and we impose a unit holding

cost ch for any stock remaining at the end of stage t. The formulation as stated is not suitable for

an AMIO formulation as we have demand in an equality constraint, however we can eliminate I

from the problem by observating that

It =
t∑

s=2

(
xs−1 +

M∑
m=1

qmy
s
m− ξs

)
.

We can now move to the AMIO setting where ξ is uncertain. To compare our methods with Bertsimas

and Georghiou (2013) we use the same box uncertainty set

Ξ =

{
ξ

∣∣∣∣ ξ1 = 1, lt ≤ ξt ≤ ut ∀t∈ {2, . . . , T}
}
,

with the certain parameters sampled at random from the following ranges or set to fixed values:

cx from [0,5], cm from [cx,10], ch from [0,10], qm set to 100/M , x̄tot,t set to
∑t

s=1 x̄
s where x̄s

is drawn from [0,100], and finally lt and ut from [0,25] and [75,100] respectively. As described

in Section (2.4) we can mix affine adaptability with our finite partitioning method, which we do
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here for the continuous decisions xt. Thus we have xt restricted to piecewise affine functions of all

demand realized by the time of the decision, and the binary decisions ytm restricted to piecewise

constant functions of the demand. To reduce the number of partitions we use only samples for active

constraints and only if they correspond to active partitions (as described in Section 2.5).

We evaluated the performance of both variants over 30 randomly generated instances for T ∈

{2,4,6,8,10}, with results sumarized in Table 3 (for M = 2) and Table 4 (for M = 3). We used four

iterations for both variants, and calculated a gap

zkmaxupper− z
kmax
lower

2
(
zkmaxupper− z

kmax
lower

) , (29)

using the same formula as in Bertsimas and Georghiou (2013). The initial gap includes affine adapt-

ability for the continuous decisions, but no partitioning. Both variants performed similarly well,

substantially tightening the gap and improving over the initial unpartitioned solution. Figure 10

suggests that much of the improvement occurs with only one or two iterations and a relatively small

amount of time. The number of partitions (Figure 11) grows slower than the maximum exponential

growth that is possible, most likely due to the practical modifications made to the method described

above. In constrast to Bertsimas and Georghiou (2013) we find that our method is far more tractable

as it solves all problems with four iterations in under 5 minutes. We hypothesize that this is due,

like in the the capital budgeting example, to our methods preservation of problem structure. The

piecewise linear formulation proposed by Bertsimas and Georghiou (2013) adds fractionality and

modifies the problem structure substantially. The similar method used in Postek and Den Hertog

(2014) has relatively similar performance for smaller problem sizes but our method appears to have

a significantly lower gap for larger values of T , although at the cost of higher computation times.

5.3. Multistage Lot Sizing in a Network

We extend the multistage lot sizing problem of Section 5.2 to the network case, whereby we must

now make ordering decisions at N locations rather than 1. We allow stock to be moved instantly

between stores at a cost, which significantly grows the size of the problem as we now need O (N 2)
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Initial Non-nested Nested

T Gap (%) Time (s) Gap (%) Time (s) Gap (%)

2 24.7 0.0 15.3 0.0 12.0

4 17.1 0.4 11.7 0.4 11.3

6 20.1 9.0 12.6 6.0 14.4

8 19.3 40.4 13.5 42.5 14.4

10 19.5 281.5 12.3 416.9 14.5
Table 3 Results for the multistage lot sizing problem for the non-nested and nested variant for the M = 2 case.

Gap is calculated using (29): “initial gap” is the gap before any partitioning (at end of iteration 1), “time” is the

total time for four iterations, and the variant gaps are the gaps at the end of iteration 4. All numbers are averages.

Initial Non-nested Nested

T Gap (%) Time (s) Gap (%) Time (s) Gap (%)

2 22.0 0.0 13.2 0.0 9.3

4 15.5 0.4 10.3 0.4 9.4

6 15.7 5.8 11.5 5.2 10.8

8 21.0 41.5 15.7 69.0 13.9

10 20.1 313.6 16.2 343.9 12.9
Table 4 Results for the multistage lot sizing problem for the non-nested and nested variant for the M = 3 case.

Gap is calculated using (29): “initial gap” is the gap before any partitioning (at end of iteration 1), “time” is the

total time for four iterations, and the variant gaps are the gaps at the end of iteration 4. All numbers are averages.

variables at each stage. This increase in complexity is also reflected in a richer uncertainty set. The

deterministic problem, where demand ξ is known, is

min
f ,x,y,I

T∑
t=2

(
N∑
i=1

(
cxx

t−1
i + chI

t
i +

M∑
m=1

cmqmy
t
i,m

)
+ cf

N∑
i,j=1

f tij

)
(30)

subject to It−1
i +xt−1

i +
M∑
m=1

qmy
t
i,m +

N∑
j=1

(
f tji− f tij

)
− ξt = Iti ∀i∈N , t∈ {2, . . . , T}
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Figure 10 Average gap versus time for the multistage lot sizing problem, with the nested variant (top), non-nested

variant (bottom), M = 2 (left) and M = 3 (right). Lines from left to right represent T ∈ {2,4,6,8,10}.
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Figure 11 Median number of partitions versus iteration for the multistage lot sizing problem using the nested

variant , for M = 2 (left) and M = 3 (right). Lines from bottom to top represent T ∈ {2,4,6,8,10}.

t−1∑
s=1

xsi ≤ x̄tot,t ∀i∈N , t∈ {2, . . . , T}

Iti ≥ 0 ∀i∈N , t∈ {2, . . . , T}

xt−1
i ≥ 0 ∀i∈N , t∈ {2, . . . , T}
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yti ∈ {0,1}
M ∀i∈N , t∈ {2, . . . , T}

f tij ≥ 0 ∀i, j ∈N , t∈ {2, . . . , T}

where N is the number of locations (indexed by i, N = {1, . . . ,N}), f tij is the amount of stock

to move from location i to location j at time t for a per-unit transport cost of cf , with all other

variables and notation as before. For the case of N = 1 this problem is equivalent to (28). We now

extend the uncertainty set of the non-network case to the set

Ξ =


ξ1
i = 1 ∀i∈N

(1−α) ξ̄ti ≤ ξti ≤ (1 +α) ξ̄ti ∀i∈N ,∀t∈ {2, . . . , T}∑
i

|ξti−ξ̄ti |
αξ̄ti

≤ Γ ∀t∈ {2, . . . , T}


,

which is similar to the non-networked case but with a limit at every time stage on the deviation

from nominal demand across all locations.

Instances are generated in the same manner as the the non-networked case for the parameters

that appear in both: cx, cm, ch, qm, x̄tot,t. cf is sampled from [0,10], ξ̄ti is sampled from [25,75],

α is set to 1
2
and Γ to

√
N . As before we restrict x to be piecewise affine and y to be piecewise

constant, and we additionally restrict f to be piecewise constant. We again only use samples for

active constraints and only if they correspond to active partitions.

Ten instances were generated for each of T ∈ {2,3,4,5,6} and N ∈ {1,2,3,4}, and both variants

were evaluated on the same set of instances. This problem proved to be much harder than the

non-networked lot sizing problem, with problems of size T = 6, N ≥ 3 proving to be impossible to

solve to integer optimality (with an integrality tolerance of 1%) in the time limit of 1200 seconds.

There is some evidence that the nested variant produces lower gaps for cases where all problems

solved, and in particular we note that for N = 4 the nested variant was consistently faster than the

non-nested variant.

6. Concluding Remarks

In this paper, we have presented a novel iterative partitioning approach to solving adaptive mixed

integer optimization problems. In particular we use finite partitioning to approximate the fully
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Non-nested

N=1 N=2 N=3 N=4

T Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%)

2 0.0 11.9 0.0 15.3 0.1 16.5 0.1 17.4

3 0.0 8.7 0.6 11.7 3.1 12.6 9.1 14.2

4 0.2 8.1 4.9 10.2 32.8 13.0 182.2(9) 15.1(9)

5 0.7 9.2 28.4 10.8 300.0(8) 13.0(8) 1028.3(6) 13.8(6)

6 1.3 9.2 340.9(6) 11.3(6) - - - -

Nested

N=1 N=2 N=3 N=4

T Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%)

2 0.0 9.5 0.0 15.7 0.1 16.3 0.1 16.8

3 0.1 8.3 0.3 9.9 1.1 12.9 7.5 14.2

4 0.1 8.2 2.2 9.9 18.0 12.1 132.7(9) 13.9(9)

5 0.4 9.0 22.6 10.7 444.0(6) 13.5(6) 479.5(8) 13.6(8)

6 1.8 8.4 312.0(8) 11.5(8) - - - -
Table 5 Gap as calculated by equation (29) and total time for three iterations of the non-nested and nested

variants for the multistage lot sizing problem in a network. Numbers are medians over ten instances for

T ∈ {2,3,4,5,6}, N ∈ {1,2,3,4}. Entries with a superscript in parenthesis represent the number of instances solved

within the time limit (1200 seconds). Entries with a dash had no instances solved within the time limit.

adaptable solution, and then use information from the solution of the finitely partitioned problem to

further improve the partitioning. The particular partitioning scheme we employ, a Voronoi diagram,

is inspired by the observation that a finite partitioning of the uncertainty set can only improve

the solution quality if the partitioning separates regions of the uncertainty set that correspond to

binding constraints. We find that our method delivers high-quality solutions even as the problem
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scales in both number of time stages and in the number of decision variables. The time per iteration

does increase with the number of time stages, although we observed that the number of partitions

created typically grows much slower than the worst-case. The termination criteria we considered,

based on an upper and lower bound of the fully adaptive solution, worked well in practice, and can

be coupled naturally with a time or iteration limit. The nested variant did not strictly dominate the

non-nested variant, but its theoretical properties are attractive and we expect the warm-starting

possibility to be very helpful for some AMIO problems where finding a feasible solution is difficult.

We compare our approach with the branch-and-bound technique for integer optimization. In

branch-and-bound we use the linear relaxation of an integer optimization problem to provide a lower

bound on the true integer solution, and use the information obtained from the solution to branch on

a fractional variable (i.e. to partition the problem). We can repeat this process until we are satisfied

that the gap between the upper and lower bounds is small enough for our purposes. In our method

we approach the AMIO problem from the upper bound by solving a finitely adaptable version of

the fully adaptable problem and using the information to further partition the uncertainty set. We

show in this paper we can use the information obtained to provide a lower bound, and that we can

continue this process until we are satisfied with the gap between bounds. We note that the lower

bounds presented to date, including the result in this paper, are good for many problems but they

are in need of further improvement. In particular we have observed that the scenario-based lower

bound can be weak for some problems, and that a prohibitively large number of scenarios might be

required to tighten it. We would draw an analogy again with integer optimization and the ability

of cutting planes to significantly tighten the fractionality gap - AMIO has yet to see an equivalent

development.

Finally we note that we demonstrated improvements in computational experiments over other

methods described in the AMIO literature. These other approaches have either tried to directly

optimize the particular partitions used (Hanasusanto et al. 2014) or somewhat equivalently optimize

the pieces in a piecewise recourse decision (Bertsimas and Georghiou 2013). Our approach, similar
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to Postek and Den Hertog (2014), simply picks the partitions based on readily available information,

and tries to improve over time with multiple solves. We envision an interesting future direction of

work where we pick the partitions using a method like the one described in this paper, and then

do some local optimization of the partition structure to extract more better solutions. From the

aspect of computational efficiency, it would be interesting to explore ways of further improving the

solution time at each iteration by using more information from the previous iteration, much like the

relatively small effort required to solve after branching in integer optimization.
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